
Proofs and model-checking

Gilles Dowek

Joint work with Ying Jiang

I. What is a proof?

A first definition

A derivation for an inductively defined subset of formulae E.g.

a
odd(S(0))

odd(t)
b

odd(S(S(t)))

a
odd(S(0))

b
odd(S(S(S(0))))

b
odd(S(S(S(S(S(0))))))

(Un)decidability

Set of formulae that have a proof: need not be decidable (no

decidability of provability): terminating configurations of a Turing

machine

Set of pairs 〈π,A〉: decidable (decidability of proof-checking)

Set of formulae that have a proof: is semi-decidable (projection of

a decidable set)

A more abstract definition of the notion of proof

F : a set of syntactic objects (natural numbers, formulae, strings,

trees, ...)

E: A semi-decidable subset of F

Always the projection of a decidable subset E′ of P × F

Proofs: elements of P

E.g.: F : configutations of a Turing machine

E: terminating configurations

P : finite traces

Proofs in the decidable case

When E semi-decidable but undecidable

Profit: transform undecidable membership to E into decidable

membership to E′

When E is decidable no profit from the point of view of

decidability

But may be a profit from the point of view of complexity

(communication and memory): from NC to C

An example: composite numbers

Set of composite (= non prime) numbers decidable

Is 221 a composite number?

Yes perfect answer

Yes, it is 13× 17 better

Proof that n composite 〈p, q〉 such that p× q = n

Communication / memory

One decision algorithm for E: search for a proof

Indeed: checking n is composite is finding 〈p, q〉

Model checking

Truth (e.g. of a CTL formula) = validity in a finite model: decidable

Finite model replaced by set of configurations of a pushdown

system: still decidable

Only advanced model-checking problems (e.g. trace systems)

become undecidable

What proofs can be good for in model checking?

• communication / memory

Simpler to check the proof than the truth of the formula

A difference between universal and existential quantifier

P (s1) ... P (sn)

∀x P (x)

as complex to check the proof than to check the truth of the

formula

But ...

P (si)

∃x P (x)

much simpler to check the proof than the truth of the formula (the

proof records the element of the model that needs to be

rediscovered)

No benefit for AF , but a lot of benefit for EF because the proof

records the path that need not be rediscovered

• Use automated theorem proving methods (decision algorithms

as automated theorem proving / improve automated theorem

proving (Kailiang Ji’s talk))

• Communicate with other tools (formal methods)

• Undecidable cases

A very broad project

Only at the beginning (in progress)

Finite state case

Pushdown systems (in progress)

II. Finite models

Inductive modalities

Syntax: s AF (P) written AFx(P (x))(s)

(s/x)φ

AFx(φ)(s)

AFx(φ)(s1) . . . AFx(φ)(sn)
s1, . . . , sn = N(s)

AFx(φ)(s)

〈s1, . . . , sn〉 ∈ P
P (s1, . . . , sn)

〈s1, . . . , sn〉 6∈ P
¬P (s1, . . . , sn)

φ1 φ2

φ1 ∧ φ2

φi

φ1 ∨ φ2

Negation normal form

Recording a path

(s/x)φ

EFx(φ)(s)

EFx(φ)(s
′)
s′ ∈ N(s)

EFx(φ)(s)

Decidability (no cut, no contraction, finite search space)

Reasonning and hypothetical reasonning

In general to prove A ⇒ B, assume A and prove B

Deduction rules do not operate on formulae but on formulae

equipped with hypotheses: sequents

Γ, A ⊢ B

Γ ⊢ A ⇒ B

A ∈ Γ
Γ ⊢ A

E.g.

P ⊢ P

⊢ P ⇒ P

Here no hypotheses: to prove A ⇒ B (= ¬A ∨B) two rules

¬A

¬A ∨B

B

¬A ∨B

To prove P ⇒ P prove either P or ¬P (possible thanks to

completeness)

Co-inductive modalities

(s/x)φ EGx(φ)(s
′)
s′ ∈ N(s)

EGx(φ)(s)

But ... infinite path: infinite proof

Decidability argument

If there is an infinite path

There is one with twice the same state

Thus there is a regular one

When reach a node that is already in the path, stop with success

Record the path in the hypotheses

Pruning

⊢ (s/x)φ Γ, EGx(φ)(s) ⊢ EGx(φ)(s
′)
s′ ∈ Next(s)

Γ ⊢ EGx(φ)(s)

EGx(φ)(s) ∈ Γ
Γ ⊢ EGx(φ)(s)

III. Pushdown systems

Pruning

Same rules as for the finite case

But pruning is more complicated

〈q, a〉 −→ 〈q, aa〉

〈q, az〉 −→ 〈q, aaz〉 −→ 〈q, aaaz〉 −→ ...

Decidability

(Bouajanni et al.) The accessible configurations are recognized

by a (multi)automaton

q
a

q‘
b b c

c

q‘‘
c

f

g h i

j

k

ε

ε

ε

ε

ε

ε

1

2

3

4

A

B

B

C

D

D

5

6

7

Cε

Two steps: black transitions, then saturation with the purple ones

Step by step saturation

A sequence of transitions in the pushdown system

〈q0, w0〉 −→ 〈q1, w1〉 −→ 〈q2, w2〉 −→ ... −→ 〈qn, wn〉

A0 −→ A1 −→ A2 −→ ... −→ An

If twice the same automaton: the accessible configuration

〈qn, wn〉 is recognized by the (multi)-automaton with a path that

uses twice the same transition

qn has a “simpler” derivation

Pruning

Sequents of the form A ⊢ B

Prune when a transition does not add a new transition to the

automaton

Completeness (in progress)

A new kind of sequents

Sequents have to be finitely presented objects (decidability of

proof-checking)

But they can contain an infinite number of premises given by a

(finite) automaton

Conclusion

Proof-checking and model-checking are not that different

Specific proof-systems for LTL, CTL, ... or not

Benefit in both sides (new automated theorem proving methods,

new notion of sequent, ...)

