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Abstract
The widely-used Compiler-Based Tools (CBT), such as static ana-
lyzers, process input source code using data structures inside a
compiler. CBTs can be invoked together with compilers by inject-
ing the compilation process. However, it is seldom the best practice
for the inconvenience of running various CBTs, the unexpected
failures due to interference with compilers, and the efficiency degra-
dation under compilation dependencies. To fill this gap, we propose
Panda, an efficient scheduler for C/C++ CBTs. It executes various
CBTs in a compilation-independent manner to avoid mutual inter-
ference with the build system, and parallelizes the process based
on an estimated makespan to improve the execution efficiency. The
assessment indicates that Panda can reduce the total execution time
by 19%–47% compared with compilation-coupled execution, with
an average 39.03×–52.15× speedup with 64 parallel workers.

CCS Concepts
• Software and its engineering→ Development frameworks
and environments.
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1 Introduction
Compilers collect rich information during the compilation process,
which is also helpful to manufacturing code utilities, such as pro-
gram static analyzers, code transformation tools, and so on. Some
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of them are Integrated Tools (IT), which are provided as a part of a
full-volume compiler; while others are Singleton Tools (ST) that con-
tain only necessary components to collect desired information. To
make their dependent compiler components properly configured,
the command line arguments launching a compiler are fundamental
to executing Compiler-Based Tools (CBT).

To feed CBTs with compiler arguments, two approaches have
been proposed for ITs and STs respectively. ITs are usually exe-
cuted by directly overriding the compiler to be invoked, such as
CpyChecker [8]; whereas STs will utilize their specialized drivers
to capture and convert compiler arguments into tool arguments to
launch them, such as the Scan-Build scheduler of Clang-SA [14].
For both approaches, the build system concurrently schedules the
execution of CBTs during the project compilation. However, the
approaches still face the three challenges below.

First, customized the execution of differentCBTs. Tool users
usually use several different ITs and STs together, also with cus-
tomized configurations [15]. For ITs, multiple tools cannot be ex-
ecuted by overriding the compiler, as the build system can only
schedule one exact kind of compiler. And customizing tool usages
by adjusting the command line arguments can seldom be automati-
cally carried out. For STs, their specialized drivers cannot run other
tools. And advanced functionalities, such as unstable features un-
der alpha tests, may be unavailable from their drivers. Hence, it is
difficult for users to flexibly use CBTs.

Second, interference with the build system. Running a CBT
during compilationmay introduce undesired failures, and themixed
output of both CBT and compiler will make it difficult to collect.
For instance, CpyChecker reports bugs through compiler warnings,
which are mixed with compilation warnings. And when the com-
piler arguments contain -Werror, which converts a warning to an
error, bug reports generated by the analyzer will be considered com-
pilation failures and hence interrupt the build process. As different
tools have various ways of generating output, it is difficult to avoid
the interference when executing CBTs together with compilers.

Third, efficiency degradation due to compilation depen-
dencies. In the build system, dependees should be built before
the depender. However, in most cases when executing a CBT, files
are always independent of each other. Running a CBT on one file
will not depend on the outputs of the executions on other files.
When executing CBTs together with the compiler during compila-
tion, these unnecessary pauses scheduled by the build system based
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on compilation dependencies will greatly degrade the efficiency of
concurrent execution of CBTs.

To fill the gap, we design Panda as a generic scheduler for con-
currently executing common C/C++ CBTs to respond to these chal-
lenges. (1) Panda is designed as a compilation-independent process
to avoid mutual interference with the build system. This also makes
it able to isolate the execution of various CBTs. (2) It can customize
the execution of various CBTs according to a corresponding con-
figuration by automatically modifying the compiler arguments.
(3) It schedules CBT executions according to a lightweight online
estimation of makespan for better performance.

2 The Panda Tool
Figure 1 presents the system structure and workflow of Panda,
whose corresponding intermediate representations of processing
the record in Figure 2 are presented in Figure 3 and 5.
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Figure 1: System Structure and workflow of Panda

Panda takes a pre-captured Compilation Database as input, ex-
tracts the information essential to execute a CBT independently to
the build system (§2.1, challenge 2), constructs the command line
arguments for CBT executions based on a CBT Execution Configu-
ration to customize the execution of different kinds of CBTs (§2.2,
challenge 1), and concurrently schedules the CBT executions in a
dependency-free manner to gain further speedup compared with
compilation-coupled execution (§2.3, challenge 3).

2.1 Parsing Compilation Database
To independently execute CBTs, it is essential to know how the
compiler is originally invoked to replay the compilation process
in a CBT. Such information is available in a Compilation Database
(CDB) [12]. It is a JSON-formatted text file storing the command
line arguments and the working directory of invoking a compiler on
each Translation Unit (TU), i.e. one main file (.cpp) and all header
files (.h) it includes. Figure 2 presents a record in a CDB, which is

1 [..., –

2 ”command”: ”clang -x c++ -c temp.c -o temp.o -g -MD
-MF temp.d -Werror -Wall -DVERSION =“” version 1.0“”
-I/path/to/dependency”,

3 ”directory”: ”/path/to/project”,
4 ”file”: ”temp.c”
5 ˝, ...]

Figure 2: A compilation database with an example record.

• arguments: [-x, c++, temp.c, -DVERSION=”version 1.0”,
-I/path/to/dependency]

• directory: /path/to/project
• file: /path/to/project/temp.c
• language: C++

Figure 3: ACDB record generated for the example in Figure 2

composed of a file field providing the path to the main file of the
TU, a directory field recording in which directory the main file is
compiled, and a command field storing the compiler arguments. The
CDB Parser will read the JSON text of an input CDB to load the
records in it and produce a CDB record as presented in Figure 3.

To unify the representation of the information in an input CDB
generated by various kinds of producers, the content in the original
JSON object will be adjusted. The path to the main file in field file
will be converted to an absolute path according to field directory.
And the compiler argument string in field command will be split
into a list of strings storing each argument separately.

Then the string list of compiler arguments will be parsed to filter
out unnecessary ones and update information in the output CDB
record accordingly. The language type will be updated if it is speci-
fied explicitly with argument -x. And the original compiler as well
as the arguments about compiler actions (such as -c, -save-temps,
and so on), output (-o), debug (-g options), diagnostics (-W options),
and dependency (-M options) will be pruned from the arguments
list as they are unrelated to the compilation process.

2.2 Creating Description for Jobs
The Job Creator generates the job descriptions describing how to
execute a CBT on a TU, which will be scheduled concurrently in
later steps. To make the execution customizable to users, the CBT
execution configurations are introduced to guide the process under
the intent of users.

As mentioned in §1, we separate the common C/C++ CBTs into
two categories: (1) Integrated Tools: they are invoked in the same
way as compilers, and (2) Singleton Tools: they accept compiler
arguments after their specific options. Hence, both descriptions
and configurations have two corresponding formats (as shown in
Figure 4).

In a configuration, type determines how to organize the com-
mand line arguments of invoking the CBT; prompt is the output
message when executing the job; tool and arguments customize the
CBT and its specific command line arguments to be executed, source
indicates the output is generated by the CBT (file), or collected from
standard streams (stdout or stderr); and extension denotes the ex-
tension name of the output file to be generated. And in a generated
description (Figure 5), arguments and directory present how and
where to invoke the CBT; output shows the path to the output file;
and source and prompt are the same as in the input configuration.

When creating descriptions from a configuration for an IT (in
Figure 3 4𝑎−−→ 5𝑎), the CBT to be executed is determined according
to the language type. Then we add the arguments from the CDB,
the input configuration, and for setting output paths. Similarly, for
the configuration for an ST (in Figure 3 4𝑏−−→ 5𝑏), its arguments are
composed of the tool, the main file of the TU, arguments from the
configuration, a delimiter (--), and the compiler arguments.
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• type: Integrated Tool
• prompt: ”Generating LLVM-IR code”
• tool: {C: clang, C++: clang++}
• arguments: [-c, -emit-llvm, -S]
• source: file
• extension: ”.ll”

(a) Generating LLVM-IR code dump by invoking the Clang compiler

• type: Singleton Tool
• prompt: ”Matching goto statement”
• tool: clang-query
• arguments: [-c, ”match gotoStmt()”]
• source: stdout
• extension: ”.clang-query”

(b) Identifying all goto statementswith code audit tool Clang-Query

Figure 4: Example CBT Execution Configurations for gener-
ating the Job Descriptions shown in Figure 5a and 5b

• arguments: [clang++, -x, c++, temp.c, -DVERSION=”version 1.0”,
-I/path/to/dependency, -c, -emit-llvm, -S, -w, -o,
/path/to/output/path/to/project/temp.c.ll]

• directory: /path/to/project
• output: /path/to/output/path/to/project/temp.c.ll
• source: file
• prompt: ”Generating LLVM-IR code”

(a) Job description of Integrated Tools generated from Figure 4a

• arguments: [clang-query, temp.c, -c, ”match gotoStmt()”,
--, -x, c++, temp.c, -DVERSION=”version 1.0”,
-I/path/to/dependency]

• directory: /path/to/project
• output: /path/to/output/path/to/project/temp.c.clang-query
• source: stdout
• prompt: ”Matching goto statement”

(b) Job description of Singleton Tools generated from Figure 4b

Figure 5: Job descriptions generated from corresponding
CBT execution configurations in Figure 4

Finally, each Worker in the Concurrent Job Scheduler will
fork the process to launch the CBT. The output of the standard
streams will be stored in the output file if specified in the description.

2.3 Concurrently Scheduling Job Execution
Since we assume that there are no precedence orders among TUs
when invoking CBTs, the Concurrent Job Scheduler can be mod-
eled with the Identical-Machines Scheduling problem whose target
is minimizing the maximum completion time (𝑃 | |𝐶𝑚𝑎𝑥 ). The prob-
lem is NP-hard, and solving it is a significant overhead that an
online scheduler cannot afford. A widely used approximate solu-
tion is a list-scheduling algorithm called Longest Processing Time
First, which prioritizes the execution of jobs with longer makespans.
When scheduling under a concurrency of𝑚, the total makespan is
4
3 − 1

3𝑚 times of the optimal schedule in the worst case [4].
Hence, the key to a better execution sequence is to estimate the

makespan of each job, i.e. to estimate how long a tool will execute
with a given TU. Besides, as an online scheduler that estimates the

makespan and schedules the jobs at the same time, we need to keep
the overhead of the scheduler as small as possible.

To achieve this, the Job Size Estimator needs to set a value to
each job description as the key to sorting the schedule list. Since
a smaller overhead is preferred, to select a better key, we have
measured the makespan of running the Clang-SA on every TU in
project LLVM. And multiple approaches suggest that token semi-
colon (;) has higher importance and correlation to the makespan.
Hence, we use the number of semicolons to sort the TUs.

The Job Size Estimator wraps every job description with the
number of appearances of semicolons in the main file of the TU.
And the Concurrent Job Scheduler dispatches the descriptions
to a process pool of Workers with a priority queue.

2.4 Usage of Panda
Panda is provided as a command-line tool. In this subsection, we
will introduce the functionalities of Panda with its options.

• Customizing CBT Executions. As mentioned in §2.2, users
can customize the execution of CBTs. This can be achieved by defin-
ing an execution configuration, which overcomes the first challenge.
For example, the execution configuration presented in Figure 4b
can be defined with a plugin in JSON format in Figure 6. Besides,
Panda also has built-in configurations for generating compiler in-
termediate representations.

1 – ”type”: ”Singleton”,
2 ”action”: – ”prompt”: ”Match goto statement”,
3 ”tool”: ”clang -query”,
4 ”args”: [”-c”, ”match gotoStmt ()”],
5 ”extension”: ”.clang -query”,
6 ”source”: ”stdout” ˝ ˝

Figure 6: Plugin version for the configuration in Figure 4b

• Controlling Concurrent Execution. As a concurrent sched-
uler, users can also customize the number of workers executing
CBTs in parallel, the strategy of the job scheduler (among the First-
Come-First-Service (FCFS) and the Longest-Processing-Time-First
(LPTF) strategies), and the feature of measuring job size (among
semicolon and LoC). By default, LPTF and semicolon are used. Ac-
cording to our experimental results in Figure 8, we suggest setting
the worker number to 10%–20% of the TU number and using the
FCFS strategy with at least 2–4 parallel workers on small projects
for smaller scheduler overhead. Figure 7 shows the duty (green)
and idle (red) durations of four parallel workers when executing
the configuration in Figure 4a on project Bftpd.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Seconds since first worker starts

Worker-�

Worker-�

Worker-�

Worker-�

duty idle preprocess

Figure 7: Panda’s schedule of parallel workers

• Controlling Input/Output. Panda allows users to customize
the range of TUs to be processed. This makes it possible to flexibly
do a partial or incremental analysis on an updated project. And
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users can also determine the directory for storing the output files.
This makes it easier to collect CBT outputs and hence can avoid
interference with the source code and the build system.

3 Evaluation
We assess Panda to answer the following two research questions.

• RQ 1: How much time can be saved by executing CBTs
independently with the build system?

• RQ 2: How efficient is our concurrent scheduler with the
increment of number of parallel workers?

The first research question evaluates the efficiency improvements
from compilation dependency and responds to the third challenge.
And the second one assesses the effectiveness of the Job-Size Esti-
mator and the efficiency of the Concurrent Job Scheduler.

The benchmark is composed of five popular C/C++ projects of
different sizes. The first two columns of Table 1 show their names
and sizes (measured with TU numbers). The experiments are exe-
cuted on a Linux server with Intel® Xeon® Platinum 8153 CPU. All
data are measured with the mean value of five runs.

To answer the first research question, we measure the total time
consumption of compilation and CBT execution against Scan-Build,
the specialized command line argument converter of Clang-SA [10].
The compilation of all projects in the benchmark are scheduled
with GNU Make. Table 1 shows the total time consumption of these
two schedulers, where Scan-Build fails to execute the Clang-SA
on project LLVM. The third column shows the number of parallel
workers (#PW), which are determined based on the suggestions
in §2.4. The fourth column (TCoupled) denotes the total time con-
sumption of compilation and CBT execution under compilation
dependencies. And the last two columns represent the separated
time consumption of compilation (TCompile) and CBT execution
(TPanda, scheduled by Panda). As we can see from the table, due
to the dependency-induced pause during compilation, the time
consumption of Scan-Build is 19%–47% higher than Panda.

Table 1: Time consumption of Scan-Build and Panda

Project #TU #PW TCoupled TCompile + TPanda
Bftpd 12 4 10.19 0.61 + 7.64

LibOsip2 112 16 23.48 3.81 + 11.59
Curl 379 32 39.80 5.93 + 15.32
Aria2 388 32 72.98 25.28 + 34.03
LLVM 2,959 256 — 381.00 + 799.83

Besides, to answer the second research question, we measure the
speedup against sequential execution with different concurrency,
as shown in Figure 8. Each curve represents a benchmark instance,
whose TU numbers are shown in the parenthesis. In this experiment,
we use Panda to schedule the syntax checker of GCC and the Clang-
SA, which respectively represent light-weight CBTs and heavy-
weight CBTs that have more onerous computations or iterations.
The average speedup among all projects with 64 parallel works is
52.15× for GCC and 39.03× for Clang-SA. The main performance
bottleneck lies in the size of the project. It makes Panda reach the
performance upper-bound when scheduling with more parallel
workers than the number of TUs (e.g. Bftpd).

Bftpd (12) LibOsip2 (112) Curl (379) Aria2 (388) LLVM (2,959)

1 2 4 8 16 32 64 128 256
1
2
4
8
16
32
64
113

Number of Concurrent Workers (𝑛)

Speedup

(a) GCC Syntax Check

1 2 4 8 16 32 64 128 256
1

2

4

8

16

32
43

Number of Concurrent Workers (𝑛)

Speedup

(b) Clang-SA

Figure 8: Speedup of different concurrency configurations

4 Related Work
Scheduling tool executions concurrently has been implemented
with multiple approaches. As mentioned in §1, tools can be exe-
cuted directly by overriding the compiler executed during compi-
lation. Analyzer CpyChecker [8] and driver blight [9] achieve this
by using environment variables. Whereas Scan-Build [14] directly
injects the build system and replaces the compiler with its compiler
wrapper. However, due to the interference with the build system,
this approach usually leads to a failed build.

Besides, tool execution can also be scheduled with its specifically
designed driver. CodeChecker [3] is an integrated system for exe-
cuting the Clang-SA and presenting the bug reports. The run-tool
script in Chromium is a driver designed for their internally-used
tools [13]. In addition, the Clang-Tidy [11] and Infer Analyzer [2]
also provide their drivers to execute the tool under a pre-extracted
CDB. However, all of them are designed and optimized for specific
analyzers with the First-Come-First-Service strategy only.

In the literature, Panda has already been used to schedule the ex-
ecution of PyRefcon [7]. For other tools similar to PyRefcon [5, 6, 17],
they can also be adapted to be scheduled with Panda. Besides, it can
also be used to generate inputs (such as LLVM-IR and Preprocessed
source code) for other static analyzers [1, 16].

5 Conclusion and Future Work
In this paper, we propose a compilation-independent concurrent
scheduler for executingmultiple Compiler-Based Tools according to
the records in a Compilation Database, which can avoid interference
with the build system and efficiency degradation due to compilation
dependencies. In the future, wewill continue addingmore strategies
for more accurate job size estimation and higher efficiency.

Tool Availability
For the archived version of Panda for the ISSTA 2024 conference,
please visit the demo branch of its GitHub repository via https://gi
thub.com/Snape3058/panda/tree/demo. A demo video introducing
its usage can be found at https://youtu.be/YQTg5LsId5k.
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