
Program Equivalence in Linear Contexts

Yu Zhang
Institute of Software, Chinese Academy of Sciences

Joint work with Yuxing Deng (BASICS, SJTU)

Beijing November 5, 2013

An Example

LOCALI’2013, Beijing 2 / 20

◮ Are the following two programs contextually equivalent?

P1

def
= λx . (0 ⊓ 1)

P2

def
= (λx . 0) ⊓ (λx . 1).

⊓ is the internal choice (like in CSP).

An Example

LOCALI’2013, Beijing 2 / 20

◮ Are the following two programs contextually equivalent?

P1

def
= λx . (0 ⊓ 1)

P2

def
= (λx . 0) ⊓ (λx . 1).

⊓ is the internal choice (like in CSP).

◮ Answer: NO!

− The following program can distinguish them:

bind f = [_] in bind x = f(0) in bind y = f(0) in (x = y)

− But it requires evaluating the target program twice.

− What if the target program is only allowed to be used linearly (only
once)?

Motivation

LOCALI’2013, Beijing 3 / 20

◮ We noticed this problem when using our CSLR logic to prove security of
cryptographic constructions.

◮ CSLR logic [Zhang’09, NZ’10, NZ’13]:

− A functional language with a type system that characterizes
probabilistic polynomial-time computations (PPT class).

− An equational proof system that helps to justify computational
indistinguishability between programs.

◮ Semantic security:

λη . λm0 . λm1 .EncEncEnc(η,m0, pk)≃Cλη . λm0 . λm1 .EncEncEnc(η,m1, pk)

It is sufficient to prove that the two programs are equivalent in linear
contexts [Goldreich’04].

Main Result

LOCALI’2013, Beijing 4 / 20

◮ Proof techniques for contextual equivalence:

− Logical relations [Plotkin’80, Pitts’97, MS’92, GLN’02, ...]

− Simulation relations [Abrasmsky’90, Bierman’00, Jeffrey’99, ...]

Howe’s approach [Howe’96]

− None of these technique can help us to prove the equivalence in
the example.

Main Result

LOCALI’2013, Beijing 4 / 20

◮ Proof techniques for contextual equivalence:

− Logical relations [Plotkin’80, Pitts’97, MS’92, GLN’02, ...]

− Simulation relations [Abrasmsky’90, Bierman’00, Jeffrey’99, ...]

Howe’s approach [Howe’96]

− None of these technique can help us to prove the equivalence in
the example.

◮ Our result: linear contextual equivalence is trace equivalence!

− Sound and complete.

− Valid in both deterministic and non-deterministic languages.

The Non-deterministic Linear PCF

The Language

LOCALI’2013, Beijing 6 / 20

◮ Types:
τ & τ ′ | τ ⊗ τ ′ | τ → τ ′ | τ ⊸ τ ′ | Tτ | . . .

Non-linear function types are primitive and no exponential constructor.

◮ Expressions:

λx . e | e e′ Abstractions and applications
〈e1, e2〉 | proji(e) Products and projections
e1 ⊗ e2 | let x⊗ y = e in e′ Tensor products and projections
fixτ Fix-point recursions
.
val(e) Trivial computation
bind x = e in e′ Sequential composition
e ⊓ e′ Non-deterministic choice

Typing Rules

LOCALI’2013, Beijing 7 / 20

Γ;∆ ⊢ e : τ

Γ: non-linear resources, ∆: linear resources.

◮ Tensor products:

Γ;∆i ⊢ ei : τ1 (i = 1, 2)

Γ;∆1,∆2 ⊢ e1 ⊗ e2 : τ1 ⊗ τ2

Γ;∆, x : τ1, y : τ2 ⊢ e : τ Γ;∆′ ⊢ e′ : τ1 ⊗ τ2

Γ;∆,∆′ ⊢ let x⊗ y = e′ in e : τ

◮ Linear functions:

Γ;∆, x : τ ⊢ e : τ ′

Γ;∆ ⊢ λx . e : τ ⊸ τ ′

Γ;∆ ⊢ e : τ ′ ⊸ τ Γ;∆′ ⊢ e′ : τ ′

Γ;∆,∆′ ⊢ e e′ : τ ′

◮ Non-determinism:

Γ;∆ ⊢ e1 : Tτ1 Γ;∆′, x : τ1 ⊢ e2 : Tτ2

Γ;∆,∆′ ⊢ bind x = e1 in e2 : Tτ2

Γ;∆ ⊢ ei : Tτ (i = 1, 2)

Γ;∆ ⊢ e1 ⊓ e2 : Tτ

Operational Semantics

LOCALI’2013, Beijing 8 / 20

◮ Call-by-name semantics:

− Reductions:

(λx.e)e′ ; e[e′/x]
let x⊗ y = e1 ⊗ e2 in e ; e[e1/x, e2/y]
bind x = val(e′) in e ; e[e′/x]
e1 ⊓ e2 ; ei (i = 1, 2),
.

◮ Evaluation contexts:

E ::= E e | proji(E) | let x⊗ y = E in e | bind x = E in e | val(E) | . . .

− Linear resources can be computed (reduced) only once during
evaluation.

− Not evaluation contexts: 〈E , e〉, 〈e, E〉, E ⊓ e, e ⊓ E , . . .

Linear Contextual Equivalence

LOCALI’2013, Beijing 9 / 20

◮ A linear context Cx:τ is a program with a single linear variable x and no
non-linear variables, i.e.,

∅;x : τ ⊢ Cx:τ : σ

◮ Linear contextual equivalence (Morris-style):

− e may converge (written as e ⇓) if there exists a value v such that
e ;∗ v 6;;

− Linear contextual preorder: e1 ⊑τ e2 if C[e1/x] ⇓ implies C[e2/x] ⇓
for all linear context Cx:τ .

− Linear contextual equivalence ≃: e1 ≃τ e2 iff e1 ⊑τ e2 and e2 ⊑τ e1.

Trace Model

Program Transitions

LOCALI’2013, Beijing 11 / 20

A labeled transition system (based on [Gordon’95])

c ∈ {true, false, 0, 1, 2, . . .}

c
c
−→ ΩΩΩ

Γ;∆ ⊢ 〈e1, e2〉 : τ1 & τ2

〈e1, e2〉
proj

i−−−−→ ei

Γ;∆ ⊢ λx . e : τ ∅; ∅ ⊢ e′ : τ ′ τ ≡ τ ′ ⊸ τ ′′ or τ ′ → τ ′′

λx . e
@e

′

−−−→ e[e′/x]

Γ;∆ ⊢ e1 ⊗ e2 : τ1 ⊗ τ2 ∅;x : τ1, y : τ2 ⊢ e : τ

e1 ⊗ e2
⊗e
−−→ e[e1/x, e2/y]

Γ;∆ ⊢ val(e) : Tτ

val(e)
T
−→ e

◮ Program transitions describes how programs can interact with contexts
(leak information to contexts).

Example of Program Traces

LOCALI’2013, Beijing 12 / 20

P1 ≡ val(λx.val(0) ⊓ val(1))

P2 ≡ val(λx.val(0)) ⊓ val(λx.val(1))

Both programs have traces 〈T,@e,T, 1〉, 〈T,@e,T, 0〉:

P1

T
−→ λx.val(0) ⊓ val(1)
@e
−−→ (val(0) ⊓ val(1))[e/x]

≡ val(0) ⊓ val(1)

; val(1)
T
−→ 1
1
−→ ΩΩΩ,

P2 ; val(λx.val(1))
T
−→ λx.val(1)
@e
−−→ val(1)[e/x]

≡ val(1)
T
−→ 1
1
−→ ΩΩΩ.

Context Transitions

LOCALI’2013, Beijing 13 / 20

◮ Linear context transitions describes how contexts can interact with
programs in the hole (consume information that hole programs leak):

C[proji(x)/y] ◦
proj

i−−−−→ Cy (i = 1, 2)

C[x e/y] ◦
@e
−−→ Cy

C[let z1 ⊗ z2 = x in e/y] ◦
⊗e
−−→ Cy

C[bind z = x in e/y] ◦
T
−→ C[(λz.e)x′/y]

◮ A linear context transition often transforms the free variable into another
one (of a different type).

Proving Linear Contextual Equivalence

Linear Context Reduction

LOCALI’2013, Beijing 15 / 20

◮ A reduction of C[e/x] (Cx:τ be a linear context) is a linear context
reduction if it is in one of the following forms:

− C[e/x] ; C′[e/x], if C ; C′;

− C[e/x] ; C[e′/x], if C is an evaluation context, and e ; e′;

− C[e/x] ; C′[e′/y], if C is an evaluation context, e 6;, and C ◦
α
−→ C′,

e
α
−→ e′ for some external action α.

Linear Context Reduction Lemma

LOCALI’2013, Beijing 16 / 20

Lemma. For every linear context Cx:τ and LPCF program e, if
C[e/x] is reducible, then C[e/x] ; must be a linear context reduc-
tion.

◮ Proof by structural induction on the linear context.

◮ Not true for non-linear contexts: we do not necessarily have the second
and the third form if the context contains multiple copies of the target
program.

◮ The core lemma for proving precongruence of trace equivalence w.r.t.
linear contextual equivalence.

Soundness of Trace Equivalence

LOCALI’2013, Beijing 17 / 20

◮ Trace preorder ⊑T : e1 ⊑T e2 if all traces of e1 are traces of e2.

◮ Theorem. Trace preorder ⊑ is a precongruence with respect to linear
contexts, i.e., e1 ⊑ e2 implies that C[e1/x] ⊑ C[e2/x].

− Standard induction over traces (of C[ei/x]) works for deterministic
languages, but not for non-determinism: trace preorder does not
conform to induction in general.

− Proof by inductively constructing a relation between traces of e and
those of C[e/x].

− This allows for proving precongruence by induction on traces of
C[e/x].

− The proof technique also works for deterministic langauges.

Soundness

LOCALI’2013, Beijing 18 / 20

◮ Soundness theorem. In NLPCF, ≃T ⊆ ≃C .

− This allows us to prove the equivalence of the two programs in
linear contexts:

P1 ≡ val(λx.val(0) ⊓ val(1))

P2 ≡ val(λx.val(0)) ⊓ val(λx.val(1))

Both have traces 〈T,@e,T, 1〉, 〈T,@e,T, 0〉.

Completeness

LOCALI’2013, Beijing 19 / 20

◮ Completeness theorem. ≃C ⊆ ≃T in NLPCF.

− Induction over traces does not work for non-deterministic
languages.

− We construct trace-sepcific contexts to recognize given traces —
the context will perform the exact sequence of interactions with
target programs as specified by the trace.

− We show that a program can take a trace s if and only if the
corresponding s-specific context (filled with the program) may
converge.

− Proof also works in deterministic languages.

Conclusion

LOCALI’2013, Beijing 20 / 20

◮ Proving program equivalence in linear contexts:

− Characterizing linear contextual equivalence by trace equivalence.

− The proof is both sound and complete.

− Proof techniques work in both deterministic and non-deteministic
languages.

◮ Future work

− Probabilistic languages (for application in cryptography).

− Denotational models.

	An Example
	Motivation
	Main Result
	The Non-deterministic Linear PCF
	The Language
	Typing Rules
	Operational Semantics
	Linear Contextual Equivalence

	Trace Model
	Program Transitions
	Example of Program Traces
	Context Transitions

	Proving Linear Contextual Equivalence
	Linear Context Reduction
	Linear Context Reduction Lemma
	Soundness of Trace Equivalence
	Soundness
	Completeness
	Conclusion

