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◮ Are the following two programs contextually equivalent?

P1

def
= λx . (0 ⊓ 1)

P2

def
= (λx . 0) ⊓ (λx . 1).

⊓ is the internal choice (like in CSP).
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P2

def
= (λx . 0) ⊓ (λx . 1).

⊓ is the internal choice (like in CSP).

◮ Answer: NO!

− The following program can distinguish them:

bind f = [_] in bind x = f(0) in bind y = f(0) in (x = y)

− But it requires evaluating the target program twice.

− What if the target program is only allowed to be used linearly (only
once)?



Motivation
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◮ We noticed this problem when using our CSLR logic to prove security of
cryptographic constructions.

◮ CSLR logic [Zhang’09, NZ’10, NZ’13]:

− A functional language with a type system that characterizes
probabilistic polynomial-time computations (PPT class).

− An equational proof system that helps to justify computational
indistinguishability between programs.

◮ Semantic security:

λη . λm0 . λm1 .EncEncEnc(η,m0, pk)≃Cλη . λm0 . λm1 .EncEncEnc(η,m1, pk)

It is sufficient to prove that the two programs are equivalent in linear
contexts [Goldreich’04].



Main Result
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◮ Proof techniques for contextual equivalence:

− Logical relations [Plotkin’80, Pitts’97, MS’92, GLN’02, ...]

− Simulation relations [Abrasmsky’90, Bierman’00, Jeffrey’99, ...]

Howe’s approach [Howe’96]

− None of these technique can help us to prove the equivalence in
the example.
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− Simulation relations [Abrasmsky’90, Bierman’00, Jeffrey’99, ...]

Howe’s approach [Howe’96]

− None of these technique can help us to prove the equivalence in
the example.

◮ Our result: linear contextual equivalence is trace equivalence!

− Sound and complete.

− Valid in both deterministic and non-deterministic languages.



The Non-deterministic Linear PCF



The Language
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◮ Types:
τ & τ ′ | τ ⊗ τ ′ | τ → τ ′ | τ ⊸ τ ′ | Tτ | . . .

Non-linear function types are primitive and no exponential constructor.

◮ Expressions:

λx . e | e e′ Abstractions and applications
〈e1, e2〉 | proji(e) Products and projections
e1 ⊗ e2 | let x⊗ y = e in e′ Tensor products and projections
fixτ Fix-point recursions
. . . . . .
val(e) Trivial computation
bind x = e in e′ Sequential composition
e ⊓ e′ Non-deterministic choice



Typing Rules
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Γ;∆ ⊢ e : τ

Γ: non-linear resources, ∆: linear resources.

◮ Tensor products:

Γ;∆i ⊢ ei : τ1 (i = 1, 2)

Γ;∆1,∆2 ⊢ e1 ⊗ e2 : τ1 ⊗ τ2

Γ;∆, x : τ1, y : τ2 ⊢ e : τ Γ;∆′ ⊢ e′ : τ1 ⊗ τ2

Γ;∆,∆′ ⊢ let x⊗ y = e′ in e : τ

◮ Linear functions:

Γ;∆, x : τ ⊢ e : τ ′

Γ;∆ ⊢ λx . e : τ ⊸ τ ′

Γ;∆ ⊢ e : τ ′ ⊸ τ Γ;∆′ ⊢ e′ : τ ′

Γ;∆,∆′ ⊢ e e′ : τ ′

◮ Non-determinism:

Γ;∆ ⊢ e1 : Tτ1 Γ;∆′, x : τ1 ⊢ e2 : Tτ2

Γ;∆,∆′ ⊢ bind x = e1 in e2 : Tτ2

Γ;∆ ⊢ ei : Tτ (i = 1, 2)

Γ;∆ ⊢ e1 ⊓ e2 : Tτ



Operational Semantics
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◮ Call-by-name semantics:

− Reductions:

(λx.e)e′ ; e[e′/x]
let x⊗ y = e1 ⊗ e2 in e ; e[e1/x, e2/y]
bind x = val(e′) in e ; e[e′/x]
e1 ⊓ e2 ; ei (i = 1, 2),
. . . . . .

◮ Evaluation contexts:

E ::= E e | proji(E) | let x⊗ y = E in e | bind x = E in e | val(E) | . . .

− Linear resources can be computed (reduced) only once during
evaluation.

− Not evaluation contexts: 〈E , e〉, 〈e, E〉, E ⊓ e, e ⊓ E , . . .



Linear Contextual Equivalence
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◮ A linear context Cx:τ is a program with a single linear variable x and no
non-linear variables, i.e.,

∅;x : τ ⊢ Cx:τ : σ

◮ Linear contextual equivalence (Morris-style):

− e may converge (written as e ⇓) if there exists a value v such that
e ;∗ v 6;;

− Linear contextual preorder: e1 ⊑τ e2 if C[e1/x] ⇓ implies C[e2/x] ⇓
for all linear context Cx:τ .

− Linear contextual equivalence ≃: e1 ≃τ e2 iff e1 ⊑τ e2 and e2 ⊑τ e1.



Trace Model



Program Transitions
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A labeled transition system (based on [Gordon’95])

c ∈ {true, false, 0, 1, 2, . . .}

c
c
−→ ΩΩΩ

Γ;∆ ⊢ 〈e1, e2〉 : τ1 & τ2

〈e1, e2〉
proj

i−−−−→ ei

Γ;∆ ⊢ λx . e : τ ∅; ∅ ⊢ e′ : τ ′ τ ≡ τ ′ ⊸ τ ′′ or τ ′ → τ ′′

λx . e
@e

′

−−−→ e[e′/x]

Γ;∆ ⊢ e1 ⊗ e2 : τ1 ⊗ τ2 ∅;x : τ1, y : τ2 ⊢ e : τ

e1 ⊗ e2
⊗e
−−→ e[e1/x, e2/y]

Γ;∆ ⊢ val(e) : Tτ

val(e)
T
−→ e

◮ Program transitions describes how programs can interact with contexts
(leak information to contexts).



Example of Program Traces
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P1 ≡ val(λx.val(0) ⊓ val(1))

P2 ≡ val(λx.val(0)) ⊓ val(λx.val(1))

Both programs have traces 〈T,@e,T, 1〉, 〈T,@e,T, 0〉:

P1

T
−→ λx.val(0) ⊓ val(1)
@e
−−→ (val(0) ⊓ val(1))[e/x]

≡ val(0) ⊓ val(1)

; val(1)
T
−→ 1
1
−→ ΩΩΩ,

P2 ; val(λx.val(1))
T
−→ λx.val(1)
@e
−−→ val(1)[e/x]

≡ val(1)
T
−→ 1
1
−→ ΩΩΩ.



Context Transitions

LOCALI’2013, Beijing 13 / 20

◮ Linear context transitions describes how contexts can interact with
programs in the hole (consume information that hole programs leak):

C[proji(x)/y] ◦
proj

i−−−−→ Cy (i = 1, 2)

C[x e/y] ◦
@e
−−→ Cy

C[let z1 ⊗ z2 = x in e/y] ◦
⊗e
−−→ Cy

C[bind z = x in e/y] ◦
T
−→ C[(λz.e)x′/y]

◮ A linear context transition often transforms the free variable into another
one (of a different type).



Proving Linear Contextual Equivalence



Linear Context Reduction
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◮ A reduction of C[e/x] (Cx:τ be a linear context) is a linear context
reduction if it is in one of the following forms:

− C[e/x] ; C′[e/x], if C ; C′;

− C[e/x] ; C[e′/x], if C is an evaluation context, and e ; e′;

− C[e/x] ; C′[e′/y], if C is an evaluation context, e 6;, and C ◦
α
−→ C′,

e
α
−→ e′ for some external action α.



Linear Context Reduction Lemma
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Lemma. For every linear context Cx:τ and LPCF program e, if
C[e/x] is reducible, then C[e/x] ; must be a linear context reduc-
tion.

◮ Proof by structural induction on the linear context.

◮ Not true for non-linear contexts: we do not necessarily have the second
and the third form if the context contains multiple copies of the target
program.

◮ The core lemma for proving precongruence of trace equivalence w.r.t.
linear contextual equivalence.



Soundness of Trace Equivalence
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◮ Trace preorder ⊑T : e1 ⊑T e2 if all traces of e1 are traces of e2.

◮ Theorem. Trace preorder ⊑ is a precongruence with respect to linear
contexts, i.e., e1 ⊑ e2 implies that C[e1/x] ⊑ C[e2/x].

− Standard induction over traces (of C[ei/x]) works for deterministic
languages, but not for non-determinism: trace preorder does not
conform to induction in general.

− Proof by inductively constructing a relation between traces of e and
those of C[e/x].

− This allows for proving precongruence by induction on traces of
C[e/x].

− The proof technique also works for deterministic langauges.



Soundness
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◮ Soundness theorem. In NLPCF, ≃T ⊆ ≃C .

− This allows us to prove the equivalence of the two programs in
linear contexts:

P1 ≡ val(λx.val(0) ⊓ val(1))

P2 ≡ val(λx.val(0)) ⊓ val(λx.val(1))

Both have traces 〈T,@e,T, 1〉, 〈T,@e,T, 0〉.



Completeness
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◮ Completeness theorem. ≃C ⊆ ≃T in NLPCF.

− Induction over traces does not work for non-deterministic
languages.

− We construct trace-sepcific contexts to recognize given traces —
the context will perform the exact sequence of interactions with
target programs as specified by the trace.

− We show that a program can take a trace s if and only if the
corresponding s-specific context (filled with the program) may
converge.

− Proof also works in deterministic languages.



Conclusion
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◮ Proving program equivalence in linear contexts:

− Characterizing linear contextual equivalence by trace equivalence.

− The proof is both sound and complete.

− Proof techniques work in both deterministic and non-deteministic
languages.

◮ Future work

− Probabilistic languages (for application in cryptography).

− Denotational models.
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