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Background

LTL Model Checking [CGP99] has been very useful;

However, people often make mistakes in writing LTL formulas;

There are many works on “property assurances”;

Among them, satisfiability checking is a basic check.
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Prior Works on LTL Satisfiability Checking

Model-checking based

SPOT (+ SPIN) [RV07]
PANDA + CadenceSMV [RV11]
NuSMV-BDD, NuSMV-BMC [CCGR00]

Temporal Resolution

trp++ [HK03]

Tableau Framework

pltl [Sch98]
lwb [Sch98]

Others

alaska [DDMR08]
tspass [LH10]

see Evaluating LTL Satisability Solvers [SD11]

Lijun Zhang (ISCAS) (Beijing) LTL Satisfiability Checking Revisited November 6, 2013 4 / 32



Motivation (1)

1 We follow the automata-theoretic framework

2 φ is sat? ⇔ Aφ is not empty?

3 The tableau construction[GPVW95] is well-known from LTL to Büchi
automton

4 But the generated automton may be exponential.
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Motivation (2)

1 Individual properties are likely to be satisfiable

2 Combined properties are likely to be unsatisfiable

3 Showing satisfiable means finding a model for the property

4 Can we take advantage of that ?

5 Yes !

6 Our approach: On-the-fly search + Obligation Set
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Motivation (3)

Consider the following cases:

(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)Ub

(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)Rb

There exists the core propertie set {b} for above formulas!

bω satisfies both formulas above.

Our idea: Define the Obligation Set, which provides a
easy way to check satisfiable formulas!
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Obligation Set (1)

Definition (Obligation Set)

For a formula φ, we define its obligation set, denoted by Olg(φ), as
follows:

1 Olg(tt) = {∅} and Olg(ff) = {{ff}};
2 If φ is a literal, Olg(φ) = {{φ}};
3 If φ = Xψ, Olg(φ) = Olg(ψ);

4 If φ = ψ1 ∨ ψ2, Olg(φ) = Olg(ψ1) ∪ Olg(ψ2);

5 If φ = ψ1 ∧ ψ2, Olg(φ) = {O1 ∪O2 | O1 ∈ Olg(ψ1) ∧O2 ∈ Olg(ψ2)};
6 If φ = ψ1Uψ2 or ψ1Rψ2, Olg(φ) = Olg(ψ2);

For O ∈ Olg(φ), we refer to it as an obligation of φ.
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Obligation Set (2)

Example

Olg(aUb) = {{b}};
Olg(G (bUc ∧ dUe)) = {{c , e}};
Olg(G (bUc ∨ dUe)) = {{c}, {e}}.

Definition (Consistent Obligation)

We say an obligation O of φ is consistent iff for all a ∈ O we have that∧
a 6≡ ff.

Theorem (Satisfiability Theorem for Consistent Obligation)

Assume O ∈ Olg(φ) is a consistent obligation. Then, Oω |= φ.
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Obligation Set (3)

How about if there is no consistent obligation O ∈ Olg(φ) ?

Then we introduce the on-the-fly checking on the transition system of
φ.

Why not check on the (generalized-)Büchi automaton ?
—- We want to use Obligation Sets!
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Tagging formulas (1)

Transition systems are similar to tableau-based GBA

This makes the checking easier

But we simplified too much, the transition system does not carry
enough information

We use formula tagging to mark satisfaction of until formulas on the
edges of transition systems
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Tagging formulas (2)

Given a formula φ, we denote U(φ) the set of until subformulas of φ. Sa is
the set of occurrances of atom a, and right(ψ) is the set of right
subformulas of ψ. Then:

Definition (Tagging Formula)

Let a ∈ AP be an atom appearing in φ. Then, the tagging function
Fa : Sa → 2U(φ) is defined as: ψ ∈ Fa(ai ) iff ai appears in right(ψ).
We define the tagged formula φt as the formula obtained by replacing ai
by aFa(ai ) for each ai ∈ Sa.

Example

Consider φ = aU(a ∧ aU¬a). Let ψu = aU¬a, and Sa = {a1, a2, a3, a4}.
From the definition we know Fa(a1) = ∅,Fa(a2) = Fa(a3) = {φ}, and
Fa(a4) = {φ, φu}.
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LTL Transition System (LTS) (1)

Definition (Normal Form Expansion)

The normal form of an LTL formula φ, denoted as NF (φ), is :

1 NF (φ) = {φ ∧ X (tt)} if φ 6≡ ff is a propositional formula. If φ ≡ ff,
we define NF (ff) = ∅;

2 NF (Xφ) = {tt ∧ X (ψ) | ψ ∈ DF (φ)};
3 NF (φ1Uφ2) = NF (φ2) ∪ NF (φ1 ∧ X (φ1Uφ2));

4 NF (φ1Rφ2) = NF (φ1 ∧ φ2) ∪ NF (φ2 ∧ X (φ1Rφ2));

5 NF (φ1 ∨ φ2) = NF (φ1) ∪ NF (φ2);

6 NF (φ1 ∧ φ2) = {(α1 ∧ α2) ∧ X (ψ1 ∧ ψ2) | ∀i = 1 , 2 . αi ∧ X (ψi ) ∈
NF (φi )};

Note: Let φ =
∨

1≤i≤n φi and we define DF (φ) = {φi |1 ≤ i ≤ n}
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LTL Transition System (LTS) (2)

Definition (LTL Transition System)

The labelled transition system Tφ generated from the formula φ is a tuple
〈Σ, Sφ,−→, φ〉 where φ is the initial state, and:

1 the transition relation −→ is defined by: ψ1
α−→ ψ2 iff there exists

α ∧ X (ψ2) ∈ NF (ψ1) ;

2 Sφ is the smallest set of formulas such that φ ∈ Sφ, and ψ1 ∈ Sφ and

ψ1
α−→ ψ2 implies ψ2 ∈ Sφ.
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LTL Transition System (LTS) (3)

Example

aUb:
1 NF (aUb) = {b ∧ X tt, a ∧ X (aUb)};
2 NF (tt) = tt ∧ X (tt).

φ1 = G (bUc ∧ dUe):
1 NF (φ1) = {c ∧ e ∧ Xφ1, b ∧ e ∧ Xφ2, c ∧ d ∧ Xφ3, b ∧ d ∧ Xφ4}: here
φ2 = bUc ∧ φ1, φ3 = dUe ∧ φ1, and φ4 = bUc ∧ dUe ∧ φ1.

2 NF (φ2) = NF (φ3) = NF (φ4).

aUbstart tt
b

a

tt φ1start

c ∧ e/b ∧ e/c ∧ d/b ∧ d
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On-the-fly Satisfiability Checking

Theorem

SAT (φ) iff there exists a SCC B of TSφ and a state ψ in B such that φ
can expand to ψ and, L(B) is a superset of some obligation O ∈ Olg(ψ).

Note: L(B) denotes the set of literals across the SCC B.
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On-the-fly Satisfiability Checking

The whole framework of our new algorithm is as follows:

1 We first tag the formula φ. Then we construct Tφ, where we explore
the states in an on-the-fly manner, by performing nested depth-first
[CVWY92],

2 Whenever a formula is found, we compute the obligation set. In case
that it contains a consistent obligation set, we return true,

3 If a SCC B is reached, φ ∈ B, and L(B) is a superset of some
obligation set O ∈ Olg(φ), we return true,

4 If all SCCs are explored, but do not have the property in step 3, we
return false.

Tool : Aalta1.

1www.lab205.org/aalta
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Experimental Platform

Platform: SUG@R cluster2 : 2.83GHz Intel Xeon Harpertown CPUs
with 16GB RAM per node; Red Hat 4.1.2

Benchmarks:
1 From [RV07]: more than 100,000 random, 8 pattern, 3 counter

formulas;
2 Random conjunction formulas:

∧
1≤i≤n Pi , where Pi is a random

specification pattern3(totally 44 types).

Timeout is set to be 300 seconds.

2http://www.rcsg.rice.edu/sharecore/sugar/
3http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
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Why random conjunctions?

To check scaling we need large formulas

But typical properties are not large

Thus we propose the new random conjunction of specification
patterns

Corresponds to checking the interaction of properties
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Experimental Methods

Compare Aalta to model-checking-based LTL satisfiability solvers;

Explicit : SPOT [DLP04] + SPIN [Hol03]

Symbolic: PANDA + CadenceSMV[RV11]

Compare the solvers’ scalability on large formulas

Study the impact of heuristic strategies

Separate the satisfiable and unsatisfiable formulas
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Experimental Results (1)
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Figure : Experimental results for random formulas with 3 variables.

Lijun Zhang (ISCAS) (Beijing) LTL Satisfiability Checking Revisited November 6, 2013 20 / 32



Experimental Results (2)
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Experimental Results (3)
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Figure : Experimental results for random conjunctive formulas.
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Experimental Results (4)
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Figure : Experimental results for 3-variable random formulas from Aalta with
OFOA and OF.
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Experimental Results (5)
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Figure : Experimental results for random conjunction formulas from Aalta with
OFOA and OF.
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Experimental Results (6)
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Figure : Experimental results for satisfiable random formulas.
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Experimental Results (7)
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Figure : Experimental results for unsatisfiable random formulas.
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Conclusion

Pro-SAT heuristic strategies are effective

What about pro-UNSAT heuristics ?

“Mirror Mirror on The Wall, who is the fastest of them all”?

More work is needed.
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Thanks!
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