
ISCAS-SKLCS-15-03

April, 2015

中国科学院软件研究所

计算机科学国家重点实验室

技术报告

TSO-to-TSO Linearizability is Undecidable

by

Chao Wang, Yi Lv and Peng Wu

State key Laboratory of Computer Science

Institute of Software

Chinese Academy of Sciences

Beijing

100190.

China

Copyright2015, State key Laboratory of Computer Science, Institute of Software.

 All rights reserved. Reproduction of all or part of this work is

 permitted for educational or research use on condition that this

 copyright notice is included in any copy.

TSO-to-TSO Linearizability is Undecidable

Chao Wang, Yi Lv, and Peng Wu

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

Abstract. TSO-to-TSO linearizability is a variant of linearizability for concur-
rent libraries on the Total Store Order (TSO) memory model. To solve its decision
problem, we first show that history inclusion of libraries is the equivalent charac-
terization of linearizability for several memory models, such as sequential consis-
tency (SC) memory model and TSO. Furthermore, extended history inclusion of
libraries on TSO is the equivalent characterization of TSO-to-TSO linearizability.
The history inclusion problem on SC memory model is proved to be decidable
for a bounded number of processes. For TSO memory model, we establish the
connection between it and lossy channel system. Thus the trace inclusion prob-
lem of a classic-lossy single-channel system, which is known undecidable, can be
reduced to the history inclusion problem of specific libraries on the TSO memory
model. We prove that linearizability is undecidable for a bounded number of pro-
cesses on TSO. Based on the equivalence between history inclusion and extended
history inclusion for these libraries, we then prove that the extended history inclu-
sion problem of libraries is undecidable on the TSO memory model. By means
of extended history inclusion as an equivalent characterization of TSO-to-TSO
linearizability, we finally prove that TSO-to-TSO linearizability is undecidable
for a bounded number of processes.

1 Introduction

Libraries of high performance concurrent data structures have been widely used in con-
current programs to take advantage of multi-core architectures, such as java.util.concur-
rent for Java and std::thread for C++11. It is important but notoriously difficult to en-
sure that concurrent libraries are designed and implemented correctly. Linearizability
[10] is accepted as a de facto correctness condition for a concurrent library with respect
to its sequential specification on the sequential consistency (SC) memory model [11].
It is well known that on the SC memory model linearizability of a concurrent library
is decidable for a bounded number of processes [1], but undecidable for an unbounded
number of processes [5].

However, modern multiprocessors (e.g., x86 [14], POWER [15]) and programming
languages (e.g., C/C++ [4], Java [13]) do not comply with the SC memory model. As a
matter of fact, they provide relaxed memory models, which allow subtle behaviors due
to hardware or compiler optimization. For instance, in a multiprocessor system imple-
menting the total store order (TSO) memory model [14], each processor is equipped
with an FIFO store buffer. Any write operation performed by a processor is put into its
local store buffer first and can then be flushed into the main memory at any time.

The notion of linearizability has been extended for relaxed memory models, e.g.,
TSO-to-TSO linearizability [7] and TSO-to-SC linearizability [9] for the TSO mem-
ory model and two variants of linearizability [3] for the C++ memory model. These
notions generalize the original one by relating concurrent libraries with their abstrac-
t implementations, in the way as shown in [8] for the SC memory model. It is worth
mentioning that these notions of linearizability satisfy the abstraction theorem [7,9,3]:
if a library is linearizable with respect to its abstract implementation, every observable
behavior of any client program using the former can be observed when the program
uses the latter instead. Concurrent software developer can benefit from this coincidence
in that the library can be safely replaced with its abstract implementation for the sake
of optimization or the ease of verification of the client program.

The decision problems for linearizability on relaxed memory models become more
complicated. Because of the hierarchy of memory models, it is rather trivial to see that
linearizability on relaxed memory models is undecidable for an unbounded number of
processes, based on the known undecidability result on the SC memory model [5]. But
the decision problem of linearizability on relaxed memory models remains open for a
bounded number of processes.

In this paper we investigate the fundamental problems about the algorithmic feasi-
bility of verifying linearizability between libraries running on memory models. Specif-
ically, we mainly study the decision problem for the TSO-to-TSO linearizability of
concurrent libraries within a bounded number of processes. TSO-to-TSO linearizabili-
ty is the first definition of linearizability on relaxed memory models. It relates a library
running on the TSO memory model to its abstract implementation running also on the T-
SO memory model. Histories of method invocations/responses are typically concerned
by the standard notion of linearizability. For TSO-to-TSO linearizability, such histo-
ries have to be extended to reflect the interactions between concurrent libraries and
processor-local store buffers.

The main result of this paper is that TSO-to-TSO linearizability is undecidable for
a bounded number of processes. We first show that the extended history inclusion is
an equivalent characterization of TSO-to-TSO linearizability. As a byproduct, we also
prove that history inclusion of libraries is the equivalent characterization of standard
linearizability for several memory models, such as SC and TSO. For SC memory mod-
el, standard linearizability is decidable for a bounded number of processes because
the operational semantics on SC for a bounded number of processes is a finite state
labelled transition system (LTS) and its histories is a regular set. For TSO memory
model, we prove our undecidability result by reducing the trace inclusion problem be-
tween any two configurations of a classic-lossy single-channel system to the extended
history inclusion problem between two specific libraries. Recall that the trace inclusion
problem between configurations of a classic-lossy single-channel system is undecidable
[16]. The reduction is achieved by using as a bridge the history inclusion between these
two specific libraries.

Technically, we present a library template that can be instantiated as a specific li-
brary for a configuration of a classic-lossy single-channel system. The library is de-
signed with three methods Mi for 1 ≤ i ≤ 3. We use two processes P1 and P2, calling
methodsM1 andM2, respectively, to simulate traces of the classic-lossy single-channel

system starting from the given configuration. This is based on the observation that on
the TSO memory model, a process may miss updates by other processes because mul-
tiple flush operations may occur between consecutive read operations of the process
[2]. But a channel system accesses the content of a channel always in an FIFO man-
ner; while on the contrary, a process on the TSO memory model always reads the latest
updates in its local store buffer (whenever possible). Herein, processes P1 and P2 alter-
natively update their own store buffers, while read only from each other’s store buffer.
In this way, the labeled transitions of the classic-lossy single-channel system can be
reproduced through the interactions between processes P1 and P2. Furthermore, we use
the third process P3, calling method M3 repeatedly, to return each fired transition label
repeatedly, so that the traces of the classic-lossy single-channel system starting from a
given configuration can be mimicked by the histories of the library exactly. Specially,
methodsM1 andM2 never return, while methodM3 just uses an atomic write operation
to return labels in order not to touch process P3’s store buffer. Consequently, we can
easily establish the equivalence between the history inclusion and the extended history
inclusion between the specific libraries.

By constructing two specific libraries based on the above library template, we show
that the trace inclusion problem between any two configurations of a classic-lossy
single-channel system can be reduced to the history inclusion problem between the cor-
responding two concurrent libraries. By means of undecidability of history inclusion
for libraries on TSO, we obtain that standard linearizability is undecidable on TSO for
a bounded number of processes. While the history inclusion relation and the extended
history inclusion relation are equivalent between these two libraries, thus the undecid-
ability result of TSO-to-TSO linearizability for a bounded number of processes follows
from its equivalent characterization and the undecidability result of classic-lossy single-
channel system. To our best knowledge, this is the first result on the decidability of
linearizability of concurrent libraries on relaxed memory models.

Related work Efforts have been devoted on the decidability and model checking of
linearizability on the SC memory model [1,5,6,17,12]. The principle of our equivalent
characterization for TSO-to-TSO linearizability is similar to that of the characterization
given by Bouajjani et al. in [6], where history inclusion is proved to be an equivalen-
t characterization of linearizability. Alur et al. proved that for a bounded number of
processes, checking whether a regular set of histories is linearizable with respect to it-
s regular sequential specification can be reduced to a history inclusion problem, and
hence is decidable [1]. Bouajjani et al. proved that the problem of whether a library is
linearizable with respect to its regular sequential specification for an unbounded number
of processes is undecidable, by a reduction from the reachability problem of a counter
machine (which is known to be undecidable) [5].

On the other hand, the decidability of linearizability on relaxed memory models is
still open for a bounded number of processes. The closest work to ours is [2] by Atig
et al., where a lossy channel system is simulated by a concurrent program on the TSO
memory model. Our approach for using M1 and M2 to simulate classic-lossy single-
channel system is inspired by their work. However, in [2] it was the decidable reach-
ability problem of the channel system that was reduced to the reachability problem of
the concurrent program on the TSO memory model. Hence, only the start and end con-

figurations of the channel system are needed in their reduction. In this paper, we reduce
the trace inclusion problem between any two configurations of a classic-lossy single-
channel system, which is undecidable, to the TSO-to-TSO linearizability problem. Our
reduction needs to show exactly each step of transitions in the channel system.

2 Concurrent Systems

In this section, we first present the notations of libraries, the most general clients and
TSO and SC concurrent systems. Then, we introduce their operational semantics on the
TSO and SC memory models.

2.1 Notations

In general, a finite sequence on an alphabetΣ is denoted l = α1 ·α2 · . . . ·αk, where · is
the concatenation symbol and αi ∈ Σ for each 1 ≤ i ≤ k. Let |l| denote the length of
l, i.e., |l| = k, and l(i) denote the i-th element of l for 1 ≤ i ≤ k, i.e., l(i) = αi. For an
alphabet Σ′, let l ↑Σ′ denote the projection of l to Σ′. Given a function f , let f [x : y]
be the function that shares the same value as f everywhere, except for x, where it has
the value y. We use for an item, of which the value is irrelevant.

A labelled transition system (LTS) is a tuple A = (Q,Σ,→, q0), where Q is a set
of states, Σ is a set of transition labels,→⊆ Q×Σ ×Q is a transition relation and q0
is the initial state. A state of the LTS A may be referred to as a configuration in the rest
of the paper.

A path of A is a finite transition sequence q1
β1−→ q2

β2−→ . . .
βk−→ qk+1 for k ≥ 0.

A trace of A is a finite sequence t = β1 · β2 · . . . · βk, where k ≥ 0 if there exists a

path q1
β1−→ q2

β2−→ . . .
βk−→ qk+1 of A. Let path(A, q) and trace(A, q) denote all the

paths and all the traces of A that start from q respectively, and we write path(A) and
trace(A) for short if q = q0.

2.2 Libraries and the Most General Clients

A library implementing a concurrent data structure provides a set of methods for ex-
ternal users to access the data structure. It may contain private memory locations for
its own use. A client program is a program that interacts with libraries. For simplicity,
we assume that each method has just one parameter and one return value if it returns.
Furthermore, all the parameters and the return values are passed via a special register
rf .

Formally, let X be a finite set of memory locations, M be a finite set of method
names, D be a finite data domain,R be a finite set of register names andRE be a finite
set of register expressions overR. Then, a set PCom of primitive commands considered
in this paper includes:

- Register assign commands in the form of r = re;
- Register reset commands in the form of havoc;
- Read commands in the form of read(x, r);

- Write commands in the form of write(r, x);
- Cas commands in the form of r1 = cas(x, r2, r3);
- Assume commands in the form of assume(r);
- Call commands in the form of call(m);

where r, r1, r2, r3 ∈ R, re ∈ RE , x ∈ X . Herein, the notations of registers and register
expressions are similar to those used in [7].

A cas command compresses a read and a write commands into a single one, which
is meant to be executed atomically. It is often implemented with the compare-and-swap
or load-linked/store-conditional primitive at the level of multiprocessors. This type of
commands is widely used in concurrent libraries. A havoc command [7] assigns arbi-
trary values to all registers inR.

A control-flow graph is a tuple CFG = (N,L, T, qi, qf), where N is a finite set of
program positions, L is a set of primitive commands, T ⊆ N ×L×N is a control-flow
transition relation, qi is the initial position and qf is the final position.

A library L can then be defined as a tuple L = (QL,→L, InitVL), such that (1)
QL =

⋃
m∈MQm is a finite set of program positions, where each Qm is the program

positions of method m, and it has an unique initial position im and an unique final
position fm, (2)→L=

⋃
m∈M →m is a control-flow transition relation, where for each

m ∈M, (Qm,PCom,→m, im, fm) is a control-flow graph and (3) InitVL : X → D is
an initial valuation for memory locations.

The most general client is a special client program that is used to exhibit all possi-
ble behaviors of a library. Formally, the most general clientMGC is defined as a tuple
({qc, q′c},→c), where qc and q′c are two program positions, →c= {(qc, havoc, q′c)} ∪
{(q′c, call(m), qc)|m ∈M} is a control-flow transition relation and ({qc, q′c},PCom,→c

, qc, qc) is a control-flow graph. Intuitively, the most general client repeatedly calls an
arbitrary method with an arbitrary argument for arbitrarily many times.

2.3 Operational Semantics on TSO and SC

Assume a concurrent system consists of n client processes, each of which runs the most
general client program on a separate processor. Then, the operational semantics of a
library can be defined in the context of the concurrent system.

For a library L=(QL,→L, InitVL), its operational semantics on the TSO memory
model is defined as an LTS JL, nKte

1 = (Confte, Σte,→te, InitConfte), where Confte, Σte,
→te, InitConfte are defined as follows.

Each configuration of Confte is a tuple (p, d, u, r), where

- p : {1, . . . , n} → {qc, q′c} ∪QL represents control states of each process;
- d : X → D represents values at each memory location;
- u : {1, . . . , n} → ({(x, a)|x ∈ X , a ∈ D} ∪ {call(m, a)|m ∈ M, a ∈ D} ∪
{return(m, a)|m ∈M, a ∈ D})∗ represents contents of each processor-local store
buffer; each processor-local store buffer may contain a finite sequence of pending
write, pending call or pending return operations;

1 “t” represents TSO memory model. “e” represents that the operational semantics in this paper
extends standard TSO operational semantics [14] similarly as [7].

- r : {1, . . . , n} → (R → D) represents values of the registers of each process.

Σte consists of the following subsets of operations as transition labels.

- Internal operations: {τ(i)|1 ≤ i ≤ n};
- Read operations: {read(i, x, a)|1 ≤ i ≤ n, x ∈ X , a ∈ D};
- Write operations: {write(i, x, a)|1 ≤ i ≤ n, x ∈ X , a ∈ D};
- Cas operations: {cas(i, x, a, b)| 1 ≤ i ≤ n, x ∈ X , a, b ∈ D};
- Flush operations: {flush(i, x, a)| 1 ≤ i ≤ n, x ∈ X , a ∈ D};
- Call operations: Σcal = {call(i,m, a)|1 ≤ i ≤ n,m ∈M, a ∈ D};
- Return operations: Σret = {return(i,m, a)|1 ≤ i ≤ n,m ∈M, a ∈ D};
- Flush call operations: Σfcal = {flushCall(i,m, a)|1 ≤ i ≤ n,m ∈M, a ∈ D};
- Flush return operations: Σfret = {flushReturn(i,m, a)|1 ≤ i ≤ n,m ∈M, a ∈ D}.

The initial configuration InitConfte ∈ Confte is a tuple (pinit, InitVL, uinit, rinit),
where pinit(i) = qc, uinit(i) = ε (representing an empty buffer) and rinit(i)(r) = regVinit
(a special initial value of a register) for 1 ≤ i ≤ n, r ∈ R;

The transition relation→te is the least relation satisfying the transition rules shown
in Fig. 1. Our operational semantics for the internal, read, write, flush, call, return, flush
call and flush return operations are similar to the one presented in [7], except that the
xlock and xunlock operations in [7] are replaced with the cas operations here.

- Register-Assign rule: A function fre : (R → D) × RE → D is used to evaluates
register expression re under register valuation rv of current process, and its value is
assigned to register r1.

- Library-Havoc andMGC-Havoc rules: havoc commands are executed by current
process for libraries and the most general clients respectively.

- Assume rule: If value of register r1 is true, current process can execute assume
command. Otherwise, the process must wait.

- Read rule: A function lookup(u, d, i, x) is used to search for the latest value of x
from its processor-local store buffer or the main memory, i.e.,

lookup(u,d,i,x) =
{
a if u(i) ↑Σx

= (x, a) · l, for some l ∈ Σ∗x
d(x) otherwise

where Σx = {(x, a)|a ∈ D} is the set of pending write operations for x.
Read operation will takes the latest value of x from processor-local store buffer if
possible, otherwise, it looks up the value in memory.

- Write rule: A write operation will insert a pair of location and value to the tail of its
processor-local store buffer.

- Cas-Success and Cas-Fail rules: A cas command can only be executed when the
processor-local store buffer is empty and thus forces current process to clear its
store buffer in advance. A successful cas command will change the value of mem-
ory location x immediately. The result of whether this cas command is successful
is stored in register r1.

- Flush rule: The memory system may decide to flush the entry at the head of processor-
local store buffer to memory at any time.

p(i) = q1, q1
r1=re−−−→Lq2, r(i) = rv, fre(rv, re) = a

(p, d, u, r)
τ(i)−−→te(p[i : q2], d, u, r[i : rv[r1 : a]])

Register-Assign

p(i) = q1, q1
havoc−−−→Lq2, rv ∈ R → D

(p, d, u, r)
τ(i)−−→te(p[i : q2], d, u, r[i : rv])

Library-Havoc

p(i) = qc, rv ∈ R → D

(p, d, u, r)
τ(i)−−→te(p[i : q

′
c], d, u, r[i : rv])

MGC-Havoc

p(i) = q1, q1
assume(r1)−−−−−−→Lq2, r(i)(r1) = true

(p, d, u, r)
τ(i)−−→te(p[i : q2], d, u, r)

Assume

p(i) = q1, q1
read(x,r1)−−−−−−→Lq2, r(i) = rv, lookup(u, d, i, x) = a

(p, d, u, r)
read(i,x,a)−−−−−−→te(p[i : q2], d, u, r[i : rv[r1 : a]])

Read

p(i) = q1, q1
write(r1,x)−−−−−−→Lq2, r(i)(r1) = a, u(i) = l

(p, d, u, r)
write(i,x,a)−−−−−−→te(p[i : q2], d, u[i : (x, a) · l], r)

Write

p(i) = q1, q1
r1=cas(x,r2,r3)−−−−−−−−−−→Lq2, r(i) = rv, rv(r2) = d(x) = a, rv(r3) = b, u(i) = ε

(p, d, u, r)
cas(i,x,a,b)−−−−−−−→te(p[i : q2], d[x : b], u, r[i : rv[r1 : true]])

Cas-Success

p(i) = q1, q1
r1=cas(x,r2,r3)−−−−−−−−−−→Lq2, r(i) = rv, rv(r2) = a, rv(r3) = b, rv(r2) 6= d(x), u(i) = ε

(p, d, u, r)
cas(i,x,a,b)−−−−−−−→te(p[i : q2], d, u, r[i : rv[r1 : false]])

Cas-Fail

u(i) = l · (x, a)

(p, d, u, r)
flush(i,x,a)−−−−−−→te(p, d[x : a], u[i : l], r)

Flush

p(i) = q′c, r(i)(rf) = a, u(i) = l

(p, d, u, r)
call(i,m,a)−−−−−−→te(p[i : im], d, u[i : call(m,a) · l], r)

Call

p(i) = fm, r(i)(rf) = a, u(i) = l

(p, d, u, r)
return(i,m,a)−−−−−−−→te(p[i : qc], d, u[i : return(m,a) · l], r)

Return

u(i) = l · call(m,a)

(p, d, u, r)
flushCall(i,m,a)−−−−−−−−−→te(p, d, u[i : l], r)

Flush-Call

u(i) = l · return(m,a)

(p, d, u, r)
flushReturn(i,m,a)−−−−−−−−−−→te(p, d, u[i : l], r)

Flush-Return

Fig. 1. Transition Rules of→te

- Call and Return rules: To deal with call command, a call marker is added into the
tail of processor-local store buffer and current process starts to execute the initial
position of methodm. When the process comes to final position of methodm it can
launch a return operation, add a return marker to the tail of processor-local store
buffer and start to execute the most general client.

- Flush-Call and Flush-Return rules: The call and return marker can be discarded
when they are at the head of processor-local store buffer. Such operations are used
to define TSO-to-TSO linearizability only.

For a library L=(QL,→L, InitVL), its operational semantics on SC memory model
is defined as an LTS JL, nKsc = (Confsc, Σsc, →sc, InitConfsc), where Confsc, Σsc, →sc

and InitConfsc are defined as follows.

- Each configuration of Confsc is a tuple (p, d, r), where p, d and r are same to that
of JL, nKte.

- Σsc is a subset of Σte and does not contain flush call and flush return operations.
- The initial configuration InitConfcs ∈ Confte is a tuple (pinit, InitVL, rinit).
- The transition relation→sc is the least relation satisfying the transition rules shown

in Fig. 2.

3 Correctness Conditions and Equivalent Characterizations

3.1 Correctness Conditions

Linearizability [10,8] is accepted as a standard correctness condition for concurrent
libraries. The behavior of a library is typically represented by histories of interactions
between the library and the clients calling it (through call and return operations). A
finite sequence h ∈ (Σcal ∪ Σret)

∗ is a history of an LTS A if there exists a trace t
of A such that t ↑(Σcal∪Σret)= h. Let history(A) denote all the histories of A, and h|i
the projection of h to the operations of the i-th process. Two histories h1 and h2 are
equivalent, if for each 1 ≤ i ≤ n, h1|i = h2|i.

Definition 1 (linearizability [8]). Given two histories h1 and h2 of libraries, h1 is lin-
earizable to h2, if

- they are equivalent;
- there is a bijection π : {1, . . . , |h1|} → {1, . . . , |h2|} such that for any 1 ≤ i ≤
|eh1|, h1(i) = h2(π(i));

- for any 1 ≤ i < j ≤ |h1|, if h1(i) ∈ Σret ∧ h1(j) ∈ Σcal, then π(i) < π(j).

For two libraries L1 and L2, we say that L1 is linearizable with respect to L2 on
TSO, if for any h1 ∈ history(JL1, nKte), there exists h2 ∈ history(JL2, nKte), such that
h1 is linearizable to h2. We say that L1 is linearizable with respect to L2 on SC, if
for any h1 ∈ history(JL1, nKsc), there exists h2 ∈ history(JL2, nKsc), such that h1 is
linearizable to h2.

p(i) = q1, q1
r1=re−−−→Lq2, r(i) = rv, fre(rv, re) = a

(p, d, r)
τ(i)−−→sc(p[i : q2], d, r[i : rv[r1 : a]])

p(i) = q1, q1
havoc−−−→Lq2, rv ∈ R → D

(p, d, r)
τ(i)−−→sc(p[i : q2], d, r[i : rv])

p(i) = qc, rv ∈ R → D

(p, d, r)
τ(i)−−→sc(p[i : q

′
c], d, r[i : rv])

p(i) = q1, q1
assume(r1)−−−−−−→Lq2, r(i)(r1) = true

(p, d, r)
τ(i)−−→sc(p[i : q2], d, r)

p(i) = q1, q1
read(x,r1)−−−−−−→Lq2, r(i) = rv, d(x) = a

(p, d, r)
read(i,x,a)−−−−−−→sc(p[i : q2], d, r[i : rv[r1 : a]])

p(i) = q1, q1
write(r1,x)−−−−−−→Lq2, r(i)(r1) = a

(p, d, r)
write(i,x,a)−−−−−−→sc(p[i : q2], d[x : a], r)

p(i) = q1, q1
r1=cas(x,r2,r3)−−−−−−−−−−→Lq2, r(i) = rv, rv(r2) = d(x) = a, rv(r3) = b

(p, d, r)
cas(i,x,a,b)−−−−−−−→sc(p[i : q2], d[x : b], r[i : rv[r1 : true]])

p(i) = q1, q1
r1=cas(x,r2,r3)−−−−−−−−−−→Lq2, r(i) = rv, rv(r2) = a, rv(r3) = b, rv(r2) 6= d(x)

(p, d, r)
cas(i,x,a,b)−−−−−−−→sc(p[i : q2], d, r[i : rv[r1 : false]])

p(i) = q′c, r(i)(rf) = a

(p, d, r)
call(i,m,a)−−−−−−→sc(p[i : im], d, r)

p(i) = fm, r(i)(rf) = a

(p, d, r)
return(i,m,a)−−−−−−−→sc(p[i : qc], d, r)

Fig. 2. Transition Rules of→sc

TSO-to-TSO linearizability is a variant of linearizability on the TSO memory mod-
el. It additionally concerns the behavior of a library in the context of processor-local
store buffers, i.e, the interactions between the library and store buffers through flush call
and flush return operations. A finite sequence eh ∈ (Σcal∪Σret∪Σfcal∪Σfret)

∗ is an ex-
tended history of an LTSA if there exists a trace t ofA such that t ↑(Σcal∪Σret∪Σfcal∪Σfret)=
eh. Let ehistory(A) denote all the extended histories ofA, and eh|i the projection of eh
to the operations of the i-th process. Two extended history eh1 and eh2 are equivalent,
if for each 1 ≤ i ≤ n, eh1|i = eh2|i.

Definition 2 (TSO-to-TSO linearizability [7]). Given two extended histories eh1 and
eh2 of libraries, eh1 is TSO-to-TSO linearizable to eh2, if

- eh1 and eh2 are equivalent;

- there is a bijection π : {1, . . . , |eh1|} → {1, . . . , |eh2|} such that for any 1 ≤ i ≤
|eh1|, eh1(i) = eh2(π(i));

- for any 1 ≤ i < j ≤ |eh1|, if (eh1(i) ∈ Σret ∪Σfret)∧ (eh1(j) ∈ Σcal ∪Σfcal), then
π(i) < π(j).

For two libraries L1 and L2, we say that L2 TSO-to-TSO linearizes L1, if for any
eh1 ∈ ehistory(JL1, nKte), there exists eh2 ∈ ehistory(JL2, nKte), such that eh1 is
TSO-to-TSO linearizable to eh2.

Informally speaking, if eh1 is TSO-to-TSO Linearizable to eh2, then eh2 keeps all
the non-overlapping pairs of call/flush call and return/flush return operations in eh1 in
the same order.

3.2 Equivalence Characterizations

To handle the decision problem of TSO-to-TSO linearizability, we show that the ex-
tended history inclusion is an equivalent characterization of TSO-to-TSO linearizabili-
ty. This is presented formally as the following lemma.

Lemma 1. For any two libraries L1 and L2, L2 TSO-to-TSO linearizes L1 if and only
if ehistory(JL1, nKte) ⊆ ehistory(JL2, nKte).

Proof. (Sketch) The if direction is obvious by the definition of TSO-to-TSO lineariz-
ability (Definition 2).

The only if direction can be proved with a transformation relation⇒ER and a dis-
tance function eWitSum we define upon extended histories. Given extended histories
eh1 and eh2, we say eh1 can be transformed in one step to eh2, written eh1 ⇒ER eh2, if
eh2 can be obtained by swapping two adjacent elements of eh1 and eh1 is TSO-to-TSO
linearizable to eh2. The non-negative distance function eWitSum(eh1, eh2) for two
equivalent extended histories eh1 and eh2 is used to measure the difference between
eh1 and eh2. Through the well-defined transformation relation and distance function,
we can first show that if an extended history eh1 is TSO-to-TSO linearizable to another
extended history eh2 and eh1 6= eh2, then there exists a third extended history eh3,
such that

- eh1 is TSO-to-TSO linearizable to eh3;
- eh3⇒ER eh2;
- eh3 is TSO-to-TSO linearizable to eh2;
- the distance between eh1 and eh3 is strictly less than the one between eh1 and eh2.

In this way, if an extended history eh1 ∈ ehistory(JL1, nKte) is TSO-to-TSO lin-
earizable to an extended history eh2 ∈ ehistory(J L2, nKte), then eh1 can be transformed
to eh2 by a finite number of⇒ER transformations. We further show that eh1, eh2 and all
the intermediate extended histories along the transformations are indeed the extended
histories of JL2, nKte. Please refer to Appendix A.1 for the detailed proof of this lem-
ma. ut

Similar to above case, we can prove that history inclusion is an equivalent character-
ization of linearizability on TSO and SC memory model. The proof to this proposition
is simpler than proof for Lemma 1 and can be found in Appendix A.2.

Proposition 1. For any two libraries L1 and L2, L1 is linearizable with respect to L2

on TSO (SC) if and only if history(JL1, nKte) ⊆ history(JL2, nKte) (history(JL1, nKsc) ⊆
history(JL2, nKsc)).

It is obvious that for each library L and positive integer n, JL, nKsc is a finite s-
tate LTS and history(JL, nKsc) is a regular set. Based on the decidability of inclusion
between two regular sets and equivalence between history inclusion and standard lin-
earizability from Lemma 1, it is not hard to see that the problem of standard lineariz-
ability between libraries on SC memory model is decidable for a bounded number of
processes.

Corollary 1. For any two libraries L1 and L2, it is decidable whether L1 is lineariz-
able with respect to L2 for a bounded number of processes on SC.

4 Undecidability of TSO-to-TSO Linearizability

As the main result of this paper, we present in this section that the TSO-to-TSO lin-
earizability of concurrent libraries is undecidable for a bounded number of processes.
We first reduce the trace inclusion problem between any two configurations of a classic-
lossy single-channel system to the history inclusion problem between two specific con-
current libraries. Then, our main undecidability result follows from the equivalence
between the history inclusion and the extended history inclusion for these two libraries.
Recall that the latter is equivalent to TSO-to-TSO linearizability between the two li-
braries based on the above Lemma 1. We also prove that standard linearizability of
libraries on TSO is undecidable for a bounded number of processes.

4.1 Classic-Lossy Single-Channel Systems

A classic-lossy single-channel system [16] is a tuple S = (Qcs, Σcs, {ccs}, Γcs, ∆cs),
where Qcs is a finite set of control states, Σcs is a finite alphabet of messages, ccs is the
name of the single channel, Γcs is a finite set of transition labels and ∆cs ⊆ Qcs×Σ∗cs×
Γcs ×Qcs ×Σ∗cs is a transition relation.

Given two finite sequences l1 = α1 · α2 · . . . · αu and l2 = β1 · β2 · . . . · βv , we
say that l1 is a subword of l2, denoted l1 v l2, if there exists 1 ≤ i1 < . . . < iu ≤ v
such that for any 1 ≤ j ≤ u, αj = βij . Then, the operational semantics of S is
given by an LTS CL(S) = (Confcs, Γcs,→cs, initConfcs), where Confcs = Qcs × Σ∗cs
is a set of configurations with initConfcs ∈ Confcs as the initial configuration. The
transition relation →cs is defined as follows: (q1,W1)

α−→cs (q2,W2) if there exists
(q1, U, α, q2, V) ∈∆cs and W ′ ∈ Σ∗cs such that U ·W ′ vW1 and W2 vW ′ · V .

It is known that for two configurations (q1,W1), (q2,W2) ∈ Confcs of a classic-
lossy single-channel system S, the trace inclusion between (q1,W1) and (q2,W2) is
undecidable [16].

4.2 Simulation on the TSO Memory Model

On the TSO memory model flush operations are launched nondeterministically by the
memory system. Therefore, between two consecutive read(x,) operations, more than
one flush operations to x may happen. The second read operation can only read the
latest flush operation to x, while missing the intermediate ones. These missing flush
operations are similar to the missing messages that may happen in a classic-lossy single-
channel system. This makes it possible to simulate a classic-lossy single-channel system
with a concurrent program running on the TSO memory model. We implement such
simulation through a most general client and a library LS,q,W specifically constructed
based on a classic-lossy single-channel system S and a given configuration (q,W) ∈
Confcs.

For a classic-lossy single-channel system S =(Qcs, Σcs, {ccs}, Γcs, ∆cs), assume the
finite data domain Dcs = Qcs ∪Σcs ∪∆cs ∪ {], start, end,⊥, true, false, regVinit, rulef},
where Qcs ∩ Σcs = ∅, Qcs ∩ ∆cs = ∅, Σcs ∩ ∆cs = ∅, and the symbols], start, end,
⊥, true, false, regVinit and rulef do not exist in Qcs ∪Σcs ∪∆cs. Given a configuration
(q,W) ∈ Confcs of S, the library LS,q,W is constructed with three methods M1, M2

andM3, and three private memory locations x, y and z. x is used to transmit the channel
contents from M2 to M1, while y is used to transmit the channel contents from M1 to
M2. z is used to transmit the transition labels of CL(S) from M2 to M3, and it is also
used to synchronize M2 and M3. The symbol] is used as the delimiter to ensure that
one element will not be read twice. The symbols start and end represent the start and the
end of the channel contents, respectively.⊥ is the initial value of x, y and z. The symbol
rulef is an additional transition rule that is used to indicate the end of a simulation.

We now present the three methods in the pseudo-code, shown in Methods 1, 2 and
3. The if and while statements used in the pseudo-code can be easily implemented by
the assume commands as well as other commands in our formation of a library. For the
sake of brevity, the following macro notations are used. For sequence l = a1 · . . . · am,
let writeSeq(x,l) denote the commands of writing a1,], . . . , am,] to x in sequence,
and readSeq(x,l) denote the commands of reading a1,], . . . , am,] from x in sequence.
We use v := readOne(x) to represent the commands of reading e,] from x in se-
quence for some e 6=] and then assigning e to v. If readSeq(x, l) or readOne(x) fails
to read the specified content, then the calling process will no long proceed. We use
writeOne(x, reg) to represent the commands of writing a,] to x in sequence where a is
the current value of register reg. In the pseudo-code, r is a register inR.

The pseudo-code of method M1 is shown in Method 1.M1 contains an infinite loop
that never returns (Lines 1-3). At each round of the loop, it reads a new update from x
and writes it to y.

The pseudo-code of method M2 is shown in Method 2. M2 first guesses a transition
rule rule1, puts rule1 and W into the processor-local store buffer by writing them to
x (Lines 1-2). Then, it begins an infinite loop that never returns (Lines 3-16). At each
round of the loop, it reads the current transition rule rule2 ∈ ∆cs of S (Line 4) and
guesses a transition rule rule3 ∈ ∆cs ∪ {rulef} (Line 5). If M2 guesses the rule rulef
in Line 5, then in the next round of this loop it will be blocked at Line 4 and the
simulation terminates. M2 does not confirm rule2 until it reads start ·U1 from y at Line
6 (intermediate values of y may be lost). At Line 7, it writes rule3 · start to y. Then, it

reads the remaining contents of method M1’s processor-local store buffer (intermediate
values of y may be lost) and writes them and V1 to x (Lines 8-13). In Lines 14-16, it
transmits the transition label α1 to method M3.

The pseudo-code of method M3 is shown in Method 3. M3 first waits for M2 to
transmit transition label to it though z by a non ⊥ value (Lines 1-4). Then it acknowl-
edgesM2 at Line 5 and returns this transition label z at Line 6.M3 uses a cas command
to communicate with M2. It never puts a pending write operation to its processor-local
store buffer.

Method 1: M1

Input: an arbitrary argument
1 while true do
2 r := readOne(x);
3 writeOne(y, r);

Method 2: M2

Input: an arbitrary argument
1 guess a transition rule rule1 = (q, , , ,) ∈ ∆cs ∪ {rulef};
2 writeSeq(x, rule1 · start ·W · end);
3 while true do
4 r := readOne(y) for some rule rule2 = (q1, U1, α1, q2, V1) ∈ ∆cs;
5 guess a transition rule rule3 that is either some (q2, , , ,) ∈ ∆cs or rulef ;
6 readSeq(y, start · U1);
7 writeSeq(x, rule3 · start);
8 while true do
9 r := readOne(y);

10 if r = end then
11 break;
12 writeSeq(x, r);
13 writeSeq(x, V1 · end);
14 z := α1;
15 while z 6= ⊥ do
16 ;

Method 3: M3

Input: an arbitrary argument
Output: transition label for one step in CL(S)

1 while true do
2 r := z;
3 if r 6= ⊥ then
4 break;
5 cas(z, r,⊥);
6 return v;

4.3 Undecidability of History Inclusion

In this subsection we show that given a classic-lossy single-channel system S and a
configuration (q,W) ∈ Confcs, the histories of library LS,q,W simulate exactly the
paths of S start from (q,W).

A path pS = (q1,W1)
α1−→cs (q2,W2)

α2−→cs . . .
αk−→cs (qk+1,Wk+1) ∈ path(CL(S),

(q1,W1)) is conservative, if the following two conditions hold: (1) it contains at least
one transition, (2) assume the i-th step uses rule ri = (qi, Ui, αi, qi+1, Vi) for each
1 ≤ i ≤ k, then for each 1 ≤ i ≤ k, there existsW ′i ,W

′′
i ∈ Σ∗cs such that Ui ·W ′i vWi,

W ′′i v W ′i and Wi+1 = W ′′i · Vi. Intuitively, each i-th step of a conservative path does
not lose any element in Vi.

A trace tL ∈ trace(JLS,q,W , 3Kte) is effective, if tL contains at least one operation
return(,M3,). Otherwise, it is ineffective.

There is actually a close connection between the conservative paths of CL(S) and
the effective traces of JLS,q,W , 3Kte. An effective trace tL ∈ trace(JLS,q,W , 3Kte) and
a conservative path pS ∈ path(CL(S), (q,W)) correspond, if the sequence of return
values of M3 in tL is the same as the sequence of transition labels of pS .

Fig. 3 shows an example of generating a corresponding effective trace of JLS,q,W ,
3Kte from a conservative path of CL(S). Note that many possible executions of JLS,q,W ,
3Kte can get into deadlock due to the operational semantics and the pseudo-code of each
method. Herein, we consider only the executions where M3 always manages to output
return labels accordingly. In Fig. 3, contents of a store buffer are written from left to
right, while the time progresses from left to right, too. Assume (q,W) = (q1, a · a) and
there is a conservative path pS = (q1, a · a) α1−→cs (q2, b · c) α2−→cs (q3, a), where the
first step uses rule rule1 = (q1, a, α1, q2, b · c) (loses a in the channel), and the second
one uses rule rule2 = (q2, b, α2, q3, a) (loses c in the channel). For this path, we can get
a corresponding effective trace of tL as follows:

1. Run M1, M2 and M3 in processes P1, P2 and P3 respectively. Recall that M1 and
M2 never return, while each invocation of M3 is associated with an interval shown
in Fig. 3.

2. At Line 2 of Method 2, M2 puts (x, rule1), (x,]), (x, start), (x,]), (x, a), (x,]),
(x, a), (x,]), (x, end), (x,]) into the store buffer of process P2.

3. By several loops of Lines 1-3, M1 captures the updates of x in a lossy manner, and
puts (y, rule1), (y,]), (y, start), (y,]), (y, a), (y,]), (y, end), (y,]) into the store
buffer of process P1.

4. At Line 4 of Method 2,M2 captures the updates of y in a lossy manner.M2 guesses
an applicable transition rule rule2, and then puts (x, rule2) ,(x,]), (x, start), (x,]),
(x, b), (x,]), (x, c), (x,]), (x, end), (x,]) into the store buffer of process P2, ac-
cording to transition rule rule1.

5. M2 sends the transition label α1 to M3 at Line 14 of Method 2. Then, M3 returns
α1 and we finish simulating the first transition in pS .

6. By several loops of Lines 1-3, M1 captures the updates of x in a lossy manner, and
puts (y, rule2), (y,]), (y, start), (y,]), (y, b), (y,]), (y, end), (y,]) into the store
buffer of process P1.

7. At Line 4 of Method 2,M2 captures the updates of y. Then,M2 decides to terminate
the simulation and puts (x, rulef),(x,]), (x, start), (x,]), (x, a), (x,]), (x, end),
(x,]) into the store buffer of process P2, according to transition rule rule2.

8. M2 sends the transition label α2 to M3 at Line 14 of Method 2. Then, M3 returns
α2 and we finish simulating the second transition in pS .

M1

M2

M3

rule1 · start · a · a · end

rule1 · start · a · end

rule2 · start · b · c · end rulef · start · a · end

α1 α2

M3

rule2 · start · b · end
P1:

P2:

P3:

pS = (q1, a · a) α1−−−−−−−−−−−→
rule1=(q1,a,α1,q2,b·c) CS

(q2, b · c) α2−−−−−−−−−−→
rule2=(q2,b,α2,q3,a) CS

(q3, a)

x x yy

z z

Fig. 3. A Conservative Path and its Corresponding Effective Trace

It can be seen that tL and pS correspond in this example. We further prove that
for any conservative path pS ∈ path(CL(S), (q,W)), there exists an effective trace
tL ∈ trace(JLS,q,W , 3Kte) such that tL and pS correspond, and vice versa, as stated in
Lemmas 21 and 22 in Appendix B.2.

The following lemma shows that the history inclusion between concurrent libraries
is undecidable on the TSO memory model.

Lemma 2. For any two librariesL1 andL2, it is undecidable whether history(JL1, 3Kte)
⊆ history(JL2, 3Kte).

Proof. (Sketch) By Lemmas 21 and 22, it can be proved that for any two configurations
(q1,W1), (q2, W2) ∈ Confcs of a classic-lossy single-channel system S, if history(J
LS,q1,W1

, 3Kte) ⊆ history (JLS,q2,W2
, 3 Kte), then trace(CL (S), (q1,W1)) ⊆ trace(

CL(S), (q2,W2)). In Appendix B.3, we prove that the other way around also holds.
Therefore, the undecidability result follows from that the trace inclusion problem be-
tween any two configurations of a classic-lossy single-channel system is undecidable
[16]. ut

By Lemma 1, history inclusion is an equivalent characterization of standard lineariz-
ability on TSO. Therefore, it is obvious that standard linearizability between libraries
on TSO is undecidable for a bounded number of processes.

Corollary 2. For any two concurrent libraries L1 and L2, it is undecidable whether
L1 is linearizable with respect to L2 for a bounded number of processes on TSO.

4.4 Undecidability of TSO-to-TSO linearizability

Although we prove above that history inclusion is undecidable on the TSO memory
model, there is still a gap between the history inclusion and the extended history inclu-
sion between concurrent libraries. Obviously there exist libraries L1 and L2 such that
history(JL1, nKte) ⊆ history(JL2, nKte) but ehistory(JL1, nKte) 6⊆ ehistory(JL2, nKte).
We show in this subsection that for the two libraries LS,q1,W1

and LS,q2,W2
, corre-

sponding to the configurations (q1,W1) and (q2,W2) of a classic-lossy single-channel
system, respectively, the history inclusion and the extended history inclusion between
LS,q1,W1

and LS,q2,W2
coincides on the TSO memory model.

Without loss of generality, assume M1 and M2 of LS,q,W are called by processes
P1, P2, respectively; while M3 of LS,q,W is repeatedly called by process P3. Then, an
extended history eh ∈ ehistory(JLS,q,W , 3Kte) that contains at least one return operation
of M3 is in the following form:

- The first six operations of eh are always call and corresponding flush call operations
of M1, M2 and M3, while these operations may occur in any order.

- The projection of eh onPi is exactly call(i,Mi,)·flushCall(i,Mi,) for i ∈ {1, 2}.
- Fig. 4 shows the possible positions of flush call (fcal) and flush return (fret) oper-

ations in eh. Since M3 always executes a cas command before it returns, during
each round of a call to M3 in P3, the flush call operation must occur before the cas
operation (see the dashed vertical lines in Fig. 4); hence it can only occur before
the return operation of M3.
During each round of a call to M3 in P3, the flush return operation may occur
alternatively at two positions: the first position is after the return operation of M3

and before the next round of a call operation of M3, as shown the position of fret1
in Fig. 4 (a); while the second one is after the next round of a call operation of
M3 and before the consequent flush call operation, as shown the position of fret1 in
Fig. 4 (b).

M3
cas1 cas2

M3cal1 ret1

fcal1 fret1

cal2 ret2

fcal2 fret2

(a) fret1 occurs between ret1 and cal2

M3
cas1 cas2

M3cal1 ret1

fcal1 fret1

cal2 ret2

fcal2 fret2

(b) fret1 occurs between cal2 and fcal2

P3:

P3:

Fig. 4. Possible Positions of Flush Call and Flush Return Operations

To prove that the history inclusion and thpe extended history inclusion coincide
between libraries LS,q1,W1

and LS,q2,W2
, we need to show that for an extended history

eh1 of JLS,q1,W1
, 3Kte, if eh1 contains a return operation in P3 and eh1 ↑(Σcal∪Σret)∈

history(JLS,q2,W2
, 3Kte), then eh1 ∈ ehistory(JLS,q2,W2

, 3Kte). Because eh1 ↑(Σcal∪Σret)

is a history of JLS,q2,W2 , 3Kte, there exists a path p′L of JLS,q2,W2 , 3Kte corresponding to
eh1. From p′L we can generate another path pL of JLS,q2,W2 , 3Kte such that the extended
history along pL is exactly eh1.

The path pL is generated from p′L by changing the positions of the flush return
operations. Recall that during each round of a call toM3, the flush return operation may
occur alternatively at two positions only. Since M3 does not insert any pending write
operation into the process P3’s store buffer, p′L can be transformed into pL by swapping
each flush return operation in p′L from its current position to the other possible one if
necessary.

An extended history is effective if it contains at least one return(,M3,) operation.
Otherwise, it is ineffective. The following lemma formalizes the idea describe above
and is proved in Appendix B.4.

Lemma 3. For a classic-lossy single-channel system S and two configurations (q1,W1),
(q2,W2) ∈ Confcs, if eh1 ∈ ehistory(JLS,q1,W1

, 3Kte) is an effective extended history
and eh1 ↑(Σcal∪Σret) ∈ history(JLS,q2,W2

, 3Kte), then eh1 ∈ ehistory(JLS,q2,W2
, 3Kte).

With the help of Lemma 3, we can prove that the history inclusion and the extended
history inclusion between the specific libraries coincide on the TSO memory model.

Lemma 4. For two configurations (q1,W1), (q2,W2) of a classic-lossy single-channel
system S, history(JLS,q1,W1

, 3Kte) ⊆ history(JLS,q2,W2
, 3Kte) if and only if ehistory

(JLS,q1,W1 , 3Kte) ⊆ ehistory(JLS,q2,W2 , 3Kte).

Proof. The if direction is obvious.
The only if direction can be proved by contradiction. Assume there is an extended

history eh1 such that eh1 ∈ ehistory(JLS,q1,W1
, 3Kte) but eh1 /∈ ehistory(JLS,q2,W2

, 3Kte).
We can see that the set of ineffective histories of LS,q1,W1 and LS,q2,W2 are the

same (see Lemma in Appendix B.5). By assumption, eh1 is not an ineffective extended
history of LS,q2,W2

, thus it is not an ineffective extended history of LS,q1,W1
. However,

eh1 is an extended history of LS,q1,W1
, so eh1 must be an effective extended history of

LS,q1,W1
.

Let history h = eh1 ↑(Σcal∪Σret). It is obvious that h ∈ history(JLS,q1,W1 , 3Kte).
Then, by assumption, h ∈ history(JLS,q2,W2 , 3Kte). By Lemma 3, eh1 ∈ ehistory(
JLS,q2,W2

, 3 Kte), which contradicts the assumption. ut
The undecidability of TSO-to-TSO linearizability for a bounded number of process-

es is a direct consequence of Lemmas 1, 2 and 4.

Theorem 1. For any two concurrent libraries L1 and L2, it is undecidable whether L2

TSO-to-TSO linearizes L1 for a bounded number of processes.

5 Conclusion and Future Work

We have shown that the decision problem of TSO-to-TSO linearizability is undecidable
for a bounded number of processes. The proof method is essentially by a reduction from

a known undecidable problem, the trace inclusion problem of a classic-lossy single-
channel system. To facilitate such a reduction, we introduced an intermediate notion
of history inclusion between concurrent libraries on the TSO memory model. We then
demonstrated that a configuration (q,W) of a classic-lossy single-channel system S can
be simulated by a specific library LS,q,W , interacting with three specific processes on
the TSO memory model. Although history inclusion does not coincide with extended
history inclusion in general, they do coincide on a restricted class of libraries. We prove
that LS,q,W lies within such class. Finally, our undecidability result follows from the
equivalence between extended history inclusion and TSO-to-TSO linearizability.

The problem of the linearizability between libraries on the SC memory model [8]
can be shown to be decidable for a bounded number of processes. This is due to the
provable equivalence between history inclusion and linearizability on the SC memory
model, while the former is decidable. Thus, our work states clearly a boundary of decid-
ability for linearizability of concurrent libraries on various memory models. In fact, as a
by-product of this work, we can show that the standard linearizability on TSO memory
model, which is the weaker notion of TSO-to-TSO linearizability without concerning
flush call and flush return operations, is already undecidable for a bounded number of
processes.

Other relaxed memory models, such as the memory models of POWER and ARM,
are much weaker than the TSO memory model. We conjecture that variants of lineariz-
ability on these relaxed memory models may also be reduced to some new forms of
extended history inclusion, similar to the variants of linearizability for C/C++ memory
model in [3], and these variants should also be undecidable. However, we find no clue
to the decision problem of TSO-to-SC linearizability for a bounded number of process-
es, since TSO-to-SC linearizability is between linearizability on the SC memory model
and TSO-to-TSO linearizability. As future work, we would like to investigate the de-
cidability of TSO-to-SC linearizability and other variants of linearizability for relaxed
memory models.

References

1. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for concurrent
objects. In: LICS 1996, pp. 219–228. IEEE Computer Society (1996)

2. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for
weak memory models. In: Hermenegildo, M. V., Palsberg, Jens. (eds.) POPL 2010, pp. 7–18.
ACM (2010)

3. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency. In: Gia-
cobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 235–248. ACM (2013)

4. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ concurrency. In:
Ball, T., Sagiv, M. (eds.) POPL 2011, pp. 55–66. ACM (2011)

5. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs against se-
quential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 290–309. Springer (2013)

6. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable Refinement Checking for Concur-
rent Objects. In: Rajamani, S. K., Walker, David. (eds.) POPL 2015, pp. 651–662. ACM
(2015)

7. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library correctness on
the TSO memory model. In: Seidl, H. (eds.) ESOP 2012. LNCS, vol. 7211, pp. 87–107.
Springer (2012)

8. Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. In:
Castagna, G. (eds.) ESOP 2009. LNCS, vol. 5502, pp. 252–266. Springer (2009)

9. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: Sequentially consistent specifi-
cations of TSO libraries. In: Aguilera, M. K. (eds.) DISC 2012. LNCS, vol. 7611, pp. 31–45.
Springer (2012)

10. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

11. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
program. IEEE Transactions on Computers 28(9), 690–691 (1979)

12. Liu, Y., Chen, W., Liu, Y.A., Sun, J., Zhang, S.J., Dong, J.S.: Verifying linearizability via
optimized refinement checking. IEEE Trans. Software Eng. 39(7), 1018–1039 (2013)

13. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Palsberg, J., Abadi, M. (eds.)
POPL 2005, pp. 378–391. ACM (2005)

14. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407.
Springer (2009)

15. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding POWER mul-
tiprocessors. In: Hall, M. W., Padua, D. A. (eds.) PLDI 2011, pp. 175–186. ACM (2011)

16. Schnoebelen, P.: Bisimulation and other undecidable equivalences for lossy channel systems.
In: Kobayashi, N.,Pierce, B. C. (eds.) TACS 2001, pp. 385–399. Springer (2001)

17. Vechev, M.T., Yahav, E., Yorsh, G.: Experience with model checking linearizability. In:
Pasareanu, C. S. (eds.) SPIN 2009. LNCS, vol. 5578, pp. 261–278. Springer (2009)

A Proofs In Section 3

A.1 Proof of Lemma 1

In this section we will prove that extended history inclusion is an equivalent charac-
terization of TSO-to-TSO linearizability. It is obvious that extended history inclusion
implies TSO-to-TSO linearizability. To prove the opposite direction, we need to prove
that if L2 TSO-to-TSO linearizes L1, eh1 ∈ ehistory(JL1, nKte), eh2 ∈ ehistory(JL2, n
Kte) and eh1 is TSO-to-TSO linearizable to eh2, then eh1 ∈ ehistory(JL2, nKte). Let us
use an example to explain how to prove the opposite direction shown in Figure 5. For
simplicity we assume that eh1 and eh2 contain only call and return operations. Here, a
time axis runs from left to right, and each method is associated with an interval.

M1

M2

M3

eh1 eh3 eh2

M1

M2

M3M1

M2

M3

Fig. 5. Transformation from eh1 to eh2

It is not hard to see that there are two differences between eh1 and eh2. The first
one is the order between return of M1 and call of M2, and the second one is the or-
der between return of M2 and call of M3. We can generate another extended history
eh3 from eh1 by swapping return of M1 and call of M2. It is easy to see that eh1

can be transformed to eh3 and eh3 can be transformed to eh2 by swapping one pair of
adjacent elements and do not violate TSO-to-TSO linearizability. We can obtain eh3

from eh2 by delaying return of M2 safely, since this transformation does not intro-
duce any new overlapping situation between operations. Therefore we can conclude
that eh3 ∈ ehistory(JL2, nKte). Similarly, eh1 ∈ ehistory(JL2, nKte).

Let Σei = {τ(i)} ∪ {read(i, x, d)|x ∈ X , d ∈ D} ∪ {write(i, x, d)|x ∈ X , d ∈
D} ∪ {cas(i, x, d1, d2)|x ∈ X , d1, d2 ∈ D} ∪ {flush(i, x, a)|x ∈ X , a ∈ D} ∪
{call(i,m, a)|m ∈M, a ∈ D} ∪ {return(i,m, a)|m ∈M, a ∈ D} ∪ {flushCall(i,m,
a)|m ∈ M, a ∈ D}∪ {flushReturn(i,m, a)|m ∈ M, a ∈ D}. Σei is the set of process
i’s operations in Σte. Let relation ER = ((Σret ∪Σfret)× (Σcal ∪Σfcal)) ∪ (Σe1×Σe1) ∪
. . . ∪ (Σen ×Σen). A transformation⇒ER is a relation between two extended histories
and it is defined as follows: eh1 ⇒ER eh2, if eh1 = l1 · α · β · l2, eh2 = l1 · β · α · l2 and
(α, β) /∈ ER. We write⇒∗ER to denote the transition closure of⇒ER.

Given two equivalent extended histories eh1 and eh2, we say that they correspond
by π, if π is a bijection between {1, . . . , |eh1|} and {1, . . . , |eh2|}, moreover for all i, j,
k, if j < k∧eh1(j), eh1(k) ∈ Σei, then π(j) < π(k). It is not hard to see that given two
equivalent extended histories eh1 and eh2, there exists only one such bijection. Given
two equivalent extended histories eh1 and eh2 and assume eh1 and eh2 correspond by
π, predicate eWit(eh1, eh2, i1, i2) holds if i1 < i2 and π−1(i1) > π−1(i2). Given
two equivalent extended histories eh1 and eh2, eWitSum(eh1, eh2) = |{(m,n)|eWit(eh1,

eh2,m, n) holds}| is a distance function which is used to measure difference between
eh1 and eh2.

The following lemma shows that if eWitSum(eh1, eh2) > 0, there must be a pair of
adjacent elements of eh2 such that the order of them on eh1 is different from the order
of them on eh2.

Lemma 5. Assume two equivalent extended histories eh1 and eh2 correspond by π. If
eWitSum(eh1, eh2) > 0, then there exists positive numberm ∈ {1, . . . , |eh2|}, π−1(m)
> π−1(m+ 1).

Proof. Let minDis = min{n − m|eWit(eh1, eh2,m, n) holds}. We know immediate-
ly that there exists a positive integer ind such that π−1(ind) > π−1(ind + minDis).
We need to prove that minDis = 1. It is obvious that minDis ≥ 1. Now we claim that
minDis ≤ 1. This can be seen by a case analysis, based on the various positions of
π−1(ind) and π−1(ind + 1). The former case is π−1(ind) < π−1(ind + 1). We can
find that π−1(ind + 1) > π−1(ind + minDis) and minDis ≤ minDis − 1. This case
does not hold. Thus the latter case of π−1(ind) > π−1(ind + 1) must hold. Thus
eWit(eh1, eh2, ind, ind + 1) holds and minDis ≤ 1. Therefore we can conclude that
minDis = 1. This completes the proof of Lemma 5. ut

With above lemma we can prove Lemma 6.

Lemma 6. If an extended history eh1 is TSO-to-TSO linearizable to an extended histo-
ry eh2 and eh1 6= eh2, then there exists an extended history eh3 such that: (1) eh3 ⇒ER

eh2, (2) eh1 is TSO-to-TSO linearizable to eh3, (3) eh3 is TSO-to-TSO linearizable to
eh2, (4) eWitSum(eh1, eh2) > eWitSum(eh1, eh3).

Proof. Because eh1 is TSO-to-TSO linearizable to eh2, eh1 and eh2 are equivalent.
Assume eh1 and eh2 correspond by π12. It is obvious that eWitSum(eh1, eh2) > 0. By
Lemma 5 there exists a positive integer m such that π−112 (m) > π−112 (m + 1). Assume
eh2 = l1 · eh2(m) · eh2(m+ 1) · l2.

By definition of TSO-to-TSO linearizability, the order of elements in (Σret ×Σcal)
∪ (Σfret ×Σcal) ∪ (Σfret ×Σfcal) ∪ (Σret ×Σfcal) ∪ (Σe1 ×Σe1) ∪ . . . ∪ (Σen ×Σen)
on eh1 is the same as that on eh2. Therefore, the process id of eh2(m) is different from
the process id of eh2(m + 1), and it is not the case that eh2(m) ∈ (Σcal ∪ Σfcal) and
eh2(m+ 1) ∈ (Σret ∪Σfret).

Let eh3 = l1 · eh2(m+1) · eh2(m) · l2. It is obvious that eh1 and eh3 are equivalent.
Assume eh1 and eh3 correspond by π13. Let us prove that eh1 is TSO-to-TSO lineariz-
able to eh3 by contradiction. Assume eh1 is not TSO-to-TSO linearizable to eh3. Thus
there must exist ind1, ind2, such that ind1 < ind2, π13(ind1) > π13(ind2), the process id
of eh1(ind1) is different from the process id of eh1(ind2), eh1(ind1) ∈ Σret ∪Σfret and
eh1(ind2) ∈ Σcal∪Σfcal. Recall that eh1 is TSO-to-TSO linearizable to eh2 and the only
difference between eh2 and eh3 is the order of eh2(m) and eh2(m + 1). Therefore the
only candidate for ind1 and ind2 is π−112 (m+ 1) and π−112 (m). But it is not the case that
eh2(m) ∈ (Σcal∪Σfcal) ∧ eh2(m+1) ∈ (Σret∪Σfret). This contradicts our assumption.

Now we prove that eh3 is TSO-to-TSO linearizable to eh2 by contradiction. Assume
eh3 is not TSO-to-TSO linearizable to eh2. Recall that the only difference between eh2

and eh3 is the order between eh2(m) and eh2(m + 1). Thus we can conclude that
eh2(m) ∈ (Σcal ∪Σfcal) ∧ eh2(m + 1) ∈ (Σret ∪Σfret). But we already know it is not
the case that eh2(m) ∈ (Σcal ∪Σfcal) and eh2(m+1) ∈ (Σret ∪Σfret). This contradicts
our assumption.

At last we prove that eWitSum(eh1, eh2) > eWitSum(eh1, eh3). This holds for two
reasons. First, the only difference between eh2 and eh3 is the order between eh2(m)
and eh2(m+1). Second, the order between eh2(m) and eh2(m+1) is the same on eh1

and eh3. ut

With Lemma 6 we can prove that if eh1 is TSO-to-TSO linearizable to eh2 then eh2

can be generated from eh1 by finite number of⇒ER transformations.

Lemma 7. If eh1 is TSO-to-TSO linearizable to eh2, then eh1 ⇒∗ER eh2.

Proof. Repeatedly apply Lemma 6. This iteration will finally stop because the value of
distance function eWitSum is a non-negative integer, and it decreases during each step
of iteration. ut

The following lemma states that given a trace of JL, nKte, a call operation β of
process i and a corresponding operation α that changes position from qc to q′c and uses
havoc command to set values of register rf for β on that trace, we can move α and β
forward over successive operations that are not in (Σcal ∪Σret ∪Σfcal ∪Σfret) ∩Σei to
obtain another trace of JL, nKte. We can also move α forward and move β backward
over successive operations that are not in (Σcal ∪ Σret ∪ Σfcal ∪ Σfret) ∩ Σei to obtain
another trace of JL, nKte.

Lemma 8. If t1 = l1 · l2 ·α · l3 · β · l4 ∈ trace(JL, nKte), β ∈ Σcal ∩Σei, α ∈ Σei is the
corresponding operation that uses havoc command to set value of rf for β, and there is
no (Σcal ∪Σret ∪Σfcal ∪Σfret)∩Σei operation in l2 · l3, then t2 = l1 ·α · β · l2 · l3 · l4 ∈
trace(JL, nKte).

If t3 = l1 · l2 · α′ · β′ · l3 · l4 ∈ trace(JL, nKte), β′ ∈ Σcal ∩ Σei, α′ ∈ Σei is the
corresponding operation that uses havoc command to set value of rf for β′, and there
is no (Σcal∪Σret∪Σfcal∪Σfret)∩Σei operation in l2 · l3, then t4 = l1 ·α′ · l2 · l3 ·β′ · l4 ∈
trace(JL, nKte).

Proof. Assume β = call(i,m, g) and the path for t1 is path1 = q0
α1−→te q1 . . .

αm−→te qm
αm+1−→te . . .

αm+u−→te qm+u
α−→te qm+u+1

αm+u+1−→ te . . .
αm+u+v−→ te qm+u+v+1

β−→te qm+u+v+2
αm+u+v+1−→ te

. . .
αm+u+v+k−→ te qm+u+v+k+2, where q0 = InitConfte, α1 · . . . · αm = l1, αm+1 . . . αm+u = l2,

αm+u+1 . . . αm+u+v = l3 and αm+u+v+1 . . . αm+u+v+k = l4. Let each configuration qj =
(pj , dj , uj , rj). Assume um+u+v+1(i) = l and rm+u+1(i) = rv. Let us construct a new

path path2 = q0
α1−→te q1 . . .

αm−→te qm
α−→te q

′
m+1

β−→te q
′
m+2

αm+1−→te . . .
αm+u−→te q

′
m+u+2

αm+u+1−→ te . . .
αm+u+v−→ te qm+u+v+2

αm+u+v+1−→ te qm+u+v+3 . . .
αm+u+v+k−→ te qm+u+v+k+2, where q′m+1 =

(pm[i : q′c], dm, um, rm[i : rv]), q′m+2 = (pm[i : im], dm, um[i : call(m, g) · l], rm[i :
rv]), for each 1 ≤ j ≤ u, q′m+j+2 = (pm+j[i : im], dm+j, um+j[i : call(m, g)·l], rm+j[i : rv])
and for each 1 ≤ j ≤ v, q′m+u+j+2 = (pm+u+j+1[i : im], dm+u+j+1, um+u+j+1[i : call(m, g) ·
l], rm+u+j+1). It is not hard to see that path2 is a path of JL, nKte and is the path for t2.

Assume β′ = call(i,m, g) and the path for t3 is path3 = q0
α1−→te q1 . . .

αm−→te qm
αm+1−→te . . .

αm+u−→te qm+u
α′

−→te qm+u+1
β′

−→te qm+u+2
αm+u+1−→ te . . .

αm+u+v−→ te qm+u+v+2
αm+u+v+1−→ te

. . .
αm+u+v+k−→ te qm+u+v+k+2, where q0 = InitConfte, α1 · . . . · αm = l1, αm+1 . . . αm+u = l2,

αm+u+1 . . . αm+u+v = l3 and αm+u+v+1 . . . αm+u+v+k = l4. Let each configuration qj =
(pj , dj , uj , rj). Assume um+u(i) = l and rm+u+1(i) = rv. Let us construct a new path

path4 = q0
α1−→te q1 . . .

αm−→te qm
α′

−→te q
′
m+1

αm+1−→te . . .
αm+u−→te q

′
m+u+1

αm+u+1−→ te . . .
αm+u+v−→ te

q′m+u+v+1
β′

−→te qm+u+v+2
αm+u+v+1−→ te qm+u+v+3 . . .

αm+u+v+k−→ te qm+u+v+k+2, where q′m+1 = (pm[i :
q′c], dm, um, rm[i : rv]), for each 1 ≤ j ≤ u, q′m+j+1 = (pm+j[i : q

′
c], dm+j, um+j, rm+j[i :

rv]) and for each 1 ≤ j ≤ v, q′m+u+j+1 = (pm+u+j+2[i : q′c], dm+u+j+2, um+u+j+2[i :
l], rm+u+j+2). It is not hard to see that path4 is a path of JL, nKte and is the path for t4.

ut
Similarly we can move return operation of process i and the next operation of pro-

cess i and generate a new trace.

Lemma 9. If t1 = l1 ·α · l2 · β · l3 · l4 ∈ trace(JL, nKte), α ∈ Σret ∩Σei, β ∈ Σei is the
next operation of process i, and there is no (Σcal ∪Σret ∪Σfcal ∪Σfret) ∩Σei operation
in l2 · l3, then t2 = l1 · l2 · l3 · α · β · l4 ∈ trace(JL, nKte).

If t3 = l1 · α′ · l2 · l3 · β′ · l4 ∈ trace(JL, nKte), α′ ∈ Σret ∩Σei, β′ ∈ Σei is the next
operation of process i, and there is no (Σcal ∪ Σret ∪ Σfcal ∪ Σfret) ∩ Σei operation in
l2 · l3, then t4 = l1 · l2 · α′ · β′ · l3 · l4 ∈ trace(JL, nKte).

If t5 = l1 · α′′ · l2 · l3 ∈ trace(JL, nKte), α′′ ∈ Σret ∩ Σei and there is neither
(Σcal∪Σret∪Σfcal∪Σfret)∩Σei operation nor operation that changes program position
from qc to q′c of process i in l2, then t6 = l1 · l2 · α′′ · l3 ∈ trace(JL, nKte).

Similarly we can move flush call and flush return operations and generate a new
trace.

Lemma 10. If t1 = l1 · l2 · α · l3 ∈ trace(JL, nKte), α ∈ Σfcal ∩ Σei and there is no
(Σcal∪Σret∪Σfcal∪Σfret)∩Σei operation in l2, then t2 = l1 ·α · l2 · l3 ∈ trace(JL, nKte).

If t3 = l1 · β · l2 · l3 ∈ trace(JL, nKte), β ∈ Σfret ∩Σei and there is no (Σcal ∪Σret ∪
Σfcal ∪Σfret) ∩Σei operation in l2, then pt4 = l1 · l2 · β · l3 ∈ trace(JL, nKte).

Proof. Assumeα = flushCall(i,m, g) and the path for t1 is path1 = q0
α1−→te q1 . . .

αm−→te

qm
αm+1−→te . . .

αm+u−→te qm+u
α−→te qm+u+1

αm+u+1−→ te . . .
αm+u+v−→ te qm+u+v+1, where q0 = InitConfte,

α1 · . . . · αm = l1, αm+1 . . . αm+u = l2 and αm+u+1 . . . αm+u+v = l3. Let each con-
figuration qj = (pj , dj , uj , rj). Because there is no Σcal ∩ Σei operation in l2, the
corresponding call operation for α is in l1. Assume um+u+1(i) = l. Let us construc-
t a new path path2 = q0

α1−→te q1 . . .
αm−→te qm

α−→te q
′
m+1

αm+1−→te . . .
αm+u−→te q

′
m+u+1

αm+u+1−→ te qm+u+2 . . .
αm+u+v−→ te qm+u+v+1, where q′m+1 = (pm, dm, um[i : l], rm) and for each

1 ≤ j ≤ u, q′m+j+1 = (pm+j, dm+j, um+j[i : l], rm+j). It is not hard to see that path2 is a
path of JL, nKte and is the path for t2.

Assume β = flushReturn(i,m, g) and the path for t3 is path3 = q0
α1−→te q1 . . .

αm−→te

qm
β−→te qm+1

αm+1−→te . . .
αm+u−→te qm+u+1

αm+u+1−→ te . . .
αm+u+v−→ te qm+u+v+1, where q0 = InitConfte,

α1 · . . . · αm = l1, αm+1 . . . αm+u = l2 and αm+u+1 . . . αm+u+v = l3. Let each con-
figuration qj = (pj , dj , uj , rj). The corresponding return operation for β is in l1.

Assume um+1(i) = l. Let us construct a new path path4 = q0
α1−→te q1 . . .

αm−→te qm
αm+1−→te . . .

αm+u−→te q
′
m+u

β−→te qm+u+1
αm+u+1−→ te qm+u+2 . . .

αm+u+v−→ te qm+u+v+1, where for each
1 ≤ j ≤ u, q′m+j = (pm+j+1, dm+j+1, um+j+1[i : l · return(m, g)], rm+j+1). It is not hard to
see that path4 is a path of JL, nKte and is the path for t4. ut

With above lemmas we can prove the following lemma.

Lemma 11. If eh1 ⇒ER eh2 ∧ eh2 ∈ ehistory(JL, nKte), then eh1 ∈ ehistory(JL, nKte).

Proof. There exists a trace t2 ∈ trace(JL, nKte) such that t2 ↑(Σcal∪Σret∪Σfcal∪Σfret)=
eh2. We will construct a trace t1 and prove t1 have the following properties: t1 ∈
trace(JL, nKte) and t1 ↑(Σcal∪Σret∪Σfcal∪Σfret)= eh1.

Assume t2 = l1 · β · l2 · α · l3, β is the operation of process i, and eh1 ⇒ER eh2 by
swapping α and β. By definition of⇒ER, there is no Σcal∪Σret∪Σfcal∪Σfret operation
in l2, and it is not the case that (α ∈ Σret ∪Σfret) ∧ (β ∈ Σcal ∪Σfcal).

- If β ∈ Σcal ∪Σfcal ∪Σref ∪Σfret and α ∈ Σcal, let γ be the operation that executes
havoc command to set rf for α, and either t2 = l1 · β · l′2 · γ · l′′2 · α · l3 or
t2 = l′1 · γ · l′′1 · β · l2 · α · l3.
If t2 = l1 · β · l′2 · γ · l′′2 · α · l3, by Lemma 8, t1 = l1 · γ · α · β · l′2 · l′′2 · l3 holds as
required. If t2 = l′1 · γ · l′′1 · β · l2 · α · l3, by Lemma 8, t1 = l′1 · l′′1 · γ · α · β · l2 · l3
holds as required.

- If β ∈ Σcal ∪Σfcal ∪Σret ∪Σfret and α ∈ Σfcal, by Lemma 10, t1 = l1 ·α · β · l2 · l3
holds as required.

- If β ∈ Σret and α ∈ Σret ∪ Σfret, then the sequence of t2 is of the following three
forms: (1)t2 = l1 · β · l′2 · γ · l′′2 ·α · l3 where γ is the next operation of β on process
i, (2) t2 = l1 · β · l2 · α · l′3 · γ · l′′3 , and (3) t2 = l1 · β · l2 · α · l3 and such γ does
not exists.
(1) If t2 = l1 ·β · l′2 · γ · l′′2 ·α · l3, by Lemma 9, t1 = l1 · l′2 · l′′2 ·α ·β · γ · l3 holds as
required. (2) If t2 = l1 ·β · l2 ·α · l′3 ·γ · l′′3 , by Lemma 9, t1 = l1 · l2 ·α ·β ·γ · l′3 · l′′3
holds as required. (3) If t2 = l1 ·β · l2 ·α · l3 and such γ does not exists, by Lemma
9, t1 = l1 · l2 · α · β · l3 holds as required.

- If β ∈ Σfret and α ∈ Σret ∪Σfret, then by Lemma 10, t1 = l1 · l2 · α · β · l3 holds as
required.

Therefore, trace t1 can be constructed as required for all situations, this completes the
proof. ut

Now we can prove that extended history inclusion is an equivalent characterization
of TSO-to-TSO linearizabilty.

Lemma 1. For any two libraries L1 and L2, L2 TSO-to-TSO linearizes L1 if and only
if ehistory(JL1, nKte) ⊆ ehistory(JL2, nKte).

Proof. The if direction is obvious, the only if direction can be easily proved by Lemma
7 and Lemma 11. ut

A.2 Proof of Proposition 1

Similarly as Appendix A.1 we can prove that history inclusion is an equivalent charac-
terization ofstandard linearizability on TSO and SC memory models. Let relation R =
(Σret × Σcal) ∪ (Σe1 × Σe1) ∪ . . . ∪ (Σen × Σen). A transformation⇒R is a relation
between two histories and it is defined as follows: h1 ⇒R h2, if h1 = l1 · α · β · l2,
h2 = l1 · β · α · l2 and (α, β) /∈ R. We write ⇒∗R to denote the transition closure
of ⇒R. Given two equivalent histories h1 and h2, we say that they correspond by π,
if π is a bijection between {1, . . . , |h1|} and {1, . . . , |h2|}, moreover for all i, j, k, if
j < k ∧ h1(j), h1(k) ∈ Σei, then π(i) < π(j). It is not hard to see that given two e-
quivalent histories h1 and h2, there exists only one such bijection. Given two equivalent
histories h1 and h2 and assume h1 and h2 correspond by π, predicate wit(h1, h2, i1, i2)
holds if i1 < i2 and π−1(i1) > π−1(i2). Given two equivalent histories h1 and h2,
witSum(h1, h2) = |{(m,n)|wit(h1, h2,m, n) holds}| is a distance function which is
used to measure difference between h1 and h2.

The following lemmas are similar to those in Appendix A.1. They can be similarly
proved and we omit their proofs here.

Lemma 12. Assume two equivalent histories h1 and h2 correspond by π. If witSum(h1,
h2) > 0, then there exists positive numberm ∈ {1, . . . , |eh2|}, π−1(m) > π−1(m+1).

Lemma 13. If a history h1 is linearizable to a history h2 and h1 6= h2, then there exists
a history h3 such that: (1) h3 ⇒R h2, (2) h1 is linearizable to h3, (3) h3 is linearizable
to h2, (4) witSum(h1, h2) > witSum(h1, h3).

Lemma 14. If h1 is linearizable to h2, then h1 ⇒∗ER h2.

Lemma 15. Given x ∈ {te, sc}. If h1 = l1 · l2 · α · l3 ∈ history(JL, nKx), α ∈ Σcal ∩
Σei and there is no (Σcal ∪ Σret) ∩ Σei operation in l2, then h2 = l1 · α · l2 · l3 ∈
history(JL, nKx). If h3 = l1 · β · l2 · l3 ∈ history(JL, nKx), β ∈ Σret ∩ Σei and there is
no (Σcal ∪Σret) ∩Σei operation in l2, then h4 = l1 · l2 · β · l3 ∈ history(JL, nKx).

Lemma 16. Given x ∈ {te, sc}. h1 ⇒R h2 ∧ h2 ∈ history(JL, nKx), then h1 ∈
history(JL, nKx).

Proposition 1. For any two libraries L1 and L2, L1 is linearizable with respect to L2

on TSO (SC) if and only if history(JL1, nKte) ⊆ history(JL2, nKte) (history(JL1, nKsc) ⊆
history(JL2, nKsc)).

Proof. The if direction is obvious, the only if direction can be easily proved by Lemma
14 and Lemma 16. ut

B Proofs In Section 4

Notation. Given a path p = q1
α1−→ q2 . . .

αk−→ qk+1, we use pathtoTrace(p) to denote
the sequence α1 · α2 · . . . · αk.

B.1 Proof of Lemma 2

To prove Lemma 2, we present the following two lemmas and prove them in Appendix
B.2 and B.3 respectively.

Lemma 17. Given a classic-lossy single-channel system S and two configurations (q1,
W1), (q1, W2) ∈ Confcs, if history(JLS,q1,W1 , 3Kte) ⊆ history(JLS,q2,W2 , 3Kte), then
trace(CL(S), (q1,W1)) ⊆ trace(CL(S), (q2,W2)).

Lemma 18. Given a classic-lossy single-channel system S and two configurations (q1,
W1), (q1, W2) ∈ Confcs, if trace(CL(S), (q1,W1)) ⊆ trace(CL(S), (q2,W2)), then
history(J LS,q1,W1

, 3Kte) ⊆ history(JLS,q2,W2
, 3Kte).

Now we can prove that history inclusion is undecidable for a bounded number of
processes on TSO.

Lemma 2. For any two librariesL1 andL2, it is undecidable whether history(JL1, 3Kte)
⊆ history(JL2, 3Kte).

Proof. Given a classic-lossy single-channel system S and two configurations (q1,W1),
(q1, W2) ∈ Confcs, by Lemma 17 and Lemma 18 the trace inclusion problem between
(q1,W1) and (q2,W2) can be reduced to whether history(J LS,q1,W1 , 3Kte) ⊆ history(J
LS,q2,W2 , 3Kte). According to [16] trace inclusion between configurations of CL(S) is
undecidable. ut

B.2 Proof of Lemma 17

The definition of effective trace is recalled here. We say a trace t ∈ trace(JLS,q,W , 3Kte)
is effective, if t contains at least one return(,M3,) operation. Otherwise, we say t is
ineffective. Given an effective trace t ∈ trace(JLS,q,W , 3Kte), we say that 〈p1, p2, p3〉 is
the process indexes of t, if ∃i1, i2, i3, such that (1) t(i1) = call(p1,M1,), (2) t(i2) =
call(p2,M2,), (3) t(i3) = return(p3,M3,), and (4) i1 < i3 ∧ i2 < i3. Intuitively
〈p1, p2, p3〉 is the process indexes of t, if the working M1 and M2 run on process p1
and process p2 respectively, and M3 repeatedly runs on process p3. We say that an
effective trace t ∈ trace(JLS,q,W , 3Kte) has k rounds, if there are k return(,M3,)
operations on t.

Given an effective trace t ∈ trace(JLS,q,W , 3Kte) with process indexes 〈p1, p2, p3〉
and k rounds, we say that j-th (j ≤ k) round of M2 starts at t(i1) and ends at t(i2),
if the operation of t(i1) starts to execute Line 1 or Line 4 in M2 of process p2 for the
j-th time, and the operation of t(i2) ends the execution of Line 2 or Line 13 in M2 of
process p2 for the j-th time.

The following lemma states that “the sets of ineffective histories of each LS,q,W are
the same”.

Lemma 19. Given a classic-lossy single-channel system S and two configurations (q1,
W1), (q2, W2) ∈ Confcs, {h|h ∈ history(JLS,q1,W1 , 3Kte), h is ineffective} is equal to
{h|h ∈ history(J LS,q2,W2

, 3Kte), h is ineffective}.

Proof. Recall that M1 and M2 never return, and an ineffective history does not contain
any return operation of M3. Therefore, an ineffective history h contains at most three
operations and all operations in it are call operations. The number of candidate for
ineffective histories is finite, and for each configuration (q,W) ∈ Confcs it is not hard
to see that each candidate ineffective history belongs to history(JLS,q,W , 3Kte). ut

We reproduce the definition of conservative here. Given a path p = (q1,W1)
α1−→cs

(q2,W2) . . .
αk−→cs (qk+1,Wk+1)∈ path(CL(S), (q1,W1)), we say that p is conservative,

if the following conditions hold: (1) it contains at least one transition, (2) assume i-th
transition uses rule ri = (qi, Ui, αi, qi+1, Vi), then for each i, there exists W ′i ,W

′′
i ∈

Σ∗cs, such that Ui ·W ′i v Wi, W ′′i v W ′i and Wi+1 = W ′′i · Vi. Intuitively, each step of
a conservative path does not lose any element in Vi.

The following lemma states that the concept conservative does not restrict traces of
CL(S) substantially.

Lemma 20. ∀p ∈ path(CL(S), (q1,W1)) with at least one transition, there exists a
conservative path p′ ∈ path(CL(S), (q1,W1)), such that pathtoTrace(p) = pathtoTrace
(p′).

Proof. We generate p′ from p step by step. Intuitively, assume the i-th transition of p
uses rule ri = (qi, Ui, αi, qi+1, Vi) and some element in Vi is lost in i-th transition of p,
then such element is kept in i-th transition of p′ and will be lost in the i+1-th transition
of p′.

Assume path p = (q1,W1)
α1−→cs (q2,W2) . . .

αk−→cs (qk+1,Wk+1), for each 1 ≤ i ≤
k, i-th transition uses rule ri = (qi, Ui, αi, qi+1, Vi), ∃W ′i , such that Ui ·W ′i v Wi and
Wi+1 vW ′i · Vi. By definition of→cs, for each 1 ≤ i ≤ k, there exist W ′′i and V ′i , such
that Wi+1 =W ′′i · V ′i , W ′′i vW ′i and V ′i v Vi.

Let path p′ = (q1,NW1)
α1−→cs (q2,NW2) . . .

αk−→cs (qk+1,NWk+1), where NW1 =
W1, and for each 1 < i ≤ k, NWi+1 =W ′′i · Vi.

It is not hard to see that for each 1 ≤ i ≤ k, Wi+1 =W ′′i · V ′i v NWi+1. So for each
1 ≤ i ≤ k, we can prove that Ui ·W ′i vWi v NWi and NWi+1 =W ′′i ·Vi vW ′i ·Vi. By
definition of→cs, p′ ∈ path(CL(S), (q1,W1)), and pathtoTrace(p) = pathtoTrace(p′)
holds trivially. ut

Given an effective trace t ∈ trace(JLS,q,W , 3Kte) and a conservative path p ∈
path(CL(S), (q,W)), we say t and p correspond, if the sequence of return values of
M3 in t is the same as the sequence of transition labels of p.

The following lemma states the claim: for each conservative path of CL(S) that
starts from (q,W), there exists an effective trace of JLS,q,W , 3Kte that corresponds to
the path. This lemma is proved by constructing a trace in JLS,q,W , 3Kte step by step.

Lemma 21. Given a conservative path pS ∈ path(CL(S), (q,W)), there exists an ef-
fective trace tL ∈ trace(JLS,q,W , 3Kte) such that t and p correspond.

Proof. Assume pS = (q1,W1)
α1−→cs (q2,W2)

α2−→cs . . .
αk−→cs (qk+1,Wk+1), where (1)

(q1,W1) = (q,W), (2) for each i, the i-th transition uses rule ri = (qi, Ui, αi, qi+1, Vi),
(3) for each i, ∃W ′i ,W ′′i , such that Ui ·W ′i vWi, W ′′i vW ′i and Wi+1 =W ′′i · Vi.

Let us sketch how to construct a path pL ∈ path(JLS,q,W , 3Kte) that starts at InitConfte
and simulates k transitions on pS . Thus pathtoTrace(pL) and pS correspond.

From InitConfte, we need to perform the following operations in sequence:

- Call M1 in process 1 and call M2 in process 2.
- Run M2 until M2 finishes its first round. M2 write r1 · start ·W1 · end to x and no

flush operation of process 2 happens during this period.

To simulate the i-th (1 ≤ i ≤ k) transition of pS , we need to perform the following
operations in sequence:

- Call M3 in process 3. No flush operation happens during this period.
- Run M2 until M2 finishes its i+1-th round. M2 reads ri · start · Ui · W ′′i · end

from y and writes ri+1 · start ·W ′′i · Vi · end to x (in the case of i = k, M2 write
rulef · start ·W ′′k · Vk · end instead). Then M2 transmits transition label αi to M3

and M3 returns αi. Since Wi+1 is equal to W ′′i · Vi, M2 writes Wi+1 to x while it
simulates the i-th transition of pS .

It is obvious that pL holds as required. This completes the proof of Lemma 21. ut

The following lemma states that for each effective trace t of JLS,q,W , 3Kte there
exists a conservative path p of CL(S) such that t and p correspond.

Lemma 22. For each effective trace tL ∈ trace(JLS,q,W , 3Kte), there exists a conser-
vative path pS ∈ path(CL(S), (q,W)) such that tL and pS correspond.

Proof. There exists a path pL ∈ path(JLS,q,W , 3Kte) such that tL = pathtoTrace(pL). It
is easy to see that the sequence of values of x which is read by M1 in its i-th round is
a subword of the the sequence of values of x which is written by M2 in its i-th round.
And the sequence of values of y which is read by M2 in its i+1-th round is a subword
of the the sequence of values of y which is written by M1 in its i-th round.

Assume tL has k rounds, and for each 1 ≤ i ≤ k, M2 guesses rule ri = (qi, Ui, αi,
qi+1, Vi) in its i-th round.M2 writes r1 ·start ·W ·end to x during its first round. Assume
for each 1 < i ≤ k, M2 reads ri · start ·Ui ·L′i · end from y during its i+1-th round and
writes ri · start · L′i · Vi · end to x during its i+1-th round.

Let path pS = (q,W)
α1−→cs (q2, L

′
1 · V1)

α2−→cs . . .
αk−→cs (qk+1, L

′
k · Vk). It is not

difficult to see that pS ∈ path(CL(S), (q,W)) and pS is conservative. Therefore, tL
and pS correspond. ut

With Lemma 20, Lemma 21 and Lemma 22, we can now prove Lemma 17 as fol-
lows.

Lemma 17. Given a classic-lossy single-channel system S and two configurations (q1,
W1), (q1, W2) ∈ Confcs, if history(JLS,q1,W1 , 3Kte) ⊆ history(JLS,q2,W2 , 3Kte), then
trace(CL(S), (q1,W1)) ⊆ trace(CL(S), (q2,W2)).

Proof. By contradiction. Assume history(JLS,q1,W1
, 3Kte) ⊆ history(JLS,q2,W2

, 3Kte)
but trace(CL(S), (q1,W1)) is not a subset of trace(CL(S), (q2,W2)). Thus there must
exists a trace tS1, such that tS1 ∈ trace(CL(S), (q1,W1)) and tS1 /∈ trace(CL(S), (q2,
W2)). It is clear that tS1 6= ε.

Let pS1 ∈ path(CL(S), (q1,W1)) such that pathtoTrace(pS1) = tS1. According to
Lemma 20 we can safely assume that pS1 is conservative. According to Lemma 21 there
exists an effective trace tL1 ∈ trace(JLS,q1,W1

, 3Kte), such that tL1 and pS1 correspond.
Let history h = tL1 ↑(Σcal∪Σret). It is obvious that h ∈ history(JLS,q1,W1

, 3Kte) and
by assumption h ∈ history(JLS,q2,W2

, 3Kte).
There exists a trace tL2 ∈ trace(JLS,q2,W2

, 3Kte) such that h = tL2 ↑(Σcal∪Σret).
It is obvious that tL2 is effective. According to Lemma 22, there exists a conserva-
tive path pS2 ∈ path(CL(S), (q2,W2)) such that tL2 and pS2 correspond. Let trace
tS2 = pathtoTrace(pS2). Thus tS2 ∈ trace(CL(S), (q2,W2)) by its definition. Be-
cause the sequence of return values of M3 in tL1 is same to that in tL2, tL1 and pS1
correspond, and tL2 and pS2 correspond, we can obtain that tS1 = tS2 and tS1 ∈
trace(CL(S), (q2,W2)), which contradicts our assumption. ut

B.3 Proof of Lemma 18

Given a operation α ∈ Σte, we say another operation β ∈ Σte is generated from α by
changing process id to j, if:

- If α = τ(i), then β = τ(j).
- For each x, a, if α = read(i, x, a), then β = read(j, x, a).
- For each x, a, if α = write(i, x, a), then β = write(j, x, a).
- For each x, a, b, if α = cas(i, x, a, b), then β = cas(j, x, a, b).
- For each x, a, if α = flush(i, x, a), then β = flush(j, x, a).
- For each m, a, if α = call(i,m, a), then β = call(j,m, a).
- For each m, a, if α = return(i,m, a), then β = return(j,m, a).
- For each m, a, if α = flushCall(i,m, a), then β = flushCall(j,m, a).
- For each m, a, if α = flushReturn(i,m, a), then β = flushReturn(j,m, a).

Given a trace t = α1 . . . αk, we write t[i/j] for another trace t′ which satisfies the
following conditions:

- t′ = α′1 . . . α
′
k.

- ∀1 ≤ ind ≤ k, if process id of αind is not j, then α′ind= αind.
- ∀1 ≤ ind ≤ k, if process id of αind is j, then α′ind is generated from αind by changing

process id to i.

Given a trace t = α1 . . . αk, we write t[i1/j1, i2/j2, i3/j3] for another trace t′ which
satisfies the following conditions:

- t′ = α′1 . . . α
′
k.

- ∀1 ≤ ind ≤ k, if process id of αind is j1, then α′ind is generated from αind by
changing process id to i1.

- ∀1 ≤ ind ≤ k, if process id of αind is j2, then α′ind is generated from αind by
changing process id to i2.

- ∀1 ≤ ind ≤ k, if process id of αind is j3, then α′ind is generated from αind by
changing process id to i3.

- Otherwise, α′ind = αind.

A return(i,m, a) operation matches a call operation call(j, n, b) if i = j ∧m = n.
Given a history h, a call operation h(i) is a pending if h(j) does not match h(i) for each
j > i.

Lemma 23. Assume t1 is an effective trace of JLS,q1,W1 , 3Kte with process indexes
〈i1, i2, i3〉, t2 is an effective trace of JLS,q2,W2 , 3Kte with process indexes 〈j1, j2, j3〉,
and (t1 ↑(Σei3∩Σret))[j3/i3] = t2 ↑(Σej3∩Σret). Thus there exists an effective trace t3 of
JLS,q2,W2

, 3Kte, such that t3 ↑(Σcal∪Σret) = t1 ↑(Σcal∪Σret).

Proof. Let history h2 = t2 ↑(Σcal∪Σret). An sequence h′2 can be generated from h2 as
follows:

- Transform the process id of each operation from j1 (j2, j3) to i1 (i2, i3).
- Remove the pending call operation of process i3 if it exists.
- If there is a pending call operation of process i3 in t1, then append this operation to

the tail.

It is obvious that h′2 is a history of JLS,q2,W2
, 3Kte and h′2 ↑Σeik

= t1 ↑(Σcal∪Σret)∩Σeik

for 1 ≤ k ≤ 3. The first three call and return operations of h′2 must be call(i1,M1,),
call(i2,M2,) and call(i3,M3,) operations, and process i1 and i2 does not have return
operations. Let trace t′2 be the trace of JLS,q2,W2

, 3Kte where h′2 = t′2 ↑(Σcal∪Σret). By
Lemma 8 we can move positions of these three call operations and generate a trace t3
from t′2, where t3 is a trace of JLS,q2,W2

, 3Kte and t3 ↑(Σcal∪Σret) = t1 ↑(Σcal∪Σret).
ut

With above lemmas we can prove Lemma 18.

Lemma 18. Given a classic-lossy single-channel system S and two configurations (q1,
W1), (q1, W2) ∈ Confcs, if trace(CL(S), (q1,W1)) ⊆ trace(CL(S), (q2,W2)), then
history(J LS,q1,W1

, 3Kte) ⊆ history(JLS,q2,W2
, 3Kte).

Proof. We prove it by contradiction. Assume trace(CL(S), (q1,W1)) ⊆ trace(CL(S),
(q2,W2)) but history(JLS,q1,W1 , 3Kte) is not a subset of history(JLS,q2,W2 , 3Kte). Then
there must exists a history hL1, such that hL1 ∈ history((JLS,q1,W1 , 3Kte) and hL1 /∈
history(J LS,q2,W2

, 3Kte).
According to Lemma 19 there exists an effective trace tL1 ∈ trace(J LS,q1,W1

, 3Kte)
such that tL1 ↑(Σcal∪Σret) = hL1. According to Lemma 22, there is a conservative path
pS1 ∈ path(CL(S), (q1,W1)) such that tL1 and pS1 correspond. We can obtain trace
tS = pathtoTrace (pS1). By assumption tS ∈ trace(CL(S), (q2,W2)).

There exists a path pS2 ∈ path(CL(S), (q2,W2)) such that tS = pathtoTrace(pS2).
By Lemma 20 we can assume that pS2 is conservative. By Lemma 21, there exists an

effective trace tL2 ∈ trace(JLS,q2,W2
, 3Kte), such that tL2 and pS2 correspond. It is ob-

vious that the return values of M3 of tL1 and tL2 are equal. Therefore, by Lemma 23
there is a trace t′L2 ∈ trace(JLS,q2,W2 , 3Kte), such that tL1 ↑(Σcal∪Σret) = t′L2 ↑(Σcal∪Σret).
Recall that hL1 = tL1 ↑(Σcal∪Σret), thus hL1 ∈ history(JLS,q2,W2 , 3Kte), which contra-
dicts our assumption. ut

B.4 Proof of Lemma 3

Lemma 3. For a classic-lossy single-channel system S and two configurations (q1,W1),
(q2,W2) ∈ Confcs, if eh1 ∈ ehistory(JLS,q1,W1

, 3Kte) is an effective extended history
and eh1 ↑(Σcal∪Σret) ∈ history(JLS,q2,W2

, 3Kte), then eh1 ∈ ehistory(JLS,q2,W2
, 3Kte).

Proof. Given an effective trace eh1 ∈ ehistory(JLS,q1,W1 , 3Kte) with processes indexes
〈i1, i2, i3〉, it is not hard to see the following observations:

- The first six operations of eh1 must be call(,M1,), call(,M2,), call(,M3,),
and three corresponding flush call operations. The can be in any arbitrary orders.

- Since M1 and M2 never return, after the first six operations, the remaining opera-
tions of eh1 come from process i3.

- Since M3 always uses a cas operation before it returns, each flush call operation
of M3 can occur before return operation of M3. Because M3 does not insert any
pending write operation into the process i3’s store buffer, each flush return oper-
ation may occur alternatively at two positions: the first position is after the return
operation of M3 and before the next round of a call operation of M3, and the sec-
ond one is after the next round of a call operation of M3 and before the consequent
flush call operation.

Given an effective trace eh1 ∈ ehistory(JLS,q1,W1 , 3Kte), there exists an effec-
tive trace tL1 ∈ trace(JLS,q1,W1

, 3Kte) such that eh1 = tL1 ↑(Σcal∪Σret∪Σfcal∪Σfret) and
its process indexes is 〈i1, i2, i3〉. By Lemma 22 there exists a conservative path pS
such that tL1 and pS correspond. Let pS = (q̂1, Ŵ1)

α1−→cs (q̂2, Ŵ2)
α2−→cs . . .

αk−→cs

(q̂k+1, Ŵk+1), where (1) (q̂1, Ŵ1) = (q1,W1), (2) for each i, the i-th transition us-
es rule ri = (qi, Ui, αi, qi+1, Vi), and (3) for each t, there exist Ŵ ′i , Ŵ

′′
i , such that

Ui · Ŵ ′i v Ŵi, Ŵ ′′i v Ŵ ′i and Ŵi+1 = Ŵ ′′i · Vi.
Let us sketch how to construct a path pL2 ∈ path(JLS,q2,W2 , 3Kt) such that pL2

starts at InitConfte, and pathtoTrace(pL2) ↑(Σcal∪Σret∪Σfcal)∪Σfret = eh1.
From InitConfte, we perform the following operations in sequence:

- Perform the first six operations of eh1 and make this order the same as in eh1.
- RunM2 untilM2 finishes its first round and puts r1 ·start ·WW1 ·end into its buffer.

No flush operation happens during this period.
- Then we mimic the k transitions similarly as Lemma 21. We additionally arrange

the positions of operations after the sixth operation in eh1 the same between eh1

and pathtoTrace(pL2
) ↑(Σcal∪Σret∪Σfcal)∪Σfret .

It is not hard to see that pL2 holds as required. This completes the proof. ut

B.5 Proof of Lemma 24

The following lemma states that “the sets of ineffective extended histories of each
LS,q,W are the same”.

Lemma 24. Given a classic-lossy single-channel system S, and two configurations
(q1,W1), (q2, W2) ∈ Confcs, {eh|eh ∈ ehistory(JLS,q1,W1

, 3Kte), eh is ineffective }
is equal to {eh|eh ∈ ehistory(J LS,q2,W2 , 3Kte), eh is ineffective }.

Proof. Recall that M1 and M2 never return, and an ineffective extended history does
not contain return operation of M3. Therefore, an ineffective extended history eh con-
tains at most six operations, and all of them are call or flush call operations. The num-
ber of candidate for ineffective extended histories is finite, and for each configuration
(q,W) ∈ Confcs it is not hard to see that each candidate of extended history belongs to
ehistory(JLS,q,W , 3Kte). ut

