
CCS for trees

LOCALI 2013 worksop, Beijing

CCS for trees

Thomas Ehrhard

Preuves, Programmes et Systèmes, CNRS and Univ. Paris Diderot

Joint work with Ying Jiang

November 5, 2013

CCS for trees

Motivations

Milner introduced CCS in 1980 as an algebraic formalism for
representing communicating systems. Finite state automata appear
as special cases (processes without internal communications).

We propose a similar calculus, extending tree automata instead of
ordinary automata.

We think that it corresponds to an interesting and more general
kind of communicating systems.

CCS for trees

Main features of CCTS

◮ A generalized parallel composition, represented by graphs.

◮ Conservative extension of both tree automata and CCS.

◮ Essential role played by locations: crucial in order to define
internal reduction as well as bisimulations.

◮ Related to interaction nets.

CCS for trees

From finite automata to CCS

Finite automata: basic ingredients

◮ Σ an alphabet.

◮ V an infinite set of states.

◮ V0 ⊆ V infinite set of accepting states.

CCS for trees

From finite automata to CCS

Finite automata: a term syntax

◮ If X ∈ V then X is an automaton term.

◮ If a1, . . . , an ∈ Σ and P1, . . . ,Pn are automaton terms then
∑n

i=1 ai · Pi is a automaton term (empty sum: 0; 1 element
sum: a · P).

◮ If P is an automaton term and X ∈ V then µX P is an
automaton term.

µ is a binder (α-conversion, respecting accepting states).

CCS for trees

From finite automata to CCS

Example

The (usual) automaton

Y

Z

Z0

Xstart

a

a

b

c ba
c

can be represented as

µX c · (µY (

a · µZ (b · Z + c · µZ0 (b · Z + a · Y))

+ a · µZ0 (a · Y + b · µZ (b · Z + c · Z0))

))

CCS for trees

From finite automata to CCS

Interactive closure

Automata can accept words but have no internal dynamics.

We can see the acceptance of a word w = a1 . . . an by an
automaton P as the interaction between P and a very simple
automaton w = a1 · . . . · an · 0 on a dual alphabet.

The idea of CCS is to generalize this interaction by introducing the
notion of parallel composition P | Q of two automata (or more
generally, CCS processes) P and Q.

P accepts w if the reduction of the process P | w succeeds (in
some sense).

CCS for trees

CCS

Syntax of CCS

We assume that Σ is equiped with an involution a 7→ a without
fixpoints.

◮ If X ∈ V then X is a process.

◮ If a1, . . . , an ∈ Σ and P1, . . . ,Pn are processes, then
∑n

i=1 ai · Pi is a process (guarded sum).

◮ If X ∈ V and P is a process then µX P is a process.

CCS for trees

CCS

Syntax of CCS: new features

◮ If P and Q are processes then P | Q is a process (associative
and commutative operation: it would be more convenient to
introduce the parallel composition of a multiset of processes).

◮ If P is a process and I is a finite subset of Σ then P \ I is a
process (this is a binding operation, subject to α conversion).

ε is the empty parallel composition.

CCS for trees

CCS

Operational semantics of CCS (internal reduction)

We define a reduction relation → on processes.

(µX P) | R → P [µX P/X] | R

(a · P + S) | (a ·Q + T) | R → P | Q | R

P \ I | R → (P | R) \ I

→∗: transitive closure or →.

CCS for trees

CCS

Weak barbed bisimilarity

a ∈ Σ is a barb of P if P = (a · P ′ + S) | R , written P ↓a.

A binary relation B on processes is a weak barbed congruence if it
is symmetric and, for any P ,Q ∈ Proc such that P B Q,

◮ for any process P ′, if P →∗ P ′, then there exists Q ′ such that
Q →∗ Q ′ and P ′ B Q ′;

◮ for any P ′ and any a ∈ Σ, if P →∗ P ′ and P ′ ↓a, then there is
Q ′ such that Q →∗ Q ′ and Q ′ ↓a.

P
•
≈ Q means that there exists such a B with P B Q; this is an

equivalence relation on processes.

Intuitively: P and Q feature the same external capabilities.

CCS for trees

CCS

Weak barbed congruence

An equivalence relation R is a congruence if, for any one hole
context C ,

∀P ,Q P R Q ⇒ C [P] R C [Q] .

The largest congruence contained in
•
≈ is called weak barbed

congruence, notation ∼=.

Intuition: P ∼= Q means that P and Q behave in the same way, in
all possible contexts.

CCS for trees

CCS

Fact

Two automata can accept the same language but not be weak
barbed congruent.

Typical example: a · b · X0 + a · c · X0 and a · (b · X0 + c · X0).

Take the context [] | a.

CCS for trees

CCS

Why weak bisimilarity?

The trouble with weak barbed congruence is that it involves a
universal quantification on contexts: hard to prove!

Whence the idea of defining (still co-inductively) a compositional
equivalence relation on processes.

Remark

One has the same phenomenon in the λ-calculus with
observational equivalence.

Denotational models are tools which allow to prove that terms are
equivalent: denotational equivalence implies operational
equivalence.

CCS for trees

CCS

Weak bisimulation

Write:

◮ P
a

−→ P ′ if P = (a ·Q + S) | R and P ′ = Q | R

◮ P
a

=⇒ P ′ if there are P1 and P ′
1 with P →∗ P1

a
−→ P ′

1 →
∗ P ′.

A weak bisimulation is a binary relation R on processes which is
symmetric and satisfies, for all P ,Q such that P R Q:

◮ if P → P ′ then there is Q ′ such that Q →∗ Q ′ with P ′ R Q ′

◮ if P
a

−→ P ′ then there is Q ′ such that Q
a

=⇒ Q ′ with
P ′ R Q ′.

CCS for trees

CCS

Weak bisimilarity

P and Q are weakly bisimilar if there is a weak bisimulation R
such that P R Q. Notation P ≈ Q.

Theorem

P ≈ Q ⇒ P ∼= Q.

Idee of the proof: show that ≈ is a congruence and implies
•
≈.

Theorem

The converse is also true: full abstraction.

CCS for trees

Tree automata

Tree automata and CCTS

CCS for trees

Tree automata

Basic definitions

Replace letters by symbols with arities: Σ is a pairwise disjoint
unions of the Σn (symbols of arity n ∈ N).

A tree automaton is a finite set A of triples (X , f , (X1, . . . ,Xn)),
called transitions, where X ,X1, . . . ,Xn ∈ V and f ∈ Σn.

ar(f) is the unique n such that f ∈ Σn.

The states of A are the elements of V occurring in the transitions
of A.

CCS for trees

Tree automata

Accepted language (top down)

Using Σ one defines trees as usual (they are the terms of this
signature): T (Σ).

Remark

Accepting states are not needed anymore because we can have
symbols of arity 0: the letters of standard automata are symbols or
arity 1.

L(A,X) ⊆ T (Σ), the language accepted at state X , is defined by:

L(A,X) = {f (t1, . . . , tn) | (X , f , (X1, . . . ,Xn)) and ∀i ti ∈ L(A,Xi)}

inductively, because we consider only finite trees.

CCS for trees

Tree automata

Syntax for tree automata (Mingren Chai, Nan Qu, and
Ying Jiang)

◮ If X ∈ V then X is an automaton term.

◮ If fi ∈ Σ and ~P i (vector of terms of length ar(fi)) for
i = 1, . . . , k then

∑k
i=1 fi ·

~P i is an automaton term.

◮ If P is an automaton term and X ∈ V then µX P is an
automaton term.

CCS for trees

Tree automata

Term associated with an automaton

Given an automaton A and a state X of A, one defines the term
〈A〉X as 〈A〉X = 〈A〉∅X where 〈A〉XX (with X finite subset of V) is
given by

〈A〉XX = X if X ∈ X

and

〈A〉XX = µX
∑

(X ,f ,(X1,...,Xn))∈A

f · (〈A〉
X∪{X}
X1

, . . . , 〈A〉
X∪{X}
Xn

)

if X /∈ X .

〈A〉X is closed and contains no µX Y .

CCS for trees

CCTS

Need for a refined parallel composition

We want a parallel composition (and reduction) such that

t ∈ L(A,X) iff 〈A〉X | t reduces to ε.

Remark

Let f ∈ Σ2, a, b ∈ Σ0 with a 6= b. The automaton f · (a, b)
accepts f (a, b) but not f (b, a).

So f · (P1,Q1) | f · (P2,Q2) cannot reduce to P1 | Q1 | P2 | Q2.

We need a more sophisticated notion of parallel composition.

CCS for trees

CCTS

Syntax of CCTS: basic ingredients

Let L be a countable set of locations.

A graph is a pair G = (|G |,⌢G) where |G | is a finite subset of L
and ⌢G is an antireflexive and symmetric relation on |G |.

We assume that Σ is equipped with an involution f 7→ f which
respects arities and has no fixpoints.

CCS for trees

CCTS

Syntax of CCTS: processes

◮ If X ∈ V then X is a process.

◮ If fi ∈ Σ and ~P i are vectors of processes of length ar(fi) for
i = 1, . . . , k , then

∑k
i=1 fi ·

~P i is a guarded sum.

◮ If G is a graph and Φ is a function from |G | to guarded sums,
then G 〈Φ〉 is a process (parallel composition).

◮ If X ∈ V and P is a process then µX P is a process.

◮ If P is a process and I is a finite subset of Σ then P \ I is a
process.

Given p, q ∈ |G | with p 6= q, Φ(p) and Φ(q) can interact in G 〈Φ〉
if p ⌢G q.

Usual parallel composition: G 〈Φ〉 where G is the full graph on |G |.

CCS for trees

CCTS

α-conversion of locations

If ϕ : |G | → |H| is a graph isomorphism from G to H and if Φ
(defined on |G |) and Ψ (defined on |H|) satisfy Φ = Ψ ◦ ϕ, then
G 〈Φ〉 and H〈Ψ〉 are the same process.

This equivalence relation is extended to arbitrary contexts.

Nevertheless, we’ll have to be extremely careful about locations for
defining bisimilarity.

CCS for trees

CCTS

Internal reduction of CCTS

Convention: if P is a process G 〈Φ〉, we use P to denote both G
and Φ.

P reduces to P ′ if there are p, q ∈ |P | such that p ⌢P q,
P(p) = f · (P1, . . . ,Pn) + S , P(q) = f · (Q1, . . . ,Qn) +T and P ′ is
defined as follows.

Notice: thanks to α-conversion of locations, we can assume that
the sets |Pi |, |Qj | are pairwise disjoint and disjoint from
|P | \ {p, q}.

CCS for trees

CCTS

Internal reduction of CCTS: locations and residual function

We take |P ′| = (|P | \ {p, q}) ∪
⋃n

i=1 |Pi | ∪
⋃n

i=1 |Qi |.

P ′(p′) =











Pi(p
′) if p′ ∈ |Pi |

Qi(p
′) if p′ ∈ |Qi |

P(p′) if p′ /∈
⋃n

i=1 |Pi | ∪
⋃n

i=1 |Qi |

We define the “residual function”:

λ1 : |P
′| → |P |

p′ 7→











p if p′ ∈
⋃n

i=1 |Pi |

q if p′ ∈
⋃n

i=1 |Qi |

p′ otherwise.

CCS for trees

CCTS

Internal reduction of CCTS: end of the definition

⌢P′ is the least symmetric relation on |P ′| such that, for any,
p′, q′ ∈ |P ′|, one has p′ ⌢P′ q′ in one of the following cases:

1. p′ ⌢Pi
q′ or p′ ⌢Qi

q′ for some i = 1, . . . , n

2. p′ ∈ |Pi | and q′ ∈ |Qi | for some i = 1, . . . , n (the same i for
both)

3. {p′, q′} 6⊆
⋃n

i=1 |Pi | ∪
⋃n

i=1 |Qi | and λ1(p
′) ⌢P λ1(q

′)

CCS for trees

CCTS

Internal reduction of CCTS: notation

Notation: → or −→
λ1

for the reduction and →∗ for its transitive

closure.

P
∗

−→
λ

P ′ if P −→
λ1

P1 −→
λ2

P2 · · ·Pk−1 −→
λk

Pk = P ′ and

λ = λk ◦ · · · ◦ λ1.

CCS for trees

CCTS

Internal reduction of CCTS: example

a ∈ Σ0 and f ∈ Σ2.

P = a | a | f · (a, a) | f · (a, a), that is |P | = {1, 2, 3, 4}, p ⌢P q for
all p 6= q, P(1) = a, P(2) = a, P(3) = f · (a, a), P(4) = f · (a, a).

P → P ′ where |P ′| = {1, 2, 5, 6, 7, 8} with

◮ P ′(1) = a, P ′(2) = a, P ′(5) = a, P ′(6) = a, P ′(7) = a, and
P ′(8) = a

◮ p′ ⌢P′ q′ if p′ 6= q′ and p′ ∈ {1, 2} or q′ ∈ {1, 2}, or
{p′, q′} = {5, 7} or {p′, q′} = {6, 8}.

CCS for trees

CCTS

We have 2 ⌢P′ 5, P ′(2) = a and P ′(5) = a.

Hence P ′ → P ′′ with |P ′′| = {1, 6, 7, 8} and 1 ⌢P′′ p′′ for
p′′ ∈ {6, 7, 8} and 6 ⌢P′′ 8, with P ′′(1) = a, P ′′(6) = a,
P ′′(7) = a and P ′′(8) = a.

CCS for trees

CCTS

Conservative extension

Theorem

This formalism is a conservative extension of CCS.

Given a tree automaton A, X ∈ V and t ∈ T (Σ), one has
t ∈ L(A,X) iff G 〈Φ〉 →∗ ε where:

◮ |G | = {p, q} with p ⌢G q

◮ Φ(p) = 〈A〉X
◮ Φ(q) = t (seen as a very simple process).

CCS for trees

CCTS

Weak barbed congruence

As for CCS, we say that P has a barb f ∈ Σ and write P ↓f if
there is p ∈ |P | such that P(p) = f · (P1, . . . ,Pn) + S .

Starting from this notion, we define weak barbed congruence on
processes ∼= as we did for CCS.

Challenge: define co-inductively a non-trivial weak bisimilarity on
CCTS which sould at least

◮ imply weak barbed congruence

◮ extend CCS weak bisimilarity.

CCS for trees

CCTS

Localized relations on processes

A localized relation (on processes): R ⊆ Proc× P(L2)× Proc
such that

(P ,E ,Q) ∈ R ⇒ E ⊆ |P | × |Q| .

Such a relation R is symmetric if

(P ,E ,Q) ∈ R ⇒ (Q, tE ,P) ∈ R

where tE = {(q, p) | (p, q) ∈ E}.

CCS for trees

CCTS

Labeled transitions

We write P
p:f ·(~L)
−→
λ1

P ′ if

◮ P(p) = f · (P1, . . . ,Pn) + S

◮ P ′ = P [P1 ⊕ · · · ⊕ Pn/p] (P1 ⊕ · · · ⊕ Pn: disconnected union
of the processes P1, . . . ,Pn, connected to |P | \ {p} just as p
in P)

◮ Li = |Pi | for i = 1, . . . , n

◮

λ1 : |P
′| → |P |

p′ 7→

{

p if p′ ∈
⋃n

i=1 |Pi |

p′ otherwise.

CCS for trees

CCTS

Weak bisimulation

A (localized) weak bisimulation is a symmetric localized relation
such that

◮ if (P ,E ,Q) ∈ R and P −→
λ1

P ′ then Q
∗

−→
ρ

Q ′ with

(P ′,E ′,Q ′) ∈ R for some E ′ ⊆ |P ′| × |Q ′| such that, if
(p′, q′) ∈ E ′ then (λ1(p

′), ρ(q′)) ∈ E .

◮ if (P ,E ,Q) ∈ R and P
p:f ·(~L)
−→
λ1

P ′ then Q
q:f ·(~M)
=⇒
ρ,ρ1,ρ′

Q ′ with

(p, ρ(q)) ∈ E and (P ′,E ′,Q ′) ∈ R for some E ′ ⊆ |P ′| × |Q ′|
such that if (p′, q′) ∈ E ′ then (λ1(p

′), ρρ1ρ
′(q′)) ∈ E , and,

moreover, if n ≥ 2, then either (p′, ρ′(q′)) ∈
⋃n

i=1(Li ×Mi) or
p′ /∈

⋃n
i=1 Li and ρ′(q′) /∈

⋃n
i=1Mi .

P
p:f ·(~L)
=⇒

λ,λ1,λ′

P ′ means P
∗

−→
λ

P1
p:f ·(~L)
−→
λ1

P ′
1

∗
−→
λ′

P ′ for some P1,P
′
1.

CCS for trees

CCTS

Weak bisimilarity

P and Q are weakly bisimilar if there is a weak bisimulation R and
a relation E ⊆ |P | × |Q| such that (P ,E ,Q) ∈ R.

Notation: P ≈ Q.

CCS for trees

CCTS

Example (CCS)

If Σi = ∅ for i 6= 1 (and hence we are in CCS) then this new
bisimilarity coincides with the ordinary one. For instance:
a · ε | b · ε ≈ a · b · ε+ b · a · ε.

CCS for trees

CCTS

Example (CCTS)

Let a ∈ Σ1 and f , g ∈ Σ2. Let

◮ P = f · (g · (ε, ε), ε) + g · (f · (ε, ε), ε)

◮ Q = f · (ε, ε) | g · (ε, ε).

Then P 6≈ Q.

Let R = f · (ε, g · (a · ε, ε))). Then Q | R →∗ a · ε and a · ε ↓a
whereas there is no process M such that P | R →∗ M with M ↓a.
The best we can do is reduce P | R to g · (ε, ε) ⊕ g · (a · ε, ε).

So P 6∼= Q.

CCS for trees

CCTS

Weak bisimilarity implies weak barbed congruence

Theorem

P ≈ Q ⇒ P ∼= Q

One proves that ≈ is a congruence.

CCS for trees

Conclusion

Conclusion

◮ P ∼= Q ⇒ P ≈ Q ?

◮ Interaction nets allow to present this formalism more simply.

◮ This suggests a unification with Laneve, Parrow and Victor’s
solo calculus (and diagrams), a calculus which subsumes the
π-calculus.

◮ What is localized bisimulation in interaction nets?

◮ What can we represent in this new setting?

	From finite automata to CCS
	CCS
	Tree automata
	CCTS
	Conclusion

