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Abstract

The verification of an execution against memory consis-
tency is known to be NP-hard. This paper proposes a novel
fast memory consistency verification method by identifying
a new natural partial order: time order. In multiprocessor
systems with store atomicity, a time order restriction exists
between two operations whose pending periods are disjoint:
the former operation in time order must be observed by the
latter operation. Based on the time order restriction, mem-
ory consistency verification is localized: for any operation,
both inferring related orders and checking related cycles
need to take into account only a bounded number of opera-
tions.

Our method has been implemented in a memory con-
sistency verification tool for CMP (Chip Multi Processor),
named LCHECK. The time complexity of the algorithm in
LCHECK is O(Cpp2n2) (where C is a constant, p is the
number of processors and n is the number of operations) for
soundly and completely checking, and O(p3n) for soundly
but incompletely checking. LCHECK has been integrated
into both pre and post silicon verification platforms of the
Godson-3 microprocessor, and many bugs of memory con-
sistency and cache coherence were found with the help of
LCHECK.
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1 Introduction

Verifying a memory subsystem is a great challenge in
the validation of CMPs. To share memory in multiproces-
sor systems, the memory subsystem must include many re-
sources to support memory consistency and cache coher-
ence. Therefore, memory consistency verification is an in-
dispensable part of verifying the memory subsystem.

Researchers have found that the verification of an ex-
ecution against memory consistency is NP-hard with re-
spect to the number of memory operations [3, 8]. To cope
with the problem in practice, there are two types of solu-
tions: microarchitecture dependent methods which exploit
the help of extra observability in the design to bring down
the complexity [22, 25, 26], and microarchitecture indepen-
dent methods which devise polynomial time algorithms that
are sound but not necessarily complete [12, 23, 24, 29].
Generally speaking, microarchitecture dependent methods
are difficult to generalize across different microarchitec-
tures. Furthermore, they are hard to use in post-silicon ver-
ification, since the cost of providing extra observability in a
real chip is high.

Microarchitecture independent methods are also far from
perfect. Even the fastest one of them still requires time com-
plexity of O(pn3) (p is the number of processors, n is the
number of operations) [23], at the cost of losing complete-
ness; if one wants to preserve completeness, time complex-
ity further grows to O((n/p)ppn3) [24]. Moreover, due to
the restrictions of speed and other practical issues, length
and memory access locations of test programs for microar-
chitecture independent methods are limited.

In this paper, we propose a fast and easy-to-generalize
memory consistency verification method. We first intro-
duce the concept of time order between operations by defin-
ing the pending period of an operation as the period from
the enter time to the commit time of the operation. More
precisely, an operation which has not entered any internal
structures (e.g., instruction window, load store queue, write
buffer and so on) must not be seen by any processor, and
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an operation which has been globally viewed by all pro-
cessors cannot be affected by unentered operations. If the
commit time of operation u is before the enter time of op-
eration v (u and v have disjoint pending periods), we say
u is before v in time order. Given the concept of time or-
der, the time order restriction refers to the following fact:
the former operation in time order must be observed by the
latter operation in time order. In this paper, we demonstrate
that in multiprocessor systems with store atomicity (most
memory models have the store atomicity property [1]), the
time order restriction does exist, though this concept does
not appear in previous definitions of any memory consis-
tency. With the time order restriction, memory consistency
verification can be localized, since the fact that an operation
cannot “live” forever implies that only a bounded number of
operations are in the pending period of a memory operation.
As a result, for any operation, both inferring related orders
and checking related cycles need to take into account only
a bounded number of operations.

Based on the theoretical investigations related to the time
order restriction, we propose a memory consistency verifi-
cation tool named LCHECK. LCHECK can verify a number
of memory consistency models, including sequential con-
sistency [30], processor consistency [10], weak consistency
[6], and release consistency [7]. Although LCHECK re-
quires the memory system to support store atomicity, it does
not need certified store atomicity as a precondition, since it
can find violations of both memory consistency and store
atomicity. LCHECK supports both pre-silicon and post-
silicon verification. For post-silicon verification, LCHECK
only needs several additional software visible registers per
processor to estimate the pending period of operations. The
theoretical and empirical investigations in this paper show
the following promising characteristics of LCHECK: the
time complexity of LCHECK is O(Cpp2n2) for soundly
and completely checking (C is a constant), and O(p3n) for
soundly but incompletely checking. As a practical example,
LCHECK is used to verify the Godson-3 microprocessor
[17, 18], which is a CMP with 4-16 processor cores.

The main contributions of our work are summarized as
follows: first, it is the first time that time order between op-
erations is proposed for multiprocessor system; second, it is
also the first time that a localized checking method is pro-
posed for memory consistency verification; and third, the
memory consistency verification tool proposed in this paper
is fast, complete and easy-to-generalize, which is proven or
validated by both theoretical and practical results.

The rest of the paper is organized as follows: Section
2 introduces related work; Section 3 theoretically analyzes
memory consistency verification under time order restric-
tion; Section 4 introduces LCHECK; Section 5 presents ex-
periment results of LCHECK; Section 6 concludes the pa-
per and discusses future work.

2 Related Work

Whether a multiprocess system conforms to a mem-
ory consistency model is notoriously hard to verify. Most
formal verification approaches have focused on relatively
small and manually constructed models, which cannot cope
with the complexity of realistic modern multiprocessors
[4, 11, 27, 32]. The most effective method widely accepted
in industry is the dynamic verification approach, i.e., exe-
cuting a large number of test programs and verifying them
against a given memory consistency model using an ad hoc
checker tool. Gibbons and Korach study some variations of
the VSC (verifying sequential consistency) problem [8, 9].
They prove that if we know the read mapping which maps
every read to the write sourcing its value, the obtained VSC-
read problem is still NP-complete. If we know the write
order for each memory location totally, the obtained VSC-
write problem is also NP-complete. However, if we know
both the read mapping and the total write order, the obtained
VSC-conflict problem belongs to P.

Some previous works strongly rely on microarchitecture:
they observe internal information from the design to re-
duce time complexity. In [25, 26], Meixner and Sorin carry
out dynamic verification of sequential consistency and other
memory consistency models by dynamically verifying a set
of sub-invariants, which is based on the coherence epoch
of cache lines [28]. However, to check the order of opera-
tions, their approach requires much detailed microarchitec-
ture information, and needs to modify the functionality of
the original design, including adding a new stage to the pro-
cessor pipeline. Ludden et al. [22] and Victor et al. [31] use
internal tools to verify IBM POWER series microprocessor
systems by exploiting the additional observability present
in simulation. Their methods heavily depend on their mi-
croarchitecture such as instruction-by-instruction checking
and a memory-tracing mechanism, and the completeness or
efficiency of their methods is not described.

Some previous works do not rely as much on microar-
chitecture: they focus on VSC-read like problems while no
additional observability is required. In [5], Collier uses a
dedicated test program to detect the violation of the memory
system against a given memory consistency model. In [12],
Hangal et al. propose a tool named TSOtool, which runs
a pseudo-random generated test program with data races,
and then checks the log file by performing cycle detection
of the memory ordering relation graph. Till now, the time
complexity of the TSOtool has been reduced to O(pn3),
where p is the number of processors and n is the number of
operations [23]. However, due to the lack of observability
of total write order, the methods proposed in [12, 23, 29]
are all incomplete. To resolve completeness, [24] improves
the approach of [23] by adding a backtracking subroutine in
the checker. It is a sound and complete algorithm with the
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time complexity of O((n/p)ppn3). However, all microar-
chitecture independent methods should pay a price by their
super-linear time complexity.

Our approach based on time order restriction is substan-
tially different from the above works, although exploiting
physical or logical time in memory consistency is not a new
idea [19, 28, 13]. In this paper, time information in terms
of time order and pending periods of operations is used to
localize the relation among operations, which is a novel
idea. This idea leads to a fast and easy-to-generalize method
for memory consistency verification, which significantly re-
duces time complexity from O((n/p)ppn3) to O(Cpp2n2)
for complete checking, and from O(pn3) to O(p3n) for in-
complete checking. Moreover, the hardware support needed
by our method is trivial: several software visible registers
per processor are sufficient to observe time order. The sup-
port has been implemented in the Godson-3 microprocessor.

3 Memory Consistency Verification Under
Time Order Restriction

To verify an execution against memory consistency, the
common method is to construct a directed graph represent-
ing orders in the execution, and then to check for cycles
in the directed graph. In the previous works, constructing
execution graphs requires multiple phases involving all op-
erations in the execution [12, 23, 24, 29], resulting in the
very high complexity of memory consistency verification.
However, in multiprocessor systems with store atomicity,
the lifetime of an operation is limited. Two operations with
non-overlapping lifetimes should be ordered. We will show
by theoretical analysis that this promising property can dra-
matically simplify the construction and the checking of the
execution graph.

To carry out theoretical analysis, we first introduce the
terminology and notations used in the rest of the paper. A
system is a multiprocessor system of p processors that ac-
cess a shared memory. Each processor can issue operations
to access the memory through a series of read and write op-
erations on the memory or to synchronize. O is the set of
operations issued by all processors. The temporary inter-
nal structure of a system is the internal structure excluding
cache and memory. Every operation enters the temporary
internal structure of a processor in program order and is fi-
nally globally viewed by all processors. We use u or v (with
subscript) to represent an operation, o (with subscript) to
represent a memory operation, r (with subscript) to repre-
sent a read operation, w (with subscript) to represent a write
operation, s (with subscript) to represent a sync operation.
We denote the problem of memory consistency verification
under time order restriction as VMC-time. Similar to [8],
we refer to VMC-time with additional read mapping infor-
mation as VMC-time-read.

3.1 Traditional Orders in Memory consis-
tency

Operation orders are the basis of memory consistency
verification. In this subsection, we briefly introduce tradi-
tional orders in memory consistency. First let us come to the
definitions of program order, processor order and execution
order, which are three well-known types of partial orders in
multiprocessor systems.

Definition 1 Program Order: Given two different opera-
tions u1 and u2 in the same processor, we say that u1 is
before u2 in program order iff u1 is before u2 in the pro-
gram. We denote this as u1

P−→ u2.

Definition 2 Processor Order: Given two different opera-
tions u1 and u2 in the same processor, we say that u1 is
before u2 in processor order iff there is global agreement
that u1 is before u2 for all processors. We denote this as
u1

PO−−→ u2.

Many multiprocessor systems have cache subsystems,
thus they maintain cache consistency, which can be defined
as coherence order: all write operations to the same loca-
tion are performed in some sequential order. When a multi-
processor system is required to be coherent, it makes sense
to consider both write-before order and read-before order,
which are called execution orders.

Definition 3 Execution Order: We say that a write opera-
tion w is before operation u in execution order iff w is the
latest write operation before u that accesses the same loca-
tion as u. We denote this as w

E−→ u. We say that a write
operation w is after operation u in execution order iff w is
the first write operation after u that accesses the same lo-
cation as u. We denote this as u

E−→ w.

In addition, global order is another well-known partial
order based on processor order and execution order. It is the
transitive closure of processor order and execution order.

Definition 4 Global Order: We say that operation u1 is be-
fore operation u2 in global order iff u1 is before u2 in pro-
cessor order, or u1 is before u2 in execution order, or u1 is
before some operation u in global order and u is before u2

in global order.

(u1
GO−−→ u2) →

(
(u1

PO−−→ u2) ∨ (u1
E−→ u2)

∨(∃u ∈ O : u1
GO−−→ u

GO−−→ u2)
)
. (1)

Most memory consistency models consist of different
rules for processor order. When an operation u1 is before
u2 in program order, this does not always mean that u1 is
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before u2 in processor order. For example, in a system sup-
porting weak consistency, regular memory operations can
execute out of order globally, except across synchroniza-
tion points. In this paper, we concentrate on the Godson
consistency model obeyed by the Godson-3 microprocessor
[17, 18].

The restrictions on order in Godson consistency are: any
load operation r is allowed to perform with respect to any
other processors if all previous synchronization operations
have been globally performed; any store operation w is al-
lowed to perform with respect to any other processors if all
previous operations have been globally performed; any syn-
chronization operation s is allowed to perform with respect
to any other processors if all previous operations have been
globally performed. Formally, we have

(s P−→ r) → (s PO−−→ r),

(u P−→ w) → (u PO−−→ w),

(u P−→ s) → (u PO−−→ s).

An execution can be represented as a directed execu-
tion graph with processor order edges and execution order
edges. Memory consistency verification is also equivalent
to checking whether the execution graph is a DAG (directed
acyclic graph) [20, 16].

3.2 Pending Period and Time Order

In this subsection, we infuse the concepts of pending pe-
riod and time order into multiprocessor systems. In a von
Neumann architecture, an operation must be fetched into
the processor before it is executed, hence there is an enter
time for any operation. Before an operation enters, it cannot
affect other operations. An operation will leave all tempo-
rary internal structures of the processor in bounded time,
otherwise there will be some deadlock or livelock, which
can be detected by other tools. Thus there is a commit time
for any operation. The perform time of an operation –i.e.,
the time when the operation is performed globally– must be
between its enter time and its commit time.

The concrete definitions of enter time and commit time
are architecture-dependent. The enter time of an operation
can be the time when the operation is fetched, or when the
operation is decoded. The commit time of store can be the
time when the store operation writes its value into the data
cache; the commit time of load can be the time when the
load operation writes back to the register file. In any case,
any unentered operation must observe the results of any
committed operation, and any committed operation cannot
be affected by any unentered operation.

The commit time can be treated as a relaxation of per-
form time: when an operation commits, it has been globally
performed. The reason for using commit time instead of

perform time is that, in the verification, the precise commit
time can be easily obtained without considering the states of
other processors, while precise perform time needs to con-
sider the inner state of other processors, their caches and the
network.

Figure 1. Time order between u and v

On the basis of enter time and commit time, we introduce
the pending period of an operation.

Definition 5 Pending Period: The pending period of u is
the period from te(u) to tc(u). We say that an operation v is
in the pending period of operation u iff the pending periods
of the two operations are overlapped.

In multiprocessor systems with store atomicity, whatever
the precise definitions of enter time and commit time are, a
partial order exists between two operations executing in dis-
joint pending periods. We call the partial order time order.

Definition 6 Time Order: If the commit time of operation
u is before the enter time of operation v, we say that u is
before v in time order. Formally,

(
tc(u) < te(v)

) ↔ (u T−→ v). (2)

Time order does not require that u and v are executed in
the same processor or access the same location. It simply
depends on their enter and commit times given by a global
clock. According to the above definition of time order, if
operation v is in the pending period of operation u, then
¬(u T−→ v ∨ v

T−→ u) holds. As shown in Figure 1, if the
pending periods of u and v do not overlap, then u

T−→ v
holds.

According to the discussions above, given a global clock,
we can obtain a total order of all time points (e.g., enter time
and commit time) of operations. However, first we need to
investigate the relation between partial orders of operations
and total order of time points. The preconditions of our fur-
ther investigations, which link partial orders of operations
and total order of time points together, are presented below.
Preconditions: In a multiprocessor system with store atom-
icity, considering two operations u and v, the following pre-
conditions are reasonable.

1. If u is before v in program order, the enter time of u is
before the enter time of v:

(u P−→ v) → (
te(u) < te(v)

)
;
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2. If u is before v in processor order, the commit time of
u is before the commit time of v:

(u PO−−→ v) → (
tc(u) < tc(v)

)
;

3. If u is before v in execution order, the commit time of
u is before the commit time of v:

(u E−→ v) → (
tc(u) < tc(v)

)
;

4. If u is before v in time order, the commit time of u is
before the enter time of v:

(u T−→ v) → (
tc(u) < te(v)

)
.

Let us carry out a brief discussion related to the above
preconditions. Precondition 1 is reasonable since any pro-
cessor (even an out-of-order processor) must fetch opera-
tions in order. Precondition 2 is also reasonable since op-
erations in the same processor should be globally viewed
in processor order. For example, for processor consistency,
any load operation is allowed to perform with respect to any
other processor if all previous load operations have been
globally performed. As a consequence, if load operation r1

is before load operation r2 in processor order, r1 must be
globally viewed earlier than r2. The idea behind Precon-
dition 3 is that in multiprocessor systems with store atom-
icity, memory operations to the same location is serialized.
One operation cannot perform before an earlier conflicting
operation is globally viewed. Precondition 4 can be derived
from the definition of time order. From the above discussion
we know that the four preconditions are reasonable regard-
less of the concrete definitions of enter time and commit
time in different microarchitectures. Finally, although store
atomicity is not mandatory to a memory model, most mem-
ory models support it [1], hence the store atomicity utilized
in the preconditions above is reasonable.

Based on the preconditions, we can analyze the relation
between global order and time order. The global order be-
tween two operations implies that one operation observes
the result of the other operation, while the time order be-
tween two operations implies that one operation executes
before the other operation. Intuitively, in a correct design,
if there are both global order and time order between two
operations, global order and time order should be consis-
tent: the former operation in time order must be observed
by the latter operation in time order, which is called time
order restriction on memory consistency. In multiprocessor
systems with store atomicity, time order restriction can be
derived from our preconditions.

Theorem 1 (Time Order Restriction Theorem) In a
multiprocessor system with store atomicity, time order
restriction holds, i.e., the former operation in time order

must be observed by the latter operation in time order.
Formally,

(v T−→ u) → ¬(u GO−−→ v). (3)

Proof. According to the definition of time order, the the-
orem is equivalent to (u GO−−→ v) → (

te(u) < tc(v)
)
.

Since (u PO−−→ v) → (
tc(u) < tc(v)

)
and (u E−→ v) →(

tc(u) < tc(v)
)

both hold, by transitivity of partial order

we obtain that (u GO−−→ v) → (
tc(u) < tc(v)

)
. Hence,

(u GO−−→ v) → (
te(u) < tc(v)

)
holds. ¤

3.3 Correctness Rules of VMC-time

Time order sets up a new restriction for the order of
memory operations: two operations unordered globally
may have time order. It is obvious that the verifications of
memory consistency with and without time order informa-
tion are quite different. In this subsection, we provide some
novel correctness rules of memory consistency verification
under time order.

To present the correctness rules, we should introduce the
so-called time global order first. As we know, the time
order restriction theorem guarantees that there is no con-
tradiction between time order and traditional orders. As a
consequence, we can combine time order and global order
together, forming a new partial order: the time global order,
which is the transitive closure of time order, processor order
and execution order. Denote time global order as “ TGO−−−→”.
On the basis of time global order, we can now build a new
type of graph for an execution, including not only processor
order edges and execution order edges but also time order
edges. We call this new type of graph the TGO graph.

Let C be the set of all time global cycles including op-
eration u in the TGO graph. Furthermore, let C be a cycle
belonging to C (C ∈ C ), such that u is an operation in C
(u ∈ C). Intuitively, for any operation u, there are three
kinds of cycles containing u: 1) all operations of the cycle
except u are not in the pending period of u; 2) some opera-
tions of the cycle are not in the pending period of u, while
other operations are in the pending period of u; and 3) all
operations of the cycle are in the pending period of u.

The purpose of adding time order into memory consis-
tency verification is to localize relations between opera-
tions. The key of localization is to detect the first kind of
cycles in a localized manner, since the first kind of cycles
refers to global orders outside the pending period.

Lemma 1 Given a time global order cycle C containing op-
eration u, if all operations in C except u are before u in time
order, there must be a write operation w in cycle C, which
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GO

pending period of u

Figure 2. Violation of Rule 2: Orders of u, v and v′ in a cycle

is after u in execution order. Formally,

(∀v ∈ C : (v 6= u) → (v T−→ u)
)

→ (∃w ∈ C : u
E−→ w). (4)

Proof. Given that operation v′ is the successor of u in cy-
cle C, there are three situations for us to consider: u

T−→ v′,
u

PO−−→ v′, and u
E−→ v′. We know that all operations in C

except u are before u in time order, therefore u
T−→ v′ does

not hold. Since te(v′) is before te(u), according to Precon-
dition 2, u

PO−−→ v′ does not hold. Hence, u
E−→ v′ holds.

Furthermore, if v′ is a read operation, v′ certainly cannot
get the value of u from the future, and u cannot be before v′

in execution order. Therefore v′ is a write operation. Thus
the theorem is proved. ¤

According to the previous theorem and lemma, we pro-
pose three correctness rules of VMC-time. Each correctness
rule is related to one kind of cycle mentioned above.

Theorem 2 (Checking Rules Theorem) There is no cycle
in the TGO graph of the execution iff for any operation u of
the execution, the following three correctness rules hold:

Rule1: ∀w ∈ O : (w T−→ u) → ¬(u E−→ w);

Rule2: ∀v, v′ ∈ O : (v T−→ u) ∧ (v′ GO−−→ v)

→ ¬(u GO−−→ v′);

Rule3: ¬
(
∃C ∈ C :

(∀v ∈ C : ¬(u T−→ v ∨ v
T−→ u)

))
.

Proof. “→”. We assume that there is no cycle in the
TGO graph of the execution. For Rule 1, given that a write
operation w satisfies w

T−→ u, u
E−→ w does not hold. Oth-

erwise there will be a cycle w
T−→ u

E−→ w. For Rule 2, if
operations u, v and v′ satisfy (v T−→ u) ∧ (v′ GO−−→ v), then
u

GO−−→ v′ does not hold, otherwise there will be a cycle
v′ GO−−→ v

T−→ u
GO−−→ v′. Rule 3 is trivial: since there is no

cycle in the whole graph, there certainly will be no cycle in
the pending period of u. Hence “→” is proved.

“←”. We use reduction to absurdity to prove it. Let us
assume that Rules 1, 2 and 3 all hold, but there is a cycle C.

Let operation u be the last committed operation in the cycle.
According to Rule 3, there must be some operation outside
the pending period of u. We can travel C from u. Let v
be the first operation before u in time order in traveling C.
Since u is the last committed operation in the cycle, u

T−→ v

cannot hold. Instead, we have v
T−→ u. If all operations

except u in cycle C are before u in time order, according to
Lemma 1, there must be some operation w such that u

E−→
w, which contradicts Rule 1. Therefore there must be some
operation in the pending period of u. Let v′ be the precedent
operation of v in C. As shown in Figure 2, u

TGO−−−→ v′

and v′ TGO−−−→ v. Let the edge a
T−→ b be the first time

order edge on the path from u to v in C. According to the
definition of time order, we obtain that tc(u) < tc(a) <
te(b) < tc(b). However, since u is the operation committed
last in the cycle, tc(u) cannot be before tc(b), and we reach
a contradiction, thus there is no time order edge from u to
v in C. As a result, u

GO−−→ v′ and v′ GO−−→ v hold. But
u

GO−−→ v′ GO−−→ v
T−→ u contradicts Rule 2. Thus “←” is

proved. ¤
In a real system, Rule 1 checks for the incorrect prop-

agation of a write operation outside the pending period: a
write operation does not correctly propagate to other pro-
cessors because of bugs in the directory or network, and
as a result, store atomicity is violated. To check Rule 1, we
need to check whether the latest write before u in time order
has propagated to u. Rule 2 focuses on ordering bugs be-
tween operations inside and outside of the pending period.
To check Rule 2, we need to check all operations before u
in global order to find cycles as shown in Figure 2. Rule 3
focuses on cycles inside the pending period.

3.4 Localization of Checking

In a multiprocessor system with store atomicity, a mem-
ory operation has been globally viewed when it is retired
from internal structures of a single core. In practice, an op-
eration cannot be unretired forever, otherwise there will be
some deadlock or livelock. Therefore the number of op-
erations in the pending period of one operation is bounded.
Based on this property, we can localize memory consistency
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verification.

Theorem 3 (Localized Checking Theorem) Under time
order restriction, the checking for any operation needs to
consider O(p) operations, where p is the number of proces-
sors.

Proof. Suppose that we are checking operation u. Rule 1 in-
volves only a constant number of operations. To check Rule
2 and Rule 3 we need to travel through all operations in the
pending period of u. Let T be the length of the pending pe-
riod of u. If every processor can issue m instructions in one
clock cycle, then the number of operations in the pending
period of u is proportional to Tmp. T is independent of the
number of operations n. Furthermore, since only few mem-
ory operations involve all processors, T can also be treated
approximately independent of the number of processors p.
Thus we can treat Tm as a constant C. As a result, to check
operation u, we need to consider only Cp operations in a
p-processor system. ¤

The time order restriction theorem guarantees the sound-
ness of memory consistency verification under time order
restriction. The localized checking theorem ensures the
completeness of checking rules for memory consistency
verification under time order restriction. In the next section,
we introduce a sound and complete memory consistency
verification tool LCHECK which is based on the above the-
oretical work.

4 LCHECK

LCHECK is a verification tool for memory consistency
based on time order restriction. It is used in the verification
of the Godson-3 microprocessor.

There are four phases in the usage flow of LCHECK: test
program generation phase, test program execution phase,
execution graph construction phase, and cycle checking
phase. In the test program generation phase, LCHECK gen-
erates a pseudo-random test program. In the test program
execution phase, the generated test program is executed on
the system to be verified. At run time, specified instruc-
tions save the logs of values received by each read opera-
tion into an internal RAM. A DMA engine transfers logs
from the internal RAM to outside through IO such as HT
(HyperTransport) link. In the execution graph construction
phase, the LCHECK analyzer constructs the directed graph
of the execution based on test programs and logs. In the
cycle checking phase, the directed graph is checked to find
cycles. The test program execution phase, execution graph
construction phase, and cycle checking phase can be over-
lapped to check on the fly.

To reason about time order we need the enter times and
commit times of all operations. However the precise time

points of every operation are difficult to obtain in post-
silicon verification. Fortunately, knowing the lower bound
of enter time and the upper bound of commit time of each
operations is enough for LCHECK to estimate time order,
which is feasible in post-silicon verification. As shown in
Figure 3, the upper bound of commit time of u is earlier than
the lower bound of enter time of v, thus u is before v in time
order. For any operation, the lower bound of its enter time
can be the enter time of some operation before it in proces-
sor order, and the upper bound of its commit time can be the
commit time of some operation after it in processor order.
However, the lack of precision of enter and commit times
slows down the verification, since the number of operations
in the pending period of any operation increases.

In the Godson-3 microprocessor, there are two
software visible registers per processor core: pro-
gram counter/enter time of the last entered operation and
program counter/commit time of the last committed oper-
ation. The test program reads values from these registers
periodically, and writes them into internal RAM. Based on
enter time and commit time of part of the operations, we
can obtain the bounds of enter time and commit time of all
operations.

4.1 Test Program Generation Phase

LCHECK uses a pseudo-random method to generate test
programs. In the generated test programs, there are mem-
ory operations, synchronization operations, and arithmetic
operations. There are some constraints on the generated
test programs: Every write operation in the test programs
has a certain value, and any two write operations to a same
address have different write values. Following every read
operation, there must be a dedicated instruction responsible
for saving the value received by the read into internal RAM.
Furthermore, for every 100 instructions, there is one dedi-
cated instruction group responsible for reading enter time
and commit time registers and saving them into internal
RAM.

In the current version of LCHECK, branch operations
are not supported, therefore there are no iteration in gener-
ated test programs. Thus the instruction flow of test pro-
grams is predefined. Nevertheless, we are currently work-
ing on supporting conditional branches in LCHECK test
programs.

4.2 Test Program Execution Phase

The generated test program is executed on design under
verification. At runtime the load values and the enter and
commit times of operations are saved in the internal RAM.
A DMA engine in the design can transfer the information
from the internal RAM to outside through HT (HyperTrans-
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Figure 3. Upper bound and lower bound of u and v

port) link. Note that the DMA engine and internal RAM of
the Godson-3 were designed for signal processing applica-
tions. LCHECK conveniently utilizes them for verification.

4.3 Execution Graph Construction Phase

LCHECK constructs a TGO graph for an execution, and
checks the graph for cycles. Each node in the graph in-
cludes not only edge information, but also the lower bound
of enter time and the upper bound of commit time of the
operation. Since time order can be derived from bounds of
time points, LCHECK does not explicitly construct time or-
der edges. Thus we only need to add global order edges
between operations without time order. The detailed edge
rules in the basic LCHECK are listed below.

Processor Edge Rule: Add an edge between one opera-
tion and its predecessor in processor order based on memory
consistency.

Execution Edge Rule: If read operation r gets a value
from write operation w, then add an edge from w to r.

Observed Edge Rule: If read operation r gets a value
from write operation w, and w′ is the last write operation to
the same address as r which precedes r in program order,
then add an observed edge from w′ to w.

Inferred Edge Rule 1: If w and r access the same ad-
dress, read operation r gets a value from write operation w′,
and w′ is in the pending period of w, and w

GO−−→ r (infer-
ring based on global order) or w

T−→ r (inferring based on
time order), then add an inferred edge from w to w′.

Inferred Edge Rule 2: If w and w′ access the same ad-
dress, read operation r gets a value from write operation w,
and w′ is in the pending period of r, and w

GO−−→ w′ (infer-
ring based on global order) or w

T−→ w′ (inferring based on
time order), then add an inferred edge from r to w′.

Processor edges can be obtained from the test program
and memory consistency model. Moreover, execution edges
are added per read operation: for a read operation r, load
values of r can be known from logs, store values of each
write operation are also determined at test program gener-
ation phase, thus we can find the write operation w cor-
responding to r and add an execution edge from w to r.
Observed edges are derived from processor edges and exe-
cution edges based on observed edge rules.

Since the addition of edges by the processor edge rule,
the execution edge rule and the observed edge rule has lin-
ear complexity, we only discuss the algorithm for inferred
edge rules in this paper. In many memory consistency ver-
ification tools, inferring edges is the most time-consuming
part [24, 29]. However, in LCHECK the complexity of in-
ferring edges is linear because inferred edges are limited to
be inside the pending period: if an inferred edge complies
with time order, we do not need to infer it again; if an in-
ferred edge contradicts time order, we can find the violation
by Rule 1 (of Theorem 2) in the cycle checking phase (see
bug example 1 in Section 5).

As it is shown in Algorithm 1, if an edge from u to v is
added, function infer edge is called to find other inferred
edges. Based on time order, adding edges from u to v af-
fects only global order relations starting from operations in
the pending period of u. Therefore LCHECK considers all
write operations w in the pending period of u (if u is a write
operation, then u must also be considered). For all read op-
erations r in the pending period of w, if r is after w in global
order, r accesses the same address as w, and LCHECK has
not inferred new edges based on w

GO−−→ r, LCHECK infers
new edges based on w

GO−−→ r with Inferred Edge Rule 1 and
calls function set inferred to record that we have tried to
infer new edges based on w

GO−−→ r. For all write operations
w′ in the pending period of w, if w′ is after w in global or-
der, w′ accesses the same address as w, and LCHECK has
not inferred new edges based on w

GO−−→ w′, then LCHECK
infers new edges baseds on w

GO−−→ w′ with Inferred Edge
Rule 2 and calls function set inferred to record that we
have tried to infer new edges based on w

GO−−→ w′. If r is
outside the pending period of w′, we need to check only
whether the inferred edge complies with time order.

4.4 Cycle Checking Phase

In the cycle checking phase, LCHECK checks for cycles
in the graph. As shown in Algorithm 2, checking for cy-
cles in LCHECK is based on the checking rules theorem
(Theorem 2). For every operation u, we first check Rule
1 (of Theorem 2), i.e., we check whether the latest write
operation w accessing the same address as u before u in
time order propagates to u. If u gets a value from w′ and
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Algorithm 1. Algorithm for Inferring Edge
int infer edge(u, v) begin

for(all write operations w in the pending period of u) begin
for(all read operations r in the pending period of w) begin

if(w GO−−→ r and !inferred(w,r) and address(w)==address(r)) begin
let w′ = the write operation which r gets a value from;
if(w′ T−→ w) panic(); if(w T−→ w′) continue;
if(there is no edge from w to w′) begin

add edge(w, w′); infer edge(w, w′);
end
set inferred(w,r);

end(Inferred Edge Rule 1 Based on Global Order)
end
for(all write operations w′ in the pending period of w) begin

if(w GO−−→ w′ and !inferred(w,w′) and address(w)==address(w′))
for(all read operations r which get value from w) begin

if(w′ T−→ r) panic(); if(r T−→ w′) continue;
if(there is no edge from r to w′) begin

add edge(r, w′); infer edge(r, w′);
end

end
set inferred(w,w′);

end(Inferred Edge Rule 2 Based on Global Order)
end

end
end

w
GO−−→ w′ ∨ w

T−→ w′, then there is a bug. Checking Rules
2 and 3 (of Theorem 2) can be achieved by traveling global
order edges from u. If we travel to some operation before
u in time order, Rule 2 is violated. If we travel back to u,
Rule 3 is violated. If we travel to some operation v after u in
time order, the related cycle will be considered in checking
v. However, some edges cannot be found by inferred rules
[24], thus the basic LCHECK is incomplete.

4.5 Complete LCHECK

To completely verify memory consistency, we need to
confirm the total write order for each memory location to
know all execution orders. However, some execution orders
cannot be inferred [24]. For completeness, we implement
backtracking on top of the basic incomplete LCHECK. For
two conflict write operations without determined order, the
complete LCHECK makes an arbitrary decision about the
execution order of these two operations, and infers as many
new edges as possible, then checks for cycles in the graph.
If there is a violation, the complete LCHECK backtracks
to the nearest arbitrary decision and tries the other branch
of the decision. The backtracking algorithm is based on
searching the frontier graph [8].

Algorithm 2. Algorithm for Checking for Cycles
int check cycle() begin

for(all operation u) begin
if(w GO−−→ w′ ∨ w

T−→ w′) panic();
travel all v which have the edge starting from u

if(v T−→ u ∨ v == u) panic();
end

end
w is the latest entered write operation accessing the same address
as u and before u in time order, w′ is the write operation which u

gets a value from.

4.6 Complexity of LCHECK

Since LCHECK adds inferred edges only between two
operations with overlapping pending periods, there are at
most O(p) inferred edges related to one operation. As a re-
sult, there are less than O(pn) inferred edges in all. Thus
the function infer edge can be called O(pn) times and
each time requires time complexity of O(p2). Hence, the
time complexity of constructing a graph in LCHECK is
O(p3n). Since there are only O(pn) edges in the graph,
the time complexity of checking for cycles in LCHECK is
O(pn). Therefore the time complexity of basic incomplete
LCHECK is O(p3n).

The complete LCHECK needs to backtrack to traverse
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Figure 4. Analysis Time of LCHECK

the frontier graph. Under time order restriction, we can treat
the entire execution as having n/Cp intervals, and each in-
terval has (Cp/p)p frontiers. Thus there are O((n/Cp) ×
(Cp/p)p) frontiers for an execution in all. Each back-
tracking step requires a time complexity of O(p3n). As
a result, the time complexity of complete LCHECK is
O((n/Cp)× (Cp/p)p × p3n), i.e., O(Cpp2n2).

5 Experiments

Figure 4 shows time cost of both incomplete and com-
plete LCHECK with different numbers of operations. The
experimental environment is AMD athlon64 3200+ with
64GB memory. In Figure 4, the x-axis represents the num-
ber of operations, and the y-axis represents the running time
of the checker in seconds. From experimental results, we
can observe that the runtime of the incomplete LCHECK
analyzer is linear with respect to the number of operations.
Although the complete LCHECK is slower than the incom-
plete LCHECK, the complete LCHECK can still cope with
a test program with 10 million memory operations. The
reason is that, on each backtracking, only a few number of
operations and order must be considered.

As part of the Godson project, LCHECK found many
bugs in the Godson-3. Here we provide two examples. The
first example, which is the first bug caught by LCHECK, is
shown in Figure 5.a. There are 3 processors P1, P2, and
P3. w1 is before w2 in time order, and w2 is before r1 in
time order. However, the invalidation of w2 is not sent to P3

correctly because of an error in the network. Thus r1 gets
a stale copy of A and reads the old value 1 written by w1.
Although this error seems very simple, many other memory
consistency verification tools such as [24, 29] cannot find
this error since there is no more information to derive the
global order between w1 and w2. But LCHECK can detect
the error. Rule 1 (of Theorem 2) is obeyed because r1 gets
its value from w1, which is not the latest conflict write op-

eration before r1 in time order. Hence the error is caught by
executing Line 3 of the program in Algorithm 2.

Another bug example is shown in Figure 5.b. There are
3 processors P1, P2, and P3. The original value of memory
address A is 0. w1 is before r2 in time order, and r2 gets
its value from w2. According to Inferred Edge Rule 1, an
inferred edge from w1 to w2 (dashed line in Figure 5.b) is
added. According to the inferred edge, a cycle of r1 →
w1 → w2 → w3 → r1 violates Rule 3 (of Theorem 2), and
is caught by executing Line 5 of the program in Algorithm
2. After careful debugging, we concluded that this bug is
caused by an error in the load store queue, which makes w3

precede w2.

6 Conclusion and Future Work

The verification of memory consistency in general is
known to be NP-hard. If we want to find an efficient and
complete checking algorithm, the most effective solution
is to look for some restriction on memory access orders.
We have observed that there exists a natural restriction to
most multiprocessor systems: the size of temporary internal
structures of each processor is limited. As a consequence,
at any moment only a bounded number of operations are
executing. Inspired by this observation, we introduce the
concepts of a pending period and a new natural partial or-
der called time order. Based on the time order restriction,
related operations are localized. Consequently, inferring re-
lated edges and checking related cycles are also localized
for any operation. As a result, the time complexity of mem-
ory consistency verification can be significantly reduced.

On the basis of our theoretical investigations, we have
introduced LCHECK, a memory consistency verification
tool for CMP. LCHECK can verify a number of memory
consistency models, including sequential consistency, pro-
cessor consistency, weak consistency and release consis-
tency. LCHECK requires the memory system to support
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Figure 5. Bug Examples

store atomicity. However, LCHECK does not need cer-
tified store atomicity as a precondition, since it can find
violations of both memory consistency and store atomic-
ity. LCHECK only needs simple hardware support made
of several software visible registers per processor, which
have been implemented in an industrial CMP. To solve the
VMC-time-read problem, LCHECK has the time complex-
ity of O(Cpp2n2) for soundly and completely checking,
and O(p3n) for soundly but incompletely checking. Our
method has been used in the validation of an industrial
CMP, Godson-3, and it has found many bugs. Both the-
oretical and practical results demonstrate the effectiveness
and efficiency of our approach.

However, LCHECK is not the end of the road for mem-
ory consistency verification tools relying on time order.
There are still many research avenues to explore. First,
we need a global clock to determine time order between
operations. However, some multiprocessors may not have
a global clock. How to establish the time order of opera-
tions without a physical global clock remains an open ques-
tion. Second, LCHECK still needs some hardware support.
Many processors have programmer-accessible event coun-
ters which can count the number of committed instructions
and keep track of local time. Using these existing counters
together with the knowledge of the instruction window size
to find looser bounds on the enter and commit times seems
attractive in post-silicon verification.
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