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A simple shared memory computer

Thread; oo

Thread,

A

Y

R

Shared Memory

Threads execute programs as usual: instructions are executed completely

and atomically (memory stores in particular).
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The Sequentially Consistent Model (SC)

Definition by L. Lamport:

... the result of any execution is the same as if the operations
of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this
sequence in the order specified by its program”.

(One may add “stores take effect immediately’.)
Interleaving semantics: This is “interleaving semantics” as “some
sequential order’ results from interleaving “the order specified by the

program of all individual processors’ .

A first, one expect shared memory multiprocessors to behave that way,
which of course they don't.

3/74



Axiomatic or post-mortem semantics — Events
The effects of “operations executed by the processors’ are represented by
events. We define memory events (a):d[{]v:
» Unique label typically (a), (b), etc.
» Direction d, that is read (R) or write (W)
» Memory location ¢, typically x, y, etc.
» Value v, typically 0, 1 etc.
» Originating thread: Ty, Ty (often omitted)

The program order —— (“order specified by program") is a linear order
amongst the events originating from the same thread.

Relation 22 represents the sequential execution of events by one thread
that follows the uniprocessor model: the usual processor execution model,
where instructions are executed by following the order given in program.
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Example of program order

Despite its name, program order is a dynamic notion.

/* z,t and y are (shared) memory locations, t = { 2, 3, } */
r1,r2=0 ; // non-shared locations (e.g. registers)

x =1 ;
( k=0; k<2 ; ktt) {r1 =t[k] ; r2+=1r1 ; }
y =12 ;

Events and program order :

(a):WI[x]1 2% (b):R[t + 0]2 2% (c):R[t + 4]3 2% (d):W][y]5

Notice: program order (and events) may depend on the values of the
reads, i.e. on values written by other threads (if...).
In simple examples, program order is given by program text.
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Relating writes and reads

We define a first “communication relation” between events with the
same location.

Definition (Read-from —)

Relates write events to read events that read the stored value (implicit
initial writes).

1. Existence and unicity:
rf
Vr, Alw, w — r
2. Same location, same value:

loc(w) = loc(r) A val(w) = val(r).
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Example of ——

LB
To T
(a)r0 + x (c)rl«y
(b)y+1 (d)x+1
Observe: r0; ril;
Intial values of x and y are 0.
y
r0=1; ri=1; r0=1; r1=0;
r0=0; ri=1; r0=0; r1=0;
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Example of ——
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To T
(a)r0 « x (c)rl <y
(b)y «+ 1 (d)x+1
Observe: r0; ril;
(Intial values of x and y are 0.)
r0=1; ri=1; r0=1; r1=0;
~a
a: Rx=1 c: Ry=1 a: Rx=1 rfc: Ry=0
frf rf
po), po), po), po),
b: Wy=1 d: Wx=1 b: Wy=1 d: Wx=1
r0=0; ri=1; r0=0; r1=0;
rf
~ \ \
rfa: Rx=0 c: Ry=1 a: Rx=0 rfc: Ry=0
Pol : Pol Pol po
r
b: Wy=1 d: Wx=1 b: Wy=1 d: Wx=1

7/74



A definition of SC

Definition (SC 1)

An execution is SC when there exists a total order on events <, such
that:

1. Order < is compatible with program order:
po
€1 — & — €1 < 6.

2. A Read r reads from the recent write before r in <.

Ee {(W7 r)w = m<ax(w', loc(w') = loc(r) A w' < r)} :
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A question on SC

Program:

To

Ty

(a)x+1
(b)y +1

(c)y« 2
(d)r0 +x

Observed? y=2; r0=0

How can we know? Let us enumerate all interleavings.

a,b,c,d
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Modern machines are not SC, how can we know?

void *T1(void *_p) {
ctx_t *p = _p ;
common_t *q = p->common ;

void *TO(void *_p) {
ctx_t *p = _p ;
common_t *q = p->common ;

- = . q—>y =92 ;
3—§§ = 1 : int r0 = g->x ;
return NULL ; q->r0 = r0 ;

return NULL ;
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Modern machines are not SC, how can we know?

void *TO(void *_p) { ”°éﬂx*§1i;°id ;_P) ¢
ctx_t *p = P common_t *q = p->common ;
common_t *q = p->common ; qQ>y = 2 ;
q:;x : i ; int r0 = g->x ;
q->y H g->r0 = r0 ;
return NULL ; return NULL
} } ,
for C; 5 ) A

// Initialise
common_t ¢ ; ¢c.x = c.y =0 ; ctx_t a0,al

// Run
a0.id = 0 ; a0.common = &c ; create_thread(&th0,T0,&a0l) ;
al.id = 1 ; al.common = &c ; create_thread(&thi,T1,&al) ;
join_thread(&th0) ;
join_thread(&thl) ;

// Collect results
... c.y ... c.r0

}

)
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Naive testing, graphically

Let us run test R on this machine (demo/01/naive_r.out)
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Minimizing the impact of thread creation on cost

We perform size tests per thread creation, in arrays.

void *TO(void *_p) {
ctx_t *p = _p ;
common_t *q = p->common ;
for
(int k =0 ;
k < g—->size ;
k++) {
gq—>x[k] =1 ;
g->ylk] =1 ;

}
return NULL ;
¥

void *T1(void *_p) {
ctx_t *p = _p ;
common_t *q = p->common ;
for
(int k =0 ;
k < g->size ;
k++) {
q->y[k] =
int r0 = q ;
q—>r0[k] =
X
return NULL ;

3
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Graphically

Let us run test R on this machine (demo/01/1loop_r.out)
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Let us synchronise iterations

void *TO(void *_p) {

ctx_t *p = _p ;
common_t *q = p->common ;
for
(int k=0 ;
k < g->size ;
k++) {
wait_partner (&q->sync[k] ,k,0) ;
q—)X[k] =1 ;
q->ylk] =1 ;

return NULL ;
}

void *T1(void *_p) {
ctx_t *p = _p ;
common_t *q = p->common ;
for
(int k =0 ;
k < g->size ;
k++) {
wait_partner(&q->sync[k],k,1) ;
g—>ylk]l = 2 ;
int r0 = g- >x ;
q->r0[k] =

return NULL ;
}
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ctx_t *p = _p ;
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g->x[k] =1 ;
q—>ylk]l =1

return NULL ;
}

void *T1(void *_p) {
ctx_t *p = _p ;
common_t *q = p->common ;
for
(int k =0 ;
k < g->size ;
k++) {
wait_partner(&q->sync[k],k,1) ;
g->ylkl = 2 ;
int r0 = g- >x ;
q->r0[k] =

return NULL ;
}

inline static void wait_partner(volatile int *p,int k,int id) {

if (k% 2==1id) {

*p = 1 ; __sync_synchronize()

} else {
while (xp == 0) ;
}
}

s // Well. ..
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Graphically

Ty

Let us run test R on this machine (demo/01/sync_r.out)
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Running n test instances at once

Why not run n = |a/2] instances of R on a a-core machine?

» Much more outcomes on many-core machines per test run
» Important when one pays resources by chunks of say 32 cores.
» Makes noise and favors outcome variability.
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The litmus tool

» Tests are written in assembler, for precision.

X86 R
{13
PO | P1 ;
MOV [x1,$1 | MOV [yl,%$2 ;
MOV [yl,$1 | MOV EAX, [x] ;
exists (y=2 /\ 1:EAX=0)
» Tests are compiled to C programs (with inline assembler):
utiis.c

file.litmus [ . file.c file.exe
—— | litmus » gcc -pthread ———

Demo in demo/02:

% litmus -mach ./x86.cfg -o run R.litmus
% cd run

% make

% ./R.exe -v -v
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Some litmus settings

» Synchronisation

> Loose synchronisation (we saw it).
> Exact synchronisation with polling synchronisation barriers and

time base.
> Other, less useful, modes: POSIX thread barrier based and no

synchronisation at all.
» Affinity: force threads to run on designated cores, or let the
OS scheduler perform its job.

» Prefetching of flushing cache lines.
> Automatic, depending on test.
> Random.
> Complete or none.

» Various scanning order of location arrays.
> Random (by the means of a shuffled arrray of pointer).
> Linear with a stride.

A complete testing campaign usually involves trying many settings (for

instance, testing all strides from 1 to cache line size).
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Building significant tests

Perfect! We know how to run tests on hardware, but
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Building significant tests

Perfect! We know how to run tests on hardware, but what
tests do we run?

We study relaxed memory models, that is relaxed w.r.t SC.
Hence, we focus on programs that have non-SC behaviours.
The question is: how do we generate such programs.

Let us study SC in detail first.
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Back to our non-SC example

R
To T
(a)x+1 (c)y « 2
(b)y+1 (d)r0 + x

Observed? y=2; r0=0

All interleavings.

a,b,c,d y=2;r0=1,
a,c,b,d y=1;r0=1,;
a,c,d,b y=1;r0=1,
c,d,a, b y=1;r0=0;
c,a, b,d y=1;r0=1,
c,a,d,b y=1;r0=1,;

We observe if b < ¢ then y=2, if d < a then r0=0.
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Let us be a bit more clever

R
To T
(a)x+1 (c)y « 2
(b)y+1 (d)r0 + x

Observed? y=2; r0=0
Collecting constraints on the scheduling order <:

We respect program order, thus
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Let us be a bit more clever

R
To T
(a)x+1 (c)y « 2
(b)y+1 (d)r0 + x

Observed? y=2; r0=0
Collecting constraints on the scheduling order <:

We respect program order, thus a < b and ¢ < d.
We observe r0=0, thus d < a.
We observe y=2, thus b < c.

Hence we have a cycle in <, which prevents it from being an order!
a<b<c<d<a---

Conclusion: No SC execution would ever yield the output “y=2; r0=0;".
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Systematic approach

For a particular (partial) execution candidate (that is, for a set of events
and a 2> relation) we assume two additional relations:

£ .
» Read-from (—=): Relates write events to read events that read the
stored value (implicit initial writes).

f
Vr, Alw, w — r

» Coherence (=2): Relates write events to the same location.

For any location ¢, the restriction of > to write events to
location ¢ (W) is a total order.

Notice: To me, the very existence of > stems from the existence of a
shared, coherent, memory — Given location /¢, there is exactly one
memory cell whose location is /.
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Example of —

To Ty
(a)x+ 1 (c)y« 1
(b)y «+ 2 (d)x « 2
Observe: x; y;

x=1; y=2; x=1; y=1;

x=2; y=2; x=2; y=1;
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Example of —

To T
(a)x+ 1 (c)y« 1
(b)y «+ 2 (d)x+ 2
Observe: x; y;

x=1; y=2; x=1; y=1;
a: Wx=2 c: Wy=2

| s

b: Wy:lC d: Wx=1

x=2; y=2; x=2; y=1;
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242W
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NS N
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. fr
One more relation: —

. “ I
The new relation — (from read) relates reads to “younger writes
(younger w.r.t. —=).

; rf ; co
r—w = w —rAw —w

This amounts to place a read into the coherence order of its location.
Given

co co co
W —— Wy ——... — W,

rf\
r

We have
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Playing with —

Particular, easy, case: a read from the inital state is in —s with writes by
the program.

MP
To T1
(a)x+1 (c)r0 +y
(b)y +1 (d)rl +x
Observed? r0=1; r1=0

a: Wx=1 c: Ry=1

pol co pol

b: Wy=1 d: Rx=0
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Playing with —

Particular, easy, case: a read from the inital state is in —s with writes by
the program.
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To T To T
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a: Wx=1 /g: Ry=1 2 lx v
po

po), po),
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Second definition of SC

Definition (SC 2)
An execution is SC when:

Acyclic (r—f> U-2u-5y p—o>>

And of course:
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Second definition of SC

Definition (SC 2)
An execution is SC when:

Acyclic (r—f> U-2u-5y p—0>)

And of course:

Theorem

The two definitions of SC are equivalent.
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Introducing herd a memory model simulator

A model sc.cat:

% cat sc.cat

"Sequential consistency"
let com = rf | co | fr
acyclic (po | com) as hb

Running R on SC (demo in demo/02):

Test R Allowed
States 3
1:EAX=0; y=1;
1:EAX=1; y=1;
1:EAX=1; y=2
No

Witnesses
Positive: O Negative: 3
Condition exists (y=2 /\ 1:EAX=0)
Observation R Never 0 3

Notice: Outcome 1:EAX=0; y=2; is forbidden by SC.

>
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Herd structure

. . . . £
» Generate all candidate executions, i.e. all possible ﬂm =% and =
f;
(— deduced):

a: Wx=1 c: Wy=2 a: Wx=1 c: Wy=2
co
o el ol el
rf rfco
b: Wy=1 d: Rx=1 b: Wy=1 d: Rx=1
a: Wx=1 c: Wy=2 a: Wx=1 c: Wy=2
co l /
po po po
~ 5
b: Wy=1 d: Rx=0 b: Wy=1 d: Rx=0
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Herd structure

. . . . o f
» Generate all candidate executions, i.e. all possible p—>, =% and =
f;
(— deduced):

a: Wx=1 c: Wy=2 a: Wx=1 c: Wy=2
co
o el ol el
rf rfco
b: Wy=1 d: Rx=1 b: Wy=1 d: Rx=1
Ok Ok
a: Wx=1 /c;Wy:Q a: Wx=1 )Wy:2
co
po), o), po), po),
~ 5
b: Wy=1 d: Rx=0 b: Wy=1 d: Rx=0
No Ok

» Apply model checks to each candidate execution.
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Violations of SC

f f . o
A cycle of 2%, 2y <% Iy describes a violation of SC.
From such a cycle, one may easily generate programs that potentially

violate SC, and run them on an actual machine.
However, the cycle does not describe:
» How many threads are involved.

» How many memory locations are involved.

We now aim at:
» Extract a subset of significant cycles.

» Generate one program out of one cycle.
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Simplifying cycles: — and — steps alternate
. com po . . po + com+t po com
A cycle in — U — is a cycle in (— ;— ) (group — and —
steps together). Then:
po . .. po + _ po
» —— is transitive — C—.

+ . . . . .
8" is the union of the five following relations:

> —

E)E:rfucoufru
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Simplifying cycles: — and — steps alternate

po + com+ com

A cycle in 2B U 2% is a cycle in (22 ;58 7) (group =% and <5
steps together). Then:

o . . o + o
» 2% is transitive 2% gp—>.

+ . . , . .
» 28 is the union of the five following relations:

—
com rf

e HuLuSy (ixr—%)u
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Simplifying cycles: — and — steps alternate

. com po . . po + com+t po com
A cyclein — U -—isacyclein (— ;— ) (group — and —
steps together). Then:

po . .. po + _ po
» —— is transitive — C—.

is the union of the five following relations:
co rf)u(i);rf).

— ¢ ¢
com _ T U co U r U ( ’

com +

> —

co

Because (—2; %) € <%, (-55: %) ¢4 and

(5 ) c
po,. comy

. . com o . .
Conclusion: Any cyclic — U L% includes a cycle in (

that alternates =2 steps and =% steps.

— ie.
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Simplifying cycles: all — steps are external

. . com com .
Given a cycle, we consider all — and — steps are external, that is
source and target events are from pairwise distinct thread.

Given e 225 e, s.t. e; and e, are from the same thread:

» Either e; == e, and we consider this ~— step in the cycle, in place

of the % step.
com

po . po
» Or e, — e; and we have a very simple cycle e — e; — es.
Such cycles are “violations of coherence’ (more on them later).

Notice: The same reasoning applies individual <% steps in

—
co

composite —.
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Simplifying cycles — Locations
Cycle: W 25w L g 2% R Iy 2oy L g 2o g I,
» One interpretation (four locations):
a: Rx=1 c Ry=1 e Rz=1 g Ra=1

Pol r1; po f Pol

b: Wy=1  d: Wz=1 = £ Wa=1  h: Wx=1
> Another interpretation (two locations):
a: Rx=2 c Ry=1 e Rx=1 g Ry=2

oy G o e
b: Wy=1 d: Wx=1 f: Wy=2 h: Wx=2
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The second interpretation is not “minimal”

Reminding the interpretation with two locations:

a: Rx=2 ¢ Ry=1 e Rx=1 g Ry=2
r rf
b: Wy=1 d: Wx=1 f: Wy=2 h: Wx=2

But, coherence — totally orders write events to a given location.
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The second interpretation is not “minimal”

Reminding the interpretation with two locations:

a: Rx=2 ¢ Ry=1 e Rx=1 g Ry=2
r rf
b: Wy=1 d: Wx=1 f: Wy=2 h: Wx=2

But, coherence — totally orders write events to a given location.

Let us choose: Wx1 =2 Wx2:
a: Rx=2 c: Ry=1 e: Rx=1 g Ry=2

v v
Pol r11:: po o Pol

b: Wy=1 ' d: We=l—f Wy=2 b Wx=2
Cco

f o f o
We have a smaller cycle: d = h — a 2% b - ¢ 25 d.
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The second interpretation is not “minimal”

Reminding the interpretation with two locations:
a: Rx=2 ¢ Ry=1 e Rx=1 g Ry=2
r rf
b: Wy=1 d: Wx=1 f: Wy=2 h: Wx=2
But, coherence — totally orders write events to a given location.

Let us choose: Wx2 =2 Wx1:

a: Rx=2 c Ry=1 e Rx=1 g Ry=2
Pol r11:: po @ Pol

b: Wy=1 ' d: Wx=1 f: Wy=2 h: Wx=2

£ £
We have a smaller cycle: h <% d — e 2% F S5 g 2% h
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The second interpretation is not “minimal”
Reminding the interpretation with two locations:
a: Rx=2 ¢ Ry=1 e Rx=1 g Ry=2
r rf
b: Wy=1 d: Wx=1 f: Wy=2 h: Wx=2

But, coherence — totally orders write events to a given location.

Generally: do not repeat locations in cycles.
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Simplifying cycles — Threads

Cycle: W 25w L g 2% R Iy 2oy L g 2o g I,
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Simplifying cycles — Threads

Cycle: W 25w L g 2% R Iy 2oy L g 2o g I,

a: Rx=1 e: Ry=1

f: Wz=1

% Ra=1
po
d: Wa=1 h: Wx=1
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Simplifying cycles — Threads

Cycle: W 25w L g 2% R Iy 2oy L g 2o g I,

a: Rx=1 e: Ry=1

f: Wz=1

% Ra=1
po
d: Wa=1 h: Wx=1

Generally: one passage per thread
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Simplifying cycles

In a non SC execution we find:

. . . po com
» A violation of coherence, that is a cycle e — e — ;.

» Or a critical cycle that is:
PO com .
> The cycle alternates — steps and external — steps, with at least

four steps.
» The cycle passes through a given thread at most once.

> All 225 steps have pairwise different locations.

» The source and target of one given LN steps have different
locations.

Notice: For a more formal presentation see D. Shasha and M. Snir
Toplas 88 article, which introduced critical cycles.
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Violations of coherence

There are five such cycles, which can occur as the following executions:
o .
L% contradicts
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Violations of coherence

There are five such cycles, which can occur as the following executions:
o . co
L% contradicts —,

a: Wx=1

co lpo
b: Wx=2

CoWW
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Violations of coherence

There are five such cycles, which can occur as the following executions:
co rf

po .
— contradicts —, —,

a: Wx=1 a: Rx=1
co po P f
b: Wx=2 b: Wx=1

CoWW CoRW1
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Violations of coherence

There are five such cycles, which can occur as the following executions:

o . f f
PO contradicts =%, =y, 5y

a: Wx=1 a: Rx=1 a: Wx=1
cot lpo Lpo’rf o lpo
b: Wx=2 b: Wx=1 rfb: Rx=0

CoWW CoRW1 CoWR
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Violations of coherence

There are five such cycles, which can occur as the following executions:
rf fr . CO rf

po . co "
—— contradicts —, —, —, "—; —",

a: Wx=1 a: Rx=1 a: Wx=1

cot lpo Lpo’rf o lpo
b: Wx=2 b: Wx=1 rfb: Rx=0
CoWW CoRW1 CoWR

a: Rx=2<*—c: Wx=2

o 2

b: Wx=1
CoRW?2

36/74



Violations of coherence

There are five such cycles, which can occur as the following executions:
po . co rf fr w €O rf o fr rf
— contradicts —, —, —, "—; —", "—; —

a: Wx=1 a: Rx=1 a: Wx=1
O L 1 P
b: Wx=2 b: Wx=1 rfb: Rx=0
CoWW CoRW1 CoWR

a: Rx=2 <—fc' Wx=2 a: Rx=1 <—fc: Wx=1

COr r
o rf po
P l / ‘\p l
b: Wx=1 b: Rx=0

CoRW?2 CoRR
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Building a test from a cycle

The conditions on locations and threads allows generating one test
(program + final condition) from one cycle.
Consider for instance:

fre. rfe po rfe po

—————

» Set events (with directions, from communication relations)
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Building a test from a cycle

The conditions on locations and threads allows generating one test
(program + final condition) from one cycle.

Consider for instance:
fre. rfe po rfe po
——

» Set events (with directions, from communication relations)

9 (@) W[7]7 25 (b):R[7]? 22 (0):W[2]? 25 (d):R[7]? 22 (e):W([?]?
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Building a test from a cycle

The conditions on locations and threads allows generating one test
(program + final condition) from one cycle.

Consider for instance:
fre. rfe po rfe po
——

» Set events (with directions, from communication relations)
9 (@) W[7]7 25 (b):R[7]? 22 (0):W[2]? 25 (d):R[7]? 22 (e):W([?]?

» Set locations (one per =3)

9 (@) W[x]? =5 (b):R[x]? 22 ():W[?]? 2% (d):R[?]? 22 (e):R[x]?
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Building a test from a cycle

The conditions on locations and threads allows generating one test
(program + final condition) from one cycle.
Consider for instance:
fre rfe po rfe po
—
» Set events (with directions, from communication relations)
£ f i
=5 (a):W[?]? =5 (b):R[?7]? 22 (c):W[?]? =5 (d):R[?]? 2> (e):W[?]?

—

» Set locations (one per =3)
9 (@) W[x]? 2 (b):R[x]? 22 (c):W[y]? =2 (d):R[y]? 22 (e):R[x]?
» Set values for writes (initial value 0, then follow cycle: 1, 2, etc.)

fre rfe rfe

25 (a):W[x]1 =5 (b):R[x]? 22 (c):W[y]1 =% (d):R[y]? 2> (e):R[x]?
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Building a test from a cycle

The conditions on locations and threads allows generating one test
(program + final condition) from one cycle.
Consider for instance:
fre rfe po rfe po
—
» Set events (with directions, from communication relations)
L (2):W[?]? 2% (B):R[?]7 22 (c):W[?]? 25 (d):R[?]? 22 (e):W[?]?

—

» Set locations (one per %)
% (2):W[x]? 25 (b):R[x]? 22 (c):W[y]? =5 (d):R[y]? 2 (e):R[x]?

» Set values for writes (initial value 0, then follow cycle: 1, 2, etc.)

fre rfe rfe

=5 () W[x]1 =5 (b):R[x]? 22 (c):W[y]1 = (d):R[y]? 2> (e):R[x]?

. f f
» Set values for reads (consider —> R or R —)

fre rfe rfe

=5 (a):WIx]1 =% (b):R[x]1 22 (c):W[y]1 = (d):R[y]1 2> (e):R[x]0
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Building a test from a cycle, continued

fre rfe rfe

=5 (a):W[x]1 =5 (b):R[x]1 22 (c):W[y]1 =5 (d):R[y]1 > (e):R[x]0

» Build program from events (change thread at every ﬂ))

WRC
To T T2
(a)x+1 (b)r0 + x (d)rl+y
()y+1 (e)r2 +x

» Build condition from coherence sequences (here nothing) and from
values read.

Observed? r0=1; ri=1; r2=0;
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Building another test, non-trivial coherence

Test R

Lo (@) WXL 2% (b):W[y]1 <25 (c):W[y]2 2% (x):R[x]0

To

T

(a)x+1
(b)y+1

(c)y « 2
(d)r0 + x

Observed? y=2; r0=0

Here, coherence order is 0 —> 1 =% 2 | it suffices to read the final value.

Longer coherence orders command other techniques, for instance adding

an observer thread.
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A first tool: diyone
Generating WRC:

% diyone -arch X86 Rfe Pod** Rfe Pod** Fre

X86 A

PO | P1 | P2 ;

MOV [x],$1 | MOV EAX,[x] | MOV EAX, [yl ;
| MOV [y]l,$1 | MOV EBX,[x] ;

exists (1:EAX=1 /\ 2:EAX=1 /\ 2:EBX=0)

Doing the same for ARM is as simple as:

% diyone -arch ARM Rfe Pod** Rfe Pod** Fre

ARM A

{ ¥%x0=x; hxl1=x; %yl=y; %hy2=y; hx2=x; }

PO | P1 | P2 5

MOV RO, #1 | LDR RO, [%x1] | LDR RO, [%y2] ;

STR RO, [%x0] | MOV R1,#1 | LDR R1, [%x2] ;
|

STR R1, [%y1] | ;
exists (1:R0=1 /\ 2:R0=1 /\ 2:R1=0)
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Tool diyone, generating R

% diyone -arch X86 PodWW Wse PodWR Fre

X86 A

"PodWW Wse PodWR Fre"

{1}

PO | P1 ;

MOV [x],$1 | MOV [yl,%$2 ;
MOV [yl,$1 | MOV EAX,[x] ;
exists (y=2 /\ 1:EAX=0)

Notice: We wrote PodWW, PodWR. The vocabulary of Candidate
Relaxations is quite rich:

» Internal communications Rfi, Fri, Wsi.
» 2% edges with identical target and source locations: PosRR, etc.
» Dependencies (DpAddrdW, etc.). fences (MFencedWR, etc.)
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Application, testing non-SC executions for two threads

Cycle — execution — program + final condition.

All (critical) cycles for two threads: six cycles.

242w 22, 0, PO, <o,

LB po, rf, po, rf,
MP po, rf, po, fr,
R po, co, po, fr,
S po, rf, po, co,
SB po, fr, po, fr,

Save of coherence violation, any non-SC execution on two threads

includes one of the above six cycles.

Hence, testing the six tests built from the six cycles gives reasonable
coverage of possible SC violation on two threads. (Notice: coherence

violations neglected).
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Generating two-threads SC violations

The tool diy generates cycles (and tests) from a vocabulary of CR. It can
be configured for the two threads case as follows:

-arch X86 # target architecture

-safe Pod#**,Rfe,Fre,Wse # vocabulary

-nprocs 2 # 2 procs

-size 4 # max size of cycle (2 X nprocs)
-num false # for naming tests

Demo in demo/03.

% diy -conf 2.conf

Generator produced 6 tests

% 1s

2+2W.litmus 2.conf @all LB.litmus
MP.litmus R.litmus SB.litmus S.litmus
% diy -conf 4.conf

Generator produced 68 tests...

43/74



Demo 03 continued, running the tests
Compiling:

% litmus -mach ./x86.cfg src/@all -o run
% make -C run -j 4

Running:

% cd run
% sh run.sh > X.00

Analysis:

% grep Observation X.00

Observation R Sometimes 79 1999921
Observation MP Never 0 2000000
Observation 2+2W Never 0 2000000
Observation S Never O 2000000
Observation SB Sometimes 1194 1998806
Observation LB Never 0 2000000
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Results for running the six tests on this machine

1
0

=1 o Wy
pol
=0 d: Rx

a: Wx
po)
b: Ry

c V\ly—2
1

=2
—C>f§Wx

(0]

a: Wx
po)
b: Wy
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Results for running the six tests on this machine

a: Wx=1 c Wy=2 a: Wx=2 c: Ry=1 a: Wx=1 c Wy=1

po //;o po o po po
C cor
b: Wy=1 d: Rx=0 b: Wy:f d: Wx=1 b: Ry=0 d: Rx=0
R: Ok S: No SB: Ok
a: Wx=1 /c:(Ryzl a: Rx=1 c: Ry=1 a: Wx=2 c: Wy=2

ol el | Dl el <l

f‘
b: Wy=1 d: Rx=0 b: Wy=1 d: Wx=1 b: Wy:CchP Wx=1
MP: No LB: No 24-2W: No
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TSO — The Model of X86 machines

Thread; LR Thread,
) ' a— I o
w b ‘ w |
R R oo e 'R R

= =

= = !

o - [ I Sp—

w w

c c

= =R

(0] [¢]

= =

Lo >

=
=

Lock

Shared Memory

The write buffer explains how “reads can pass over writes'.
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Axiomatic TSO

» Remember SC:
Acyclic (i> U U5y &)

A model for herd, our generic simulator:

let ppo = po # ppo stands for ’preserved program-order’
let com-hb = fr | rf | co # All comunications create order
acyclic (ppo | com-hb)
» In TSO:
> Write-to-read does not create order:
let ppo = RM(po) | WW(po) # WR(po) omitted
> Local reads do not create order:
let com-hb = rfe | fr | co # rfi omitted
» TSO “happens-before’ (HB) check:

acyclic (ppo | com-hb | mfence) as hb
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Axiomatic TSO

» Remember SC:
Acyclic (i> U U5y &)

A model for herd, our generic simulator:

let ppo = po # ppo stands for ’preserved program-order’
let com-hb = fr | rf | co # All comunications create order
acyclic (ppo | com-hb)

» In TSO:
> Write-to-read does not create order:
let ppo = RM(po) | WW(po) # WR(po) omitted
> Local reads do not create order:
let com-hb = rfe | fr | co # rfi omitted
» TSO "“happens-before’ (HB) check:
acyclic (ppo | com-hb | mfence) as hb

Notice: Relations are between the points in time where a load binds its
value and where a written value reaches memory.
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Results for running the six test on the model

1
0

a: Wx=1 c Wy
po} o
b: Ry=0 d: Rx

y=2
1

=2
—C>f§Wx

c W
o)

a: Wx
po)
b: Wy
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Results for running the six test on the model

a: Wx=1 c Wy=2 a: Wx=2 c: Ry=1 a: Wx=1 c Wy=1

pol ~ po Ol po po
C cor
b: Wy=1 d: Rx=0 b: Wy:f d: Wx=1 b: Ry=0 d: Rx=0
R: Ok
a: Wx=1 Ry=1 a: Rx=1 c: Ry=1 a: Wx=2 c: Wy=2

48/74



Results for running the six test on the model

a: Wx=1 c Wy=2 a: Wx=2 c: Ry=1 a: Wx=1 c Wy=1
poy ~ po ol po po
W

b: Wy=1 d: Rx=0 b: Wy:cf rd: x=1 b: Ry=0 d: Rx=0
R: Ok S: No
a: Wx=1 Ry=1 a: Rx=1 c: Ry=1 a: Wx=2 c: Wy=2
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Results for running the six test on the model

a: Wx=1 c: Wy=2 a: Wx=2 c: Ry=1

poy ~ po o
b: Wy=1 Cc?: Rx=0 b: Wy:cf rd: Wx=1
R: Ok S: No
a: Wx=1 c: Ry=1 a: Rx=1 c: Ry=1

po //;o po >§o

rf rfr
b: Wy=1 d: Rx=0 b: Wy=1 d: Wx=1

a: Wx=1 c Wy=1

b: Ry=0 d: Rx=0
SB: Ok
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Results for running the six test on the model

a: Wx=1 c Wy=2 a: Wx=2 c: Ry=1 a: Wx=1 c Wy=1

po} ~ po 0
C cor
b: Wy=1 d: Rx=0 b: Wy:f d: Wx=1 b: Ry=0 d: Rx=0
R: Ok S: No SB: Ok
a: Wx=1 c: Ry=1 a: Rx=1 c: Ry=1 a: Wx=2 c: Wy=2

o gl ol el el ol

: Rx=0 b: Wy=1 d: Wx=1 b: Wy:CchP Wx=1
MP: No LB: No 24-2W: No
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rf rfi .
Internal —— (—=) are not in HB

SB+rfi-pos
To 5t
(a)x+1 (d)y+ 1
(b)r0 + x (e)r2+y
(c)rl«+y (fr3«x

Observed? r0=1: r1=0; r2=1; r3=0;

a: Wx=1 d: Wy=1
rfl lrf
b: Rx=1 e: Ry=1

Pol po

c: Ry=0 f: Rx=0
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rf rfi .
Internal —— (—=) are not in HB

SB+rfi-pos
To 5t
(a)x+1 (d)y+ 1
(b)r0 + x (e)r2+y
(c)rl«+y (fr3«x

Observed? r0=1: r1=0; r2=1; r3=0;

a: Wx=1 d: Wy=1
b: Rx=1 e: Ry=1
po po

c: Ry=0 f: Rx=0

SB+rfi-pos: Ok
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Restoring SC

To

T

(a)x+1
(b)y <1

(c)y « 2
(d)r0 + x

Observed? y=2; r0=0

a: Wx=1 c: Wy=2

po

b: Wy=1 d: Rx=0
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Restoring SC with mfence

R+po+mfence
To !
(a)x+ 1 (c)y«2
(b)y +1 mfence
(d)r0 +x

Observed? y=2; r0=0

a: Wx=1 c: Wy=2

pol // l mfence
c
b: Wy=1 - Rx=0
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We are not done vyet. ..
Our TSO model:

let ppo = RM(po) | WW(po) # WR(po) omitted
let com-hb = rfe | fr | co # rfi omitted
acyclic (ppo | com-hb)

show ppo | com-hb as hb

Allows two violations of coherence:

a: Rx=1 a: Wx=1
po’rf o~ 1po
b: Wx=1 rfb: Rx=0

CoRW1 CoWR
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We are not done vyet. ..
Our TSO model:

let ppo = RM(po) | WW(po) # WR(po) omitted
let com-hb = rfe | fr | co # rfi omitted
acyclic (ppo | com-hb)

show ppo | com-hb as hb

Allows two violations of coherence:

a: Rx=1 a: Wx=1
po o
b: Wx=1 rfb: Rx=0
CoRW1 CoWR
r—ﬁ>notin£> Wﬂh‘?notinﬂ

Those behaviours must be rejected by our TSO model.
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Correct axiomatic TSO

We add a specific UNIPROC check to rule out coherence violations:

. o-loc 65
Irreflexive <p—> : —>>

o-loc . po .
Where "2=3% is =2 between accesses to the same memory location.

irreflexive (po-loc; com+) as uniproc

In the TSO case we can “optimise”:

irreflexive rf;RW(po-loc)
irreflexive fr;WR(po-loc)

because the other coherence violations are rejected by the HB check.
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A word on UNIPROC

From cycle analysis, we have the attractive definition (since relying on
local action of the core and on the existence of coherence orders):

Definition (Uniproc 1)
. . +
Program order 2% does not contradict communication =5 .

There is another definition “SC per location”’. (Jason F. Cantin, Mikko
H. Lipasti, James E. Smith ACM Symposium on Parallel Algorithms and
Architectures 2004).

Definition (Uniproc 2)
Relation "228° U <3 s acyclic.

Definitions are equivalent.
com

. . . po-l .
It suffices to show that the existence of a cycle in 23U =% implies the

. . . . po com
existence of a coherence violation (i.e. a cycle e — e — e1).
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Consequence of — ordering writes

Lemma (ldentical locations)

Let e1, e be two different events with the same location,

1. either eg =25 e,

2. or € ﬂl} €1,
3. orwiel andwiez.
Case analysis:
> w1, Ws, then either wi — wy or Wy — wy (total order).
> r, ), let wg i> ri and wy I—f> r>. Then, either w; = wy and we are

. . co fr rf
in case 3; or (for instance) w; — w» and we have i — wp — 1.

rf . rf
> ri,ws, let wg —> 1. Then, either wy = w, and wp, — ny; or
co fr co co rf
wi — wo and 1 —> ws; or wo — wq and wo —— 1.
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Consequence of — ordering writes

Lemma (ldentical locations)

Let e1, e be two different events with the same location,

1. either eg =25 e,

—

com
2. ore, — e,

T 7
3. orw—f>el andw—f>e2.

Case analysis:
. co co
> wi, wy, then either wy — wy or wo — wy (total order).

rf rf .
> ri,r, let wg — r; and wo — r». Then, either wy = w, and we are
. . co fr rf
in case 3; or (for instance) w; — w» and we have i — wp — 1.
rf . rf
> ri,ws, let wg —> 1. Then, either wy = w, and wp, — ny; or
co fr co co rf
wi — wo and 1 —> ws; or wo — wq and wo —— 1.
com

Corollary: — is acyclic.
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Equivalence of the two UNIPROC definitions

Proof is easy from “ldentical locations” lemma.

. . oS
Consider a cycle in 225 U <%,

—

. o
» If there exists a ; 2o, e step s.t. e M &1, then we are done.
. (o]
» Otherwise, for each e; = e, step:
. . £ £ —
» Either, n 2o r, with w LN rn and w LI r>». We short-circuit the
po . rf po rf
— step, replacing w — . — n by w — .
> Or, e 28 &), We replace the o, step by o steps.
As a result we have a cycle in O which is impossible.
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A relaxed shared memory computer

Thread;

[}
Wl 'R
1

Memory;

More or less visible to user
code:

» Cores:
» Out of order
execution
» Branch speculation
» Write buffers
» Memory

> Physically distributed
> Caches
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Situation of (our) ARM/Power models

>

Architecture public reference Informal, cannot clearly explain how
fences restore SC for instance.

Simple, global-time model: (CAV'10) too relaxed. It remains
useful as it supports simple reasoning on SC-violations (CAV'11).

Operational model: (PLDI'11) more precise, developped with IBM
experts. It is quite complex, and the simulator is very slow.

Multi-event axiomatic model: (CAV'12) more precise (equivalent
to PLDI'11), uses several events per access.

Single-event axiomatic model: (...) more precise (proved to be
more relaxed than PLDI'11, experimentally equivalent). A more
simple axiomatic model.

Joint work with (in order of appearance) Jade Alglave, Susmit Sarkar,
Peter Sewell, Derek Williams, Kayvan Memarian, Scott Owens, Mark
Batty, Sela Mador-Haim, Rajeev Alur, Milo M. K. Martin and Michael
Tautschnig.
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Some issues for ARM /Power

. . ppo .
» No simple preserved-program-order. More precisely, — will now
account for core constraints, such as dependencies.

» Communication relations alone do not define happen-before steps.

» A variety of memory fences: lightweight (Power 1wsync) and full
(Power sync).
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Two-threads SC violation for ARM

Generating tests is as simple as:
% diy -conf 2.conf -arch ARM

With the same configuration file 2. conf as for X86.
Then, compile (in two steps, generate C locally, compile it on target
machine), run and. ..

Observation R Sometimes 5722 1994278
Observation MP Sometimes 3571 1996429
Observation 2+2W Sometimes 17439 1982561
Observation S Sometimes 7270 1992730
Observation SB Sometimes 9788 1990212
Observation LB Sometimes 4782 1995218

All Non-SC behaviours observed!
No hope to define 223 as simply as for TSO.
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An experiment on ARM /Power
Consider test MP:

MP
To T, a: Wx=1 /c:(Ry:l
(a)x+1 ()0« y POy 4 4P°
(b)y «+ 1 (d)rl +x b: Wy=1 d: Rx=0

Observed? r0=1: r1=0

We know that the test is Ok (observed, valid) on ARM/Power, what
does it take (amongst fences, dependencies,) to make the test No
(unobserved, invalid)?

» Fences: dsb, dmb, isb (ARM); sync, lwsync, isync (Power).
» Dependencies: address, data, control, control+isb/isync.
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Dependencies (Power)
Address dependency:
lwz 1r1,0(r8) # r8 contains the address of ’x’

slwi r7,r1,2 # sizeof(int) = 4
lwzx r2,r7,r9 # r9 contains the address of ’t’

rl+x
r2 <+ t[ri]

Data dependency:

lwz r1,0(r8) # r8 contains the address of ’x’
addi r2,ri1,1
stw r2,0(r9) # r9 contains the address of ’y’

rl+x
y < ri+l

Control dependency:
lwz r1,0(r8)

cmpwi r1,0

rl<<x
if r1=0 then bne L1
v 1 1i r2,1

stw r2,0(r9)
L1i:
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Dependencies (Power)
Address dependency:
lwz 1r1,0(r8) # r8 contains the address of ’x’

slwi r7,r1,2 # sizeof(int) = 4
lwzx r2,r7,r9 # r9 contains the address of ’t’

rl<+x
r2 <+ t[ri]

Data dependency:

lwz r1,0(r8) # r8 contains the address of ’x’
addi r2,ri1,1
stw r2,0(r9) # r9 contains the address of ’y’

rl +x
y < ri+l

Control dependency: (+isync
P v yne) lwz r1,0(r8)

cmpwi r1,0

rl < x 1

if r1=0 then bye L
(isync) (isync)
v 1 1i r2,1

stw r2,0(r9)
L1:
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Generating tests (ARM), yet another tool: diycross
Generating tests with diycross (demo in demo/04):

% diycross -arch ARM\

PodWW ,DMBAWW ,DSBAWW , ISBAWW\

Rfe\
PodRR,DpCtrldR,DpCtrlIsbdR,DpAddrdR,DMBJRR,DSBARR, ISBARR\
Fre

Generator produced 28 tests

» One generates MP as diyone PodWW Rfe PodRR Fre
» diycross rll,...,r,%,1 rM,...,r,%, generates the Ny x -+ X Ny
cycles ry ---ri, - r)! by cross-producting the given CR list

arguments.

This generates some variations in the MP family.

We then compile and run, and. ..
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Optimal fencing/dependencies for MP

(" Mp+dsbs )

N

(" MP+dsbdmb ) (" MP+dmb+dsb )

(" Mp+dsbictrish ) MP+dsb+addr ) (" MP+dmbs ) ' MP-+isb+dsb I MP-+po-+dsb '

A"
[
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Optimal fencing for the 6 two-threads tests (Power)

ar Wx=1 . c: Wy=2

sync l _ l sync
b: Wy=1 d: Rx=0

R-+syncs
a: Wx=1 c: Wy=1

sync l l sync
b: Ry=0 d: Rx=0

SB+syncs
a: Rx=1 rf C Ry=1

addri >< ‘addr
b: Wy=1 d: Wx=1

LB+addrs

a: Wx=2
Iwsync l addr
b: Wy=1 d: Wx=1

o & Ry=1

S+lwsync+addr

a: Wx=1 c: Ry=1

rf

Iwsync l // L addr

b: Wy=1 d: Rx=0
MP+Iwsync+addr

ar Wx=2 ¢t Wy=2

Iwsync l i Iwsync

b: Wy=1 d: Wx=1
24+-2W+-lwsyncs
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Some observations

In the previous slide we considered increasing power (and cost):
addr < lusync < sync

Then:
» Dependencies (address) are sufficient to restore order from reads to
writes and reads in two-threads examples (but. ..)

» Fences restore order from writes to write and reads.
» Full fence (sync) is required from write to read.

» When to use the lightweight fence between writes is complex:
24+-2W+Iwsyncs vs. R+syncs.

ar Wx=2 . c Wy=2 ar Wx=1 . c Wy=2

Iwsync l i Iwsync sync l - i sync

b: Wy=1 d: Wx=1 b: Wy=1 d: Rx=0
24-2W+-lwsyncs R+syncs

No No
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Some observations

In the previous slide we considered increasing power (and cost):
addr < lusync < sync

Then:

» Dependencies (address) are sufficient to restore order from reads to
writes and reads in two-threads examples (but. ..)

» Fences restore order from writes to write and reads.
» Full fence (sync) is required from write to read.

» When to use the lightweight fence between writes is complex:
24+-2W+Ilwsyncs vs. R+lwsync+sync.

ar Wx=2 . c Wy=2 ar Wx=1 . c Wy=2

Iwsync l i Iwsync Iwsync l _~ i sync

b: Wy=1 d: Wx=1 b: Wy=1 d: Rx=0
24-2W+-lwsyncs R+lwsync+sync

No Ok
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Dependencies are enough

LB+datas
To T1

(a)r0 +x (c)rl+y
(b)y 10 |(d)x+r1
Observed? r0=42; r1=42;

a: Rx=42 vrf S Ry=42

data l >< l data

b: Wy=42  d: Wx=42

LB-+datas

Of course we never observe this behaviour (values out of thin air) and
any (hardware) model should forbid it.

Happens-before If we order: (1) stores: the point in time when the
value is made available to other threads (2) loads: the point when the
value is read by core.
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Dependencies from reads not always enough!

Consider test WRC+data+addr:
WRC
To T1 T,

(a)x+1 |[(b)r0«+x |[(d)rl+«+ ¥y
(c)y« 1 (e)r2 + x
Observed? r0=1; ri=1; r2=0
a: Wx=1—"b: Rx=1 d: Ry=1
rf data i // l addr

-~y
c: Wy=1 e: Rx=0

WRC+data-+addr

Behaviour observed on Power 6 and 7 (not on ARM, but documentation
allows it).

Stores are not “multi-copy atomic” Ty and T; share a private
buffer/cache/memory (e.g. a cache in SMT context). T, “does not see”
the store by Ty, when T; does.
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Restoring SC for WRC

Use a lightweight fence on Ty:

To T T2
a: Wx=1—""b: Rx=1 of d: Ry=1
T\fvsync l /// l addr
c: Wy=1 e: Rx=0

WRC+Ilwsync+addr

Observation: The fence orders the writes a (by To) and ¢ (by Ty) for
any observer (here T5).
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Another case of unsufficient dependencies

Consider test IRIW+addrs:

IRIW
To Ty T, T3
(a)x«+1 (b)r0«+x |[(d)y<«+1 (e)r2«+y
(c)rl«y (fr3«x

Observed? r0=1: r1=0; r2=1; r3=0;
a: Wx=1—">b: Rx=1 d: Wy=1—""e: Ry=1
rf rf
addr§ } addr
¢ Ry=0 f: Rx=0

IRIW+addrs

Behaviour observed on Power (not on ARM, but documentation allows
it).

Stores are not “multi-copy atomic”: Ty and T; have a private
buffer/cache/memory, T, and T3 also have one.
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Restoring SC for IRIW

Use a full fence on T; and T»:

To T1 T T3
a: Wx=1=—">bhb: Rx=1 d: Wy=1—""e: Ry=1
rf l rf l
sync sync
c¢: Ry=0 f: Rx=0
IRIW-syncs

Propagation: Full fences order all communications.
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Relation summary

Communication relations:

»
>

>
>

Read-from: w — r, with loc(w) = loc(r),val(w) = val(r).

co .
Coherence: w — w’, with loc(w) = loc(w’) = x. Total order for
given x: hence “coherence orders’

fr . rf co
We deduce from-read: r — w, i.e w' — r and w/ — w.

.. . . rfi coi fri
We distinguish internal (same proc, —, —, —) and external
rfe coe fre

(different procs, —», —», —) communications.

“Execution” relations

>
>
>

Program order: e; == e, with proc(e;) = proc(e).
. po-loc
Same location program order: e — 6.

Preserved program order: e; PPR e, with 22322 Computed
from other relations.

Fences: effective strong and lightweight fences in between
events *88 and U8 EfFectlve means that for instance w "3
does not |mp||es w B
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A model in four checks
UNIPROC
acyclic poloc | com as uniproc
HB

let fence = strong | light
let hb = ppo | fence | rfe
acyclic hb

OBSERVATION We now define the effect of fences (any fence) for
ordering writes:

let propbase = (WW(fence) | (rfe;RW(fence))) ;hb*
irreflexive fre;propbase as observation

PROPAGATION Strong fences wait for all communications.

let propstrong = com*; propbase*; strong; hbx*
let prop = WW(propbase) | (com*;propbase*;strong;hbx*)
acyclic co | prop as propagation
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ARM /Power preserved program order

Rather complex, results from a two events per access analysis (cf.
CAV'12).

(x Utilities *)
let dd = addr | data let rdw = po-loc & (fre;rfe)
let detour = po-loc & (coe ; rfe) 1let addrpo = addr;po

(* Initial value *)

let ci0 = ctrlisync | detour

let ii0 = dd | rfi | rdw

let ccO = dd | po-loc | ctrl | addrpo
let icO =0

(*x Fixpoint from i -> ¢ in instructions and transitivity *)
let rec ci = ciO | (ci;ii) | (cc;ci)

and ii = ii0 | ci | (ic;ci) | (ii;id)
and cc = ccO | ci | (eci;ic) | (cc;ce)
and ic = icO | ii | cc | (ic;cc) | (ii ; ic)

let ppo = RW(ic) | RR(ii)

Can be limited to dependencies. . .
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How good is our model?

Is it sound?

» A proof: any behaviour allowed is also allowed by the operational
model of PLDI'11.

» Experiments

> Soundness w.r.t. hardware (ARM being a bit problematic because of
acknowledged read-after-read hazard).

» Experimental equivalence with our previous models, saved from
current debate on some subtle semantical point for lwsync.

In any case:
» Simulation is fast (x1000 w.r.t. PLDI'11) (x10 w.r.t. CAV'12).

» The existence of four checks UNIPROC, HB OBSERVATION and
PROPAGATION stand on firm bases.

» The semantics of strong fences also does.

» The model and simulator (i.e. herd) are flexible, one easily change a
few relations (e.g. m, or the semantics of weak fences).
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Subtle point

Z6.1
To 5t T2
(a)x+ 2 (e)y+2 (d)r0 + z
(d)y«+1 (e)z+ 1 (Ax+«1

Observed? x=2; y=2; r0=1

a: Wx=2 c: Wy=2 goE Rz=1

stynci W laddr

b: Wy=1 d: Wz=1 f: Wx=1

Z61+Iwsync+Iwsync+addr

Unobserved and forbidden by model. May be allowed. ..
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A test of coherence violation

Our setting also finds bugs. ..
The following execution:

a: Wz=1—">e: Wz=2

rf pol <
b: Ry=0
addrl rf
c: Rz=2
ool

d: Rz=1

is observed on all (tested) ARM machines. It features a CoRR-style
. . . po . fr fr
coherence violation (i.e. — contradicts —; —).
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