
UCL DEPARTMENT OF COMPUTER SCIENCE

Research Note
RN/10/01

Assume-Guarantee Verification for Distributed
Systems with Local Specifications

Alessio Lomuscio
Department of Computing

Imperial College London
London, UK

Ben Strulo, Nigel Walker
BT Innovate

Adastral Park
Ipswich, UK

Peng Wu
Department of Computer Science

University College London
London, UK

19 February 2010

Contents

1 Introduction 1

2 Assume-Guarantee Reasoning 3

2.1 Modules . 3
2.2 A Simple Assume-Guarantee Rule 6

3 Bounded Assume-Guarantee Reasoning 8

4 Case Study 10

4.1 Multi-Path Congestion Control 10
4.2 Stability . 11
4.3 Computing Assumptions . 12
4.4 Experiments . 13

5 Conclusions 14

A Tentative Rule R0 16

List of Tables

1 Experimental Results for Computing Assumptions 14

List of Figures

1 Büchi Accepting State in Assumptions 12

2

Assume-Guarantee Verification for Distributed

Systems with Local Specifications

Alessio Lomuscio

Department of Computing, Imperial College London, UK

Ben Strulo and Nigel Walker

BT Innovate, Adastral Park, UK

Peng Wu

Department of Computer Science, University College London, UK

Abstract

We investigate assume-guarantee reasoning for global specifications

consisting of conjunctions of local specifications. We present a sound and

complete assume-guarantee rule that permits reasoning about individual

modules for local specifications and draws conclusions about global speci-

fications of distributed systems. We illustrate our approach with an exam-

ple from the field of network congestion control, where different agents are

responsible for controlling packet flow across a shared infrastructure. In

this context, we derive a sound assume-guarantee rule for system stability,

and show that this rule is valuable to reason about any number of agents,

any initial flow configuration, and any topology of bounded degree.

1 Introduction

Assume-Guarantee reasoning is one of known approaches to alleviate state ex-
plosion in model checking. To verify whether a system satisfies certain prop-
erty, this approach identifies adequate environment assumptions for individual
modules of the system. General assume-guarantee rules have been proposed
for safety and liveness properties over the last decade [6, 2, 3, 4]. To name a
few, symmetric rules check whether these assumptions may collectively violate
the property; while asymmetric rules check whether the assumption for some
module can be guaranteed by the rest of modules.

The size of assumptions then becomes a major concern for assume-guarantee
reasoning, because large assumptions can still cause scalability issues. The
motivation of this paper is to investigate possible ways to reduce the size of
assumptions and to reuse assumptions for verifying distributed systems.

Typically a module in a distributed system reacts directly only with a few
other modules in its environment; with the rest of the system it reacts only
indirectly through intermediate modules. However, the assumptions generated
under the general assume-guarantee rules do not exploit this neighbourhood de-
pendency, and so can include much redundant information, such as the expected
behaviour of those the module reacts indirectly with. When new modules are

1

added to the system these can contribute to even more redundant information
in the assumptions.

For a system property that can be represented as the conjunction of local
specifications on individual modules, these scalability issues can be avoided by
generating assumptions with respect to local specifications. A local specification
can be regarded as a reflection of the system property on an individual module
and its environment. Thus, an assumption generated in this way concerns only
modules that constitute the module’s environment.

The main contribution of this paper is a new presentation of the assume-
guarantee rules to permit reasoning about individual modules for local specifi-
cations, yet drawing conclusions on properties of the system as a whole. Firstly,
we present a simple rule R1 that we prove to be sound for local specifications.
Through a counterexample, we show that this simple rule is not complete be-
cause it only exploits the direct dependency between modules.

We then extend rule R1 towards completeness. This leads to a bounded
assume-guarantee rule Rπ that we prove to be sound and complete for local
specifications. This rule triggers a bounded assume-guarantee reasoning ap-
proach, in which the dependency between modules is exploited incrementally.

Suppose the number of hops (or the distance) from one module to another
is measured by the minimal number of intermediate modules, through which
the former module can react indirectly with the latter one. The approach runs
guarantee checking recursively. It first checks whether assumptions can be guar-
anteed by neighbour modules (which individual modules react directly with in
zero hop). Then, in each round, the number of hops is increased by one so
as to include the modules in one more hop for checking. Since the number of
modules is finite in the system, the procedure will terminate eventually with
two possible verdicts: the system satisfies the property if all assumptions are
guaranteed; conversely, the system does not satisfy the property if, for some
module, no assumption exists that can be guaranteed by the rest of modules.

Finally, we apply rule Rπ to verify the stability of an optimisation based
congestion control system proposed by Kelly and Voice [7]. The optimisation
approach allows a distributed solution for network congestion control. A dis-
tributed congestion control system is stable if the system equilibrates at certain
network-wide flow configuration. This means that each source in the system
reaches a stable flow configuration on the routes available to the source. We
inherit the compositional structure of this dynamic system and analyse its sta-
bility by reasoning about individual sources for local stability. The case study
shows that an instantiation of rule Rπ for system stability can be applied for
reasoning about any number of sources, any initial flow configuration, and any
topology of bounded degree.

Related Work. General assume-guarantee rules were proposed for safety
properties with support of learning based assumption generation [6, 2, 3]. [10,
11] proposed a symbolic approach to learning-based assume-guarantee reason-
ing. [5, 12] proposed an alphabet refinement technique to reduce the size of
assumptions. [4] extended the general assume-guarantee rules to liveness prop-
erties, based on the fact that the soundness and completeness of the assume-
guarantee rules for safety properties remain intact for liveness properties (ω-
regular languages share the required closure properties of regular languages).

2

On observing possible redundancy behind the general assume-guarantee rules,
we present in this paper a bounded assume-guarantee reasoning approach where
assumptions are generated with respect to local specifications. The approach
can be implemented using symbolic representation, and integrated with learn-
ing algorithms for automated assumption generation. On the other hand, those
learning algorithms can also benefit from our approach by learning assumptions
over local alphabets, instead of the global alphabet.

This paper also extends our previous work [8] by introducing assume-guarantee
reasoning to handle the scalability issues, especially in case when asynchronous
schemes are concerned for congestion control.

The rest of this paper is organised as follows. We present the simple assume-
guarantee rule in Section 2 and prove its soundness and incompleteness. The
bounded assume-guarantee rule is presented in Section 3 with proofs of its sound-
ness and completeness. Section 4 illustrates the case study of our bounded
assume-guarantee reasoning approach. The conclusions of this work are sum-
marised in Section 5.

2 Assume-Guarantee Reasoning

In this section we first introduce the notion of module in distributed systems.
Then, we present a simple assume-guarantee rule R1 that permits reasoning
about individual modules for local specifications.

2.1 Modules

Technically we adopt the basic notion of reactive module [1] to represent dis-
tributed systems that consist of multiple interacting agents. A module is as-
sociated with two classes of variables: state variables and input variables. The
former is controlled by the module and thus defines the module’s state; the
latter is controlled by others that the module reacts directly with. We assume
a domain D of all variables. For a set Z of variables, let DZ be the set of all
valuation functions on Z. For valuation ρ : Z → D and Z ′ ⊆ Z, ρ ↾Z′ : Z ′ → D

is the restriction of ρ to Z ′, that is, (ρ↾Z′)(x) = ρ(x) for any x ∈ Z ′.
For valuations ρ1 : Z1 → D and ρ2 : Z2 → D, ρ1 and ρ2 are compatible,

denoted ρ1 ∼ ρ2, if for any x ∈ Z1 ∩ Z2, ρ1(x) = ρ2(x). For compatible
valuations ρ1 and ρ2, ρ1 ∪ ρ2 : X1 ∪X2 → D is the extension of ρ1 and ρ2 to
X1 ∪X2, that is, (ρ1 ∪ ρ2)(x) = ρ1(x) for x ∈ Z1 − Z2, (ρ1 ∪ ρ2)(x) = ρ2(x) for
x ∈ Z2 − Z1 and (ρ1 ∪ ρ2)(x) = ρ1(x) = ρ2(x) for x ∈ Z1 ∩ Z2.

Definition 2.1 (Module). A module M is a tuple (X, I,Q, T, λ, q0), where

• X is a finite set of state variables controlled by M ;

• I is a finite set of input variables that module M depends on andX∩I = ∅;

• Q is a finite set of states;

• λ : Q→ DX labels each state q ∈ Q with a valuation λ(q) : X → D;

• T ⊆ Q × DI × Q is a transition relation; each transition (q, α, q′) ∈ T ,

denoted q
α
−→T q′, means that the state of M evolves from q to q′ under

input α : I → D;

3

• q0 ∈ Q is the initial state.

An infinite trace σ of module M is an infinite sequence q0α0q1α1 · · · such
that qi

αi−→T qi+1 for any i ≥ 0. Let inf (σ) be the set of all the states that are
visited infinitely often in σ.

DX is referred to as the local alphabet of module M , where each ρ ∈ DX

is a valuation on X . An infinite word w = ρ0ρ1 · · · on the local alphabet DX

is derived by M if there exists an infinite trace q0α0q1α1 · · · of module M such
that ρi = λ(qi) for any i ≥ 0.

For Z ⊆ X , a stuttering projection of w on Z, denoted w|Z , is an infinite word
ρ′0ρ

′
1 · · · , where there exists 0 = j0 < j1 < · · · such that ρ′i = ρji

↾Z= ρji+1 ↾Z=
· · · = ρji+1−1 ↾Z for any i ≥ 0. As a special case of stuttering projection, the
restriction of w on Z, denoted w ↾Z , is the infinite word ρ′0ρ

′
1 · · · , where ρ′i = ρ↾Z

for any i ≥ 0.
DI is referred to as the input alphabet of module M , where each α ∈ DI

is a valuation on I. An infinite word θ = α0α1 · · · on the input alphabet DI

is admitted by M if there exists an infinite trace q0α0q1α1 · · · such that qi ∈ Q

for any i ≥ 0. Let I(M) be the set of input words admitted by M . Specially,
module M is closed if I = ∅.

We then define the composition operator ”|” for modules in distributed sys-
tems. We choose the notion of composition that explicitly supports asynchrony,
because in distributed systems, asynchrony typically arises externally from net-
work communication or scheduling; while general reactive module languages
support synchronous composition but leave asynchrony as internal choices of
modules themselves.

Definition 2.2 (Composition). For modules M1 = (X1, I1, Q1, T1, λ1, q01
) and

M2 = (X2, I2, Q2, T2, λ2, q02
), the composition of these two modules, denoted

M1|M2, is a module (X, I,Q, T, λ, q0), where

• X = X1 ∪X2;

• I = (I1 ∪ I2) −X ;

• Q ⊆ Q1 ×Q2 and λ1(q1) ∼ λ2(q2) for each state (q1, q2) ∈ Q;

• λ : Q → DX labels each state (q1, q2) ∈ Q with the valuation λ1(q1) ∪
λ2(q2);

• T is the smallest transition relation derived by the following composition
rules:

syn
q1

α1−→T1
q′1 q2

α2−→T2
q′2

(q1, q2)
α
−→T (q′1, q

′
2)

asynL

q1
α1−→T1

q′1 q2
α2−→T2

q′2

(q1, q2)
α
−→T (q′1, q2)

asynR

q1
α1−→T1

q′1 q2
α2−→T2

q′2

(q1, q2)
α
−→T (q1, q′2)

where λ(q1) ∼ λ(q2), λ(q′1) ∼ λ(q2), λ(q′2) ∼ λ(q1), λ(q′1) ∼ λ(q′2), λ(q2) ∼
α1, λ(q1) ∼ α2, α1 ∼ α2, and α = (α1 ∪ α2)↾I .

4

• q0 = (q01
, q02

) ∈ Q.

By rule asynL (or asynR), only M1 (M2) evolves; while by rule syn, both
M1 and M2 evolve simultaneously. For multiple modules, these composition
rules can make only one, some or all modules evolve collectively. 1

Thus, a closed distributed system with a finite set X of state variables can be
represented as the composition of n modules Mi = (Xi, Ii, QMi

, TMi
, λMi

, q0Mi
),

where Xi ∩Xj = ∅ for any 1 ≤ i 6= j ≤ n,
n
∪

i=1
Xi = X and

n
∪

i=1
Ii ⊆ X . DX is

then refer to as the global alphabet for the system M1| · · · |Mn.
Assumptions can then be defined as extended modules with accepting states.

Because the property concerned by our case study is represented as a liveness
property, we adopt the formalism of Büchi automaton in the definition of as-
sumption. However, the assume-guarantee rules presented in this paper also
apply to safety properties (for which assumptions are then defined as finite
automata).

Definition 2.3 (Assumption). An assumption A is a tuple (X, I,Q, T, λ, q0, F),
where X, I,Q, T, λ, q0 are the same as in Definition 2.1, and F ⊆ Q is a finite
set of accepting states.

The terminology defined for modules also applies to assumptions. Especially,
an infinite word ρ0ρ1 · · · on alphabet DX is accepted by A if there exists an
infinite trace σ = q0α0q1α1 · · · , referred to as an accepting trace, such that
inf (σ) ∩ F 6= ∅ and ρi = λ(qi) for any i ≥ 0. The language accepted by A,
denoted L(A), is all the infinite words accepted by A.

The definition of composition can be extended to assumptions, too. For as-
sumptionsA1 = (X1, I1, Q1, T1, λ1, q01

, F1) and A2 = (X2, I2, Q2, T2, λ2, q02
, F2),

compositionsM1|A2 and A1|A2 are modules (X, I,Q, T, λ, q0, F) and (X, I,Q, T, λ, q0, F
′),

respectively, where X, I,Q, T, λ, q0 are the same as in Definition 2.2 and

• F = {(q1, q2) ∈ Q | q2 ∈ F2};

• F ′ = {(q1, q2) ∈ Q | q1 ∈ F1, q2 ∈ F2}.

This allows to extend the general assume-guarantee rules for local specifications
(upon local alphabets).

Then, the following definition relates an assumption with modules that ex-
clusively control the state variables concerned by the assumption.

Definition 2.4 (Guarantee). For the composition of k modulesMi = (Xi, Ii, Qi, Ti, λi, q0i
)

and an assumption A = (XA, IA, QA, TA, λA, q0A
, FA) such that

• Xi ∩Xj = ∅ for any 1 ≤ i, j ≤ k;

• XA ⊆
k
∪

i=1
Xi,

supposeMi1 , . . . ,Mik′
(1 ≤ i1, . . . , ik′ ≤ k) are all the k′ modules such that XA∩

XMij
6= ∅ for 1 ≤ j ≤ k′, then M1| · · · |Mk guarantees A, denoted M1| · · · |Mk �

A, if for any infinite word w derived byM1| · · · |Mk and any stuttering projection

1This is also why we introduce the notion of stuttering projection when certain part of state

variables is specially concerned. Asynchronous composition does not enhance expressiveness.

This composition operator can be implemented by general reactive module languages.

5

w′ of w on
k′

∪
j=1

XMij
that can be derived by Mi1 | · · · |Mik′

, w′ ↾XA
is accepted

by A.
Specially, if k′ = k, that is, XA ∩Xi 6= ∅ for any 1 ≤ i ≤ k, M1| · · · |Mk � A

simply means that for any infinite word w derived by M1| · · · |Mk, w ↾XA
is

accepted by A.

2.2 A Simple Assume-Guarantee Rule

The basic principle of assume-guarantee reasoning is to decompose a verification
task on a system into sub-tasks on individual modules of the system. Herein, we
also take into account possible compositional structures of system properties.

Consider the distributed system M1| · · · |Mn and a global specification ψ on
X that can be represented as the conjunction of local specifications ϕi on Xi∪Ii

such that ψ ⇔
n
∧

i=1
ϕi. General assume-guarantee approach either generates

assumptions for each module Mi with respect to the global specification ψ and
then checks whether these assumptions may collectively violate it; or generates
an assumption for some module Mi with respect to the global specification ψ and
then checks whether the assumption can be guaranteed by the rest of modules.
The former rules are known as symmetric rules; while the latter are asymmetric
rules.

Thus, it is a common practice to generate assumptions with respect to global
specifications. However, in distributed systems, individual modules control their
state variables typically under inputs from a few other modules. Therefore,

• each assumption Ai for module Mi contains irrelevant valuations of state
variables that module Mi does not depend on. This makes the size of
assumption Ai larger than necessary.

• whenever the system is extended with more modules, each assumption Ai

has to be modified to incorporate their state variables. Thus, assumptions
for the existing modules can not be reused for verifying the extended
system.

We propose to avoid these scalability issues by distributing each local speci-
fication ϕi onto its corresponding module Mi. For the general symmetric rules,
this results in an tentative rule R0 as follows:

R0

∀1 ≤ i ≤ n, Mi|Ai � ϕi

L(coA1| · · · |coAn) = ∅

M1| · · · |Mn �
n
∧

i=1
ϕi

where each assumption Ai = (Ii, Xi.Q
′
i, T

′
i , λ

′
i, q

′
0i
, Fi) is to be generated with

respect to the local specification ϕi (on Xi ∪ Ii), and coAi is the complement
of assumption Ai. In this way, the size of assumption Ai can be reduced be-
cause only variables in Xi ∪ Ii (which is a subset of X) has to be concerned by
assumption Ai.

However, as a side effect, assumption Ai may admit more interactions with
module Mi than can be admitted by assumptions generated with respect to the
global specification ψ, because variables in X − (Xi ∪ Ii) are not constrained
by the local specification ϕi. Therefore, the tentative rule R0 does not preserve

6

soundness, though its completeness is not affected by the weaker assumptions.
Appendix A presents an counterexample where rule R0 fails.

For module Mi, suppose modules Mi1 , . . . ,Miki
(ki ≥ 1) are all the ki

neighbour modules that control its input variables in Ii. So, Ii ⊆
ki

∪
j=1

Xij
and

Ii ∩ Xij
6= ∅ for any 1 ≤ j ≤ ki. Informally, module Mi reacts directly with

these ki neighbour modules. Then, inspired by the general asymmetric rules,
we present rule R1 as follows:

R1

∀1 ≤ i ≤ n, Mi|Ai � ϕi

∀1 ≤ i ≤ n, Mi1 | · · · |Miki
� Ai

M1| · · · |Mn �
n
∧

i=1
ϕi

Theorem 2.5 shows the soundness of rule R1 for local specifications.

Theorem 2.5 (Soundness). If for any module Mi (1 ≤ i ≤ n) , there exists
assumption Ai such that Mi|Ai � ϕi and Mi1 | · · · |Miki

� Ai, then M1| · · · |Mn �
n
∧

i=1
ϕi.

Proof. By contradiction. Consider an infinite word w = ρ0ρ1 · · · on the global
alphabet (that is, each ρi is a valuation on X) that makes the conclusion fail
on some ϕj (1 ≤ j ≤ n). Then, since the state variables in Xj is exclusively
controlled by Mj, any stuttering projection w|Xj∪Ij

would not be accepted by
Mj |Aj and hence any stuttering projection w|Ij

would not be accepted by Aj .
However, by Definition 2.2, there exists a stuttering projection of w on

kj

∪
l=1

Xjl
, denoted w′, that is derived by Mj1 | · · · |Mjkj

. Since Ij ⊆
kj

∪
l=1

Xjl
and

Mj1 | · · · |Mjkj
� Aj , w′ ↾Ij

is then accepted by Aj . This is a contradiction

because w′ ↾Ij
is also a stuttering projection of w on Ij .

Unfortunately, rule R1 is not complete in general, because for each module
Mi, its neighbour modules are isolated from the system when being examined
against assumption Ai. This ignores the impact of the rest of modules to the
neighbour modules. For example, consider a system consisting of the following
four modules Mi (1 ≤ i ≤ 4):

Mi Xi Ii Transition Function
M1 {x1} {x2, x3} x′1 = x2 − x3

M2 {x2} {x4} x′2 = x2 − x4

M3 {x3} {x4} x′3 = x3 + x4

M4 {x4} {x2, x3} x′4 =

1 x2 > x3 and x4 > 0
−1 x2 < x3 and x4 < 0

0 otherwise

and local specification
AFAG ∧

x∈Xi∪Ii

(x′ = x)

on each module Mi, where x′ is the next value of variable x.
With an initial state (x1, x2, x3, x4) = (u−v, u, v, 1) for any u > v ≥ 0, it

can be seen that

M1|M2|M3|M4 �
4
∧

i=1
AFAG ∧

x∈Xi∪Ii

(x′ = x)

7

This is because within the system x2 and x3 evolve by converging in a step
size x4, until x2 and x3 meet or just cross each other. Then, the system reaches
a stable state where x4 = 0.

However, by M2|M3 itself, x2 and x3 may diverge from each other. Hence,
such divergent sequence of inputs (x2, x3) can not lead M1 to stabilising x1,
and so can not be accepted by any assumption A1 that satisfies the premise
M1|A1 � AFAG ∧

x∈X1∪I1
(x′ = x).

3 Bounded Assume-Guarantee Reasoning

In this section we extend the simple rule R1 towards completeness by exploiting
the neighbourhood dependency between modules incrementally. This results
in a bounded rule Rπ, which triggers a bounded assume-guarantee reasoning
approach.

For the system M1| · · · |Mn, D = {(M1,M2) | X2 ∩ I1 6= ∅} is the direct
dependency relation between the modules. (M1,M2) ∈ D means that M1 de-
pends on the inputs from (or reacts directly with) M2. Then, the k-dependency
relation Dk is defined recursively as follows:

Dk =

{

Dk−1 ∪ (Dk−1 ◦ D) k > 1
D k = 1

where Dk−1 ◦ D is the composition of Dk−1 and D.
For module Mi, let Ck

i be the composition of all the modules M except Mi

such that (Mi,M) ∈ Dk. Then, rule R1 can be extend to a general rule Rk as
follows:

Rk

∀1 ≤ i ≤ n, Mi|Ai � ϕi

∀1 ≤ i ≤ n, Ck
i � Ai

M1| · · · |Mn �
n
∧

i=1
ϕi

Informally, for each module Mi, rule R1 only checks its neighbour modules;
while rule Rk checks all the modules in the range of k − 1 hops from module
Mi. Similarly, it can be proved that rule Rk is sound for any k ≥ 1.

Theorem 3.1 (Soundness). Given k ≥ 1, if for any module Mi (1 ≤ i ≤ n),
there exists assumption Ai such that Mi|Ai � ϕi and Ck

i � Ai, then M1| · · · |Mn �
n
∧

i=1
ϕi.

Proof. By contradiction. Similar to Theorem 2.5.

For module Mi, if the modules in k hops can guarantee assumption Ai,
then such guarantee is preserved by the ones in k + 1 hops. This is because
assumption Ai has already been guaranteed regardless of the interactions with
the additional modules. Based on this observation, Theorem 3.2 relates rule Rk

with rule Rk+1.

Theorem 3.2. For each module Mi, let Ai be an assumption such that Mi|Ai �

ϕi. Then, Ck
i � Ai implies Ck+1

i � Ai.

8

Proof. Let N k
i be the set of all the modules that appear in Ck

i .Then, by definition
of Dk, N k

i ⊆ N k+1
i . So, Ii ⊆ ∪

Mj∈Nk
i

Xj ⊆ ∪
Mj∈Nk+1

i

Xj . For any word w derived

by Ck+1
i , there exists a stuttering projection of w on ∪

Mj∈Nk
i

Xj, denoted w′,

that can be derived by Ck
i . Since Ck

i � Ai, w
′ ↾Ii

would be accepted by Ai for
any such w′.

Since the system consists of a finite number of state variables, there exists
the transitive dependency closure Dπ (π ≥ 1) such that Dπ = Dπ+1. Theorem
3.3 shows that rule Rπ is complete for local specifications.

Theorem 3.3 (Completeness). Given a system M1| · · · |Mn and a decomposable

specification
n
∧

i=1
ϕi such that M1| · · · |Mn �

n
∧

i=1
ϕi. Suppose Dπ is the transition

dependency closure of the system. Then, there exists assumption Ai for each
module Mi such that Mi|Ai � ϕi and Cπ

i � Ai.

Proof. By construction. Since
n
∧

i=1
ϕi implies ϕj for any 1 ≤ j ≤ n. Thus, for

each module Mi, Cπ
i could be extended as such assumption Ai by appointing all

states in Cπ
i as accepting states.

As a corollary of theorems 3.1, 3.2 and 3.3 , rule Rπ could be reformed below
as rule Rπ, which is also sound and complete for local specifications.

Rπ

∀1 ≤ i ≤ n, Mi|Ai � ϕi

∀1 ≤ i ≤ n, ∃1 ≤ k ≤ π, Ck
i � Ai

M1| · · · |Mn �
n
∧

i=1
ϕi

Thus, rule Rπ triggers an incremental way for compositional verification of
distributed systems. For the system M1| · · · |Mn and the global specification
ψ that is equivalent to the conjunction of n local specifications ϕi on Xi ∪ Ii
(1 ≤ i ≤ n), the verification task for checking whether M1| · · · |Mn � ψ can be
decomposed into n parallel sub-tasks. For each module Mi,

• Firstly, generate an appropriate assumption Ai with respect to the local
specification ϕi;

• Then, check recursively whether assumption Ai is guaranteed by the rest of
modules. This starts by examining the neighbour modules that module Mi

react directly with in zero hop. Then, if all the modules in k ≥ 0 hops can
not guarantee assumption Ai , then the range of neighbourhood around
module Mi is deepen to k+1 hops for another round of guarantee checking.
Since the number of modules is finite in the system, this procedure will
terminate eventually in two cases: either assumption Ai is guaranteed,
or otherwise no further peripheral module exists that has not yet been
examined.

Herein, assumption Ai has to be an strong enough abstraction for module
Mi to make of its environment, not only in order to satisfy local specification
ϕi, but also to be suitable for checking the modules in different ranges around
module Mi. For the sake of generality and reusability, the preferable option is
the weakest assumption that admits as many as possible sequences of inputs

9

to module Mi without violating the local specification ϕi. For module Mi, the
weakest assumption WAi is an assumption such that L(WAi) ⊆ I(Mi) and

1. Mi|WAi � ϕi;

2. L(Ai) ⊆ L(WAi) for any assumption Ai such that L(Ai) ⊆ I(Mi) and
Mi|Ai � ϕi.

Remark 1. The notion of the weakest assumption is still based on local spec-
ifications. Observe that the weakest assumption WAi with respect to local
specification ϕi may be weaker then the weakest assumption with respect to
global specification ψ. The condition L(WAi) ⊆ I(Mi) explicitly restrict only
those infinite words admitted by module Mi can be accepted by WAi. This is
rather implicit in the general assume-guarantee rules where all assumptions are
generated on the same global alphabet.

4 Case Study

This section will illustrate an application of rule Rπ to verify the stability of
an optimisation based congestion control system. Both the system and the
property exhibit compositional structures. Please refer to [8] for more details
about the dynamic system and the stability property.

4.1 Multi-Path Congestion Control

This subsection will introduce briefly the fluid-flow congestion control algorithm
proposed by Kelly and Voice [7].

Suppose a network in which a number of sources communicate with a num-
ber of destinations. Between each source and destination a number of routes
have been provisioned. Each route uses a number of links or, more generally,
resources, each of which has a finite capacity constraint.

For each source s and route r available to s, the trajectory in the flow rate
xr is given rise to as a continuous function of time t, subject to the following
differential equation:

d

dt
xr(t) = κrxr(t)

(

1 −
yr(t)

U ′
s(r)(xs(r)(t))

)+

xr(t)

(1)

where κr is a constant and

• yr(t) is the total cost on route r;

• s(r) is the source that transmits along route r;

• xs(t) is the aggregate flow rate on all routes available to source s;

• Us is a utility function of the total flow sent by source s and U ′
s is the

first-order derivative of Us

• (z)+x = min(0, z) if x ≤ 0, otherwise (z)+x = z.

10

Thus, each source s adjusts the flow rate xr on route r based on feedback
yr from the network (indicating congestion). Then, the algorithm presented
in [7] is composed of these sources acting synchronously and collectively. The
stability of this algorithm has been proved in [7]. Herein, we consider the fully
asynchronous variant of the algorithm under the fairness constraint that every
source acts infinitely often. This model can represent uncertain delay between
distributed sources.

4.2 Stability

System stability is a key property of interest for a distributed congestion con-
trol system. A system is stable if it equilibrates at certain network-wide flow

configuration, that is, where
d

dt
xr(t) = 0 for every route r. This is represented

logically by the following CTL formula

AFAG ∧
si

(∧
r∈si

x′r = xr) (2)

where si ranges over all the sources, r ∈ si ranges over all the routes available
to source si and x′r is the next value of route flow rate xr.

Lagrangian decomposition techniques reduce system stability onto individual
modules [9]. Source si is stable if certain stable flow configuration is reached
on all the routes using the resources consumed by the source. Let γ(si) denote
the set of these routes (either serving or sharing resource with source si), that
is, γ(si) = {r | j ∈ r for any r′ ∈ si and j ∈ r′}, where j ∈ r ranges over all the
resources used by route r. Then, local stability on source si is represented by
the following CTL formula

AFAG ∧
r∈γ(si)

x′r = xr (3)

Observe that

(AFAG ∧
si

(∧
r∈si

x′r = xr)) ⇔ (∧
i
AFAG ∧

r∈γ(si)
x′r = xr) (4)

rule Rπ can be instantiated for system stability as follows:

SS

∀1 ≤ i ≤ n, Mi|Ai � AFAG ∧
r∈γ(si)

x′r = xr

∀1 ≤ i ≤ n, ∃1 ≤ k ≤ π, Ck
i � Ai

M1| · · · |Mn � AFAG ∧
si

(∧
r∈si

x′r = xr)

where source si is represented by module Mi.
The rest of this section will illustrate an application of rule SS to verify the

stability of the distributed congestion control algorithm introduced in Section
4.1. We first present in Section 4.3 an algorithm for computing the weakest as-
sumptions; then we show in Section 4.4 how rule SS can be applied for reasoning
about any number of sources, any initial flow configuration, and any topology
of bounded degree.

11

4.3 Computing Assumptions

With respect to local stability, assumptions Ai is meant to supply the sequence
of inputs to module Mi such that Mi|Ai can eventually converge to certain
configuration on Xi ∪ Ii.

For module Mi = (Xi, Ii, QMi
, TMi

, λMi
, q0Mi

), assumption Ai can be con-
structed as a tuple (Ii, Xi, EAi

∪ FAi
, TAi

, λAi
, q0Ai

, FAi
) where EAi

, FAi
, TAi

and λAi
are the smallest sets of non-accepting states, accepting states, tran-

sitions and the labelling function derived through the following algorithm, re-
spectively.

1. For each valuation α on Ii, there exists one and only one state p ∈ EAi

such that λAi
(p) = α.

2. For any q
α
−→Mi

q′ and the state p ∈ EAi
such that λAi

(p) = α, p
λMi

(q)
−−−−→Ai

p′ for all p′ ∈ EAi
.

3. For any q
α
−→Mi

q, there exists one and only one state pq ∈ FAi
such that

• pq 6∈ EAi
;

• λAi
(pq) = α;

• pq

λMi
(q)

−−−−→Ai
pq.

• p
λMi

(q)
−−−−→Ai

pq, where p ∈ EAi
is the state such that λAi

(p) = α;

4. qAi0
is the initial state, with λ(qAi0

) is the given initial configuration on
Ii.

Intuitively, step 1 logs all possible inputs to module Mi as the non-accepting
states of assumption Ai; while step 2 traces the state changes of module Mi as
the transitions of assumption Ai.

p pq

λMi
(q)

λMi
(q)

λMi
(q)

Figure 1: Büchi Accepting State in Assumptions

Step 3 defines the accepting states of assumption Ai to characterise all con-
figuration on Xi ∪ Ii where Mi|Ai can possibly settle. Each self-loop transition

q
α
−→Mi

q contributes to an accepting state pq, where λAi
(pq) = α, with two

additional transitions leading to it, as shown in Figure 1. Apparently, module
Mi at state q would remain at this state under constantly repeated inputs α,
which is exactly what the specification of local stability expects.

Thus, we compute an assumption Ai for module Mi by looking at the mod-
ule itself, regardless of the underlying topology. Theorem 4.1 shows that the
assumption is an appropriate one for our purpose.

Theorem 4.1. Assumption Ai generated by the above algorithm for module Mi is
the weakest assumption with respect to local specification AFAG ∧

r∈γ(si)
x′r = xr.

12

Proof. By definition, it can be seen that any accepting trace of Mi|Ai will fall
into an infinite loop at some state (q, pq), where q ∈ QMi

admits a self-loop
transition under input λAi

(pq). Correspondingly, the word accepted through
such an accepting trace will end up with an infinite loop of the valuation on
λMi

(q) ∪ λAi
(pq). Therefore, Mi|Ai satisfies the local specification.

We then prove by contradiction that assumption Ai is the weakest assump-
tion with respect to the local specification. Suppose there exists an assumption
A′

i such that L(A′
i) ⊆ I(Mi) and Mi|A′

i satisfies the local specification, but
there exists an infinite word θ = α0α1 · · · ∈ L(A′

i) that is not accepted by Ai.
Then, by this hypothesis and the definition of step 3, θ can not be derived by
Ai.

Assume α0 · · ·αk (k ≥ 0) is the longest prefix that can be derived from Ai.

This means that, for any valuation ρ on Xi, no transition p
ρ
−→Ai

p′ exists such
that λAi

(p) = αk and λAi
(p′) = αk+1. Hence, by the definition of step 2, no

transition q
αk−−→Mi

q′ exists such that for any states q, q′ ∈ QMi
. This conflicts

with the hypothesis, which implies θ ∈ I(Mi).

The time complexity of this algorithm is linear to the size of module Mi.
The worst run-time is O(2|TMi

|). The size of the resulting assumption Ai is
also linear to the size of module Mi. In the worst case, assumption Ai contains
|D||Ii| + |TMi

| number of states and |TMi
||D||Ii| + 2|TMi

| number of transitions.
By omitting step 4, this algorithm can be revised to generate a super as-

sumption with the universal set of all possible initial states, each labelled with
a valuation on Ii. The language accepted by the super assumption is then the
disjoint union of the languages accepted by the assumptions under each possible
initial valuation on Ii.

4.4 Experiments

Consider a simple topology where each source is provisioned with two routes
and each resource is shared by two sources. Thus, each source module has
two state variables and two input variables. Let Mu,v be a source with the
initial configuration (u, v) for u, v ∈ D and the transitions defined by (a discrete
instance of) Equation (1). Then, no matter how many sources a network may
consist of, each source is generally of the form Mu,v, where u, v ∈ D.

Let Au0,v0
be the super assumption generated by the above algorithm for

module Mu0,v0
. Then, we first check whether the composition of any two possi-

ble neighbour modules can guarantee these assumptions. This amounts to check
whether

Mu1,v′

1
|Mu′

1
,v1

� Au0,v0
(5)

for any u0, v0, u1, v1, u
′
1, v

′
1 ∈ D.

Technically, we use GOAL [13] to compute the complement coAu0,v0
and

then check whether any word derived by Mu1,v′

1
|Mu′

1
,v1

is accepted by coAu0,v0
.

For the domain D = [1, 6], Table 1 reports the size of each assumption and
its complement, represented as Büchi automata in GOAL, and also the time
usage for complementation. Note that Mv0,u0

is equivalent to Mu0,v0
under

permutation.
In total 46656(= 66) instances of (5) need to be checked. It takes on average

0.26 second to run each instance (except the time usage for complementation).

13

Table 1: Experimental Results for Computing Assumptions

u0 v0
Au0,v0

coAu0,v0

#states #transitions #states #transitions time
1 1 37 108 73 2628 3m38.43s
1 2 37 108 73 2628 3m39.90s
1 3 37 108 73 2628 3m31.36s
1 4 56 180 110 3960 9m29.43s
1 5 63 228 123 4428 11m12.41s
1 6 64 264 124 4464 11m06.82s
2 2 37 108 73 2628 3m29.59s
2 3 132 400 114 4104 56m08.46s
2 4 160 524 168 6048 1h15m51.84s
2 5 161 560 169 6084 1h16m38.00s
2 6 169 644 183 6588 1h19m34.92s
3 3 237 746 174 6264 2h53m56.92s
3 4 268 910 233 8388 3h32m07.88s
3 5 269 946 234 8424 3h32m51.77s
3 6 271 1018 236 8496 4h07m27.23s
4 4 238 782 175 6300 2h55m04.51s
4 5 269 946 234 8424 3h34m09.62s
4 6 269 946 234 8424 3h33m23.20s
5 5 301 1146 294 10584 4h11m16.62s
5 6 301 1146 294 10584 4h20m21.41s
6 6 301 1146 294 10584 4h19m29.90s

We find that each instance is valid. This means that any word derived by the
composition of any two possible modules is accepted by any assumption. Thus,
the stability of such system is demonstrated for any number of sources and any
initial flow configuration under the given topology.

Furthermore, this experiment can be extended for any topology with bounded
degree (that is, each source is sharing resources with a bounded number of other
sources). Suppose each source has at most m routes, the general form of each

module is M~u, where vector ~u ranges over
m
∪

k=1
Dk.

5 Conclusions

The paper presents a distributed assume-guarantee rule Rπ for distributed sys-
tems and global specifications consisting of conjunctions of local specifications.
Rule Rπ is both sound and complete for local specifications, yet drawing con-
clusions on global specifications. Thus, a verification task on a system can be
distributed onto individual modules and local specifications. Furthermore, rule
Rπ triggers an incremental approach to perform compositional model checking
which exploits the neighbourhood structure of interactions between modules.
Each increment explores the consequences of interactions one step deeper into
the neighbourhood.

We applied the rule to verify the stability of a distributed congestion control
system with any number of modules, any initial state, and any topology of

14

bound degree. We proved system stability by considering only local stability
of each module when interacting with its neighbours. Thus, with development,
our technique could greatly extend the range of network problems that could
yield to a model checking approach.

Rule Rπ tackles the scalability issues in assume-guarantee reasoning by ex-
ploiting one possible compositional structure (conjunction) of global specifi-
cations, and by exploiting the neighbourhood dependency between individual
modules. This is rather promising in practice in that verification sub-tasks are
localised on individual modules, and the size of state space explored by each sub-
task grows only if necessary and in a controlled manner. As future work, we
would like to investigate other compositional structures of global specifications
[14]. This bounded strategy could be also applicable for general specifications
that possibly do not exhibit compositional structures.

References

[1] Rajeev Alur and Thomas A. Henzinger. Reactive modules. In Proc. 11th
Annual IEEE Symposium on Logic in Computer Science Logic in Computer
Science (LICS 1996), pages 207–218, New Brunswick, USA, 27 - 30 July
1996.

[2] Howard Barringer, Dimitra Giannakopoulou, and Corina S. Păsăreanu.
Proof rules for automated compositional verification through learning. In
Proc. 2003 Workshop on Specification and Verification of Component-
Based Systems (SAVCBS 2003), pages 14–21, Helsinki, Finland, 1 - 2
September 2003.

[3] Jamieson Cobleigh, Dimitra Giannakopoulou, and Corina Păsăreanu.
Learning assumptions for compositional verification. In Proc. 9th Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2003), pages 331–346, Warsaw, Poland, 7
- 11 April 2003.

[4] Azadeh Farzan, Yu-Fang Chen, Edmund M. Clarke, Yih-Kuen Tsay, and
Bow-Yaw Wang. Extending automated compositional verification to the full
class of omega-regular languages. In Proc. 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2008), pages 2–17, Budapest, Hungary, 29 March - 6 April 2008.

[5] Mihaela Gheorghiu Bobaru, Corina S. Păsăreanu, and Dimitra Gian-
nakopoulou. Automated assume-guarantee reasoning by abstraction re-
finement. In Proc. 20th International Conference on Computer Aided Ver-
ification (CAV 2008), pages 135–148, Princeton, USA, 7 - 14 July 2008.
Springer-Verlag.

[6] Dimitra Giannakopoulou, Corina S. Păsăreanu, and Howard Barringer. As-
sumption generation for software component verification. In Proc. 17th
IEEE International Conference on Automated Software Engineering (ASE
2002), pages 3–12, Edinburgh, UK, 23-27 September 2002. IEEE Computer
Society.

15

[7] Frank Kelly and Thomas Voice. Stability of end-to-end algorithms for
joint routing and rate control. ACM SIGCOMM Computer Communication
Review, 35(2):5–12, 2005.

[8] Alessio Lomuscio, Ben Strulo, Nigel Walker, and Peng Wu. Model checking
optimisation-based congestion control models. In Proc. 2009 Workshop on
Concurrency, Specification, and Programming (CS&P 2009), pages 386–
397, Kraków-Przegorza ly, Poland, 28 - 30 September 2009.

[9] Steven H. Low and David E. Lapsley. Optimization flow control, I: ba-
sic algorithm and convergence. IEEE/ACM Transactions on Networking,
7(6):861–874, 1999.

[10] Wonhong Nam and Rajeev Alur. Learning-based symbolic assume-
guarantee reasoning with automatic decomposition. In Proc. 4th Interna-
tional Symposium on Automated Technology for Verification and Analysis
(ATVA 2006), pages 170–185, Beijing, China, 23 - 26 October 2006.

[11] Wonhong Nam, P. Madhusudan, and Rajeev Alur. Automatic symbolic
compositional verification by learning assumptions. Formal Methods in
System Design, 32(3):207–234, 2008.

[12] Corina S. Păsăreanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bo-
baru, Jamieson M. Cobleigh, and Howard Barringer. Learning to divide
and conquer: applying the L* algorithm to automate assume-guarantee
reasoning. Formal Methods in System Design, 32(3):175–205, 2008.

[13] Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Kang-Nien Wu, and Wen-
Chin Chan. GOAL: A graphical tool for manipulating büchi automata and
temporal formulae. In Proc. 13th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2007),
pages 466–471, Braga, Portugal, 24 March - 1 April 2007.

[14] Mahesh Viswanathan and Ramesh Viswanathan. Foundations for circular
compositional reasoning. In Proc. 28th International Colloquium on Au-
tomata, Languages and Programming (ICALP 2001), pages 835–847, Crete,
Greece, 8 - 12 July 2001.

A Tentative Rule R0

R0

∀1 ≤ i ≤ n, Mi|Ai � ϕi

L(coA1| · · · |coAn) = ∅

M1| · · · |Mn �
n
∧

i=1
ϕi

Proof. Unsoundness By construction. Consider a system consisting of the
following four modules Mi (1 ≤ i ≤ n):

Mi Xi Ii Transition Function
M1 {x1} {x2, x3} x′1 = x2 − x3

M2 {x2} {x4} x′2 = x2 − x4

M3 {x3} {x4} x′3 = x3 + x4

M4 {x4} {x2, x3} x′4 = 1

16

and local specification

AFAG ∧
x∈Xi∪Ii

(x′ = x)

on each module Mi, where x′ is the next value of variable x.

With the initial state (x1, x2, x3, x4) = (u − v, u, v, 1) for any u > v ≥ 0,
it can be seen that

M1|M2|M3|M4 6�
4
∧

i=1
AFAG (x′i = xi)

because with the system x2 and x3 evolve by diverging from each other.
However, modules M1,M2 and M3 all have chance to converge under
certain inputs, while obviously module M4 is already in a stable state no
matter what inputs may be. So, L(coA4) = ∅. Therefore, both premises
hold.

Completeness By contradiction. For each module Mi, assume WAi is the

weakest assumption with respect to ϕi. Since M1| · · · |Mn �
n
∧

i=1
ϕi and

n
∧

i=1
ϕi implies ϕi, such WAi does exist.

Suppose these exists an infinite word w accepted by coWA1| · · · |coWAn.
Then, there exists a stuttering projection of w on each Xj∪Ij (1 ≤ j ≤ n),
denoted wj , that is accepted by coWAj . So, for any 1 ≤ j ≤ n, these exists
an infinite word w′

j that is accepted by Mj |coWAj but does not satisfy ϕj .

Hence, w′
j does not satisfy

n
∧

i=1
ϕi for any 1 ≤ j ≤ n. Thus, there exists an

infinite word w′ that can be derived by M1| · · · |Mn and w′
j is a stuttering

projection of w′ on Xj ∪ Ij for any 1 ≤ j ≤ n. Therefore, w′ does not

satisfy
n
∧

i=1
ϕi. This conflicts with the premise M1| · · · |Mn �

n
∧

i=1
ϕi.

17

