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CCS for trees

Motivations

Milner introduced CCS in 1980 as an algebraic formalism for
representing communicating systems. Finite state automata appear
as special cases (processes without internal communications).

We propose a similar calculus, extending tree automata instead of
ordinary automata.

We think that it corresponds to an interesting and more general
kind of communicating systems.
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Main features of CCTS

◮ A generalized parallel composition, represented by graphs.

◮ Conservative extension of both tree automata and CCS.

◮ Essential role played by locations: crucial in order to define
internal reduction as well as bisimulations.

◮ Related to interaction nets.
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From finite automata to CCS

Finite automata: basic ingredients

◮ Σ an alphabet.

◮ V an infinite set of states.

◮ V0 ⊆ V infinite set of accepting states.
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From finite automata to CCS

Finite automata: a term syntax

◮ If X ∈ V then X is an automaton term.

◮ If a1, . . . , an ∈ Σ and P1, . . . ,Pn are automaton terms then
∑n

i=1 ai · Pi is a automaton term (empty sum: 0; 1 element
sum: a · P).

◮ If P is an automaton term and X ∈ V then µX P is an
automaton term.

µ is a binder (α-conversion, respecting accepting states).
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From finite automata to CCS

Example

The (usual) automaton

Y

Z

Z0

Xstart

a

a

b

c ba
c

can be represented as

µX c · (µY (

a · µZ (b · Z + c · µZ0 (b · Z + a · Y ))

+ a · µZ0 (a · Y + b · µZ (b · Z + c · Z0))

))
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From finite automata to CCS

Interactive closure

Automata can accept words but have no internal dynamics.

We can see the acceptance of a word w = a1 . . . an by an
automaton P as the interaction between P and a very simple
automaton w = a1 · . . . · an · 0 on a dual alphabet.

The idea of CCS is to generalize this interaction by introducing the
notion of parallel composition P | Q of two automata (or more
generally, CCS processes) P and Q.

P accepts w if the reduction of the process P | w succeeds (in
some sense).
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CCS

Syntax of CCS

We assume that Σ is equiped with an involution a 7→ a without
fixpoints.

◮ If X ∈ V then X is a process.

◮ If a1, . . . , an ∈ Σ and P1, . . . ,Pn are processes, then
∑n

i=1 ai · Pi is a process (guarded sum).

◮ If X ∈ V and P is a process then µX P is a process.
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CCS

Syntax of CCS: new features

◮ If P and Q are processes then P | Q is a process (associative
and commutative operation: it would be more convenient to
introduce the parallel composition of a multiset of processes).

◮ If P is a process and I is a finite subset of Σ then P \ I is a
process (this is a binding operation, subject to α conversion).

ε is the empty parallel composition.
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CCS

Operational semantics of CCS (internal reduction)

We define a reduction relation → on processes.

(µX P) | R → P [µX P/X ] | R

(a · P + S) | (a ·Q + T ) | R → P | Q | R

P \ I | R → (P | R) \ I

→∗: transitive closure or →.
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CCS

Weak barbed bisimilarity

a ∈ Σ is a barb of P if P = (a · P ′ + S) | R , written P ↓a.

A binary relation B on processes is a weak barbed congruence if it
is symmetric and, for any P ,Q ∈ Proc such that P B Q,

◮ for any process P ′, if P →∗ P ′, then there exists Q ′ such that
Q →∗ Q ′ and P ′ B Q ′;

◮ for any P ′ and any a ∈ Σ, if P →∗ P ′ and P ′ ↓a, then there is
Q ′ such that Q →∗ Q ′ and Q ′ ↓a.

P
•
≈ Q means that there exists such a B with P B Q; this is an

equivalence relation on processes.

Intuitively: P and Q feature the same external capabilities.
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CCS

Weak barbed congruence

An equivalence relation R is a congruence if, for any one hole
context C ,

∀P ,Q P R Q ⇒ C [P ] R C [Q] .

The largest congruence contained in
•
≈ is called weak barbed

congruence, notation ∼=.

Intuition: P ∼= Q means that P and Q behave in the same way, in
all possible contexts.
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CCS

Fact

Two automata can accept the same language but not be weak
barbed congruent.

Typical example: a · b · X0 + a · c · X0 and a · (b · X0 + c · X0).

Take the context [ ] | a.
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CCS

Why weak bisimilarity?

The trouble with weak barbed congruence is that it involves a
universal quantification on contexts: hard to prove!

Whence the idea of defining (still co-inductively) a compositional
equivalence relation on processes.

Remark

One has the same phenomenon in the λ-calculus with
observational equivalence.

Denotational models are tools which allow to prove that terms are
equivalent: denotational equivalence implies operational
equivalence.
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CCS

Weak bisimulation

Write:

◮ P
a

−→ P ′ if P = (a ·Q + S) | R and P ′ = Q | R

◮ P
a

=⇒ P ′ if there are P1 and P ′
1 with P →∗ P1

a
−→ P ′

1 →
∗ P ′.

A weak bisimulation is a binary relation R on processes which is
symmetric and satisfies, for all P ,Q such that P R Q:

◮ if P → P ′ then there is Q ′ such that Q →∗ Q ′ with P ′ R Q ′

◮ if P
a

−→ P ′ then there is Q ′ such that Q
a

=⇒ Q ′ with
P ′ R Q ′.
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CCS

Weak bisimilarity

P and Q are weakly bisimilar if there is a weak bisimulation R
such that P R Q. Notation P ≈ Q.

Theorem

P ≈ Q ⇒ P ∼= Q.

Idee of the proof: show that ≈ is a congruence and implies
•
≈.

Theorem

The converse is also true: full abstraction.
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Tree automata

Tree automata and CCTS
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Tree automata

Basic definitions

Replace letters by symbols with arities: Σ is a pairwise disjoint
unions of the Σn (symbols of arity n ∈ N).

A tree automaton is a finite set A of triples (X , f , (X1, . . . ,Xn)),
called transitions, where X ,X1, . . . ,Xn ∈ V and f ∈ Σn.

ar(f ) is the unique n such that f ∈ Σn.

The states of A are the elements of V occurring in the transitions
of A.
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Tree automata

Accepted language (top down)

Using Σ one defines trees as usual (they are the terms of this
signature): T (Σ).

Remark

Accepting states are not needed anymore because we can have
symbols of arity 0: the letters of standard automata are symbols or
arity 1.

L(A,X ) ⊆ T (Σ), the language accepted at state X , is defined by:

L(A,X ) = {f (t1, . . . , tn) | (X , f , (X1, . . . ,Xn)) and ∀i ti ∈ L(A,Xi )}

inductively, because we consider only finite trees.
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Tree automata

Syntax for tree automata (Mingren Chai, Nan Qu, and
Ying Jiang)

◮ If X ∈ V then X is an automaton term.

◮ If fi ∈ Σ and ~P i (vector of terms of length ar(fi )) for
i = 1, . . . , k then

∑k
i=1 fi ·

~P i is an automaton term.

◮ If P is an automaton term and X ∈ V then µX P is an
automaton term.



CCS for trees

Tree automata

Term associated with an automaton

Given an automaton A and a state X of A, one defines the term
〈A〉X as 〈A〉X = 〈A〉∅X where 〈A〉XX (with X finite subset of V) is
given by

〈A〉XX = X if X ∈ X

and

〈A〉XX = µX
∑

(X ,f ,(X1,...,Xn))∈A

f · (〈A〉
X∪{X}
X1

, . . . , 〈A〉
X∪{X}
Xn

)

if X /∈ X .

〈A〉X is closed and contains no µX Y .
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CCTS

Need for a refined parallel composition

We want a parallel composition (and reduction) such that

t ∈ L(A,X ) iff 〈A〉X | t reduces to ε.

Remark

Let f ∈ Σ2, a, b ∈ Σ0 with a 6= b. The automaton f · (a, b)
accepts f (a, b) but not f (b, a).

So f · (P1,Q1) | f · (P2,Q2) cannot reduce to P1 | Q1 | P2 | Q2.

We need a more sophisticated notion of parallel composition.
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CCTS

Syntax of CCTS: basic ingredients

Let L be a countable set of locations.

A graph is a pair G = (|G |,⌢G ) where |G | is a finite subset of L
and ⌢G is an antireflexive and symmetric relation on |G |.

We assume that Σ is equipped with an involution f 7→ f which
respects arities and has no fixpoints.
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CCTS

Syntax of CCTS: processes

◮ If X ∈ V then X is a process.

◮ If fi ∈ Σ and ~P i are vectors of processes of length ar(fi) for
i = 1, . . . , k , then

∑k
i=1 fi ·

~P i is a guarded sum.

◮ If G is a graph and Φ is a function from |G | to guarded sums,
then G 〈Φ〉 is a process (parallel composition).

◮ If X ∈ V and P is a process then µX P is a process.

◮ If P is a process and I is a finite subset of Σ then P \ I is a
process.

Given p, q ∈ |G | with p 6= q, Φ(p) and Φ(q) can interact in G 〈Φ〉
if p ⌢G q.

Usual parallel composition: G 〈Φ〉 where G is the full graph on |G |.
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CCTS

α-conversion of locations

If ϕ : |G | → |H| is a graph isomorphism from G to H and if Φ
(defined on |G |) and Ψ (defined on |H|) satisfy Φ = Ψ ◦ ϕ, then
G 〈Φ〉 and H〈Ψ〉 are the same process.

This equivalence relation is extended to arbitrary contexts.

Nevertheless, we’ll have to be extremely careful about locations for
defining bisimilarity.
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CCTS

Internal reduction of CCTS

Convention: if P is a process G 〈Φ〉, we use P to denote both G
and Φ.

P reduces to P ′ if there are p, q ∈ |P | such that p ⌢P q,
P(p) = f · (P1, . . . ,Pn) + S , P(q) = f · (Q1, . . . ,Qn) +T and P ′ is
defined as follows.

Notice: thanks to α-conversion of locations, we can assume that
the sets |Pi |, |Qj | are pairwise disjoint and disjoint from
|P | \ {p, q}.
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CCTS

Internal reduction of CCTS: locations and residual function

We take |P ′| = (|P | \ {p, q}) ∪
⋃n

i=1 |Pi | ∪
⋃n

i=1 |Qi |.

P ′(p′) =











Pi(p
′) if p′ ∈ |Pi |

Qi(p
′) if p′ ∈ |Qi |

P(p′) if p′ /∈
⋃n

i=1 |Pi | ∪
⋃n

i=1 |Qi |

We define the “residual function”:

λ1 : |P
′| → |P |

p′ 7→











p if p′ ∈
⋃n

i=1 |Pi |

q if p′ ∈
⋃n

i=1 |Qi |

p′ otherwise.
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CCTS

Internal reduction of CCTS: end of the definition

⌢P′ is the least symmetric relation on |P ′| such that, for any,
p′, q′ ∈ |P ′|, one has p′ ⌢P′ q′ in one of the following cases:

1. p′ ⌢Pi
q′ or p′ ⌢Qi

q′ for some i = 1, . . . , n

2. p′ ∈ |Pi | and q′ ∈ |Qi | for some i = 1, . . . , n (the same i for
both)

3. {p′, q′} 6⊆
⋃n

i=1 |Pi | ∪
⋃n

i=1 |Qi | and λ1(p
′) ⌢P λ1(q

′)
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CCTS

Internal reduction of CCTS: notation

Notation: → or −→
λ1

for the reduction and →∗ for its transitive

closure.

P
∗

−→
λ

P ′ if P −→
λ1

P1 −→
λ2

P2 · · ·Pk−1 −→
λk

Pk = P ′ and

λ = λk ◦ · · · ◦ λ1.
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CCTS

Internal reduction of CCTS: example

a ∈ Σ0 and f ∈ Σ2.

P = a | a | f · (a, a) | f · (a, a), that is |P | = {1, 2, 3, 4}, p ⌢P q for
all p 6= q, P(1) = a, P(2) = a, P(3) = f · (a, a), P(4) = f · (a, a).

P → P ′ where |P ′| = {1, 2, 5, 6, 7, 8} with

◮ P ′(1) = a, P ′(2) = a, P ′(5) = a, P ′(6) = a, P ′(7) = a, and
P ′(8) = a

◮ p′ ⌢P′ q′ if p′ 6= q′ and p′ ∈ {1, 2} or q′ ∈ {1, 2}, or
{p′, q′} = {5, 7} or {p′, q′} = {6, 8}.
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CCTS

We have 2 ⌢P′ 5, P ′(2) = a and P ′(5) = a.

Hence P ′ → P ′′ with |P ′′| = {1, 6, 7, 8} and 1 ⌢P′′ p′′ for
p′′ ∈ {6, 7, 8} and 6 ⌢P′′ 8, with P ′′(1) = a, P ′′(6) = a,
P ′′(7) = a and P ′′(8) = a.
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CCTS

Conservative extension

Theorem

This formalism is a conservative extension of CCS.

Given a tree automaton A, X ∈ V and t ∈ T (Σ), one has
t ∈ L(A,X ) iff G 〈Φ〉 →∗ ε where:

◮ |G | = {p, q} with p ⌢G q

◮ Φ(p) = 〈A〉X
◮ Φ(q) = t (seen as a very simple process).
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CCTS

Weak barbed congruence

As for CCS, we say that P has a barb f ∈ Σ and write P ↓f if
there is p ∈ |P | such that P(p) = f · (P1, . . . ,Pn) + S .

Starting from this notion, we define weak barbed congruence on
processes ∼= as we did for CCS.

Challenge: define co-inductively a non-trivial weak bisimilarity on
CCTS which sould at least

◮ imply weak barbed congruence

◮ extend CCS weak bisimilarity.
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CCTS

Localized relations on processes

A localized relation (on processes): R ⊆ Proc× P(L2)× Proc
such that

(P ,E ,Q) ∈ R ⇒ E ⊆ |P | × |Q| .

Such a relation R is symmetric if

(P ,E ,Q) ∈ R ⇒ (Q, tE ,P) ∈ R

where tE = {(q, p) | (p, q) ∈ E}.
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CCTS

Labeled transitions

We write P
p:f ·(~L)
−→
λ1

P ′ if

◮ P(p) = f · (P1, . . . ,Pn) + S

◮ P ′ = P [P1 ⊕ · · · ⊕ Pn/p] (P1 ⊕ · · · ⊕ Pn: disconnected union
of the processes P1, . . . ,Pn, connected to |P | \ {p} just as p
in P)

◮ Li = |Pi | for i = 1, . . . , n

◮

λ1 : |P
′| → |P |

p′ 7→

{

p if p′ ∈
⋃n

i=1 |Pi |

p′ otherwise.
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CCTS

Weak bisimulation

A (localized) weak bisimulation is a symmetric localized relation
such that

◮ if (P ,E ,Q) ∈ R and P −→
λ1

P ′ then Q
∗

−→
ρ

Q ′ with

(P ′,E ′,Q ′) ∈ R for some E ′ ⊆ |P ′| × |Q ′| such that, if
(p′, q′) ∈ E ′ then (λ1(p

′), ρ(q′)) ∈ E .

◮ if (P ,E ,Q) ∈ R and P
p:f ·(~L)
−→
λ1

P ′ then Q
q:f ·(~M)
=⇒
ρ,ρ1,ρ′

Q ′ with

(p, ρ(q)) ∈ E and (P ′,E ′,Q ′) ∈ R for some E ′ ⊆ |P ′| × |Q ′|
such that if (p′, q′) ∈ E ′ then (λ1(p

′), ρρ1ρ
′(q′)) ∈ E , and,

moreover, if n ≥ 2, then either (p′, ρ′(q′)) ∈
⋃n

i=1(Li ×Mi) or
p′ /∈

⋃n
i=1 Li and ρ′(q′) /∈

⋃n
i=1Mi .

P
p:f ·(~L)
=⇒

λ,λ1,λ′

P ′ means P
∗

−→
λ

P1
p:f ·(~L)
−→
λ1

P ′
1

∗
−→
λ′

P ′ for some P1,P
′
1.
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CCTS

Weak bisimilarity

P and Q are weakly bisimilar if there is a weak bisimulation R and
a relation E ⊆ |P | × |Q| such that (P ,E ,Q) ∈ R.

Notation: P ≈ Q.



CCS for trees

CCTS

Example (CCS)

If Σi = ∅ for i 6= 1 (and hence we are in CCS) then this new
bisimilarity coincides with the ordinary one. For instance:
a · ε | b · ε ≈ a · b · ε+ b · a · ε.
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CCTS

Example (CCTS)

Let a ∈ Σ1 and f , g ∈ Σ2. Let

◮ P = f · (g · (ε, ε), ε) + g · (f · (ε, ε), ε)

◮ Q = f · (ε, ε) | g · (ε, ε).

Then P 6≈ Q.

Let R = f · (ε, g · (a · ε, ε))). Then Q | R →∗ a · ε and a · ε ↓a
whereas there is no process M such that P | R →∗ M with M ↓a.
The best we can do is reduce P | R to g · (ε, ε) ⊕ g · (a · ε, ε).

So P 6∼= Q.
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CCTS

Weak bisimilarity implies weak barbed congruence

Theorem

P ≈ Q ⇒ P ∼= Q

One proves that ≈ is a congruence.
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Conclusion

Conclusion

◮ P ∼= Q ⇒ P ≈ Q ?

◮ Interaction nets allow to present this formalism more simply.

◮ This suggests a unification with Laneve, Parrow and Victor’s
solo calculus (and diagrams), a calculus which subsumes the
π-calculus.

◮ What is localized bisimulation in interaction nets?

◮ What can we represent in this new setting?
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