Proofs and model-checking
Gilles Dowek

Joint work with Ying Jiang

|. What is a proof?

A first definition

A derivation for an inductively defined subset of formulae E.g.

b

odd(S(S(S(S(S(0))))))

(Un)decidability

Set of formulae that have a proof: need not be decidable (no
decidability of provabillity): terminating configurations of a Turing

machine
Set of pairs (7, A): decidable (decidability of proof-checking)

Set of formulae that have a proof: is semi-decidable (projection of

a decidable set)

A more abstract definition of the notion of proof

J : a set of syntactic objects (natural numbers, formulae, strings,

trees, ...)

E': A semi-decidable subset of F

Always the projection of a decidable subset £/ of P X F
Proofs: elements of P

E.g.: J: configutations of a Turing machine

E': terminating configurations

P: finite traces

Proofs Iin the decidable case

When E' semi-decidable but undecidable

Profit: transform undecidable membership to £ into decidable

membership to £’

When E is decidable no profit from the point of view of

decidability

But may be a profit from the point of view of complexity

(communication and memory): from NC to C

An example: composite numbers

Set of composite (= non prime) numbers decidable
Is 221 a composite number?

Yes perfect answer

Yes, itis 13 X 17 better

Proof that n composite (p, ¢) suchthatp X ¢ =n
Communication / memory

One decision algorithm for £ search for a proof

Indeed: checking n is composite is finding <p, q>

Model checking

Truth (e.g. of a CTL formula) = validity in a finite model:. decidable

Finite model replaced by set of configurations of a pushdown

system: still decidable

Only advanced model-checking problems (e.g. trace systems)

become undecidable

What proofs can be good for in model checking?

® communication / memory
Simpler to check the proof than the truth of the formula

A difference between universal and existential quantifier

P(s1) ... P(sp)
Vo P(x)

as complex to check the proof than to check the truth of the

formula

But ...

f)(Si)
dx P(x)

much simpler to check the proof than the truth of the formula (the
proof records the element of the model that needs to be

rediscovered)

No benefit for AF’, but a lot of benefit for £/ F' because the proof

records the path that need not be rediscovered

e Use automated theorem proving methods (decision algorithms
as automated theorem proving / improve automated theorem

proving (Kailiang Ji’s talk))
e Communicate with other tools (formal methods)

e Undecidable cases

A very broad project

Only at the beginning (in progress)
Finite state case

Pushdown systems (in progress)

ll. Finite models

Inductive modalities

Syntax: s |- AF(P) written AF,. (P (x))(s)

(s/x)¢
AF;(9)(s)

AF;(9)(s)

.....

Negation normal form

Recording a path

(s/x)¢
EF(0)(s)

EF.(¢) (3/)
EF;(¢)(s)

s’ € N(s)

Decidability (no cut, no contraction, finite search space)

Reasonning and hypothetical reasonning

In general to prove A = B, assume A and prove B

Deduction rules do not operate on formulae but on formulae

equipped with hypotheses: sequents

I''AF B
I'HA= B

Ael

I'-A

PrHP
- P =P

Here no hypotheses: to prove A = B (= = A V B) two rules

-A B
-AV B -AV B

To prove P = P prove either P or =P (possible thanks to

completeness)

Co-inductive modalities

(s/z)¢ EG.(9)(s)

EG@)s) N

But ... infinite path: infinite proof

Decidablility argument

If there is an infinite path

There Is one with twice the same state

Thus there is a regular one

When reach a node that is already in the path, stop with success

Record the path in the hypotheses

Pruning

- (3/2)6 DEGL(0)(s) F BCLO)() |, o

I EGL(9)(s)

EG.(¢p)(s) €T

' EG(¢)(s)

lll. Pushdown systems

Pruning

Same rules as for the finite case

But pruning is more complicated

(q,a) — (g, aa)

(q,az) — {(q,aaz) — (q,aaaz) — ...

Decidability

(Bouajanni et al.) The accessible configurations are recognized

by a (multi)automaton

Two steps: black transitions, then saturation with the purple ones

Step by step saturation
A sequence of transitions in the pushdown system
(g0, wo) — (q1,w1) — (g2, W2) —> ... — (Gn, W)
Ay — A — Ay — ... — A,

If twice the same automaton: the accessible configuration

<qn, wn> IS recognized by the (multi)-automaton with a path that

uses twice the same transition

qr, has a “simpler” derivation

Pruning

Sequents of the form A+ B

Prune when a transition does not add a new transition to the

automaton

Completeness (in progress)

A new kind of sequents

Sequents have to be finitely presented objects (decidability of

proof-checking)

But they can contain an infinite number of premises given by a

(finite) automaton

Conclusion

Proof-checking and model-checking are not that different
Specific proof-systems for LTL, CTL, ... or not

Benefit in both sides (new automated theorem proving methods,

new notion of sequent, ...)

