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Motivation

Words or trees with infinite alphabet

XML documents

Trees with tags and attributes (data) on nodes

library

book

id
name

reader

id

name
(8632298)

Handbook of TCS

(2341)

Bob

<library>
<book id =“8632298”>
<name>Handbook of TCS </name>

</book>
<reader id =“2341”>
<name>Bob</name>

</reader>
</library>

Verification
Timed system: timed words

(request, 1)(response, 1.5)(request, 2)(response, 4) . . .
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Data words and languages

Data words
Infinite alphabet: Σ×D

Σ: A finite letter domain,

D: An infinite data domain D (only (in)equality comparisons allowed)

Data word (w , d): a word over Σ×D, e.g.
a b a b a b b a b
1 2 2 3 1 4 3 1 7

A class of a data word: A maximal set of positions with the same data value.

a b a b a b b a b
1 2 2 3 1 4 3 1 7

Data languages

Example. For every two a in the same class, there is a b between them in a
different class.

a b a b a b b a b
1 2 2 3 1 4 3 1 7
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Automata models over data words

Register automata (Kaminski & Francez 1994, Demri & Lazić 2006)

Data values stored in the registers

Pebble automata (Neven & Schwentick & Vianu 2001, Tan 2009)

Pebbles placed on the positions of data words

Variable automata (Grumberg & Kupferman & Sheinvald 2010)

Add variables into the alphabet to symbolically represent data
values

Data automata and class automata (Bojańczyk & Muscholl & Schwentick &
Segoufin 2006, Bojańczyk & Lasota 2010)

Nondeterministic transducer + class condtion
Introduced to prove the decidability of FO2[+1, <,∼]
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Data automata

Profile of data words (profile(w , d))

a b a b b ab ba

1 2 2 3 1 4 3 1 76= = 6= 6= 6= 6= 6= 6=
a b a b b ab ba

⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

data word

profile

Data automaton

A data automaton D = (A,B)

a nondeterministic letter-to-letter transducer A : (Σ× {⊥,>})∗ → Γ∗,

class condition: a finite automaton B over the alphabet Γ.

Acceptance of a data word (w , d) by D
A generates a w ′ from profile(w , d), and

for each class X , the class string w ′|X is accepted by B
w ′|X : the substring of w ′ restricted to positions in X
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Data automata

Example

Let Σ = {a, b}. The language

∀x(a(x)→ ∃y(x < y ∧ b(y) ∧ x ∼ y))

is accepted by D = (A,B)

A is the identity transducer: (a, {⊥,>})→ a, (b, {⊥,>})→ b,

B is the automaton accepting Σ∗b.

a
1 5 1 4
b a b

2
a
2
b

3 2
b a

1
b a

1 1
a
1
b

5 4
b b

3
b

2
a
2
b

2
a

Fact
Nonemptiness of data automata is decidable.

Open question

Whether the nonemptiness of data automata can be solved in elementary time?
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Outline

1 Restriction
Weak data automata (WDA)
Commutative data automata (CDA)
Expressibility
Nonemptiness problem

2 Extension
Class automata
Priority multicounter automata (PMA)
Class automata with priority class condition (PCA)
Expressibility
Correspondence between PMA and PCA

3 Conclusion
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Weak data automata (WDA)

A WDA D = (A, C)

a nondeterministic letter-to-letter transducer A : (Σ× {⊥,>})∗ → Γ∗,

the condition C: A collection of

key constraints key(γ):

Every two γ-positions have different data values

inclusion constraints D(γ) ⊆
⋃
γ′∈R

D(γ′):

For every data value occurring in a γ-position,
there is γ′ ∈ R s.t. the data value also occurs in a γ′-position

and denial constraints D(γ) ∩ D(γ′) = ∅:
No data value occurs in both a γ-position and a γ′-position

Example: Let (w , d) be the following data word
1 2 1 3 2 4
a a b c c b

Then (w , d) |= key(a) ∧ D(a) ⊆ D(b) ∪ D(c) ∧ D(b) ∩ D(c) = ∅.
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Weak data automata (WDA)

A WDA D = (A, C)

a nondeterministic letter-to-letter transducer A : (Σ× {⊥,>})∗ → Γ∗,

the condition C: A collection of

key constraints key(γ):

Every two γ-positions have different data values

inclusion constraints D(γ) ⊆
⋃
γ′∈R

D(γ′):

For every data value occurring in a γ-position,
there is γ′ ∈ R s.t. the data value also occurs in a γ′-position

and denial constraints D(γ) ∩ D(γ′) = ∅:
No data value occurs in both a γ-position and a γ′-position

Example: Let (w , d) be the following data word
1 2 1 3 2 4
a a b c c b

Then (w , d) |= key(a) ∧ D(a) ⊆ D(b) ∪ D(c) ∧ D(b) ∩ D(c) = ∅.
Theorem (Kara, Schwentick and Tan 2012).

Nonemptiness of WDA can be decided in 2NEXPTIME.
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Weak data automata (WDA)

WDA D = (A, C) seen as a DA

a nondeterministic letter to letter transducer A : Σ∗ → Γ∗,

the condition C: Intersection of class conditions

key constraints key(γ):

In each class, γ occurs at most once,

inclusion constraints D(γ) ⊆
⋃
γ′∈R

D(γ′):

In each class, if γ occurs at least once,
then γ′ occurs at least once for some γ′ ∈ R,

and denial constraints D(γ) ∩ D(γ′) = ∅:
In each class, if γ occurs at least once, then γ′ does not occur.
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WDA D = (A, C) seen as a DA
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⋃
γ′∈R

D(γ′):

In each class, if γ occurs at least once,
then γ′ occurs at least once for some γ′ ∈ R,

and denial constraints D(γ) ∩ D(γ′) = ∅:
In each class, if γ occurs at least once, then γ′ does not occur.

All these class conditions are Commutative

∀γ1, γ2 ∈ Γ,∀x , y ∈ Γ∗, xγ1γ2y ∈ L⇔ xγ2γ1y ∈ L

Zhilin Wu (ISCAS) Restrictions and Extensions of Data Automata LOCALI 2013, Nov. 04-07 9 / 44



Weak data automata (WDA)

WDA D = (A, C) seen as a DA

a nondeterministic letter to letter transducer A : Σ∗ → Γ∗,

the condition C: Intersection of class conditions

key constraints key(γ):

In each class, γ occurs at most once,

inclusion constraints D(γ) ⊆
⋃
γ′∈R

D(γ′):

In each class, if γ occurs at least once,
then γ′ occurs at least once for some γ′ ∈ R,
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All these class conditions are Commutative

∀γ1, γ2 ∈ Γ,∀x , y ∈ Γ∗, xγ1γ2y ∈ L⇔ xγ2γ1y ∈ L

Commutative Data Automata
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Commutative Data automata (CDA)

A CDA (A,B): A data automaton (A,B) s.t.

L(B) is a commutative regular language.

Commutative regular languages

Quantifier free simple Presburger formulas (QFSP):

Boolean combination of formulas of the form
x1 + . . . xn ≤ c, x1 + · · ·+ xn = c, x1 + . . . xn ≥ c
x1 + · · ·+ xn ≡ r mod q.

Remark. If formulas of the form xi − xj ≤ c are added,
then we get quantifier free Presburger formulas (QFP).

Proposition (Pin 86). Let Γ = {γ1, . . . , γk} and L ⊆ Γ∗ be regular. Then

L is commutative iff L is defined by a QFSP formula ϕ(xγ1 , . . . , xγk ).

Example. “Words of even length over the alphabet {a, b}”: xa + xb ≡ 0 mod 2.

A CDA D = (A, ϕ) s.t. ϕ is a QFSP formula
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CDA: Example

L:

∃x∃y(a(x) ∧ x < y ∧ b(y) ∧ x ∼ y).

L is defined by the CDA D = (A, ϕ) defined as follows.

the transducer A:
When reading the profile of a data word from left to right, A

nondeterministically chooses an occurrence of a, then an occurrence
of b,
relabel them by $,
and keep unchanged the letters in all the other positions.

ϕ := x$ = 2 ∨ x$ = 0.

. . . a b. . . . . .

$ $

d d
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Expressibility comparison and closure properties

Theorem. WDA < CDA < DA.

Proof(sketch)

WDA < CDA: “In each class of the data word,
the letter a occurs an even number of times”

CDA < DA: “For each occurrence of a,
∃ an occurrence of b on the right with the same data value”

Theorem. CDAs are closed under union and intersection, but not under
complementation.

Proof(sketch)

Closed under union and intersection: Easy to show.
Non-closed under complementation:

The language L:
a . . . a b . . . b
d1 . . . dk d1 . . . dk

L is not definable by DA,

but the complement L can be defined by a CDA.
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Nonemptiness

Theorem. Nonemptiness of CDA can be decided in 3NEXPTIME.

We illustrate the proof by using the following example.

Let Σ = {a, b}. Consider the CDA D = (A, ϕ), where

the transducer A:

(a, {⊥,>})→ a, (b, {⊥,>})→ b,
over a data word (w , d),
A verifies that w ∈ (ab)∗ and (w , d) is locally different (∀i .di 6= di+1),

that is, profile(w , d) ∈ ((a,⊥)(b,⊥))∗.

ϕ = (xa ≤ 1 ∧ xb = 1) ∨ (xa ≥ 2 ∧ xb ≡ 1 mod 2).
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Nonemptiness

Theorem. Nonemptiness of CDA can be decided in 3NEXPTIME.

Proof.

1. Transform ϕ into a normal form
∨

1≤i≤6

ϕi , where

ϕ1 = (xa = 0 ∧ xb = 1),

ϕ2 = (xa = 1 ∧ xb = 1),

ϕ3 = (xa ≥ 2 ∧ xa ≡ 0 mod 2 ∧ xb = 1),

ϕ4 = (xa ≥ 2 ∧ xa ≡ 0 mod 2 ∧ xb ≥ 2 ∧ xb ≡ 1 mod 2),

ϕ5 = (xa ≥ 2 ∧ xa ≡ 1 mod 2 ∧ xb = 1),

ϕ6 = (xa ≥ 2 ∧ xa ≡ 1 mod 2 ∧ xb ≥ 2 ∧ xb ≡ 1 mod 2).

Note that all those ϕi ’s are mutually exclusive.
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Nonemptiness

Theorem. Nonemptiness of CDA can be decided in 3NEXPTIME.

Proof.
2. Forget “locally different” and consider the following problem.

Is there a data word (w , d) such that
w ∈ (ab)∗ and each class of (w , d) satisfies ϕ?

Lemma. ∃ data word (w , d) s.t. w ∈ (ab)∗ and each class of (w , d) satisfies ϕ
iff ∃ word w ∈ (ab)∗ such that w |= ∃y1 . . . ∃y6ψ (data-free).

The existential Presburger(EP) formula ∃y1 . . . y6ψ: ψ = ψ1 ∧ ψ2 ∧ ψ3,

ψ1 =
xa ≥ y2 + 2y3 + 2y4 + 3y5 + 3y6 ∧
xb ≥ y1 + y2 + y3 + 3y4 + y5 + 3y6

,

ψ2 =
y3 + y4 + y5 + y6 = 0→ xa = y2 ∧

y4 + y6 = 0→ xb = y1 + y2 + y3 + y5
,

ψ3 =
xa − (y2 + 2y3 + 2y4 + 3y5 + 3y6) ≡ 0 mod 2 ∧
xb − (y1 + y2 + y3 + 3y4 + y5 + 3y6) ≡ 0 mod 2

.

The intuition of yi :
Number of data values d s.t. the class corresponding to d satisfies ϕi .
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Nonemptiness

Theorem. Nonemptiness of CDA can be decided in 3NEXPTIME.

Proof.
2. Forget “locally different” and consider the following problem.

Is there a data word (w , d) such that
w ∈ (ab)∗ and each class of (w , d) satisfies ϕ?

Presburger automaton (A, ψ):

A: finite-state automaton over Σ,

ψ((xa)a∈Σ): Existential Presburger formula.

Acceptance: w is accepted by (A, ψ) iff
w is accepted by A and its Parikh image satisfies ψ

Theorem (Seidl, Schwentick, Muscholl and Habermehl 2004).
Nonemptiness of Presburger automata can be decided in NP.
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Nonemptiness

Theorem. Nonemptiness of CDA can be decided in 3NEXPTIME.

Proof.
3. How about “locally different” ?

Lemma. There is a number M : M ≤ 2|ϕ| s.t.
∃ a locally different data word (w , d) satisfying

w ∈ (ab)∗ and (w , d) |= ϕ with “many” data values w.r.t. M

iff ∃ a word w ∈ (ab)∗ satisfying
w |= ∃y1 . . . ∃y6ψ with “large” numbers w.r.t. M.

Satisfaction with large numbers and many data values

w |= ∃y1 . . . y6ψ with large numbers (w.r.t. M):

w |= ψ[k1/y1, . . . , k6/y6] s.t. for every i , either ki = 0 or ki ≥ M.

(w , d) |= ϕ =
∨

1≤i≤6

ϕi with many data values (w.r.t. M):

∀i : 1 ≤ i ≤ 6, either there are no data values satisfying ϕi ,
or there are at least M data values satisfying ϕi .
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Nonemptiness

Theorem. Nonemptiness of CDA can be decided in 3NEXPTIME.

Proof.
3. How about “locally different” ?

Lemma. There is a number M : M ≤ 2|ϕ| s.t.
∃ a locally different data word (w , d) satisfying

w ∈ (ab)∗ and (w , d) |= ϕ with “many” data values w.r.t. M

iff ∃ a word w ∈ (ab)∗ satisfying
w |= ∃y1 . . . ∃y6ψ with “large” numbers w.r.t. M

iff ∃ a word w ∈ (ab)∗ satisfying

w ∈ (ab)∗ and w |= ∃y1 . . . ∃y6

(
ψ ∧ ∧

1≤i≤6

(yi = 0 ∨ yi ≥ M)

)
.
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Nonemptiness

Theorem. Nonemptiness of CDA can be decided in 3NEXPTIME.

Proof.
3. How about “locally different” ?

The general situation:

For some i, there are only “a few” data values satisfying ϕi .

The idea:

Guess those indices i s.t. there are only “a few” data values satisfying ϕi .

The algorithm.
i) Guess a subset J and set of constants Dj ’s,

guess J ⊆ [m] = {1, . . . ,m},
for each j ∈ J, guess an integer sj ≤ M,

for each j ∈ J, fix a set Dj = {αj
1, . . . , α

j
sj}. Let DJ =

⋃
j∈J

Dj .
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Nonemptiness

Theorem. Nonemptiness of CDA can be decided in 3NEXPTIME.

Proof.
3. How about “locally different” ?

The algorithm.
i) Guess a subset J and set of constants Dj ’s,

ii) Construct the NFA A′ over the alphabet {a, b} ∪ {a, b} × DJ s.t. A′ accepts
w = λ1 . . . λn iff

a symbol (γ, c) occurs in w iff c ∈ Dj and either xγ = 1 or xγ ≥ 2 occurs in
ϕj ,

the projection of v over {a, b} belongs to (ab)∗,

for every i , if λi = (γ, c) and λi+1 = (γ′, c ′), then c 6= c ′,

for every j ∈ J and γ ∈ {a, b},
if xγ = 1 occurs in ϕj , then ∀c ∈ Dj , (γ, c) occurs exactly once,
if xγ ≥ 2 ∧ xγ ≡ 0 mod 2 (resp. xγ ≡ 1 mod 2), then

(γ, c) occurs at least twice and an even (resp. odd) number of times.
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Nonemptiness

Theorem. Nonemptiness of CDA can be decided in 3NEXPTIME.

Proof.
3. How about “locally different” ?

The algorithm.
i) Guess a subset J and set of constants Dj ’s,

ii) Construct the NFA A′ over the alphabet {a, b} ∪ {a, b} × DJ ,

iii) Construct ψJ = ∃y1 . . . y8

(
ψ ∧ ∧

j∈J
yj = 0 ∧ ∧

j 6∈J
yj ≥ M

)
,

iv) Decide the nonemptiness of the Presburger automaton (A′, ψJ).

Zhilin Wu (ISCAS) Restrictions and Extensions of Data Automata LOCALI 2013, Nov. 04-07 16 / 44



Outline

1 Restriction
Weak data automata (WDA)
Commutative data automata (CDA)
Expressibility
Nonemptiness problem

2 Extension
Class automata
Priority multicounter automata (PMA)
Class automata with priority class condition (PCA)
Expressibility
Correspondence between PMA and PCA

3 Conclusion

Zhilin Wu (ISCAS) Restrictions and Extensions of Data Automata LOCALI 2013, Nov. 04-07 17 / 44



Outline

1 Restriction
Weak data automata (WDA)
Commutative data automata (CDA)
Expressibility
Nonemptiness problem

2 Extension
Class automata
Priority multicounter automata (PMA)
Class automata with priority class condition (PCA)
Expressibility
Correspondence between PMA and PCA

3 Conclusion

Zhilin Wu (ISCAS) Restrictions and Extensions of Data Automata LOCALI 2013, Nov. 04-07 18 / 44



An equivalent definition of data automata

A data automaton D = (A,B)

a nondeterministic letter-to-letter transducer A : Σ∗ → Γ∗,

class condition: a finite automaton B over the alphabet Γ.

Acceptance of a data word (w , d) by D
A generates a w ′ from w , and

for each class X , the class string w ′|X is accepted by B
w ′|X : the substring of w ′ restricted to positions in X

The reason:

Given a data word (w , d),
a data automaton (A,B) can be constructed s.t.

over w, A can guess profile(w , d) and
B can verify the correctness of the guessing.
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Class automata

Definition

A class automaton D = (A,B)

a nondeterministic letter-to-letter transducer A : Σ∗ → Γ∗,

class condition: A finite automaton B over the alphabet Γ× {0, 1}.
Acceptance of a data word (w , d) by D

A generates a w ′ from w , and

for each class X , the class string w ′ ⊗ X is accepted by B, where
w ′ ⊗ X is obtained from w ′: w ′i → (w ′i , 1) if i ∈ X , otherwise w ′i → (w ′i , 0).

Fact
Nonemptiness of class automata is undecidable.
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Class automata

Example

“For every two a in the same class, there is a b between them in a different class”
D = (A,B),

A is the identity transducer,

B: a finite automaton over the alphabet {a, b} × {0, 1}

(a, 1)

q1

(a, 0)
(b, 1)

q0

(b, 0)

(a, 0) (b, 1)

(b, 0)

q2

(a, 0)

(b, 1)

(b, 0)

(a, 1)
(a, 1)B
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Class conditions and counter automata

class condition models of counter automata

A1 no restriction C1 multicounter automata
A2 local C2 multicounter automata without zero tests
A3 tail C4 multicounter automata with increasing errors

Let π : Σ→ Γ ∪ {ε}.
The projection of a data language L ∈ (Σ×D)∗ under π:

The set of words π(w) in Γ∗, where (w , d) ∈ L for some d .

Correspondence (Bojańczyk & Lasota 2010)

For each i = 1, 2, 3, the following two language classes are the same,

projections of data languages accepted by Ai ,

languages of words accepted by Ci .
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Priority multicounter automata (PMA)

Priority multicounter automata

A multicounter automaton with the restricted zero tests:
The k counters in C are ordered into a sequence C1, . . . ,Ck .
Restricted zero tests:

Select one i ≤ k, and test whether for each j ≤ i , Cj = 0.

Decidability (Reinhardt 2005)

The emptiness of PMA is decidable.
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Restricted zero tests:

Select one i ≤ k, and test whether for each j ≤ i , Cj = 0.

Decidability (Reinhardt 2005)

The emptiness of PMA is decidable.

Our goal: Priority class condition ⇔ Priority multicounter automata
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Intuition

Data automata as Class automata

Data automaton D = (A,B) ⇒ Class automaton D′ = (A,B′)
B′ is a finite automaton over the alphabet Γ× {0, 1}.

B′ : q
(γ,0)→ q

B′ : q
(γ,1)→ q′⇒B : q

γ→ q′

Priority class condition:
Restriction on the (γ, 0)-transitions of the class condition B

to gain decidability.
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0-priority finite state automata

Let B be a deterministic complete finite automaton over the alphabet Γ× {0, 1}.
G0:

Transition subgraph of B restricted to arcs labeled by Γ× {0}.
0-cyclic state:

A state belonging to a cycle in G0, otherwise 0-acyclic.

G(γ,0):
Transition subgraph of B restricted to arcs labeled by (γ, 0).

(γ, 0)-cyclic state:
A state belonging to a cycle in G(γ,0), otherwise (γ, 0)-acyclic.

Example

q1

(a, 0)

q0

(b, 0)

(a, 0) (b, 0)

q2

(a, 0) (b, 0)
G0

(a, 1)

q1

(a, 0)
(b, 1)

q0

(b, 0)

(a, 0) (b, 1)

(b, 0)

q2

(a, 0)

(b, 1)

(b, 0)

(a, 1)
(a, 1)B

0-cyclic

q1q0

(b, 0)

(b, 0)

q2

(b, 0)

G(b,0)

(b, 0)-acyclic
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0-priority finite state automata (continued)

Homogeneous G0

Homogeneous SCC(strongly-connected-component) C in G0:

∀γ ∈ Γ, either all states in C are (γ, 0)-cyclic or all are (γ, 0)-acyclic.

Let lab(C ) denote the set of γ ∈ Γ s.t. all states in C are (γ, 0)-cyclic.

G0 is homogeneous if all its SCCs are homogeneous.

Suppose G0 is homogeneous. Construct a labeled graph Dscc(G0) = (V ′,E ′, L′):

V ′ is the set of all SCCs of G0,

(C1, γ,C2) ∈ E ′ iff ∃q1 ∈ C1, q2 ∈ C2 s.t. (q1, (γ, 0), q2) ∈ G0 (Note
γ 6∈ lab(C1)),

L′(C ) = lab(C ).
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0-priority finite state automata (continued)

0-priority finite state automata

Let A be a deterministic complete finite state automaton over Γ× {0, 1}.
A is a 0-priority finite state automaton if

there is an order of Γ, say γ1 . . . γk , s.t.

G0 is homogeneous,
every path C0γi1 C1 . . . γimCm in Gscc(G0) s.t. C0 is non-trivial
respect the order of Γ, more specifically,

for every 1 ≤ j1 < j2 ≤ m, ij1 < ij2 ,
for every i : 0 ≤ j1 < j2 ≤ m and every γ` ∈ lab(Cij1

), it holds ` < ij2 .

Proposition. Suppose A is a 0-priority finite state automaton.

For every nontrivial SCC C in Gscc(G0),
∃i : 1 ≤ i ≤ k s.t. lab(C ) = {γ1, . . . , γi} (i : the index of C ).

No 0-acyclic states are reachable from 0-cyclic states in G0.

For every (C , γi ,C
′) ∈ E ′ s.t. C is nontrivial, it holds γi ∈ lab(C ′).
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0-priority finite state automata (continued)

Example:

(a, 1)

q1

(a, 0)
(b, 1)

q0

(b, 0)

(a, 0) (b, 1)

(b, 0)

q2

(a, 0)

(b, 1)

(b, 0)

(a, 1)
(a, 1)B

q1

(a, 0)

q0

(b, 0)

(a, 0) (b, 0)

q2

(a, 0) (b, 0)

G0

Under the order γ1γ2 = ab, B is a 0-priority finite automaton
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0-priority regular languages

Definition

L ⊆ (Γ× {0, 1})∗ is a 0-priority regular language if

there is a 0-priority finite automaton over the alphabet Γ× {0, 1} accepting L.

Property

L ⊆ (Γ× {0, 1})∗ is a 0-priority regular language
iff

the unique minimal deterministic complete automaton accepting L
is a 0-priority finite automaton.
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Class automata with priority class condition (PCA)

Definition

A class automaton (A,B) such that the output alphabet Γ of A can be
partitioned into k (disjoint) subsets Γ1, . . . , Γk satisfying that

L(B) = L1 ∪ · · · ∪ Lk , and for each i : 1 ≤ i ≤ k,
Li ⊆ (Γi × {0, 1})∗ is a 0-priority regular language.

In particular, if k = 1, then L(B) is a 0-priority regular language.

Remark: It can be assumed that A satisfies the following condition,

Over each w ∈ Σ∗, A outputs a word w ′ in Γ∗1 or Γ∗2 , or . . . , Γ∗k .

Intuitively, over a data word (w , d), a PCA D
nondeterministically chooses a number i : 1 ≤ i ≤ k ,
guesses a word w ′ ∈ Γ∗i ,
verifies each class string belongs to the 0-priority regular language Li .

Data automata as PCA

B can be seen as a 0-priority finite automaton B′

Γ× {0} Γ× {0}

G0 . . .
q

γ→ q′ q
(γ,1)→ q′⇒
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Expressibility of PCA

Theorem
PCAs are strictly more expressive than data automata.

Closure properties of PCA

Closed under letter projection h : Σ→ Σ′: Nondeterminism of the transducer
A.

Closed under union: By definition.

Not closed under intersection or complementation:
Otherwise, two-counter machines can be simulated,

contradicting to the decidability of PCA.

Fact
Data automata are closed under intersection.
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PMA ⇒ PCA

A run of a PMA C can be encoded by a data word

From a PMA C, a PCA D = (A,B) can be constructed such that

A: The identity transducer
check some regular (non-data) properties of data words,

B: A 0-priority finite automaton
check the validity of all zero tests of C.
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PCA ⇒ PMA

Let D = (A,B) s.t. A = (Qg ,Σ, Γ, δg , q
g
0 ,Fg ) and B = (Qc , Γ×{0, 1}, δc , qc

0 ,Fc).

A run of D over a data word (w , d) is a parallel running of

the transducer A and the copies of B over (w , d),
with one copy for each data value occurring in (w , d).

Speficially, a run of D over (w , d) is a sequence

(qg
1 , q

c
1 , γ1,R1)(qg

2 , q
c
2 , γ2,R2) . . . (qg

|w |, q
c
|w |, γ|w |,R|w |) s.t.

the sequence (qg
1 , γ1) . . . (qg

|w |, γ|w |) corresponds to a run of A,

for each 1 ≤ i ≤ |w |, (qg
i−1,wi , q

g
i , γi ) ∈ δg .

qc
i = δc(qc

i−1, (γi , 0)) records the state of a copy of B
for a data value that has not been met until the position i ,

Ri records the states of the copies of B for the data values that have been
met until the position i :

If di has not been met before, then Ri (di ) = δc(qc
i−1, (γi , 1)).

If di has been met before, then Ri (di ) = δc(Ri−1(di ), (γi , 1)).
For each data value d ′ 6= di that has been met before,
Ri (d ′) = δc(Ri−1(d ′), (γi , 0)).
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PCA ⇒ PMA

Abstract runs

A run: (qg
1 , q

c
1 , γ1,R1)(qg

2 , q
c
2 , γ2,R2) . . . (qg

|w |, q
c
|w |, γ|w |,R|w |).

Functions R1, . . . ,R|w | ⇒ Functions C1, . . . ,C|w |

each Ci is a function Qc → N satisfying that
for each q ∈ Qc , Ci (q) is the number of data values

that have been met before the position i such that Ri (d) = q.

Intuitively,

each Ci is a tuple of counter values,
with one counter for each state in Qc .
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PCA ⇒ PMA

Abstract runs (continued)

The sequence (qg
1 , q

c
1 , γ1,C1)(qg

2 , q
c
2 , γ2,C2) . . . (qg

|w |, q
c
|w |, γ|w |,C|w |)

can be seen in a more abstract way,
without directly referring to the data values in (w , d), as follows:

For each 1 < i ≤ |w |, Ci is obtained from Ci−1 by nondeterministically choosing
one of the following two possibilities:

either (corresponding to the situation that di has been met before)

select some counter q′ with non-zero value (i.e. Ci−1(q′) > 0), decrement the
counter q′,
then for each counter q′′,
the value of q′′ ⇐ the sum of those of the counters p s.t. δc(p, (γi , 0)) = q′′,
finally increment the counter δc(q′, (γi , 1)).

or (corresponding to the situation that di has not been met)

for each counter q′′,
the value of q′′ ⇐ the sum of those of the counters p s.t. δc(p, (γi , 0)) = q′′,
increment the counter δc(qc

i−1, (γi , 1)).
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PCA ⇒ PMA

Abstract runs (continued)

The sequence (qg
1 , q

c
1 , γ1,C1)(qg

2 , q
c
2 , γ2,C2) . . . (qg

|w |, q
c
|w |, γ|w |,C|w |)

can be seen in a more abstract way,
without directly referring to the data values in (w , d), as follows:

For each 1 < i ≤ |w |, Ci is obtained from Ci−1 by nondeterministically choosing
one of the following two possibilities:

either (corresponding to the situation that di has been met before)

or (corresponding to the situation that di has not been met)

With such an abstract view of runs, D can be transformed into a counter
automaton (with unrestricted zero tests) containing k = |Qc | counters.
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PCA ⇒ PMA

A property of abstract runs of PCA

Every abstract run of D satisfies that:
For each i : 1 ≤ i ≤ |w |, ∑

q: 0-acyclic
Ci (q) ≤ #scc(G0),

where #scc(G0) is the maximal length of paths in Dscc(G0).

Intuitively, for each i , at position i ,
the number of data values d

such that Bd is in a 0-acyclic state
is bounded by a constant (independent of the data word).
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PCA ⇒ PMA

Abstract runs of PCA D = (A,B) =⇒
PMA C′ with one counter for each 0-cyclic state of B,
with the info for 0-acyclic states recorded in the finite state control.

If B is a 0-priority finite automaton, then the counters of C′ are ordered as follows:

Cyc1 Cyc2 . . . Cyck .

where for every i : 1 ≤ i ≤ k ,

Cyci is the set of 0-cyclic states in Qc belonging to an SCC of index i .

Remark. For every j : j > i , all states in Cyci are (γj , 0)-acyclic.

Similarly for the more general case that B is a union of 0-priority regular languages.
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PCA ⇒ PMA (continued)

With this orderring of counters,
the updates of counter values can be fullfilled

with the restricted zero tests of priority multicounter automata.

Cyc1 Cyck. . .Cyci

1. renaming

(γi, 0)-cyclic(γi, 0)-acyclic

(γi, 0)

(γi, 0)

(γi, 0)

(γi, 0)
(γi, 0)

(γi, 0) (γi, 0)

G(γi,0)

(γi, 0)

0-acyclic

0-cyclic

q1
q2

q3

q4

q5
q6

q7

q8

. . . Cyci−1

(γi, 0)
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PCA ⇒ PMA (continued)

With this orderring of counters,
the updates of counter values can be fullfilled

with the restricted zero tests of priority multicounter automata.

(γi, 0)

Cyc1 Cyck. . .Cyci

2. decrement + increment

(γi, 0)-cyclic(γi, 0)-acyclic

(γi, 0)

(γi, 0)

(γi, 0)

(γi, 0)
(γi, 0)

(γi, 0) (γi, 0)

G(γi,0)

(γi, 0)

0-acyclic

0-cyclic

q1
q2

q3

q4

q5
q6

q7

q8

. . . Cyci−1
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PCA ⇒ PMA (continued)

With this orderring of counters,
the updates of counter values can be fullfilled

with the restricted zero tests of priority multicounter automata.

(γi, 0)

Cyc1 Cyck. . .Cyci

3. update the control state

(γi, 0)-cyclic(γi, 0)-acyclic

(γi, 0)

(γi, 0)

(γi, 0)

(γi, 0)
(γi, 0)

(γi, 0) (γi, 0)

G(γi,0)

(γi, 0)

0-acyclic

0-cyclic

q1
q2

q3

q4

q5
q6

q7

q8

. . . Cyci−1

+ increment counters in Cyc1, . . . , Cyci−1
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Conclusion

Summary
1 Commutative data automata: Expressibility, complexity.

2 Class automata with priority class condition:
Correspondence with priority multicounter automata (PMA).

Future work
Lower bound for commutative data automata.

“Partially” commutative data automata ?

Commutative data automata over data trees ?
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