
Environment Abstraction with State Clustering and Parameter Truncating

Hong Pan, Yi Lv, Huimin Lin

State Key Laboratory of Computer Science, Institute of Software
Chinese Academy of Sciences

P.O.Box 8718, Beijing 100190, China
{ph, lvyi, lhm}@ios.ac.cn

Abstract

Environment abstraction enriches predicate abstraction
by idea from counter abstraction to develop a framework
for verification of parameterized systems. However, despite
various effects, the constructed abstractions still go be-
yond the capability of the usual model checkers for many
realistic systems. In this paper, a new technique, called
state clustering, is proposed to group local states into a
small number of clusters, by purely syntactic analysis. The
size of array variables in the resulting abstractions are
further reduced using parameter abstraction technique. By
combining different abstraction techniques, real-life cache
coherence protocols such as FLASH have been successfully
verified.

1. Introduction

A concurrent parameterized system, P(N), consists of

N replicated processes executing concurrently. In general,

besides these homogenous processes, the systems may also

include a constant number of heterogeneous processes in

parallel composition. Parameterized systems are common

in practice, including cache coherence protocols, network

protocols, communication protocols, etc. Model checking

parameterized systems is challenging because they lack fixed

state space. A property φ is satisfied by any finite number

of system instances cannot guarantee it is also satisfied for

the whole family of system instances. We denote by P(k)
a concrete system instance with k replicated processes, and

write P(N) |= φ to mean ∀k.P(k) |= φ.

Environment abstraction([4], [5], [18]) combines predi-
cate abstraction([6], [8]) with ideas from counter abstrac-
tion([15]) for verifying concurrent parameterized systems. It

tries to simulate the way a human designer thinks, by focus-

ing on the execution of some reference processes (typically

one or two) and see how the other processes (abstracted as

the environment for those reference processes) might inter-

fere with their execution. Following this idea, the abstract

system maintains the details on the reference processes while

abstracts away the other processes by counting the number of

the environment processes satisfying the given environment

predicates. The abstract model is built once for all in an

existential style, constituting a conservative abstraction, so

that if a universal property holds in the abstract system then

it also holds in the parameterized systems.

The most difficult problem with the environment abstrac-

tion technique is that the constructed abstraction may still be

too complex to be tackled by the usual model checkers. For

instance when the system involves any scenario in which

the replicated processes contending access for a common

resource, the abstraction need count the number of those

environment processes on all possible control locations.

Consequently the size of abstract state space increases

exponentially with the number of local states of each

replicated process. Moreover, the number of array variables

may also cause the size the abstract state space to increase

dramatically.

The aim of this paper is to present two techniques to make

environment abstraction more effective. The first technique

is to reduce the state space of local processes by state
clustering. The idea is based on the observation that in

realistic systems, for a local process, although its state space

might consists of many local control locations and various

message buffers, these data are closely related. Thus it is

highly possible that, with respect to the property under

verification, these states may fall into a small number of

representative configurations. Then the local states can be

partitioned into non-intersecting clusters, each represented

by a unit-state. The clustering process is performed by a

heuristic procedure based on pure syntactic analysis on the

system description. Combined with eliminating unreachable

local states, the method is capable of reducing hundreds of

thousands local states to only tens of unit-states.

To overcome the difficulty caused by array variables,

we apply parameter truncating technique, which is adopted

from the parameter abstraction approach ([2], [9], [12]). The

idea is only to maintain, in the environment component, the

bits corresponding to the reference processes and omits the

other parts. We then refine the abstraction by invariant com-
puting and guard strengthening, until it is precise enough to

prove the desired properties.

To illustrate the power of the proposed techniques, a

number of case studies have been carried out. These include

the FLASH and GERMAN cache coherence protocols. We

use the TLV tool([17]) to perform both local reachability

2009 Third IEEE International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-3757-3/09 $25.00 © 2009 IEEE

DOI 10.1109/TASE.2009.16

73

Authorized licensed use limited to: Institute of Software. Downloaded on December 24, 2009 at 20:48 from IEEE Xplore. Restrictions apply.

and invariant computing, and Cadence SMV([16]) to verify

auxiliary invariants and the desired properties. For the two

protocols, both cache coherence and data consistency prop-

erties are model checked. In the case of FLASH, our model

keep the most characteristic “three-hop” transaction of this

protocol which was omitted in all previous verification

efforts because of its complexity. To our best known, this is

the first time both control and data aspects of the FLASH

protocol have been verified at this level of precision.

The rest of this paper is organized as follows. Related

work is discussed in the remaining part of this section. In

Section 2 environment abstraction and parameter abstraction

are briefly reviewed. The state clustering and parameter

truncating methods are presented in Section 3 where the

soundness results are also stated. The results of the case

studies are reported in Section 4. The paper is concluded

with Section 5.

Related Work A number of abstraction based verification

methods have been developed for parameterized systems in

recent years. Reference [3] proposes heuristic algorithms to

perform counter-example guided abstraction refinement, it

also shows that the problem of finding abstraction with the

least number of equivalence classes is NP-hard. In “predi-
cate abstraction” ([6], [8]) a small abstract system is estab-

lished with valuating the satisfaction on several predicates

by calling decision procedures. Reachability analysis is then

performed on the abstract system to generate the strongest

invariant expressible over the given predicates. Lahiri and

Bryant have extended this method by “indexed predicates”

technique ([10], [11]), which uses simple predicates contain-

ing free-index variables and constructs universally quantified

invariants for the system. In “Parameter abstraction” ([2],

[9]) only a few normal nodes are maintained and all others

are merged into a single abstract node, the abstract system is

then refined iteratively using “non-interference lemma” gen-

erated from manual analysis of spurious counter-examples.

In [12] it is proposed to generate such auxiliary invariants

semi-automatically by computing invariants in a reference

model; because the reference model escape the capability of

TLV, this method does not work for FLASH with data path;

recently[1] provides a method to generate the strongest non-

interference lemma fully automatically, but it has only been

applied on FLASH without data.

2. Preliminaries

A parameterized system P(N) consists of a small num-

ber of heterogeneous processes, called the central nodes,

together with a set of homogeneous processes, called the

local nodes, communicating via shared variables. In a system

instance P(k), each replicated process has a unique index

taken from the parameter set {1, . . . , k}. To simplify the

notation and without loss of generality, in this paper we shall

assume there is only one central node in a parameterized

system.

2.1. System Description

We call the variables maintained by the central process

as central variables, denoted Vc, and the variables on the

local processes as local variables, denoted Vl. Since all

local processes share the same variable names, we shall

distinguish them by index when necessary. Then the set of

all variables of the system P(N) is V = Vc ∪ ⋃N
i=1 Vli .

Variables can divided into control variables, which deter-

mine the internal control location of processes and usually

have finite ranges, and data variables, which may take

values from infinite domains. Variables have types. We take

Boolean type B as the only basic type other than parameter

N , since any finite enumeration type can be encoded by

multiple Booleans. We call variables of type B as simple
variables, ranged over by u, variables of parameter type

N as pointer variables, ranged over by ptr, and array
variables are of type N ⇒ B or N ⇒ N , ranged over

by arr. Terms are constructed from constants and variables

by function applications. Predicates, or formulas are terms

of type B. In our systems, each formula is required to be

admissible, i.e., all atomic formulas are of the following

forms: u = 0/1, ptr = i, arr[i] = 0/1 or arr[i] = j,

where i, j are constants from [1..N]; quantifier-free formulas

are Boolean combination of such atomic formulas. With

conjunctive guard and broadcast communication primitives,

this syntax is expressive enough to describe a wide-range

of parameterized systems including those well-known cache

protocols examined in our case studies.
A system presentation is a triple P = (V, Θ, Δ) where

• V is the set of system variables.

• Θ(V) is the initial predicate.

• Δ(V, V ′) is the set of transition rules, each rule

δ ∈ Δ(V, V ′) being of the form ρ(V) → a(V, V ′),
where ρ(V) is the guard predicate and a(V, V ′) is the

transition relation of the rule.

A system presentation induces a state transition system

|P| = (S, I,R) in the usual way: S is the set of system

states, where a state s is a type-respecting valuation of

system variables V . We write s(e) for the value of term

e evaluated in state s, and s |= f for s(f) = true. We will

identity subsets of S with logic formulas that characterize

them, called state formulas. I is the subset of S that satisfies

Θ. For a state pair s, s′ ∈ S, (s, s′) ∈ R if there exists some

transition rule δ : ρ(V) → a(V, V ′) ∈ Δ(V, V ′) such that

s |= ρ(V) and a(V, V ′) evaluates to true when each v ∈ V
is assigned the value s(v) and each v′ ∈ V ′ is assigned the

value s′(v′); we will call formulas δ as transition formulas
and write (s, s′) |= δ.

For directory-based cache coherence protocols as FLASH

or GERMAN, the transition rules fall into two categories:

74

Authorized licensed use limited to: Institute of Software. Downloaded on December 24, 2009 at 20:48 from IEEE Xplore. Restrictions apply.

one describes the local state transition for some client node,

which takes the form δi : ρ(Vli) → a(Vli , V
′
li
), while the

other describe the actions of the Home node, including

updating the directory, maintaining the central control in-

formation and communicating with the i th local node via

message buffers, which takes the form δH : ρ(Vli ∪ Vc) →
a(Vli ∪ Vc, V

′
li
∪ V ′

c).

2.2. Environment Abstraction

Suppose each local process has been encoded by one

control variable pcL with control location ranging over

{1, . . . , T}. Here local processes do not maintain any pointer

variable, i.e., T dos not depend on parameter N . The

central process includes a variable pcC for central control

locations with range {1, . . . , F}, some pointer variables

ptr1, . . . , ptrb, and array variables arr1, . . . , arrc. A global

state s of a system instance P(k) is represented as a tuple

< pcL1 , . . . , pcLk
; pcC , ptr1, . . . , ptrb, arr1, . . . , arrc >.

In environment abstraction ([4]) only the central process

and one local process, called the reference process, are

presented in detail, while all other local processes, referred

to as environment processes, are represented by a single

component according to their state configurations on all

possible local states. An abstract state s̃ is denoted as a tuple

< pcL, e1, . . . , eT ; pcC , p̃tr1, . . . , p̃trb, ãrr1, . . . , ãrrc >,

where the environmental bit ei indicates whether there

exists some environment process in location i; the abstract

pointer variable p̃tri shows the abstract location in the

range {ref} ∪ {1, . . . , T}, with ref referring to the concrete

reference process. Note that to make the abstraction more

precise, the environment bits ei may be generalized to

counter variables ci with a wider range, e.g. {0, 1, 2}, where

ci = 1 means there is exactly one process in location i, and

ci = 2 means there are at least two processes there.

From the definition of abstract states it can be seen that

even if all array variables have type N ⇒ B, the size of the

abstract state space is T ∗2T ∗F ∗(T +1)b∗2(T+1)∗c which is

exponential in the number of local states (T) and the number

of array variables (c). In fact, these two factors directly de-

termine whether the environment abstraction method could

work effectively. In order to reduce the abstract state space,

techniques such as eliminating unreachable environments

and excluding redundant array variables have been devel-

oped. However, these techniques only have limited effects,

as in complicated systems the number of reachable local

states may still be too large to handle.

2.3. Parameter Abstraction

When verifying parameterized systems P(N) using pa-

rameter abstraction ([2], [9]), one first decides on a small

number m, by a heuristic analysis of system description

and property specification, and keep the description of m

nodes in detail, while merging all the other nodes into an

abstract node using a abstraction function. The abstract

system, consisting of m regular nodes and one abstract node,

is denoted as {P1, . . . , Pm, P∗}, where P∗ maintains no

local states nor internal transitions but only relates with those

regular nodes via central variables. As a consequence, the

abstract pointer will have value no greater than m + 1. Any

concrete variable with type constructed with parameter N
will be approximated by an abstract variable with threshold

m, which is called parameter truncating. It is highly possible

that this might cause spurious counter-examples, and one

can use auxiliary invariants generated manually ([2]) or

semi-automatically ([12], [1]) to strengthen the guards of

transition rules, until the abstract model is precise enough.

If the refined abstraction satisfies the desires property as well

as all the auxiliary invariants, the property will be guaranteed

to hold in the original concrete system.

In the present work, we also handle array variables by

parameter truncating and consider all the environment nodes

as a single component. However, instead of keeping the

abstract node “empty” inside, we maintain its local states

as well as internal transitions. Based on the observation that

these nodes are identical in execution, we need not record

exactly which node is over what kind of local states, but

only count the number of the nodes in the certain location

using counter variables c1, . . . , cT , i.e., under the framework

of environment abstraction.

3. State Clustering and Parameter Truncating

3.1. Reachable Local States

A local state is a valuation for all local variables

in Vl. Recall that a global state for a concrete sys-

tem instance P(k) : (Sk, Ik, Rk) is a tuple s =
< pcL1 , . . . , pcLk

; pcC , ptr1, . . . , ptrb, arr1, . . . , arrc >,

where the local state of process i as pcLi = <
u1(i), . . . , up(i), ptr1(i), . . . , ptra(i) >. A global state sr

is reachable if there is a sequence of states s0, s1, . . . , sn

satisfying s0 ∈ Ik and (si−1, si) ∈ Rk where i ∈ [1..n]
and sr = sn. Suppose sr = < pcr

L1
, . . . , pcr

Lk
; pcr

C ,
ptrr

1, . . . , ptrr
b , arrr

1, . . . , arrr
c >, then each pcr

Li
, i ∈ [1..k],

is a reachable local state.

In environment abstraction, we will have an environment

bit (or counter) epcLi
for each possible local state pcLi .

But usually not all of the local states are actually reach-

able, which makes their corresponding environment bits

redundant. To exclude the unreachable local states from the

abstraction, we perform local state reachability analysis first,

to compute the set of local reachable states as a quantifier

elimination formula from the global reachable states. In a

reference system ([12]) P(m + 1), we define:

reachli = ∃Vc, Vl1 , . . . , Vli−1 , Vli+1 , . . . , Vln : reach(m + 1)

75

Authorized licensed use limited to: Institute of Software. Downloaded on December 24, 2009 at 20:48 from IEEE Xplore. Restrictions apply.

where reach(m + 1) is the set of global reachable states,

and reachli is the set of local reachable states of the i th

process. Note that because all local processes are identical,

they have the same local reachable states.

In our experiences, local state reachability analysis can

result in a quite dramatic reduction on the size of local states:

usually from hundreds of thousands to about one hundred.

However, even after eliminating those environment bits

corresponding to the unreachable local states, the abstraction

is still too large to handle. To further reduce the size of the

local state space, we introduce a new technique called state
clustering, to be explained in the following sub-section.

3.2. State Clustering

The ideal of state clustering is based on the observation

that the internal control status and the various message

buffers on each local process are usually closely related,

probably falling into a small number of representative con-

figurations such that the local states in each configuration

have the same behavior with respect to the property to be

verified. Therefore we may accordingly group such states

into a cluster represented by a sample state called unit-state.

Although we do not have precise rules for state clustering,

there are some general principals and heuristics which can

be followed in practice.

First, when generating the transition graph for local

process i, two kinds of transitions can be distinguished: a

transition of the first kind is induced by the local process

itself, updating its control location to a new position, while

a transition of the second kind is induced by the central pro-

cess communicating with the process i via shared message

buffers. Thus a transition (pcLi
, pc′Li

) ∈ Ec
li

usually involves

updating the central state simultaneously, i.e., it affects

the central control status, therefore we tend to distinguish

them and group such local states into different clusters. For

each sub-graph G′
i = (Sli , E

l
li
), we will consider every

connected component separately and take the nodes in the

same component for further clustering. Note that because all

the local processes are homogenous, their transition graphs

are isomorphic.

Second, for each local variables on a local process, we

assign it a priority according to their role and importance

in the system. To this end, we divide Vl into two subsets

Vll and Vlb, Vll including variables indicating local con-

trol locations while Vlb containing shared message buffers.

Generally speaking, control variables have higher priority

than message buffers because the desired properties are

significantly dependent on control locations, such as cache-

state on local processes in cache coherence protocol. The

priorities of variables in Vlb are determined by analyzing

transition rules: the more central states a variable affects,

the higher priority it has. To estimate the influences of

Generate local state transition graph Gi = (Sli , Eli)
let Sli = reachli ;
let Eli = El

li
∪ Ec

li
, El

li
∩ Ec

li
= ∅;

for any pcLi
, pc′Li

∈ Sli

if exists δi : ρ(Vli) → a(Vli , V
′
li
) ∈ Δ

and (pcLi , pc′Li
) |= δi

then (pcLi
, pc′Li

) ∈ El
li
;

if exists δH : ρ(V) → a(V, V ′) ∈ Δ
and ρ(V) = ρ1(Vli) ∧ ρ2(V − Vli)

and a(V, V ′) = a1(Vli , V
′
li
)∧a2(V −Vli , V

′−V ′
li
)

and (pcLi
, pc′Li

) |= δ′H : ρ1(Vli) → a1(Vli , V
′
li
)

then (pcLi
, pc′Li

) ∈ Ec
li
;

return sub-graph G′
i = (Sli , E

l
li
) and its connected

component

Compute the priority for local variables Vl

let Vl = Vll ∪ Vlb, Vll ∩ Vlb = ∅;
procedure dominating-set(VA, VB)

for each δ : ρ → a ∈ Δ
if atomic formula of a as v′j = ej with vj ∈ VA

and any occurrence of variable vi ∈ VB in

formula ρ and vr ∈ VB in term ej

then vi, vr ∈ DM(VA/VB);
add weight(vi), weight(vr) by one;

return elements of DM(VA/VB) in sequence

with weight from big to small

merge the result of DM(Vlb/Vll) and DM(Vc/Vlb)
Construct unit-states

for each connected component in G′
i = (Sli , E

l
li
)

enumerate its elements in sequence according to

priority on Vl;

cluster those adjacent local states into one unit-state

with different values merely on variables of

lower priority

Figure 1. The procedure of local state clustering

local message buffers on the central states, the dominating-

set DM(Vc/Vlb) of central variables over local message

buffers is generated as follows: when a local buffer occurs

in the right-hand side of an assignment or condition of some

central variable, its weight is incremented. By scanning the

transition rules, all buffer variables can be ordered according

to their frequency of reference in communications. Similarly,

the dominating-set DM(Vlb/Vll) can be computed, so that

variables in Vll are weighed by their influences on local

buffers which transfer such influences onto central variables.

Now the concatenation of (the ordered versions) of Vll and

Vlb, in that order, gives the priority ordering for all local

variables.

Finally, inside each local connect component, we merge

local states which differ only in their values on the variables

of lowest priority into a cluster. In case the resulting tran-

sition system is still too large then we further merge those

76

Authorized licensed use limited to: Institute of Software. Downloaded on December 24, 2009 at 20:48 from IEEE Xplore. Restrictions apply.

states with different values on the variables of second lowest

priority, and so on, until model checking can go through.

The pseudo-code implementing the above three steps is

presented in Figure 1. In our experiments, to be reported in

Section 4, the clustering method can classify hundreds of

reachable local states into only tens of unit-states.

Suppose the unit-state set is given as {Sj |j ∈ [1..t]}, we

define an operator MS that maps a reachable local state to

its representative unit-state: MS(pcLi
) = Sj with pcLi

≡∧p,a
l,m=1,1(ul(i) = el ∧ ptrm(i) = rm), where i ∈ [1..k] and

j ∈ [1..t].
Under such an environment abstraction with state

clustering, the abstract state is denoted as s̃ =
< p̃cL, e1, . . . , et; pcC , p̃tr1, . . . , p̃trb, ãrr1, . . . , ãrrc >,

where p̃cL = < u1(w), . . . , up(w); p̃tr1, . . . , p̃tra > (we

assume a constant w and take the w th process as the ref-

erence process), with abstract variables defined as follows:

1) environment bits

ej = 1 iff there exists some MS(pcLi
) = Sj ,

j ∈ [1..t], i ∈ [1..k], i
= w

2) abstract pointers Each abstract pointer p̃tri either

refers to the reference process with the special index

ref, or represents the matched unit-state corresponding

with the location pointed by ptri, i.e.,

p̃tri =

⎧⎨
⎩

ref if ptri = w
j if MS(pcLptri

) = Sj ,

j ∈ [1..t], ptri
= w

3) abstract arrays Let E = ref∪ [1..t] be a new type. An

array variables arri with type N ⇒ B or N ⇒ N
are abstracted into ãrri with type E ⇒ B or E ⇒ E,

respectively. More specifically, if arri has type N ⇒
B, then

ãrri :

⎧⎨
⎩

ãrri[ref] = arri[w]
ãrri[j] = arri[ptr] if MS(pcLptr

) = Sj

j ∈ [1..t], ptr
= w

If arri has type N ⇒ N , then (where j ∈ [1..t])

ãrri :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ãrri[ref] = ref if arri[w] = w
ãrri[ref] = j if arri[w]
= w,

MS(pcLptrarri[w]
) = Sj

ãrri[j] = ref if arri[l] = w, l
= w,
MS(pcLptrarri[l]

) = Sj

ãrri[j] = j if arri[l]
= w, l
= w,
MS(pcLptrarri[l]

) = Sj

Theorem 3.1 (Soundness): Let P(k) : (Sk, Ik, Rk) be a

parameterized system and P̃ its environment abstraction

with state clustering as defined above. For any ACTL*
formula φ, P̃ |= φ(ref) =⇒ P(N) |= ∀x.φ(x).

3.3. Parameter Truncating

In environment abstraction, array variables are eliminated

as much as possible to reduce the size of the abstract state

space. However, as noted in sub-section 2.2, the remain-

ing abstract array variables may still cause the abstract

state space growing too large. To further cut down the

size of array variables, we adopt the parameter truncating

technique from parameter abstraction, briefly reviewed in

sub-section 2.3, and apply it to pointer variables and array

variables.

Let M = {1, . . . , m} be a subset of N , and M∗ =
M ∪ {env}, where m is the number of reference pro-

cesses reserved in environment abstraction. To choose m
representatives out of the N processes, let in : M → N
be an injection and Imag[in] = {in(x)|x ∈ [1..m]} (for

symmetric systems, in can be the identity function, i.e.,

the first m processes are chosen as references). For any

i ∈ [1..N], define în(i) to be in−1(i) if i /∈ Imag[in],
otherwise în(i) = env. For each type Tp we define an

abstract type [Tp] by letting [B] = B, [N] = M∗,

[N ⇒ B] = M ⇒ B and [N ⇒ N] = M ⇒ M∗.

The abstract transition system |PA| : (SA, IA, RA)
involves three parts: the central process, the

reference processes and the environment com-

ponent; an abstract state is represented as a

tuple ŝ = < p̂cL1
, . . . , p̂cLm

, c1, . . . , ct; p̂cC ,

p̂tr1, . . . , p̂trb, ârr1, . . . , ârrc >, where p̂cLi
=<

û1(in(i)), . . . , ûp(in(i)); p̂tr1(in(i)), . . . , p̂tra(in(i)) >
and t is the number of unit-states. Then the abstraction map

α : S → SA can be defined:

α(s) = ŝ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(s)(û) = s(u)
α(s)(p̂tr) = în(s(ptr))
α(s)(ârr[i]) if i ∈ [1..m],

= s(arr[in(i)]) arr : N ⇒ B
α(s)(ârr[i]) if i ∈ [1..m],

= în(s(arr[in(i)])) arr : N ⇒ N
α(s)(ci) = 1/0 whether exists

MS(pcLj
) = Si, i ∈ [1..t], j /∈ Imag[in]

Now we are ready to construct abstraction operators

AF , AN and AR which perform syntactic transformation

on formulas, assignments and transition rules, respectively.

Note that such syntactic transformations involve two aspects,

one performs parameter truncating for the reference pro-

cesses and the central process, and the other implements

state clustering for the environment component. Accord-

ingly, the abstraction operator AF , AN will be defined

by two sub-operators. Let φ be a formula which is a

Boolean combination of atomic formulas φ1, . . . , φn such

that negation is only applied to atomic formulas. Then

A1
F (φ) is the same Boolean combination of the atomic

formulas A1
F (φ1), . . . , A1

F (φn), where (a variable vk with

77

Authorized licensed use limited to: Institute of Software. Downloaded on December 24, 2009 at 20:48 from IEEE Xplore. Restrictions apply.

k ∈ [1..a] is abbreviated v1−a)

A1
F (φi)

.=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φi if φi ≡ u1−p(j) = 0/1
or φi ≡ ptr1−a(j) = j′

or φi ≡ u1−q = 0/1 or φi ≡ ptr1−b = j
or φi ≡ arr1−c[j] = 0/1
or φi ≡ arr1−c[j] = j′

wherej, j′ ∈ Imag[in];
1 otherwise and φi occurs positively in φ
0 otherwise and φi occurs negatively in φ

For formulas on environment component, define

A2
F (op(φ1, . . . , φn)) .= op(A2

F (φ1), . . . , A2
F (φn)), where

A2
F (φi)

.=
∨k

r=1(cjr
= 1) if MS(φi) = {Sj1 , . . . , Sjk

},
jr ∈ [1..t], with φi ≡ (u1−p(l) = 0/1) ∧ (ptr1−a(l) =
l′) and l /∈ Imag[in]. For any φ, construct φ = φ1 ∧ φ2

where φ2 is an expression over local variables Vli ,

i /∈ Imag[in], and φ1 is an expression over the remainder

variables V − Vli . The general abstraction operator on

formulas is defined as AF (φ) .= A1
F (φ1) ∧ A2

F (φ2).
For a transition rule δ : ρ(V) → a(V, V ′), let ρ(V) =

ρ2(Vli) ∧ ρ1(V − Vli) and a(V, V ′) = a2(Vli , V
′
li
) ∧

a1(V − Vli , V
′ − V ′

li
), i /∈ Imag[in]. Without loss

of generality, assuming AF (ρ2(Vli)) = (cl = 1) and

AF (UnPrime(a2(Vli , V
′
li
))) = (cr = 1), where the op-

erator UnPrime eliminates primes on variables, then the

relevant assignment transformation is defined as A2
N (a2)

.=
(c′l = 0 ∨ c′l = 1) ∧ (c′r = 1). Let A1

N (a1)
.=

Prime(A1
F (UnPrime (a1(V − Vli , V

′ − V ′
li
)))), the general

abstraction operator on assignments is defined by AN (a) .=
A1

N (a1) ∧ A2
N (a2).

Finally the abstraction operator on transition rules are

defined by AR(δ) .= AF (ρ) → AN (a). By setting Θm =
AF (Θ) and Δm = {AR(δ)|δ ∈ Δ} we obtain the desired

abstraction PA = (V ∪ {c1, . . . , ct}, Θm, Δm).
As explained in [2], the abstraction PA might need further

refinement by guard strengthening with non-interference

lemma to exclude spurious counter-examples. This can be

done semi-automatically by computing invariants in a refer-

ence model [12]. The soundness of parameter truncating is

stated below:

Theorem 3.2: Suppose ϕ(m+1, j)δ = ∃V (1), . . . , V (j−
1), V (j +1), . . . , V (m+1) : (reach∧ρ(m+1)δ) computed

in reference system P (m + 1), and ψ(m + 1, j)δ = ρ(m +
1)δ → ϕ(m + 1, j)δ , where j ∈ [1..m]. Let Q be the

abstract system obtained from PA by replacing each rule

δ′ : AF (ρ(m + 1)) → AN (a) with AF (ρ(m + 1)δ ∧∧m
j=1 ϕ(m + 1, j)δ) → AN (a). Then, for any admissible

ACTL* formula φ, Q |= AF (φ) ∧ ∧m
j=1 ψ(m + 1, j)

impliesP(N) |= ∀x.φ(x).

4. Case Studies

Several case studies have been carried out to illustrate

the effectiveness of the proposed techniques. Due to space

Unit- proc UniMsg

State .CacState .InvMark .Cmd .Cmd .proc

S1 Exclusive 0 NN UN 0,1

S2 Shared 0 NN UN 0,1

S3 Invalid 1 Nget Uget 0

S4 Invalid 1 Nget Uget 1

S5 Invalid 1 Nget Uput 0,1

S6 Invalid 1 Nget Unak 0

S7 Invalid 1 Nget Unak 1

S8 Invalid 0 NN UN 0,1,2

S9 Invalid 0 Nget Uget 0

S10 Invalid 0 Nget Uget 1

S11 Invalid 0 Nget Uput 0,1

S12 Invalid 0 Nget Unak 0

S13 Invalid 0 Nget Unak 1

S14 Invalid 0 NgetX UgetX 0

S15 Invalid 0 NgetX UgetX 1

S16 Invalid 0 NgetX Unak 0,1

S17 Invalid 0 NgetX UputX 0,1

S18 Invalid 1 Nget Uget 2

S19 Invalid 0 Nget Uget 2

S20 Invalid 0 NgetX UgetX 2

Figure 2. FLASH State clustering: unit-state

limitation only the result of one case study, the FLASH

cache coherence protocol, is reported in some details.

FLASH is a realistic cache coherence protocol used in

industry([13], [14]). As a real-life protocol, it has compli-

cated transition rules and uses complex variables. It has been

a target for various verification techniques, including param-

eter abstraction and environment abstraction. However, only

the control part of the protocol is considered in these efforts.

The data aspect has been excluded to make the size of the

problem manageable to the existing model checkers. Even

for the control part, the so-called “three-hop transaction”,

which is the most important feather of the protocol, has

also been abstracted away. It is fair to say that this protocol

has so far not been verified with its full features. Thus the

protocol serves as a good test for the power of the techniques

proposed in this paper.

Two attempts have been made in our case studies. The

first is to verify the control part of FLASH with three-hop

transaction, and the second is to extend it with data.

In the first attempt, we performed local reachability anal-

ysis, which generates 74 reachable local states out of the

1944 possible valuations on all the local variables. By state

clustering, the size of the abstract node is further cut down

to only 17, as shown in Figure 2.

By environment abstraction, we have three kinds of enti-

ties in the abstract model: the central process (Node[0]),
the reference process (Node[1]) and the environmental

component (Node[2]). The verification is carried out using

78

Authorized licensed use limited to: Institute of Software. Downloaded on December 24, 2009 at 20:48 from IEEE Xplore. Restrictions apply.

the Cadence SMV model checker. Each transition rule is

implemented by an asynchronous module. Note that, since

the requester and the owner might be the abstract node itself,

3 extra unit-states, S18 - S20, are added, as shown in the

bottom of Figure 2. The abstraction for the control part of

FLASH is rewritten with 20 unit-states and counter threshold

2; this has been precise enough to verify cache coherence

property. The abstraction got model checked on a 3.2GHz

Pentium4 PC with 4GB memory running Linux. The result

turned to be true. The CPU time used is 527.53s and the

memory cost is 114M.

In the second attempt, the model is extended with data.

Accordingly we extend each unit-state with data fields on

cache and relevant message buffers. To keep the abstraction

simple, we let the data domain contain only two elements,

0 and 1. Note that only when a process has exclusive

or shared cache state, or is permitted to access, the data

content is significant. Based on this observation, we merely

refine unit-states {S1, S2, S5, S11, S17} on data fields and

their counterparts {S21, . . . , S25} by assigning with an

appropriate data value, as shown in Figure 3. The desired

data consistency property includes two aspects: one is about

the freshness of data content on the memory, and the other

is about the freshness of data content on all local caches.

Using TLV, we generate 72 auxiliary invariants by invariant

computing in a reference model which includes one home

node and two regular client nodes. After guard strengthening

with these invariants, the abstraction is precise enough, since

both the formula representing the cache coherence property

and formula representing the data consistency property turn

out to be true. The CPU time used is 57545.7s and the

memory cost is 2.37G.

We also verified the GERMAN 2000 and the GERMAN

2004 protocols ([2], [7], [12]), which are much easier. Their

local states are clustered into 9 and 18 unit-states respec-

tively. With 11 and 61, respectively, auxiliary invariants

generated for guard strengthening, the two abstractions got

model checked with respect to both cache coherence and

data consistency. The time and space used for GERMAN

2000 are 0.875s and 6.2M, respectively, and for GERMAN

2004 these numbers are 8125.1s and 965.1M.

5. Conclusion

We have presented two techniques, state clustering and

parameter truncating, to enhance the environment abstraction

method. Combined with local reachability analysis, state

clustering is capable of reducing the size of an abstract

node by an order of 3. The idea of parameter truncating

is adopted from parameter abstraction. Used in the envi-

ronment abstraction framework, it effectively cuts down the

sizes of array variables which are very sensitive to the

overall size of the abstract models. The effectiveness of

the techniques have been illustrated with a number of case

Unit- proc UniMsg

State .CS .IM .Cmd .Dt .Cmd .proc .Dt

S1 E 0 NN 0 UN 0,1 -

S2 S 0 NN 0 UN 0,1 -

S3 I 1 Nget - Uget 0 -

S4 I 1 Nget - Uget 1 -

S5 I 1 Nget - Uput - 0

S6 I 1 Nget - Unak 0 -

S7 I 1 Nget - Unak 1 -

S8 I 0 NN - UN 0,1,2 -

S9 I 0 Nget - Uget 0 -

S10 I 0 Nget - Uget 1 -

S11 I 0 Nget - Uput - 0

S12 I 0 Nget - Unak 0 -

S13 I 0 Nget - Unak 1 -

S14 I 0 NgetX - UgetX 0 -

S15 I 0 NgetX - UgetX 1 -

S16 I 0 NgetX - Unak 0,1 -

S17 I 0 NgetX - UputX - 0

S18 I 1 Nget - Uget 2 -

S19 I 0 Nget - Uget 2 -

S20 I 0 NgetX - UgetX 2 -

S21 E 0 NN 1 UN 0,1 -

S22 S 0 NN 1 UN 0,1 -

S23 I 1 Nget - Uput - 1

S24 I 0 Nget - Uput - 1

S25 I 0 NgetX - UputX - 1

Figure 3. FLASH unit-state extended with data

studies. We have been able to verify the FLASH cache

coherence protocol with data and the three-hop transaction

feature. To the best of our knowledge, it is the first time that

this industrial protocol is verified at this level of precision.

Moreover, except for heuristics-based state clustering, the

whole verification process is rather mechanical and requires

little human intervention.

As future work, we would like to investigate a more

precise and automatic way to performing state clustering.

Besides, our clustering strategy is rather conservative in that

we first partition local state into small sets and then perform

clustering within individual sets, but in fact sometimes local

state in different sets can also be merged to constitute a

unit-state, which will definitely get a smaller unit-state set.

Therefore an alternative way might be clustering as much as

possible at first, and then splitting some unit-state into more

precise ones when necessary.

Acknowledgment This work is supported by the National

Natural Science Foundation of China (Grants No.60721061

and No.60833001) and the National High Technology Devel-

opment 863 Program of China (Grant No.2007AA01Z147).

79

Authorized licensed use limited to: Institute of Software. Downloaded on December 24, 2009 at 20:48 from IEEE Xplore. Restrictions apply.

References

[1] J.Bingham(2008), “Automatic non-interference lemmas for pa-
rameterized model checking”. In FMCAD’08, Portland, OR,
USA, in press.

[2] C. T. Chou, P. K. Mannava, and S. Park(2004), “A simple
method for parameterized verification of cache coherence
protocols”. In FMCAD’04, Austin, Texas, USA, volume 3312
of LNCS, pages 382-398. Springer-Verlag, 2004.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith(2003),
“Counterexample-guided abstraction refinement for smybolic
model checking”. In Journal of the ACM, 50, pages 752-794.

[4] E. Clarke, M. Talupur, and H. Veith(2006), “Environment
abstraction for parameterized verification”. In VMCAI’06:
Verification, Model Checking, and Abstract Interpretation,
pages126-141, 2006.

[5] E. Clarke, M. Talupur, and H. Veith(2008), “Proving Ptolemy
Right: The Environment Abstraction Framework for Model
Checking Concurrent Systems”. In TACAS’08: Tools and Algo-
rithms for the Construction and Analysis of Systems, volume
4963 of LNCS, pages 33-47, 2008.

[6] S. Das, D. Dill, and S. Park(1999), “Experience with predicate
abstraction”. In CAV’99, Trento, Italy, volume 1633 of LNCS,
pages 160-171. Springer-Verlag, 1999.

[7] S. German, G. Janssen(2004), Tutorial on verification of dis-
tributed cache memory protocols. In FMCAD’04.

[8] S. Graf, and H. Saidi(1997), “Construction of abstract state
graphs with PVS”. In CAV’97, Haifa, Israel, volume 1254 of
LNCS, pages 72-83. Springer-Verlag, 1997.

[9] S. Krstic(2006), “Parameterized system verification with guard
strengthening and parameter abstraction”. In AVIS’05, ENTCS,
in press.

[10] S.K. Lahiri and R. Bryant(2004), “Indexed predicate discov-
ery for unbounded system verification”. In CAV’04, Boston,
Massachusetts, USA, volume 3114 of LNCS, pages 135-147.
Springer-Verlag, 2004.

[11] S.K. Lahiri and R. Bryant(2004), “Constructing quantified
invariants via predicate abstraction”. In VMCAI’04, Venice,
Italy, volume 2937 of LNCS, pages 267-281. Springer-Verlag,
2004.

[12] Yi Lv, Huimin Lin, and Hong Pan(2007), “Computing Invari-
ants for Parameter Abstraction”. In MEMOCODE’2007, the
Fifth ACM/IEEE International Conference on Formal Methods
and Models for Codesign, Page(s):29 - 38, May 30 2007-June
2, 2007.

[13] K. McMillan(2001), “Parameterized verification of the
FLASH cache coherence protocol by compositional model
checking”. In CHARME’01, volume 2144 of LNCS, pages 179-
195. Springer-Verlag, 2001.

[14] S. Park and D. L. Dill(1996), “Verification of FLASH cache
coherence protocol by aggregation of distributed transactions”.
In SPAA’96, pages 288-296, Padua, Italy. ACM Press, 1996.

[15] A. Pnueli, J. Xu, and L. Zuck(2002), “Liveness with (0,1,∞)
Counter Abstraction”. In CAV’02, Proceeding of the 14th In-
ternational Conference on Computer Aided Verification, 2002.

[16] http://www.kenmcmil.com/smv.html

[17] http://www.wisdom.weizmann.ac.il/ verify/tlv/

[18] M.Talupur(2006), “Abstraction Techniques for Parameterized
Verification”. In ph.d. thesis, School of Computer Science,
Carnegie Mellon University, November, 2006.

80

Authorized licensed use limited to: Institute of Software. Downloaded on December 24, 2009 at 20:48 from IEEE Xplore. Restrictions apply.

