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Abstract. Quasi-linearizability is a quantitative relaxation of lineariz-
ability. It preserves the intuition of the standard notion of linearizabil-
ity and permits more flexibility. The decidability of quasi-linearizability
has been remaining open in general for a bounded number of processes.
In this paper we show that the problem of whether a library is quasi-
linearizable with respect to a regular sequential specification is unde-
cidable for a bounded number of processes. This is proved by reduction
from the k-Z decision problem of a k-counter machine, a known undecid-
able problem. The key idea of the proof is to establish a correspondence
between the quasi-sequential specification of quasi-linearizability and the
set of all unadmitted runs of the k-counter machines.

1 Introduction

A concurrent library provides a collection of methods for accessing a concurrent
object. These methods can be invoked by multiple client processes concurrently.
Linearizability [11] is a de facto correctness condition for concurrent libraries. A
concurrent library is linearizable with respect to its sequential specification, if
during any of its executions, each method appears to take effect instantaneously
at some point between the invocation and the response of the method.

The standard notion of linearizability imposes a strong synchronization
requirement that, in many cases, leads to performance and scalability bottlenecks
and hence prevents effective utilization of increasingly parallel hardware. A rem-
edy to this problem is to relax this consistency condition. Although there already
exist other consistency conditions for concurrent libraries, such as sequential con-
sistency [12] and quiescent consistency [4], these consistency conditions are less
intuitive and allow unexpected behaviors. New relaxed consistency conditions
have been proposed recently, including quasi-linearizability [2] and a quantita-
tive relaxation framework [9]. These relaxed consistency conditions are essen-
tially based on linearizability, therefore preserving the intuition of the standard
linearizability while permitting more flexibility.

This work is partially supported by the National Natural Science Foundation
of China under Grants No.60721061, No.60833001, No.61272135, No.61700073,
No.61100069, No.61472405, and No.61161130530.

c© Springer International Publishing Switzerland 2015
X. Feng and S. Park (Eds.): APLAS 2015, LNCS 9458, pp. 369–386, 2015.
DOI: 10.1007/978-3-319-26529-2 20



370 C. Wang et al.

Quasi-linearizability is the first quantitative relaxation of linearizability. It
extends the standard linearizability by relaxing the sequential specification to
a Q-quasi-sequential specification. Such quantitative relaxation is guided by a
quasi-linearization factor Q. Each element in the Q-quasi-sequential specification
is a bounded distance away from a legal one. Therefore, the verification of quasi-
linearizability needs to deal with not only the subtle difficulty of linearizability,
but also that of the relaxed sequential specification.

It is well known that the problem of whether a library is linearizable with
respect to its regular sequential specification is decidable for a bounded number
of processes [3], but undecidable for an unbounded number of processes [5]. Since
the standard linearizability is a special case of quasi-linearizability, it can be eas-
ily seen that the problem of whether a library is quasi-linearizable with respect to
its regular sequential specification is also undecidable for an unbounded number
of processes. For the case with a bounded number of processes, [1,13] have pre-
sented model-checking algorithm and runtime tool respectively to check quasi-
linearizability with specific quasi-linearization factors. However, the problem of
whether a library is quasi-linearizable with respect to a regular sequential spec-
ification still remains open in general for a bounded number of processes.

The main result of this paper is to show that the problem of whether a library
is quasi-linearizable with respect to a regular sequential specification (quasi-
linearizability problem) is undecidable for a bounded number of processes. Our
proof can be divided into two parts.

In the first part we reduce the k-Z decision problem of a k-counter machine [3]
to the problem of whether a specific concurrent library is linearizable with respect
to its sequential specification (linearizability problem) for just one process. The
k-Z problem is to decide whether a k-counter machine has an admitted run.
This problem is known to be undecidable for k ≥ 3 [3]. As inspired by the
proof of Lemma 5 in [3], the k-Z decision problem can be reduced to a language
inclusion problem between two language R and S. R is a prefix-closed regular
language constructed from the k-counter machine. S is a non-regular language
and it contains all the unadmitted runs of k-counter machine, together with their
prefixes. A specific library LR can then be constructed to simulate sequentially
each sequence of R. Thus, the language inclusion problem can be reduced to the
linearizability problem of LR for just one process with respect to a non-regular
sequential specification constructed from S.

In the second part we prove that the above linearizability problem can then
be reduced to a quasi-linearizability problem of the same library for just one
process. The quasi-linearizability problem uses a regular sequential specification
and a proper quasi-linearization factor. Since the quasi-linearizability problem of
the specific library LR for one process is equivalent to that for a bounded number
of processes, the k-Z decision problem is further reduced to quasi-linearizability
problem with respect to a regular sequential specification for a bounded number
of processes.

Related Work. There are already several publications on the decidability of
linearizability and other consistency conditions [3,5,6,8], two of which are related
to our work.
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Bouajjani et al. [5] proved that the problem of whether a library is lineariz-
able with respect to its regular sequential specification is undecidable for an
unbounded number of processes. This was proved through a reduction from an
undecidable problem of a counter machine.

The closer work to ours is [3] by Alur et al., which proves that the lineariz-
ability of a regular history set with respect to a regular sequential specification
is decidable for a bounded number of processes, but its sequential consistency is
not. The proofs in [3] rely on the notion of the language closure over a depen-
dency relation. Given a binary dependency relation D over an alphabet Σ, the
closure of a language L ⊆ Σ∗ is the set of all sequences that are obtained from
a sequence l ∈ L by shuffling any adjacent symbols a and b in l such that
(a, b) �∈ D. It may sound possible to encode a dependency relation directly by a
quasi-linearization factor Q, which allows shuffling of adjacent independent sym-
bols within certain bound. In this way, the undecidability of quasi-linearizability
could be regarded as a corollary of Lemma 5 in [3].

However, unfortunately, there exists a dependency relation that can not
be characterized by any quasi-linearization factor, e.g., a dependency relation
for sequential consistency. This is because that sequential consistency permits
shuffling only symbols of different processes and hence does not allow any shuf-
fling when a history contains only one process. In contrast, relaxations of quasi-
linearizability are irrelevant to the number of processes a history may contain.
Thus, if a quasi-linearization factor Q permits shuffling symbols of more than
one process, it should also permit shuffling symbols of a single process. Based
on this observation, the undecidable result of Lemma 5 in [3] can not be directly
applied to establish the undecidability of quasi-linearizability.

Adhikari et al. [1] proposed a model-checking algorithm for verification of the
quasi-linearizability that uses a specific quasi-linearization factor. Zhang et al.
[13] developed a runtime tool to verify quasi-linearizability with respect to the
relaxed sequential specifications that are based on the strict out-of-order seman-
tics defined in [2,9]. Both works consider only decidable subclasses of the quasi-
linearizability problem.

2 Concurrent Systems

In this section, we present the notations of libraries, the most general clients and
concurrent systems. We then introduce their operational semantics.

2.1 Notations

A finite sequence on an alphabet Σ is denoted as l = α1 · α2 · . . . · αk, where ·
is the concatenation symbol and αi ∈ Σ for each 1 ≤ i ≤ k. For an alphabet
Σ′, let l ↑Σ′ denote the projection of l to Σ′. Given a set S of sequences, we use
Prefix (S) = {a1 · . . . · am|∃u and am+1, . . . , am+u, such that a1 · . . . · am+u ∈ S}
to denote the set of prefixes of sequences in S. Given a function f , let f [x : y]
be the function that shares the same value as f everywhere, except for x, where
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it has the value y. Given a function f : A → B, we use domain(f) to denote the
domain of f , which is A. We use for an item, of which the value is irrelevant.

A labelled transition system (LTS) is a tuple A = (Q,Σ,→, qinit), where Q
is a set of states, Σ is a set of transition labels, →⊆ Q × Σ × Q is a transition
relation and qinit is the initial state. A state of the LTS A can be refer to as a
configuration in the rest of the paper. A path of A is a finite transition sequence
qinit

β1−→ q1
β2−→ . . .

βk−→ qk for k ≥ 0 from the initial state qinit. A trace of
A is a finite sequence t = β1 · β2 · . . . · βk, where k ≥ 0 if there exists a path
qinit

β1−→ q1
β2−→ . . .

βk−→ qk of A.

2.2 Libraries and the Most General Clients

A library implementing a concurrent object that provides a set of methods for
external users to access the data structure. It may contain private memory loca-
tions for its own use. A client program is a program that interacts with libraries.
For simplicity, we assume that each method has just one parameter and one
return value if it returns. Furthermore, all the parameters and the return values
are passed via a specific register rf .

For a library, let X be a finite set of its memory locations, M be a finite
set of its method names, D be its finite data domain, R be a finite set of its
register names and RE be a finite set of its register expressions over R. Then, a
set PCom of primitive commands of the library includes:

– Register assign commands in the form of r = re ;
– Register reset commands in the form of havoc;
– Read commands in the form of read (x, r) ;
– Write commands in the form of write(r, x);
– Cas commands in the form of r1 =cas(x, r2, r3);
– Assume commands in the form of assume(r);
– Call commands in the form of call(m);

where r, r1, r2, r3 ∈ R, re ∈ RE , x ∈ X . Herein, the notations of registers and
register expressions are similar to those used in [7]. A cas command compresses
a read and a write commands into a single one, which is meant to be exe-
cuted atomically. It is often implemented with the compare-and-swap or load-
linked/store-conditional primitive at the level of multiprocessors. This type of
commands is widely used in concurrent libraries. A havoc command [7] assigns
arbitrary values to all registers in R.

A control-flow graph is a tuple CFG = (N,L, T, qi, qf ), where N is a finite
set of program positions, L is a set of primitive commands, T ⊆ N × L × N
is a control-flow transition relation, qi is the initial position and qf is the final
position.

A library L can then be defined as a tuple L = (QL,→L, InitVL), such
that QL =

⋃
m∈M Qm is a finite set of program positions, where Qm is the

program positions of a method m of this library; →L=
⋃

m∈M →m is a control-
flow transition relation, where for each m ∈ M, (Qm,PCom,→m, im, fm) is a



Quasi-Linearizability is Undecidable 373

control-flow graph with a unique initial position im and a unique final position
fm; InitVL : X → D is an initial valuation for its memory locations.

The most general client of a library is a special client program that is used
to exhibit all possible behavior of the library. Formally, the most general client
MGC of library L is defined as a tuple ({qc, q

′
c},→c), where qc and q′

c are two
program positions, →c= {(qc, havoc, q′

c)}∪{(q′
c, call(m), qc)|m ∈ M} is a control-

flow transition relation and ({qc, q
′
c},PCom,→c, qc, qc) is a control-flow graph.

Intuitively, the most general client repeatedly calls an arbitrary method with an
arbitrary argument for arbitrarily many times.

2.3 Operational Semantics of Concurrent Systems

In this paper we consider a concurrent system consists of a bounded number of
processes, each of which runs the most general client program of a library on a
separate processor. Then, the operational semantics of a library can be defined
in the context of the concurrent system.

For a library L=(QL,→L, InitVL) and a positive integer n, its operational
semantics is defined as an LTS �L, n�cs = (Confcs, Σcs, →cs, InitConfcs), where
‘cs’ represents concurrent system, and Confcs, Σcs, →cs, InitConfcs are defined
as follows.

Each configuration of Confcs is a tuple (p, d, r), where

– p : {1, . . . , n} → {qc, q
′
c} ∪ QL represents control states of each process;

– d : X → D represents values at each memory location;
– r : {1, . . . , n} → (R → D) represents values of the registers of each process.

Σcs consists of the following subsets of actions as transition labels.

– Internal actions: {τ(i)|1 ≤ i ≤ n};
– Read actions: {read(i, x, a)|1 ≤ i ≤ n, x ∈ X , a ∈ D};
– Write actions: {write(i, x, a)|1 ≤ i ≤ n, x ∈ X , a ∈ D};
– Cas actions: {cas(i, x, a, b)| 1 ≤ i ≤ n, x ∈ X , a, b ∈ D};
– Call actions: {call(i,m, a)|1 ≤ i ≤ n,m ∈ M, a ∈ D};
– Return actions: {return(i,m, a)|1 ≤ i ≤ n,m ∈ M, a ∈ D};

The initial configuration InitConfcs ∈ Confcs is a tuple (pinit, InitVL, rinit),
where pinit(i) = qc and rinit(i)(r) = regVinit (a specific initial value of register)
for 1 ≤ i ≤ n, r ∈ R;

The transition relation →cs is the least relation satisfying the transition rules
shown in Fig. 1.

– Register-Assign rule: A function fre : (R → D) × RE → D is used to evaluate
register expression re under register valuation rv of current process, and its
value is assigned to register r1.

– Library-Havoc and MGC-Havoc rules: havoc commands are executed for
libraries and the most general clients respectively.

– Assume rule: If the value of register r1 is true, current process can execute
assume command. Otherwise, it must wait.
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– Read and Write rules: A read action to memory location x will take the value
of x in memory, and a write action to memory location x will change the value
of x in memory directly.

– Cas-Success and Cas-Fail rules: A successful cas command will change the
value of memory location x immediately. The result of whether this cas com-
mand succeeds is stored in register r1.

– Call and Return rules: To deal with call command, current process starts to
execute the initial position of method m. When the process comes to the final
position of method m it can launch a return action and start to execute the
most general client.

p(i) = q1, q1
r1=re−−−→Lq2, r(i) = rv, fre(rv, re) = a

(p, d, r)
τ(i)−−→cs(p[i : q2], d, r[i : rv[r1 : a]])

Register-Assign

p(i) = q1, q1
havoc−−−→Lq2, rv ∈ R → D

(p, d, r)
τ(i)−−→cs(p[i : q2], d, r[i : rv])

Library-Havoc

p(i) = qc, rv ∈ R → D
(p, d, r)

τ(i)−−→cs(p[i : q′
c], d, r[i : rv])

MGC-Havoc

p(i) = q1, q1
assume(r1)−−−−−−→Lq2, r(i)(r1) = true

(p, d, r)
τ(i)−−→cs(p[i : q2], d, r)

Assume

p(i) = q1, q1
read(x,r1)−−−−−−→Lq2, r(i) = rv, d(x) = a

(p, d, r)
read(i,x,a)−−−−−−→cs(p[i : q2], d, r[i : rv[r1 : a]])

Read

p(i) = q1, q1
write(r1,x)−−−−−−→Lq2, r(i)(r1) = a

(p, d, r)
write(i,x,a)−−−−−−→cs(p[i : q2], d[x : a], r)

Write

p(i) = q1, q1
r1=cas(x,r2,r3)−−−−−−−−−−→Lq2, r(i) = rv, rv(r2) = d(x) = a, rv(r3) = b

(p, d, r)
cas(i,x,a,b)−−−−−−−→cs(p[i : q2], d[x : b], r[i : rv[r1 : true]])

Cas-Success

p(i) = q1, q1
r1=cas(x,r2,r3)−−−−−−−−−−→Lq2, r(i) = rv, rv(r2) = a, rv(r3) = b, rv(r2) �= d(x)

(p, d, r)
cas(i,x,a,b)−−−−−−−→cs(p[i : q2], d, r[i : rv[r1 : false]])

Cas-Fail

p(i) = q′
c, r(i)(rf ) = a

(p, d, r)
call(i,m,a)−−−−−−→cs(p[i : im], d, r)

Call

p(i) = fm, r(i)(rf ) = a

(p, d, r)
return(i,m,a)−−−−−−−→cs(p[i : qc], d, r)

Return

Fig. 1. Transition rules of →cs
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3 Linearizability and Quasi-Linearizability

In this section, we introduce the definitions of linearizability and quasi-
linearizability.

3.1 Linearizability

Linearizability is a standard correctness condition for concurrent libraries.
According to [11], linearizability is a local property in the sense that a con-
current program that contains multiple concurrent libraries and client processes
does not violate linearizability if each individual library does not violate lineariz-
ability. Therefore, it is safe for us to introduce the definition of linearizability
using the operational semantics �L, n�cs, which consider the behavior of only one
library.

The behavior of a library is typically represented by histories of interactions
between library and the clients calling it (through call and return actions). Let
Σcal and Σret represent the sets of all call and return actions, respectively. Given
an LTS A = (QA, ΣA,→A, qA), a finite sequence h ∈ (Σcal ∪ Σret)∗ is a history
of A if there exists a trace t of A such that t ↑(Σcal∪Σret)= h. Let history(A)
denote all the histories of A.

In a history, a return action return(i1,m1, a1) matches a call action
call(i2,m2, a2), if i1 = i2∧m1 = m2. A history is sequential if it starts with a call
action and each call (respectively, return) action is immediately followed by a
matching return (respectively, a call) action unless it is the last action. A process
subhistory h|i is a history consisting of all and only the actions of process i. A
history h is well-formed, if each process subhistory h|i of h is sequential. All
histories considered in this paper are assumed to be well-formed. Two histories
h1 and h2 are equivalent, if for each process i, h1|i = h2|i. Given a history h,
complete(h) is the maximal subsequence of h consisting of all matching call and
return actions. An operation e in a history is a pair consisting of a call action,
inv(e), and the next matching return action, res(e).

A sequential specification of a library is a prefix closed set of sequential
histories. A history h is linearizable with respect to a sequential specification S,
if h can be extended (by appending zero or more return actions) to a history h′,
and there exists a sequential history s ∈ S, such that

– complete(h′) is equivalent to s.
– For each operations e1, e2 of h, if res(e1) precedes inv(e2) in h, then this also

holds in s.

Definition 1 (Linearizability [11]). A library L is linearizable with respect to
a sequential specification S for n processes, if each history of �L, n�cs is lineariz-
able with respect to S.

It is natural to assume that for a sequential history call(i1,m1, a1) ·return(i1,
m1, b1) · . . . · call(iu,mu, au) · return(iu,mu, bu) in a sequential specification,
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each process id ij (1 ≤ j ≤ u) is actually irrelevant. Thus we can substitute each
pair of a call action call(i,m, a) and its matching return action return(i,m, b)
with m(a, b). For a library L, let Σspec = {m(a, b)| m ∈ M, a, b ∈ D}, a sequen-
tial specification for L can also be given as a prefix closed subset of Σ∗

spec, as
shown in [2].

Then, the notion of linearizability can be accordingly redefined over Σ∗
spec.

A history h is linearizable with respect to a sequential specification S ⊆ Σ∗
spec,

if there exists m1(a1, b1) · . . . · mu(au, bu) ∈ S, h can be extended (by appending
zero or more return actions) to a history h′, and there is a sequential history
s = call(i1,m1, a1) · return(i1,m1, b1) · . . . · call(iu,mu, au) · return(iu,mu, bu),
such that

– complete(h′) is equivalent to s.
– For each operation e1, e2 of h, if res(e1) precedes inv(e2) in h, then this also

holds in s.

A library L is linearizable with respect to a sequential specification S ⊆ Σ∗
spec

for n processes, if each history of �L, n�cs is linearizable with respect to S. To
comply with the definitions in [2], all the sequential specifications in the rest
of this paper are prefix closed subsets of Σ∗

spec. Given a library L, a sequential
specification S and a positive integer n, the decision problem of linearizability
is to determine whether L is linearizable with respect to S for n processes.

3.2 Quasi-Linearizability

Quasi-Linearizability [2] is a quantitative relaxation of linearizability. Quasi-
linearizablity is also a local property [2]. Hence, as in the previous subsection, it is
safe for us to introduce the definition of quasi-linearizability using the operational
semantics �L, n�cs.

For each element α in a sequence l, we use l[α] to denote its index. Given two
sequences l1, l2 ∈ Σ∗

spec, where l1 is a permutation of l2, we use distance(l1, l2)
= max{l1[α] − l2[α]| α is in l1} to represent the distance between l1 and l2.
A quasi-linearization factor Q is a function defined as Q : D → N , where
D is a subset of the power set of Σspec. A quasi-linearization factor is used
to guide the relaxation of quasi-linearizability. Given a sequential specification
S ⊆ Σ∗

spec and a quasi-linearization factor Q, the Q-quasi-sequential specification
Q-spec(S) ⊆ Σ∗

spec is the relaxation of S guided by Q. A sequence h is in
Q-spec(S), if there exists a sequence s ∈ S and h′, such that h is a prefix of h′ and
for any d ∈ domain(Q), distance(h′ ↑d, s ↑d) ≤ Q(d). Each Q-quasi sequential
specification Q-spec(S) is also prefix closed. Given a quasi-linearization factor
Q, a history h is Q-quasi-linearizable with respect to a sequential specification
S, if there exists a sequential history s = call(i1,m1, a1) · return(i1,m1, b1) ·
. . . · call(iu,mu, au) · return(iu,mu, bu) (referred to as the quasi-linearization of
h), such that m1(a1, b1) · . . . · mu(au, bu) ∈ Q-spec(S), h can be extended (by
appending zero or more return actions) to a history h′, and
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– complete(h′) is equivalent to s.
– For each operation e1, e2 of h, if res(e1) precedes inv(e2) in h, then this also

holds in s.

Definition 2 (Q-quasi-linearizability [2]). A library L is Q-quasi-lineari-
zable with respect to a sequential specification S for n processes, if each history
of �L, n�cs is Q-quasi-linearizable with respect to S.

Let Qlin be a quasi-linearization factor, whose domain contains only the
element Σspec. Specially, it maps Σspec to 0. It is easy to see that Qlin-quasi-
linearizability is equivalent to the standard notion of linearizability. One feature
of Q-quasi-linearizability is that it allows specifying different deviations to dif-
ferent subsets of Σspec. For example, a Q-quasi-linearizable queue may have
accurate dequeue operations but inaccurate enqueue operations that can bypass
at most k preceding enqueue operations [2]. This feature captures the flexibility
of possible relaxations, but it also leads to the undecidability result that will be
proved in the later section. In the rest of this paper, Q-quasi-linearizability and
a Q-quasi-sequential specification are abbreviated as quasi-linearizability and a
quasi-sequential specification, respectively, if the context is clear. Given a library
L, a sequential specification S, a quasi-linearization factor Q and a positive inte-
ger n, the decision problem of quasi-linearizability is to determine whether L is
Q-quasi-linearizable with respect to S for n processes.

4 Undecidability of Quasi-Linearizability

As the main result of this paper, we show in this section that the quasi-
linearizability problem is undecidable with respect to a regular sequential spec-
ification for a bounded number of processes. We first reduce the k-Z decision
problem of a k-counter machine to a linearizability problem of a specific concur-
rent library for one process. Then, our main undecidability result follows from the
correspondence between the linearizability problem and the quasi-linearizability
problem of the same library for one process. Since the quasi-linearizability prob-
lem of the specific library for one process is equivalent to that for multiple
processes, the k-Z decision problem is finally reduced to the quasi-linearizability
problem for a bounded number of processes.

4.1 k-Counter Machine

The control of a k-counter machine is a finite state automaton, whose alphabet
is made up of increment, decrement and test operations to each counter [3]. Let
Σck = {Ij ,Dj , Zj |1 ≤ j ≤ k} be the set of operations for each counter, where
Ij , Dj and Zj respectively represent the operations for increasing the value of
counter j by 1, decreasing the value of counter j by 1 and testing whether the
value of counter j is 0. A k-counter machine is a finite state automaton CM
= (Qcm, qicm, Fcm, Σcm,→cm), where Qcm is a set of control states, qicm is the
initial state, Fcm is a set of final states, Σcm = Σck is a set of transition labels
and →cm⊆ Qcm × Σcm × Qcm is a transition relation.
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Given a finite sequence l ∈ Σ∗
ck, we use cl,j = |l ↑{Ij} | − |l ↑{Dj} | to denote

the difference between the numbers of increments and decrements to counter
j. We say that a sequence l ∈ Σ∗

ck is admitted, if for each j and each prefix
l′ · Zj (1 ≤ j ≤ k) of l, cl′,j = 0. Otherwise, this sequence is unadmitted. A k-
counter machine CM accepts a finite sequence α1 · . . . · αm, if there exists states
q1, . . . , qm, such that qm ∈ Fcm and qicm

α1−→cm q1
α2−→cm . . .

αm−→cm qm. Let
lang(CM) denotes the language of CM, that is, lang(CM) contains exactly all the
sequences that are accepted by CM. The k-Z decision problem is to determine,
for a given k-counter machine CM, whether there exists an admitted sequence
l ∈ lang(CM). According to [3], the k-Z decision problem is undecidable, as
stated in the following lemma.

Lemma 1 (Undecidability [3]). The k-Z decision problem is undecidable for
k ≥ 3.

4.2 Libraries for Prefix Closed Regular Languages

For a finite state automaton R that accepts a prefix closed regular language and
whose states are all final states, we can simulate R by the behavior of a specific
library LR that is constructed based on R.

Formally, given a finite state automaton R = (Qr, qir, Fr, Σr,→r), where Qr

is a set of states, qir is the initial state, Fr = Qr is a set of final states, Σr is a set
of transition labels and →r is a transition relation, the library LR is constructed
as follows:

– the data domain of LR is Qr ∪ Σr ∪ {0, 1, true, false, regVinit};
– LR has two private memory locations curState and flag. curState is used to

record the current control state of R, while flag is used to ensure mutual
exclusion accesses. The initial value of curState is qir and the initial value of
flag is 0;

– LR has one method M , of which the pseudo-code is shown in Method 1. The
if and while statements used in the pseudo-code can be easily implemented
with the assume commands and other commands in LR.

The critical section of method M is the region from a successful cas command
at Line 1 to the flag = 0 command at Line 5. M first waits until it enters the
critical section (Lines 1–2). If there exists one step of transition in R starting from
curState (Line 3), M changes the value of curState according to this transition,
leaves the critical section and returns the transition label (Lines 4–6). Otherwise,
M is blocked (Lines 7–9).

The pseudo-code in Lines 1–2, where a cas operation is used, together with
the pseudo-code at Line 5, ensure the mutual exclusion between invocations of
this method.1 We use lang(R) to denote the language of R.

1 Except the cas operation, other operations, such as filter lock [10] can also be used
herein to ensure mutual exclusion.
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Method 1. M
Input: an arbitrary argument
Output: transition label for one step in R

1 while cas(flag, 0, 1) fails do
2 ;

3 if there exists some q, α, such that curState
α−→r q then

4 curState = q;
5 flag = 0;
6 return α;

7 else
8 while true do
9 ;

4.3 Reducing a k-Z Decision Problem to a Linearizability Problem

In this subsection we show that the k-Z decision problem of a k-counter machine
can be reduced to the linearizability problem of a specific library for one process
with respect to a non-regular sequential specification. This reduction is achieved
with the aid of a language inclusion problem.

It is not hard to see that the set of all unadmitted sequences is far beyond the
scope of regular languages. Fortunately, according to [3], there is a regular set of
“templates” corresponding to the set of all unadmitted sequences. For instance,
the unadmitted sequence l = I1 ·I2 ·I1 ·I1 ·D1 ·D1 ·Z1 ·D2 ·Z2 contains a minimal
unadmitted prefix l′ = I1 · I2 · I1 · I1 · D1 · D1 · Z1. Let l′′ be the projection of
l′ to counter 1, i.e., l′′ = I1 · I1 · I1 · D1 · D1 · Z1. It can be seen that l′′ is also
unadmitted. The template for l can be constructed as the concatenation of two
parts. The first part, I1 · D1 · I1 · D1 · I1 · Z1, is constructed from l′′ by swapping
the locations of I1 and D1. Such swapping tries to pair as many matching I1
and D1 as possible in the beginning of the sequence, while ensuring that I1s and
D1s do not cross Z1. The second part, I2 · D2 · Z2, is the rest contents of l.

Formally, the regular set of templates for the set of all unadmitted sequences
of k-counter machines is

k⋃

j=1

(((Ij · Dj)∗ · Z∗
j )∗ · (Ij · Dj)∗ · (I+j + D+

j ) · Zj · Σ∗
ck)

where
⋃k

j=1 Aj = A1 + . . . + Ak. Since this template set will be used later
to construct prefix closed sequential specifications, we further extended it to a
prefix closed regular language

k-US = Σ∗
ck +

k⋃

j=1

(((Ij · Dj)∗ · Z∗
j )∗ · (Ij · Dj)∗ · (I+j + D+

j ) · Zj · Σ∗
ck · end)

where ‘US’ represents that this set can be considered as the specification for all
unadmitted sequences.
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The set Qk = {{Ij , Zj}, {Dj , Zj}|1 ≤ j ≤ k} ∪ {{end, act}|act ∈ Σck} will
be used to guide the relaxation to k-US, which ensures that each increment and
decrement operation can not cross a test operation to the same counter, and
each operation in Σck can not cross the end symbol. The relaxation to k-US
guided by Qk is the set Qk-set(k-US) = {l|∃l′ ∈ k-US,∀d ∈ Qk, l ↑d= l′ ↑d}.
Each element l of Qk-set(k-US) is either a sequence in Σ∗

ck or the concatenation
of an unadmitted sequence and the end symbol. Moreover, for each unadmitted
sequence l, l · end is a member of Qk-set(k-US).

Although the language of a k-counter machine may not be prefix closed, we
can construct a prefix closed regular language for a k-counter machine. Later, a
specific library will be constructed from this language (automaton) and used as
a bridge to connect a language inclusion problem and a linearizability problem.
Given a k-counter machine CM = (Qcm, qicm, Fcm, Σcm,→cm), we construct the
finite state automaton RCM = (Q, qi, F,Σ,→) as follows:

– Q = Qcm ∪ {qend} is the set of states, where qend is a new state not in Qcm.
– qi = qicm is the initial state.
– F = Q is the set of final states.
– Σ = Σcm ∪ {end} is the set of transition labels, where end is a new transition

label not in Σcm.
– →=→cm ∪{(qf , end, qend)|qf ∈ Fcm} is the transition relation.

Given a set S of sequences, let S · a = {l|∃l′ ∈ S, l = l′ · a} denote the set of
concatenations of sequences in S and a symbol a. It is not hard to see that the
language of RCM, denoted as lang(RCM), is the union of

– lang(CM) · end,
– {α1 · . . . · αm|∃q1, . . . , qm, qicm

α1−→cm q1
α2−→cm q2 . . .

αm−→cm qm}.

It can be seen that lang(RCM) is a prefix closed language.
Figure 2 shows an example RCM that is generated from a k-counter machine

CM. The counter machine CM has four states: q1, q2, q3, and q4, the last two of
which are final states. During the construction of this RCM, we add a new state
qend and two additional transitions from q3 and q4 to qend, and make all states
as final states.

q1start q2

q3

q4
I1

D1

Z1

Z2

D1

q1start q2

q3

q4

qend

I1

D1

Z1

Z2

D1 end

end

Fig. 2. Generation of RCM from a counter machine CM
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The following lemma reduces the k-Z decision problem of a k-counter machine
CM to the language inclusion problem between lang(RCM) and Qk-set(k-US).

Lemma 2. Given a k-counter machine CM, all the sequences in lang(CM) are
not admitted if and only if lang(RCM) ⊆ Qk-set(k-US).

Proof. To prove the if direction, for each sequence l ∈ lang(CM), it is easy to find
that l · end is in lang(RCM). By assumption, l · end also belongs to Qk-set(k-US).
It is obvious that each sequence ending with an end symbol in Qk-set(k-US)
is a concatenation of an unadmitted sequence and an end symbol, so l is not
admitted.

To prove the only if direction, given a counter machine CM = (Qcm, qicm,
Fcm, Σcm, →cm), then for each sequence l = α1 · . . . · αm ∈ lang(RCM), we can
observe that

– If αm �= end and there exists q1, . . . , qm, such that qicm
α1−→cm q1

α2−→cm

. . .
αm−→cm qm, then l ∈ Σ∗

ck. Thus it is an element of k-US, and furthermore
an element of Qk-set(k-US).

– If l ∈ lang(CM) · end, then α1 · . . . · αm-1 ∈ lang(CM) and αm = end. By
assumption α1 · . . . ·αm-1 is an unadmitted sequence, and it is easy to see that
l ∈ Qk-set(k-US).

In both situations, l ∈ Qk-set(k-US). This completes the proof. 
�
Given a set T of sequences over D, we can lift it to a sequential specification
MSeqSpec(T ) = {M( , b1)·. . .·M( , bu)|b1·. . .·bu ∈ T} for the libraries constructed
in Subsect. 4.2. Given a set S ⊆ Σ∗

spec, we use seqHis(S, n) to denote all the
sequential histories that are generated from a sequence in S by substituting each
m(a, b) in the sequence with a pair of a call action call(i,m, a) and its matching
return action return(i,m, b) for some i, where 1 ≤ i ≤ n. The following lemma
reduces a language inclusion problem to a linearizability problem for one process.

Lemma 3. Given a sequential specification S and a finite state automaton R
that accepts a prefix closed language, LR is linearizable with respect to S for one
process if and only if MSeqSpec(lang(R)) ⊆ S.

Proof. The if direction is proved as follows. For each history h ∈ history
(�LR, 1�cs), since the critical sections of h are constructed according to tran-
sitions of R, as well as the fact that each return action returns a transition
label of a critical section, we have that h ∈ SeqHis(MSeqSpec(lang(R)), 1). By
assumption, it can be seen that h ∈ SeqHis(S, 1). Because h itself is a sequential
history, it is obvious that h is linearizable with respect to S.

The only if direction is proved by contradiction. Assume that LR is lin-
earizable with respect to S for one process but MSeqSpec(lang(R)) is not
a subset of S. Therefore there exists a sequence l = M(a1, b1) · . . . ·
M(am, bm) ∈ MSeqSpec(lang(R))−S. Let sequential history h′ = call(1,M, a1) ·
return(1,M, b1)·. . .·call(1,M, am)·return(1,M, bm). Because b1 ·. . .·bm ∈ lang(R)
and each return value of M is the transition label of one step transition of R,
sequential history h′ is a history of �LR, 1�cs and h′ can not be linearizable with
respect to S. But this contradicts the fact that LR is linearizable with respect
to S. 
�



382 C. Wang et al.

Given a k-counter machine CM, with Lemmas 2 and 3, we can reduce the problem
of whether all the sequences in lang(CM) are unadmitted to that of whether the
specific library LRCM

is linearizable with respect to the sequential specification
MSeqSpec(Qk-set(k-US)) for one process.

4.4 Undecidability of Quasi-Linearizability

In this subsection we reduce the problem of whether LRCM
is linearizable with

respect to the sequential specification MSeqSpec(Qk-set(k-US)) to the problem
of whether LRCM

is quasi-linearizable with respect to a regular sequential speci-
fication.

Recall that Qk-set(k-US) is the relaxation of k-US guided by Qk, and such
relaxation does not permit Ij and Dj to go across Zj for each counter j, and
does not permit operations in Σck to cross end. Correspondingly, a relaxed spec-
ification can be obtained by relaxing MSeqSpec(k-US) in a similar way as the
Qk relaxation does to k-US. The following lemma shows that the sequential
specification of the above linearizability problem can be precisely reproduced
by certain Q′

k-quasi-sequential specification, which is generated by relaxing
MSeqSpec(k-US) with the quasi-linearization factor Q′

k. In this way, the above
linearizability problem can be reduced to a quasi-linearizability problem. The
Quasi-linearization factor Q′

k maps every element in Dk to 0, where Dk is the
union of the following sets:

– {M(a, Ij),M(b, Zj)|a, b ∈ D}, where 1 ≤ j ≤ k.
– {M(a,Dj),M(b, Zj)| a, b ∈ D}, where 1 ≤ j ≤ k.
– {M(a, end),M(b, act)|a, b ∈ D}, where act ∈ Σck.

Lemma 4. A library L is linearizable with respect to MSeqSpec(Qk-set(k-US))
for one process if and only if L is Q′

k-quasi-linearizable with respect to
MSeqSpec(k- US) for one process.

Proof. The if direction is proved as follows. For each history h ∈ history
(�L, 1�cs), assume its quasi-linearization s = call(1,M, a1) · return(1,M, b1) ·
. . . · call(1,M, am) · return(1,M, bm). We can construct a sequence l1 =
M(a1, b1) · . . . · M(am, bm) from s. By definition of quasi-linearizability, l1 ∈
Q′

k-spec(MSeqSpec(k-US)). There exist sequences l2 = M(am+1, bm+1) · . . . ·
M(am+u, bm+u) and l3 = M(a′

1, b
′
1) · . . . · M(a′

m+u, b
′
m+u).

– l3 ∈ MSeqSpec(k-US).
– ∀d ∈ Dk, distance((l1 · l2) ↑d, l3 ↑d) = 0.

Thus we can find that ∀d′ ∈ Qk, (b1 · . . . · bm · bm+1 · . . . · bm+u) ↑d′=
(b′

1 · . . . · b′
m · b′

m+1 · . . . · b′
m+u) ↑d′ . Based on this fact, we immediately obtain

that b1 · . . . · bm · bm+1 · . . . · bm+u ∈ Qk-set(k-US), thus the sequence b1 · . . . · bm ∈
Prefix(Qk-set(k-US)). Because Qk-set(k-US) is prefix closed, b1 · . . . · bm ∈
Qk-set(k-US). Therefore, s belongs to SeqHis(MSeqSpec(Qk-set(k-US)), 1). It is
obvious that h is linearizable with respect to MSeqSpec(Qk-set(k-US)).

The only if direction can be proved in a similar way. 
�
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The following theorem shows that the quasi-linearizability problem is undecid-
able with respect to a regular sequential specification for one process.

Theorem 1. Given a library L, a regular sequential specification S and a quasi-
linearization factor Q, it is undecidable whether L is Q-quasi-linearizable with
respect to S for one process.

Proof. Given a k-counter machine CM, by Lemma 2, the problem of whether
all sequences in lang(CM) are unadmitted can be reduced to the language
inclusion problem between lang(RCM) and Qk-set(k-US). It can be seen that
the latter problem is equivalent to the language inclusion problem between
MSeqSpec(lang(RCM)) and MSeqSpec( Qk-set( k-US)). By Lemma 3, it can
be reduced to the problem of whether LRCM

is linearizable with respect to
MSeqSpec(Qk-set(k-US)) for one process. By Lemma 4, it can be further
reduced to the problem of whether LRCM

is Q′
k-quasi-linearizable with respect to

MSeqSpec(k-US) for one process. It is easy to see that MSeqSpec(k-US) is regular.
Recall that by Lemma 1 the k-Z decision problem is undecidable for k ≥ 3. This
completes the proof of this theorem. 
�
The specific library LR has the following property: for each positive integer n
and history h ∈ history(�LR, n�cs), we can construct a sequential history of
history(�LR, 1 �cs) according to the critical section accesses in h, in the way as
shown in Fig. 3. Assume history h ∈ history(�LR, n�) contains call actions ci

and return actions ri, where 1 ≤ i ≤ 3. In Fig. 3, the time axes run from left
to right, while each method is associated with a line interval. Additionally, the
time intervals of the critical section accesses are marked with the shadow regions
in Fig. 3. It is not hard to see that if we change the positions of each pair of a
call action and its matching return action to the nearest time point before and
after the corresponding critical section accesses, we get a sequential history h′ ∈
history(�LR, n�cs). Since h′ is sequential, we can construct another sequential
history h′′ ∈ history(�LR, 1�cs) of a single process by moving all actions of h′

to this process. It is obvious that h′′ contains exactly all the actions of h′ and
preserves exactly the sequential order of all the actions of h′.

Since the specific library LR runs in a sequential way, the following lemma
shows that the quasi-linearizability problem of LR for one process can be reduced
to the quasi-linearizability problem of the same library for more than one process.

c1 r1

c2 r2

c3 r3 c1 r1

c2 r2

c3 r3 c1 r1c2′ r2′ c3 r3

concurrent history h sequential history h′ sequential history h′′

Fig. 3. Construction of a sequential history of a unique process

Lemma 5. Given a sequential specification S, a finite state automaton R that
accepts a prefix closed language, a quasi-linearization factor Q and a positive
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integer n > 1, LR is Q-quasi-linearizable with respect to S for n processes if and
only if LR is Q-quasi-linearizable with respect to S for one process.

Proof. The only if direction is obvious since history(�LR, 1�cs) ⊆ history
(�LR, n�cs).

The if direction is proved by contradiction. Assume that LR is Q-quasi-
linearizable with respect to S for one process, but not for n processes. Then there
must be a history h ∈ history(�LR, n�cs) such that h is not Q-quasi-linearizable
with respect to S.

As shown in Fig. 3, we can construct a sequential history h′ of �LR, n�cs
from h by changing the positions of each pair of call and return actions to the
nearest time point before and after the corresponding critical section. During this
process, it is necessary to add some return actions for the case when a method
has completed its critical section but not returned yet, it is also necessary to
remove some call actions for the case when a method has not entered its critical
section. By assumption, it can be seen that h′ is not Q-quasi-linearizable with
respect to S.

Similarly, we can also construct a sequential history h′′ of �LR, 1�cs from h′

by moving all actions of h′ to the unique process. By assumption, it can be seen
that h′′ is not Q-quasi-linearizable with respect to S. But this contradicts the
assumption that LR is Q-quasi-linearizable with respect to S for one process. 
�
The following theorem states that the quasi-linearizability problem is undecid-
able with respect to a regular sequential specification for a bounded number
n ≥ 1 of processes. This is a direct consequence of Theorem 1 and Lemma 5.

Theorem 2. Given a library L, a regular sequential specification S, a quasi-
linearization factor Q and a positive integer n ≥ 1, it is undecidable whether L
is Q-quasi-linearizable with respect to S for n processes.

5 Conclusion and Future Work

We show in this paper that the quasi-linearizability problem with respect to a
regular sequential specification is undecidable for a bounded number of processes.
This is essentially proved by reduction from the k-Z problem of a k-counter
machine, a known undecidable problem. We prove that the k-Z problem can
be reduced to a language inclusion problem, which can be further reduced to a
linearizability problem of a specific library for just one process. The library is
constructed from the k-counter machine and can simulate its behavior. Then,
this linearizability problem can be reduced to a quasi-linearizability problem with
respect to a regular sequential specification for a bounded number of processes.

Note that although the sequential specification of the quasi-linearizability
problem is regular, its quasi-sequential counterpart is non-regular and rather
complex. Thus, a quasi-linearizability problem with respect to a regular sequen-
tial specification is equivalent to a linearizability problem with respect to a
non-regular sequential specification. Since quasi-linearizability is undecidable for
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just one process with respect to a regular sequential specification, the unde-
cidability of quasi-linearizability is not resulted from the interactions between
processes, but from the fact that no element in Dk is equal to Σspec. Actually,
if the domain of quasi-linearization factor contains only one element Σspec, then
quasi-linearizability problem with respect to regular sequential specification is
decidable for a bounded number of processes, as shown in [1]. Therefore, we
can conclude that the undecidability of quasi-linearizability is inherent from its
flexibility in quantitative relaxation.

Quasi-linearizability has been deprecated since its syntactic distance defini-
tion has been demonstrated broken [9]. Compared to the syntactic relaxation in
[2], the relaxation in [9] is based on library semantics, and it offers an accurate
and efficient way to relax linearizability. We conjecture that quasi-linearizability
is a special case of the quantitative relaxation framework presented in [9], of
which the decidability is still unknown. Thus, our undecidability work for quasi-
linearizability can be used as a gateway to this open problem. As future work
we would like to investigate the decision problem of this quantitative relaxation
framework for a bounded number of processes.

Acknowledgments. The authors of this paper would like to thank anonymous
reviewers for pointing out the connection between dependence relations in [3] and
quasi-linearization factors in [2].
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