
ISCAS-LCS-05-02 March, 2005

中国科学院软件研究所

计算机科学实验室报告

Compositional Analysis of Mobile
Network Protocols

by

Peng Wu

 Dongmei Zhang

Laboratory of Computer Science

Institute of Software
Chinese Academy of Sciences

Beijing 100080. China

Copyright ©2005, Laboratory of Computer Science, Institute of Software.
 All rights reserved. Reproduction of all or part of this work is
 permitted for educational or research use on condition that this
 copyright notice is included in any copy.

Compositional Analysis of Mobile Network
Protocols

Peng Wu 1,2

Lab of Computer Science, Institute of Software
Chinese Academy of Sciences

Beijing 100080, China

Dongmei Zhang 3

School of Computer Science & Technology
Beijing University of Posts and Telecommunications

Beijing 100876, China

Abstract

A compositional framework is proposed for modelling network protocols with sym-
bolic transition graphs. The main advantages of the framework are that it can
address dynamic network topologies without requiring additional mobility facili-
ties; and it can work out system models that preserve deadlock freedom, namely
the deadlock freedom of a system model depends only on the deadlock freedom of
its each task component. Case studies with Mobile IPv4 and IPv6 illustrate the
effectiveness of the modelling framework. The model checking experiments show
that the framework can extend the capability of the model checker to deal with
more complicated system models than can be dealt with by direct model checking.
Moreover, some infrangibilities of Mobile IPv6 are disclosed in the sense that it can
not maintain the binding coherency all the time, which may result in unreachable
or unstable routes.

Key words: Compositional Analysis, Mobile IP, Model Checking

1 Introduction

The proliferation of portable devices has led to a wide spread of mobile com-
puting. Mobility supports for IPv4 and IPv6, referred to as Mobile IPv4 and

1 The work is supported by grants 60223005 and 60242002 from the National Natural
Science Foundation of China, a grant from the Chinese Academy of Sciences and a grant
from the EYTT of MOE.
2 Email: wp@ios.ac.cn
3 Email: zhangdm@bupt.edu.cn

1

Mobile IPv6 respectively, were developed to maintain the seamless connectiv-
ity to the Internet for mobile devices [11,12,5,6].

Research efforts have been devoted to model and verify Mobile IPv4 with
formal methods, which can be generally categorized into two groups: one pro-
vides explicit notations for mobility, such as π-calculus [1,14], Mobile UNITY
[9], while the other is to apply state-based approaches with explicit transi-
tions of movement, such as ASTRAL [2]. However previous work paid mainly
attention to the routing mechanism of Mobile IPv4, while ignored its feature
of mobility detection in the sense that a mobile device can move actively in
a nondeterministic way without having to locate itself, while as specified in
Mobile IPv4, the device should determine its location dynamically based on
the network it is currently attached to.

Mobile IPv6 separates location discovery from the context of mobility man-
agement and simplifies the routing mechanism of Mobile IPv4. Research ef-
forts have been devoted to analyze Mobile IPv6 quantitatively with respect to
its performance. However, qualitative analysis of Mobile IPv6, with respect
to its functionality, is of little concern.

This paper proposes to apply Symbolic Transition Graphs with Assign-
ment(STGA) to analyze the inherent mobility of Mobile IP without explicit
mobility notations or explicit movement transitions [16]. The main contribu-
tions of the paper are as follows.

Firstly, the paper presents a compositional framework for modelling net-
work protocols with STGA [7], which features that

(i) The framework does not directly identify global states of a protocol entity,
but decomposes the entity as a set of communicating sequential tasks
with a set of state variables. The model of the entity can be synthesized
from the one of its each task in a parallel way. Furthermore, a system
model constructed in the context of the framework can be proved to be
deadlock-free if each of its tasks is deadlock-free.

(ii) The framework does not target only at the static network topologies.
By modelling a complete network topology with all possible communi-
cation links, a dynamic network topology can be regarded as a run-time
instance of the complete network topology. In this way, the framework
can also address the challenge from dynamic network topologies without
additional mobility facilities.

(iii) The framework supports explicit communications by message passing
strategy, which can naturally express the working mechanism of a network
protocol, while [9,2] support only implicit communications via shared
variables and [1,14] consider only name passing at a higher level of ab-
straction.

Secondly, Mobile IPv4 and IPv6 are taken as examples to illustrate the
effectiveness of the framework. MIP4 and MIP6 are presented based on
the modelling paradigm of the framework, which can address the full sce-

2

nario of mobile communication based on Mobile IPv4 and IPv6 respectively,
including mobility detection(for Mobile IPv4 only), registration, routing and
ARP-related issues.

These two case studies are conducted in a model checker for value-passing
concurrent system recently developed in the Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences [8,18]. The tool accepts
a system description in value-passing CCS and a property expressed as a
first-order µ-calculus formula, and tries to verify that the system satisfies
the property. In case the system fails to enjoy the required property, an
informative diagnosis message will be generated in the form of an execution
sequence, explaining the cause of the failure.

Unfortunately, it is infeasible to directly verify MIP4 and MIP6 by model
checking due to their high state space complexities. While by model check-
ing each of their tasks, the deadlock freedom of MIP4 and MIP6 can be
concluded naturally with the aforementioned characteristic of the framework.
Therefore, the framework can extend well the capability of the model checker
to deal with more complicated system models than can be dealt with by direct
model checking. Moreover, the model checking experiments also disclose the
infrangibility of Mobile IPv6 in the sense that it can not maintain the binding
coherency all the time, which may result in unreachable or unstable routes.

Related works

[4] presents a comprehensive summary on protocol design, validation and
verification techniques that regard network protocols as finite state machines
or other variants. Recently [3] conducts a systematic case study on the i-
protocol with explicit-state model checking techniques, while [10] illustrates
how to effectively find errors in large network protocol implementations using
model checking techniques with reasonable effort. The main purpose of our
study is to address inherent dynamic characteristics of mobile network proto-
cols using a hierarchical state-oriented approach and identify a deadlock-free
design pattern to alleviate state space explosion problem of model checking.

The rest of paper is organized as follows. Section 2 proposes the general
framework for modelling network protocols, after briefly introducing STGA.
Section 3 presents the case studies with Mobile IPv4 and IPv6. The paper is
concluded in Section 4 with future work.

2 Modelling Network Protocols with STGA

This section will briefly introduce STGA and then propose a general composi-
tional framework for modelling network protocols with STGA. The following
syntactic categories will be used in the sequel:

• V al is a set of values ranged over by v;

• V ar is a set of variables ranged over by x, y, z;

3

• Exp is a set of expressions over V al ∪ V ar, ranged over by e;

• BExp is a set of boolean expressions ranged over by b;

• Chan is a set of channel names ranged over by c;

• Sub ⊆ (V ar × Exp)∗ is a set of substitutions ranged over by σ. A substi-
tution σ ≡ [ē/x̄] specifies the type-respecting mapping from the vector of n
distinct variables x̄ to the vector of n expressions ē. We will often take the
liberty to refer to a substitution [ē/x̄] as an assignment x̄ := ē.

• Act is a set of actions ranged over by α, which can be a silent action τ ,
an input action c?x̄ or an output action c!ē. The sets of free and bound
variables of actions are defined as usual: fv(c!ē) = fv(ē), bv(c?x̄) = {x̄}
and fv(α) = bv(α) = ∅ in all the other cases. The set of channel names
used in actions is defined by chan(c!ē) = chan(c?x̄) = {c}, chan(τ) = ∅.
An action c?x̄ is referred to as a complement to c!ē, and vice versa.

2.1 STGA

Definition 2.1 [STGA]

(i) A symbolic transition graph with assignment(STGA) is a rooted directed
graph G = (N, Σ, r), where
(a) N is a finite set of nodes ranged over by n,m. Each node n is asso-

ciated with an finite set of free variables fv(n) ⊆ V ar;
(b) Σ ⊆ N×(BExp×Sub×Act)×N is a finite set of edges, each labelled

with a guarded action with assignments (b, x̄ := ē, α).
(c) r ∈ N is the root of the graph G.

(ii) A STGA G is well formed if for any (n, (b, x̄ := ē, α),m) ∈ Σ, fv(b) ∪
fv(ē) ⊆ fv(n), fv(α) ⊆ {x̄} and fv(m) ⊆ {x̄} ∪ bv(α). We will write

n
b,x̄:=ē,α
−−−−→ m for such edge, which means m can be reached from n by

performing α, whenever b holds at n, after the free variables x̄ are assigned
with values of ē evaluated at n. In the sequel, all STGAs G = (N, Σ, r)
are assumed to be well-formed and abbreviated as G(N) without causing
any confusion.

(iii) Let s ∈ (BExp × Sub × Act)∗, A is a set of actions,
(a) chan(A) =

⋃

α∈A

chan(α).

(b) chan(s) =
⋃

(b,θ,α)∈{s}

chan(α).

(c) n
b,θ,α
−−→ if there exists m such that n

b,θ,α
−−→ m;

(d) (b, θ, α) is admissible at n if n
b,θ,α
−−→;

(e) n
s
→ n or n → n if s is empty;

(f) n
s
→ m if s = (b0, θ0, α0) . . . (bk, θk, αk), k ≥ 0 and there exist

n0, . . . nk ∈ N such that n = n0
b0,θ0,α0

−−−−→ · · ·
bk,θk,αk−−−−→ nk = m;

(g) n
s
→ if there exists m ∈ N such that n

s
→ m;

4

(h) (b, θ, α) is eventually admissible from n, denoted by n
b,θ,α
==⇒, if there

exists s and n′ such that n
s
→ n′ b,θ,α

−−→ and chan(s) ∩ chan(α) = ∅;

Let
∏

i

Pi denote a parallel composition of a finite number of processes

Pi(i ≥ 0). The semantics of value-passing CCS and STGA are out of the
scope of the paper. For more detailed information one can refer to [7].

2.2 Modelling Network Protocols

A network protocol(NP) is a set of rules for computing entities to communicate
with each other. These protocol entities are categorized into a finite number
of groups, where each member shares the same functionality definition. Thus,
the network protocol can be formally described as a tuple

NP = (E, Ce, Cp)

where

(i) E is a finite set of protocol entity arrays E[1..r], each of which contains
r protocol entities Ei(x̄), indexed by i (1 ≤ i ≤ r). All elements in a
protocol entity array fall into the same category. Without causing any
confusion, the set of protocol entities declared in a protocol entity array
E[1..r] is also denoted by E.

(ii) C
e is a finite set of channel arrays ce[1..ne], each of which contains ne

channels ce
j (1 ≤ j ≤ ne) that connect protocol entities with the external

environment of NP . Such channel can be regarded as the abstraction of
a service access point open for upper layer protocols or applications to
call service primitives provided by NP , or for lower layer protocols to
make service primitive callbacks.

(iii) C
p is a finite set of channel arrays cp[1..np], each of which contains np

channels cp
k (1 ≤ k ≤ np) that connect protocol entities with each other.

Such channel can be regarded as the abstraction of a communication link
for protocol entities to exchange protocol data units.

Let PE denote all protocol entities defined in E, that is,

PE = {Ei(x̄) | ∃E[1..r] ∈ E, 1 ≤ i ≤ r}

Each protocol entity in PE has to respond to various incoming messages timely
and continuously according to its local status, indicated by its state variables.
Those messages may contain service primitive calls from upper layer protocols
or applications, or protocol data units submitted by lower layer protocol enti-
ties. Therefore, two types of tasks are allocated for a protocol entity: one is to
process incoming messages, while the other to control read/write accesses to
(local) state variables. These tasks progress concurrently and cooperate with
each other to fulfil the functionalities of the network protocol. Two types of
factors should be identified for task division: incoming messages and state

5

variables. Thus, a protocol entity Ei(x̄) can be formally described as a tuple

Ei(x̄) = (Ti, Oi, Ii, C
l
i, Vi)

where

(i) Ti is a finite set of task components Ti(x̄), represented in STGA.

(ii) Oi is a finite set of channels, through which Ei(x̄) sends messages to other
protocol entities or to the environment.

(iii) Ii is a finite set of channels, through which Ei(x̄) receives messages from
other protocol entities or from the environment; For each c ∈ Ii, there is
a message task component Tic(x̄c) ∈ Ti, such that

Tic(x̄c) = c?(m̄).MRic(x̄
′
c)

where {x̄′
c} ⊆ {x̄c} ∪ {m̄}. Informally, Tic(x̄c) receives a message m̄

and then evolves as a message routine MRic(x̄
′
c), which responds to the

message according to the present status of Ei(x̄) and then continues as
Tic(x̄

′′
c).

(iv) C
l
i is a finite set of local channels that connect components in Ei(x̄) with

each other. C
l
i ∩ (Oi ∪ Ii) = ∅. Because each message task component

progresses independently with other message task components, the local
channels are only available for communications between message task
components and access-control task components.

(v) Vi is a finite set of state variables. For each variable v ∈ Vi, there is an
access-control task component Tiv(x̄v) such that

Tiv(x̄v) = cr?(m̄r).Riv(x̄
′
v) + cw?(m̄w).Wiv(x̄

′
v)

, where cr, cw ∈ C
l
i. Riv(x̄

′
v) responses to a read request on variable v

(from other component in Ei(x̄)) with the value of v and then evolves
as Tiv(x̄v); Wiv(x̄

′
v) responses to a write request on variable v (from

other component in Ei(x̄)) by setting the value of v accordingly and
then evolves as Tiv(x̄

′′
v).

(vi) Any input action c?(x̄)(c ∈ Ii∪C
l
i) is not guarded because of the following

aspects:
• A protocol entity should be reactive to external stimuli at any time;
• A read or write request on a state variable should be admitted at any

time;
• Any response to a previous read request should be dealt with by the

sender of the request.

(vii) Let C denote all channels defined in C
e and C

p, that is,

C = {ce
j | ∃ce[1..ne] ∈ C

e, 1 ≤ j ≤ ne}∪{cp
k | ∃cp[1..np] ∈ C

p, 1 ≤ k ≤ np}

Then C =
⋃

Ei(x̄)∈PE

(Oi ∪ Ii)

In this way, the protocol entity Ei(x̄) can be defined as a composition
of those message task components and access-control components with local

6

channels among them restricted from being accessed externally, that is,

Ei(x̄) = (
∏

c∈Ii

Tic(x̄c)|
∏

v∈Vi

Tiv(x̄v))\C
l
i

Similarly, the network protocol NP can be defined as a composition of its
each protocol entity with peer-to-peer channels among them restricted from
being accessed externally, that is,

NP = (
∏

Ei(x̄)∈PE

Ei(x̄))\Cp.

With [7] it can be easily seen that models of these resulted protocol en-
tities and the network protocol are also represented in STGA. Thus, by top-
down task division and bottom-up composition, a network protocol can be for-
mally described in STGA with a solid semantic foundation for further analysis
and verification. Note that the way to combine those components or entities
is through parallel composition(plus hiding) because otherwise a sequential
structure will result in deadlock of the resulted model [15].

2.3 Deadlock Freedom

Interactions among various components of a network protocol engender higher
difficulty in analyzing the network protocol from a systematic viewpoint than
in analyzing each of its components separately. As far as deadlock freedom
is concerned, deadlock-free entities cannot naturally result in a deadlock-free
network protocol, neither can deadlock-free components result in a deadlock-
free protocol entity, due to potential mismatches in peer-to-peer interactions
among protocol entities or components. In this section, a formal concept of
interoperability is proposed to represent a smooth cooperation among various
participants in a network protocol or a protocol entity.

Definition 2.2 [Interoperability]
Let C be a set of channels, k STGAs G1(N1), . . . ,Gk(Nk) are interoperable on

C if for each (n1, . . . , nk) ∈ N1 × · · · × Nk, Act = {α | ni
b,θ,α
−−→, 1 ≤ i ≤ k},

(i) chan(Act) − C 6= ∅, or

(ii) chan(Act) ⊆ C and
(a) there exists at least a c ∈ C, ni and nj(1 ≤ i, j ≤ k) such that

ni
b,θ1,c!ē
−−−−→ and nj

true,θ2,c?x̄
======⇒. In this case, nj is referred to as a com-

municating peer of ni and (ni, nj) is referred to as a communicating
pair;

(b) among all communicating pairs in (n1, . . . , nk), there is no such se-
quence (ni0 , ni1)(ni1 , ni2) · · · (nik−1

, nik) that k > 0 and ik = i0.

Compared against [16], the definition 2.2 is much more concise and feasible
in that no semantic checking is required for the existence of a communicating
pair. The basic ideas behind the definition 2.2 rest in

7

(i) b |= true holds always;

(ii) A communicating pair is defined based on an output action because
its symmetric form can be ignored due to the following fact that if
chan(Act) ⊆ C, then there exists a c ∈ C, ni and nj(1 ≤ i, j ≤ k)

such that ni
b,θ1,c!ē
−−−−→ and nj

true,θ2,c?x̄
======⇒, if and only if there exists a c ∈ C,

ni and nj(1 ≤ i, j ≤ k) such that ni
true,θ1,c?x̄
−−−−−−→ and nj

b,θ2,c!ē
====⇒. Note that

true |= b does not hold always.

Theorem 2.3 (Deadlock Freedom of A Protocol Entity) A protocol en-
tity is deadlock-free if

(i) Each of its task components is deadlock-free.

(ii) For each c ∈ Ii, Tic(x̄c) and all Tiv(x̄v) are interoperable on C
l
i.

Proof. By condition 1, each Tic can evolve forever and each Tiv can, too.
Then with condition 2, the protocol entity can evolve in one of the following
two ways:

(i) The whole entity steps forward by performing an action on certain chan-
nel c /∈ C

l
i if the action is admissible at one of its components, respecting

the first case of Definition 2.2.

(ii) Whenever only an action on a local channel c ∈ C
l
i is admissible, there will

always be a communicating peer that can make the whole entity evolve
forward by a communication on the local channel, due to the second case
of Definition 2.2.

So Ei(x̄) can also evolve forever, i.e. Ei(x̄) is deadlock-free. 2

Theorem 2.4 (Deadlock Freedom of A Network Protocol) A network
protocol is deadlock-free if

(i) Each of its protocol entities is deadlock-free.

(ii) All Ei(x̄) are interoperable on C
p.

Proof. Similarly to Theorem 2.3. 2

3 Case Study

This section will present two cast studies with Mobile IPv4 and IPv6. To
address non-trivial data structures involved in network protocols, STGA has
been extended with arrays, lists and records [18]. In the sequel, the following
syntactic notations will be used in STGA scripts:

(i) c(x̄) and c̄〈ē〉 denote an input action c?x̄ and an output action c!ē, re-
spectively;

(ii) va[i] denotes the (i + 1)-th element of an array variable va(i ≥ 0).

(iii) vr#vm denotes the member variable vm in a record variable vr.

8

For the detailed syntax of the STGA script language, one can refer to [18].

To concentrate on mobility supports for IPv4 and IPv6, those features
irrelated to mobility management are not considered in our case studies. All
model checking experiments are carried out on a SUN Enterprise 4500 Server
with four 450MHz UltraSPARC processors and 2GB RAM.

3.1 Mobile IPv4

Among various IP mobility proposals, Mobile IPv4 [11,12] is the oldest and
probably the most widely known mobility management proposal with IP. It
excels in its simplicity and scalability. Three types of entities are involved in
Mobile IPv4: Mobile Host, Home Agent and Foreign Agent.

Mobile hosts are entities that are allowed to migrate around the IP network.
Each mobile host is assumed to have a home network, from which it obtains
a constant IP address, called its Home Address.

Home and foreign agents are introduced for mobility management. Each
time a mobile host connects to a network at a new location, it will obtain
a temporary address, called Care-of Address (COA) from a foreign agent in
the local network. Then the mobile host must inform its home agent of the
new address by a registration procedure, which begins when the mobile host,
possibly with the assistance of the foreign agent, sends a registration request
with the COA. When the home agent receives this request, it may typically
add the necessary information to its routing table, approve the request, and
send a registration reply back to the mobile host. Two types of COAs are
defined, one is called Foreign Agent Care-of Address, that is, the IP address
of the foreign agent; while the other is called Collocated Care-of Address,
which is allocated by other address configuration mechanism.

Once the home agent is aware of the current address of the mobile host
in roaming, it will tunnel towards the mobile host all packets destined for its
home address, possibly with the assistance of the foreign agent. Indeed, these
packets, normally routed, will obviously arrive at the home network where the
home agent will intercept and encapsulate them towards the foreign agent.
Then the foreign agent will decapsulate the traffic from the home agent and
forward it to the mobile host.

Both the home agent and the foreign agent typically broadcast agent ad-
vertisements at regular intervals to make themselves known, the former for
mobile hosts to discover it has returned to its home network, while the lat-
ter for mobile hosts to retrieve a COA. If a mobile host needs to get a COA
and does not wish to wait for the periodic advertisement, it can broadcast or
multicast a solicitation, which will then be answered by any foreign or home
agent having received the solicitation.

9

3.1.1 Modelling

This section will illustrate a STGA model of Mobile IPv4 in the context of
the modelling framework proposed in Section 2. Formally, Mobile IPv4 can
be described as a tuple

MIP4nha,nfa,nmh = (E4, C
e
4, C

p
4)

with

E4 = {HA4[0..nha − 1], FA[0..nfa − 1],MH4[0..nmh − 1]}

where

(i) HA4, FA and MH4 are models of home agents, foreign agents and mobile
hosts in Mobile IP, respectively;

(ii) nha, nfa, and nmh are the number of home agents, foreign agents and
mobile hosts, respectively;

Let i, j, k range over indexes of home agents, foreign agents and mobile
hosts, respectively. Table 1 describes how these entities are connected with
the environment(denoted by -) via channels in C

e
4(row 1 to 4) and how these

entities are connected with each other via channels in C
p
4(row 5 to 14). Suppose

Nmh = {k | 0 ≤ k ≤ nmh − 1}, Nha = {i | 0 ≤ i ≤ nha − 1}, hn : Nmh → Nha

is a home network function that maps each mobile host MH4k to its home
agent HA4hn(k). Herein all channels in C

e
4 ∪ C

p
4 are unilateral. The entities

that may send messages to a channel are listed in column From; while the
ones that may receive messages from the channel is listed in column To. Local
channels in each entity are just as their names imply.

Only a pair of channels agt sol and agt adv is defined so that a mobile
host can send Agent Solicitation messages to and receive Agent Advertisement
messages from any home or foreign agents. Such nondeterminism just reflects
the liberty of host movement.

MIP4 can be easily proved to be interoperable so the deadlock freedom
can be preserved.

Home Agent

A home agent contains five message task components: AA, RY F , RY M ,
ARP and RTA.

• AA may issue Agent Advertisement messages infinitely often and respond
to incoming Agent Solicitation messages accordingly.

AAi(ip, agt) = agt adv〈ip, agt, i〉.AAi(ip, agt) + agt sol.AAi(ip, agt)

+τ.AAi(ip, agt)

The action τ is used to simulate the delay of responses. The parameter ip
is the IP address of a home or foreign agent and agt the type of the agent.
For a home agent, agt is initialized as HOME.

• RY F and RY M deal with incoming Registration Request messages relayed

10

Channel From To Description

sendi - HA4i To receive the datagrams from
the environment.

locationk MH4k - To indicate the location of the
(k + 1)-th mobile host.

routek HA4hn(k), FA - To indicate the routing path for
a datagram addressed to (k+1)-
th mobile host.

stderr FA,MH4 - To indicate an exception.

agt sol MH4 HA4, FA To send an agent solicitation.

agt adv HA4, FA MH4 To send an agent advertise-
ment.

reg req hmi MH4 HA4i To send a registration request
directly to the (i+1)-th foreign
agent.

reg rep hmk HA4 MH4k To send a registration reply di-
rectly to the (k + 1)-th mobile
host.

reg req fmj MH4 FAj To send a registration request
via the (j + 1)-th foreign agent.

reg rep fmk FA MH4k To forward a registration reply
to the (k + 1)-th mobile host.

reg req hfi FA HA4i To forward a registration re-
quest to the (i + 1)-th home
agent.

reg rep hfj HA4 FAj To send a registration reply via
the (j + 1)-th foreign agent.

forwardk HA4, FA MH4k To receive a datagram from a
home or foreign agent.

tunnelj HA4 FAj To receive a tunnelled data-
gram from a home agent.

Table 1
Channels in C

e
4 ∪ C

p
4

11

from foreign agents and sent by mobile hosts, respectively.

RY Fi = reg req hfi(ha, coa, j, k).

(reg rep hfj〈ha, coa,OK〉.set hbindingi〈k, ha, coa, j〉.RY Fi

+reg rep hfj〈ha, coa,NOK〉.RY Fi)

RY Mi = reg req hmi(ha, coa, k).

(reg rep hmk〈ha, coa,OK〉.set hbindingi〈k, ha, coa,−1〉.RY Mi

+reg rep hmk〈ha, coa,NOK〉.RY Mi)

The parameter ha is the home address of a mobile host and coa the COA
that ha is associated with. OK indicates the acceptance of a request, while
NOK the rejection of it.

Requests from foreign agents are to register COAs, while those from mo-
bile hosts are to deregister them. If a request is accepted, the current COA
of the mobile host will be updated(in RY F) or cancelled(in RY M) via the
channel set hbinding.

• ARP may respond to an incoming ARP Request message with the MAC
address(mac) of the home agent if the requested host(ip) has moved outside.

ARPk(mac) = arp req agtk(ip).hld reqi〈ip〉.

(hld rep outi(coa, j).arp repk〈mac〉.ARPk(mac)

+hld rep ini(port).ARPk(mac) + hip unknowni.ARPk(mac))

The channel hld req is used to query the location of a mobile host, which
may be out of its home network, indicated by the channel hld rep out, or
in its home network, indicated by the channel hld rep in. The channel
hld unknown indicates the host is unknown to the home agent. The pa-
rameter port is the index of the link between the home agent and the mobile
host in the home network.

Herein the MAC address of the home agent is assumed to be known.
ARP requests on the home agent itself are discarded, which would not
affect the analysis result. Note that ARP supports only for proxy ARP,
while gratuitous ARP is not considered.

• RTA may transfer an incoming datagram to its destination or to the cor-
responding foreign agent via a tunnel(tu ha). The parameter imac is the
target MAC address, src the source IP address, tgt the target IP address
and payload the data portion of the datagram. Herein, it is assumed that

(i) A home agent is also a gateway in the home network. pkt out is just a
routing channel.

(ii) Only datagrams destined for mobile hosts, which the home agent serves,
are considered. Others towards the home agent itself or other mobile hosts
are all discarded, which would not affect the analysis result.

12

RTAi(mac, ip) = sendi(imac, src, tgt, payload).

if (imac = mac) then

hld reqi〈tgt〉.

(hld rep outi(coa, j).

tu haj〈ip, coa, src, tgt, payload〉.acki.RTAi(mac, ip)

+ hld rep ini(k).routek〈ip〉.

pkt outk〈src, tgt, payload〉.acki.RTAi(mac, ip)

+ hip unknowni.RTAi(mac, ip))

else RTAi(mac, ip)

For a home agent, only one local variable is defined, that is, the bind-
ing list(binding list) that saves the care-of addresses of mobile hosts. Each
binding record consists of a home address(m ha), the COA that the home
address is associated with(m coa) and the index of the link between the home
agent and corresponding foreign agent(m fidx). Task component HBC takes
control of read/write accesses to binding list.

HBCi(cache) = CheckHBCi(cache, iidx, ip) =

set hbindingi(idx, ha, coa, j). if (iidx = CACHESIZE) then

cache[idx]#m ha := ha. hip unknowni.HBCi(cache)

cache[idx]#m coa := coa. else (

cache[idx]#m fidx := j. if (cache[iidx]#m ha = ip) then(

BCi(cache)) if (cache[iidx]#m coa = 0) then

+ hld rep ini〈cache[iidx]#m idx〉.

hld reqi(ip). HBCi(cache)

CheckHBCi(cache, 0, ip) else

hld rep outi〈cache[iidx]#m coa,

cache[iidx]#m fidx〉.

HBCi(cache))

else

CheckHBCi(cache, iidx + 1, ip))

Consequently, the home agent can be formally described as

13

HA4i(mac, ip, binding list) = AAi(ip,HOME) | RY Fi|RY Mi |
∏

hn(k)=i

ARPk

| RTAi(mac, ip) | HBCi(binding list)

Foreign Agent

A foreign agent contains four message task components: AA, RLM , RLH
and TN .

• AA is the same as the one for a home agent, except for a foreign agent, agt
is initialized as FOREIGN . Herein the foreign agent COA is just the IP
address of the foreign agent.

• RLM deals with incoming Registration Request messages from mobile hosts.
On receiving a Registration Request message, it may reject the registration
directly by sending a Registration Reply message with NOK as a status
flag, or relay the registration request to given home agent, of which the in-
dex is i, and then set the local status of the registration as ISPENDING
via the channel set pending.

RLMj(ip) = reg req fmj(ha, coa, i, k).

if (coa = ip) then (

reg rep fmk〈ha, coa,NOK〉.RLMj(ip)

+ reg req hfi〈ha, coa, j, k〉.set pendingj〈k, ha〉.RLMj(ip))

else RLMj(ip)

The condition coa = ip requires the request to be received from the mobile
host that the foreign agent serves.

• RLH deals with incoming Registration Reply messages from home agents.

RLHj(ip) = reg rep hfj(ha, coa, rep).

if (coa = ip) then (

fld reqj(ha, ISPENDING)

(fip unknownj.RLHj(ip) + fld rep inj.RLHj(ip)

+ fld rep outj(k).

if (rep = OK) then

set fbindingj〈k, ha〉.reg rep fmk〈ha, coa, rep〉.RLHj(ip)

else reg rep fmk〈ha, coa, rep〉.RLHj(ip))

else RLHj(ip)

On receiving a Registration Reply message, where the COA is the IP
address of the foreign agent, it will query the local status of the registra-
tion via the channel fld req. If the registration is pending, indicated by

14

fld req out with k, the index of the mobile host that sent the registration,
then the Registration Reply message will be relayed to that mobile host and
if the status flag rep in the reply is OK, the local status of the registration
is updated as ISREADY via channel set fbinding.

• TN receives an incoming encapsulated datagram from a home agent via
a tunnel and transfers the datagram to its target mobile host, which has
registered the foreign agent successfully with the home agent.

TNj(ip) = tu haj(tsrc, ttgt, src, tgt, payload).f ld reqj〈tgt, ISREADY 〉.

(fld rep outj(k).routek〈ip〉.pkt outk〈src, tgt, payload〉.TNj

+fld rep inj.stderr〈3〉.TNj + fip unknownj.stderr〈3〉.TNj)

The parameter tsrc and ttgt are the source and the target IP address of
the encapsulated datagram respectively, while src and tgt are the source
and the target IP address of the source datagram, respectively. The error
No. 3, reported via the channel std err, indicates that the endpoint of the
tunnel has not been registered by the target mobile host.

For a foreign agent, only one local variable is defined, that is, the visitor
list(visitor list) that saves the visiting mobile hosts. The home address(m ha)
and the registration status m tag of each visiting mobile host can be referred
to via its index. Task component FBC takes control of read/write accesses
to visitor list.

FBCj(cache) = CheckFBCj(cache, iidx, ip, tag) =

set pendingj(idx, ha). if (iidx = CACHESIZE) then

cache[idx]#m ha := ha. fip unknownj.FBCj(cache)

cache[idx]#m tag := ISPENDING. else (

FBCj(cache)) if (cache[iidx]#m ha = ip) then(

+set fbindingj(idx, ha). if (cache[iidx]#m tag = tag) then

cache[idx]#m ha := ha. fld rep outj〈iidx〉.

cache[idx]#m tag := ISREADY. FBCj(cache))

FBCj(cache)) else

+ fld rep inj.FBCj(cache)

fld reqi(ip, tag). else

CheckFBCj(cache, 0, ip, tag) CheckFBCj(cache, iidx + 1, ip, tag))

Consequently, the foreign agent can be formally described as

FAj(ip, visitor list) = AAj(ip, FOREIGN) | RLMj(ip) | RLHj(ip)

| TNj(ip) | FBCj(visitor list)

15

Mobile Host

A mobile host contains five message task components: AD, RRF , RRH,
MARP and DT4.

• AD determines the location of the mobile host according to incoming Agent
Advertisement messages. It may also issue Agent Solicitation messages
actively. Once detecting the movement, it will inform the home agent of
the mobile host to update its binding status with a care-of address in a
Registration Request message.

ADk,i(ip, hip, coa) = agt adv(icoa, agt, j).(

if (coa = icoa) then

ADk,i(ip, coa)

else (

if (hip = icoa and agt = HOME) then

pending reqk〈0, false〉.

reg req hmi〈ip, 0, k〉.ADk(ip, hip, coa)

else

pending reqk〈icoa, true〉.

reg req fmj〈ip, icoa, i, k〉.ADk,i(ip, hip, coa))))

+set careofk(ncoa).

locationk〈ncoa〉.ADk,i(ip, hip, ncoa)

+agt sol.ADk,i(ip, hip, coa)

The parameter hip is the IP address of its home agent, coa the current
COA, icoa the COA advertised by a home or foreign agent. coa = icoa
means the mobile host does not change its attaching point to a local network.
An Agent Advertisement message received from its home agent indicates the
mobile host has moved back to its home network, which requires its current
COA to be cancelled. Other Agent Advertisement messages indicate the
mobile host has moved out of the local network, which requires its current
COA to be updated. Once the registration request is approved, indicated
via the channel set careof with a new COA(ncoa), the mobile host will set
ncoa as its current COA.

• RRF and RRH check incoming Registration Reply messages received from
the home agent and from foreign agents, respectively and update its local
status if the home agent accepts its registration or deregistration. Because
the mobile host has to determine its location via the latest Agent Advertise-
ment message, only the reply corresponding to the last registration request
is concerned.

16

RRFk = RRHk =

reg rep fmk(ha, coa, rep). reg rep hmk(ha, coa, rep).

if (rep = OK) then if (rep = OK) then

is lastk〈ha, coa〉. is lastk〈ha, coa〉.

(is last yesk.set careofk〈coa〉.RRFk (is last yesk.set careofk〈coa〉.RRHk

+ is last nok.RRFk + is last nok.RRHk

else RRFk else RRHk

On receiving a positive reply(rep = OK), RRF and RRH will query for
the last request via the channel is last. The channel is last yes indicates
the reply is just the one for the last request, which therefore make the cur-
rent COA updated with the one involved in the reply(coa) via the channel
set careof ; while the channel is last no indicates the reply is for an out-
dated request. All negative relies will be ignored because no change has to
be made for the mobile host.

• MARP responds to an incoming ARP Request message, addressed to itself,
with its own MAC address (mac) if it is in the home network.

MARPk(mac) = arp req hostk.ls reqk.

(ls rep homek.arp repk〈mac〉.MARPk(mac)

+ls rep outk.MARPk(mac))

The channel ls req is used to query the status of the mobile host, which
may be in its home network, indicated via channel ls rep home, or has
moved outside, indicated via channel ls rep out.

• DT4 receives and acknowledges those datagrams destined to the home ad-
dress of the mobile host(ip). The error No.4 indicates a datagram destined
to other communicating host is routed to the mobile host.

DT4k,i(ip) = pkt outk(src, tgt, payload).

if (tgt = ip) then acki.DT4k,i(ip)

else stderr〈4〉.DT4k,i(ip)

For a mobile host, two local variables are defined, namely the movement
flag(state) and the last pending request(ip, coa). The movement flag is a
boolean variable to indicate whether the mobile host has moved outside(true)
or not(false). It is useful for MARP to decide whether it should respond to
an incoming ARP Request message. LS takes control of read/write accesses
to state, which is initialized as false.

17

LSk(state) = set lsk(nstate).LSk(nstate)

+ls reqk.

(if (state) then ls rep outk.LSk(state)

else ls rep homek.LSk(state))

The last pending request is the last Registration Request messages sent
from the mobile host. PR takes control of read/write accesses to (ip, coa),
in which the last COA advertised is initialized as none. The channel set ls
is used to set the movement flag according to the latest Registration Reply
message.

PRk(ip) = pending reqk(coa, state).PR′
k(ip, coa, state)

+is lastk(ha, coa).is last nok.PRk(ip)

PR′
k(ip, coa, state) = pending reqk(ncoa, nstate).PR′

k(ip, ncoa, nstate)

+is lastk(ha, ncoa).

(if (ha = ip and ncoa = coa) then

is last yesk.set lsk〈state〉.PRk(ip)

else is last nok.PR′
k(ip, coa, state)

Note that the COA of a mobile host is only a parameter of AD, initialized
as 0, because other message task components do not have to know the concrete
location of the mobile host, but the status whether it has moved outside or
not.

Consequently, the mobile host can be formally described as

MH4k(ip, hip,mac) = ADk,hn(k)(ip, hip, 0) | RRFk | RRHk |MARPk(mac)

|DT4k,hn(k)(ip) | LSk(false) | PRk(ip)

3.1.2 Model Checking

A representative instance of MIP4 is considered in the case study, i.e. MIP41,1,1

that contains only one home agent, one foreign agent and one mobile host. As
required by the model checker we used, the property of deadlock freedom can
be described as a µ-calculus formula

DF , AG(〈−〉 true)

where AG(ϕ) ≡ νX.ϕ ∧ [−]X. AG(ϕ) means the property ϕ should always
hold. In this way, DF means the model should evolve forever.

The graphical user interface(GUI) for model checking MIP41,1,1 and its
components is shown in Fig.1, where the message task component AA0 is
being verified against DF . The text window in its right side shows the result
of model checking, as well as the corresponding statistics on time consumption.

18

Fig. 1. Model Checking MIP41,1,1

Although MIP41,1,1 seems rather simple, the model checking experiment
shows that it is far more complicated than can be dealt with by the model
checker. However, the model checker can verify the deadlock freedom of its
each task component. Table 2 illustrates the results of model checking these
components against DF . |S| is the number of states that have been traversed
during model checking. |N | and |E| are the number of nodes and edges of each
STGA model, respectively. With Theorem 2.3 and 2.4 the deadlock freedom
of MIP41,1,1 can be concluded without explicitly enumerating its state space
exhaustively.

3.2 Mobile IPv6

Mobile IPv6 simplifies Mobile IPv4 in that there is no need to deploy special
routers as ”foreign agents”. It can operate in any location without any special
support required from the local router. The differences between Mobile IPv6
and Mobile IPv4 include:

Mobility Detection An IPv6-based mobile host uses the Neighbor Discov-
ery Protocol to locate itself, instead of specific agent discovery mechanism
in Mobile IPv4.

Registration An IPv6-based mobile host sends directly registration requests
to and receives registration replies from its home agent.

19

Task |S| |N | |E| DF Task |S| |N | |E| DF

AA0 5 1 2 TRUE FBC0 300 4 11 TRUE

RY F0 395 3 5 TRUE AD0 330 6 17 TRUE

RY M0 135 3 5 TRUE RRF0 265 4 7 TRUE

ARP0 40 4 6 TRUE RRH0 265 4 7 TRUE

RTA0 252 7 10 TRUE DT40 30 2 3 TRUE

HBC0 434 7 14 TRUE MARP0 20 4 5 TRUE

RLM0 134 3 5 TRUE LS0 28 3 6 TRUE

RLH0 278 5 9 TRUE PR0 1174 8 14 TRUE

TN0 179 6 9 TRUE

Table 2
Results of Model Checking Each Component

Routing Datagrams destined to a roaming mobile host will be tunnelled
directly to it.

Note that the terms of ”Registration Request” and ”Registration Reply”
in Mobile IPv4 are referred to as ”Binding Update” and ”Binding Acknowl-
edgement” in Mobile IPv6, respectively.

3.2.1 Modelling

This section will illustrate a STGA model of Mobile IPv6 in the context of
the modelling framework proposed in Section 2. Formally, Mobile IPv6 can
be described as a tuple

MIP6nha,nmh = (E6, C
e
6, C

p
6)

with

E6 = {HA6[0..nha − 1],MH6[0..nmh − 1]}

where

(i) HA6 and MH6 are STGA models of home agents and mobile hosts in
Mobile IPv6, respectively;

(ii) nha and nmh are the number of home agents and mobile hosts, respec-
tively;

Let i, k range over indexes of home agents and mobile hosts, respectively.
Table 3 describes how these entities are connected with the environment(denoted
by -) via channels in C

e
6(row 1 to 4) and how they are connected with each

other via channels in C
p
6(row 5 to 8). Suppose N ′

mh = {k | 0 ≤ k ≤ nmh − 1},
N ′

ha = {i | 0 ≤ i ≤ nha − 1}, hn : N ′
mh → N ′

ha is a home network function

20

Channel From To Description

sendi - HA6i To receive the datagrams from the
environment.

locationk MH6k - To indicate the location of the
(k + 1)-th mobile host.

routek HA6hn(k), MH6k - To indicate the routing path for a
datagram addressed to (k + 1)-th
mobile host.

stderr HA6, MH6 - To indicate an exception.

reg req hmi MH6 HA6i To send a registration request di-
rectly to the (i+1)-th home agent.

reg rep hmk HA6 MH6k To send a registration reply di-
rectly to the (k + 1)-th mobile
host.

forwardk HA6 MH6k To receive a datagram from a
home agent.

tunnelj HA6 MH6j To receive a tunnelled datagram
from a home agent.

Table 3
Channels in C

e
6 ∪ C

p
6

that maps each mobile host MH6k to its home agent HA6hn(k). Herein all
channels in C

e
6 ∪ C

p
6 are unilateral. The entities that may send messages to a

channel are listed in column From; while the ones that may receive messages
from the channel is listed in column To. Local channels in each entity are just
as their names imply.

MIP6 can be easily proved to be interoperable so the deadlock freedom
can be preserved.

Home Agent

A home agent contains three message task components: RY M , ARP and
RTA, which have been defined in Section 3.1.1.

Similarly the task component HBC takes control of read/write accesses to
the binding list(binding list). Then, the home agent can be formally described
as

HA6i(mac, ip, binding list) = RY Mi |
∏

hn(k)=i

ARPk

| RTAi(mac, ip) | HBCi(binding list)

21

Mobile Host

A mobile host contains four message task components: ND, RRH, MARP
and DT6. RRH and MARP have been defined in Section 3.1.1.

• Movement detection in IPv6 was considered as an isolated protocol, which
is not modelled in this case study. Once detecting the movement, ND will
inform the home agent of the mobile host to update its binding status with
a care-of address in a Binding Update message.

NDk,i(ip, hip, coa) = pending reqk〈0, false〉.

reg req hmi〈ip, 0, k〉.NDk,i(ip, hip, coa)

+pending reqk〈icoa, true〉.

reg req haj〈ip, icoa, k〉.NDk,i(ip, hip, coa)

+set careofk(ncoa).

locationk〈ncoa〉.NDk,i(ip, hip, ncoa)

• DT6 receives and acknowledges those datagrams destined to the home ad-
dress of the mobile host(ip). Those datagrams may be forwarded via the
channel pkt out when the mobile host is in its home network, or tunnelled
via the channel tu ha when it is out of the home network.

DT6k,i(ip) = pkt outk(src, tgt, payload).

if (tgt = ip) then acki.DT6k,i(ip)

else stderr〈4〉.DT6k,i(ip)

+tu hak(tsrc, ttgt, src, tgt, payload).ls reqk.

(ls rep outk.routek〈BYFOREIGN〉.acki.DT6k,i(ip)

+ls rep homek.stderr〈3〉.DT6k,i(ip)

Similarly LS and PR takes control of read/write accesses to the movement
flag(state) and the last pending request(ip, coa), respectively. Then the mobile
host can be formally described as

MH6k(ip, hip) = NDk,hn(k)(ip, hip, 0) | RRHk | MARPk(mac)

| DT6k,hn(k)(ip) | LSk(false) | PRk(ip)

3.2.2 Model Checking

A representative instance of MIP6 is considered in the case study, i.e. MIP61,1

that contains only one home agent and one mobile host. From the viewpoint
of functionality, Mobile IPv6 should always be able to route IP datagrams
to mobile nodes roaming outside of the home networks. As required by the
model checker we used, this property can be described as the conjunction of
the following µ-calculus formulae:

22

(i) Deadlock Freedom(DF)

DF , AG(〈−〉 true)

(ii) Adaptive Routing(AR)

ARh , AG([ah]AG([s]EF (〈rh〉true − af)))

ARf , AG([af]AG([s]EF (〈rf〉true − ah)))

(iii) Tunnel on Demand(ToD)

ToD , AG([stderr〈3〉] false)

where

(i) s ≡ send(imac, src, tgt, payload), an input action to retrieve a datagram
from the environment;

(ii) ah ≡ location〈HOME〉, an output action to indicate the mobile host is
home now;

(iii) af ≡ location〈FOREIGN〉, an output action to indicate the mobile host
has moved out;

(iv) rh ≡ route〈HOME〉), an output action to indicate a datagram is routed
directly to its destination without passing a tunnel;

(v) rh ≡ route〈FOREIGN〉, an output action to indicate a datagram is
routed to its destination via a tunnel;

(vi) EF (ϕ − α) ≡ µX.ϕ ∨ [−α]X, which means the property ϕ should hold
eventually except when action α has taken place.

Recall that DF means the model should always evolve. ARh(ARf) means
whenever the mobile host becomes stable at the home(foreign) network, all
datagrams destined for the mobile host should be forwarded without passing
a tunnel(via a tunnel). ToD means a tunnel should be used only when the
mobile host is roaming.

The graphical user interface for model checking MIP61,1 and its compo-
nents is shown in Fig.2, where the message task component RY M0 is being
verified against DF .

Although MIP61,1 seems rather simple, the model checking experiment
shows that it is far more complicated than can be dealt with by the model
checker. However, the model checker can verify the deadlock freedom of its
each task component. Table 4 illustrates the results of model checking these
components against DF . With Theorem 2.3 and 2.4 the deadlock freedom
of MIP61,1 can be concluded without explicitly enumerating its state space
exhaustively.

As far as AR and ToD are concerned, the model checking experiments end
unexpectedly with negative results, which disclose the embarrassing infrangi-
bility of Mobile IPv6 in its routing capability. Two ways to implement a home
agent are verified with the only difference in the order between replying a mo-
bile host with a Binding Acknowledgement and updating its local binding list:

23

Fig. 2. Model Checking MIP61,1

Task |S| |N | |E| DF

RY M0 135 3 5 TRUE

ARP0 40 4 6 TRUE

RTA0 252 7 10 TRUE

HBC0 434 7 14 TRUE

ND0 117 5 9 TRUE

RRH0 265 4 7 TRUE

DT60 151 6 11 TRUE

MARP0 20 4 5 TRUE

LS0 28 3 6 TRUE

PR0 1174 8 14 TRUE

Table 4
Results of Model Checking Each Component

24

one way is to reply first, then update; while the other, vice versa. Although
familiar in known implementations of IPv6 [13], these two ways do not satisfy
properties AR and ToD.

(i) If a home agent replies a mobile host before it updates its local repository,
then all datagrams received during the period of these two events will be
forwarded to an outdated address, which is unreachable on behalf of the
mobile host;

(ii) If a home agent replies a mobile host after it has updated its local repos-
itory, then during the period of these two events, the mobile host is
unstable in the sense that its roaming capability has not yet been en-
abled. Any datagram received during this period will be forwarded to
the mobile host, of which the behavior is undefined in Mobile IPv6.

By model checking MIP61,1 directly, the counterexamples generated from
the model checker definitely clarify that these infrangibilities are resulted from
the binding incoherency during mobile communications, which has also not
been reflected by Mobile IPv6 testing [17].

Adaptive Routing

Fig.3 illustrates a counterexample for the property ARf , where a mobile
host is to register its binding information. Although having acknowledged the
mobile host with OK, the home agent updates its local binding list after it
has forwarded a datagram received previously to the mobile host according to
its current binding list, where the mobile host is supposed to be still home.
Therefore the datagram will never reach the mobile host.

HA6(ip) MH6

The MH is attached to a foreign network

reg req hm(coa)

reg rep hm(OK)
af

send
rh

set hbinding(coa)

msc Case I: To reply the mobile host before updating the
binding list

Fig. 3. Counterexample for ARf

25

Similarly one can find a corresponding counterexample for the property
ARh with respect to MIP61,1.

One way to avoid the case of datagram loss above is to switch the order
between actions reg rep hm and set hbinding. A model checking experiment
shows the resulted model does still not satisfy ARh with a counterexample
illustrated in Fig.4, where a mobile host is to move out of its home network.
Before the mobile host becomes stable at the foreign network, that is, receives
a Binding Acknowledgement from its home agent, a datagram has been for-
warded to the new care-of address that is not yet enabled. In such case, the
behavior of the mobile host is undefined in the specification of Mobile IPv6.

HA6(ip) MH6

ah

The MH is attached to a foreign network

reg req hm(coa)

set hbinding(coa)

send
rf

reg rep hm(OK)

msc Case II: To update the binding list before replying the
mobile host

Fig. 4. Counterexample for ARh

Similarly one can find a corresponding counterexample for the property
ARf with respect to the modified model.

Tunnel on Demand

The binding incoherency also ruins the property ToD. Fig.5 illustrates
a counterexample for ToD, where a mobile host is to deregister its binding
information. Although having acknowledged the mobile host with OK, the
home agent updates its local binding list after it has forwarded a datagram
received previously to the mobile host according to its current binding list,
where the mobile host is supposed to be out of its home network. In such
case, the behavior of the mobile host is undefined in the specification of Mobile
IPv6.

26

HA6(ip) MH6

The MH is attached to its home network

reg req hm(0)

reg rep hm(OK)

ah

send

tu ha
stderr〈3〉

set hbinding(coa)

msc Case III: To reply the mobile host before updating the
binding list

Fig. 5. Counterexample for ToD

The model resulted by switching the order between actions reg rep hm
and set hbinding does still not satisfy ToD. A counterexample is illustrated
in Fig.6, where a mobile host is to register its binding information. Before
receiving a Binding Acknowledgement from its home agent, it receives a data-
gram via a tunnel, which has not yet been enabled. In such case, the behavior
of the mobile host is undefined in the specification of Mobile IPv6.

HA6(ip) MH6

The MH is attached to a foreign network

reg req hm(coa)

set hbinding(coa)

send

tu ha
stderr〈3〉

reg rep hm(OK)

msc Case IV: To update the binding list before replying the
mobile host

Fig. 6. Another Counterexample for ToD

27

4 Conclusion

A symbolic and compositional framework was presented in this paper presents
for modelling network protocols with STGA. It inherits the layered nature of
network protocols. The system model in the context of the framework is
constituted of a series of task components communicating with each other via
message passing strategy. Case studies with Mobile IPv4 and IPv6 illustrate
the effectiveness of the modelling framework. The main advantages of the
framework rest on the following aspects:

(i) It can address dynamic network topologies without additional syntactic
or pragmatic mobility facilities.

(ii) It preserves the deadlock freedom in the sense that the deadlock freedom
of a system model depends only on the deadlock freedom of its each task
component. In this way, the framework can extend the capability of the
model checker to deal with more complicated system models than can be
dealt with by direct model checking.

(iii) The case study with Mobile IPv6 detects the infrangibility of Mobile IPv6
in its binding incoherency, which may make a datagram unreachable to its
destination or being forwarded to an unstable mobile host. The behaviors
of home agents and mobile hosts in such cases are not addressed in the
specification of Mobile IPv6 and even not touched in Mobile IPv6 testing.

As future work, we would like to analyze other critical properties, e.g.
mutual exclusion from a compositional perspective. Moreover, the framework
can be extended for parameterized verification. The inherent parameterized
modelling nature of the framework can help verify concrete network protocols
in a more cost-effective way.

References

[1] Amadio, R. M. and S. Prasad, Modelling IP mobility, in: D. Sangiorgi and
R. de Simone, editors, Ninth International Conference on Concurrency Theory,
Lecture Notes in Computer Science 1466 (1998), pp. 301–316.

[2] Dang, Z. and R. A. Kemmerer, Using the ASTRAL model checker to analyze
mobile IP, in: 21st international conference on Software engineering (1999), pp.
132–141.

[3] Dong, Y., X. Du, G. J. Holzmann and S. A. Smolka, Fighting livelock in the
GNU i-protocol: A case study in explicit-state model checking, International
Journal on Software Tools for Technology Transfer 4 (2003), pp. 505–528.

[4] Holzmann, G. J., “Design and Validation of Computer Protocols,” Prentice
Hall, 1991.

[5] Johnson, D. and C. Perkins, Mobility support in IPv6, in: Second

28

ACM International Conference On Mobile Computing And Networking
(MobiCom’96), ACM, 1996, pp. 27–37.

[6] Johnson, D., C. Perkins and J. Arkko, Mobility support in IPv6, Internet-Draft,
IETF Mobile IP Working Group (2003).

[7] Lin, H., Symbolic transition graph with assignment, in: CONCUR’96, Lecture
Notes in Computer Science 1119, Pisa, Italy, 1996, pp. 50–65.

[8] Lin, H., Model checking value-passing processes, in: 8th Asia-Pacific Software
Engineering Conference (APSEC’2001), Macau, 2001, pp. 3–12.

[9] McCann, P. J. and G.-C. Roman, Modeling mobile IP in mobile UNITY, ACM
Transaction on Software Engineering and Methodology 8 (1999), pp. 115–146.

[10] Musuvathi, M. and D. Engler, Model checking large network protocol
implementations, in: The First Symposium on Networked Systems Design and
Implementation, USENIX Association, 2004, pp. 155–168.

[11] Perkins, C., IP mobility support, IETF RFC 2002 (1996).

[12] Perkins, C., IP mobility support for IPv4, IETF RFC 3344 (2002).

[13] Santti, K., S. Auvray and G. Egeland, Survey of mobile IPv6 implementations,
Tsunami Project P1113, European Institute for Research and Strategic Studies
in Telecommunications(EURESCOM) (2002).

[14] Wen, X., F. Hai and L. Hui-min, Optimization and implementation of a
bisimulation checking algorithm for the π-calculus, The Journal of Software 12

(2001), pp. 159–166.

[15] Wu, P., Analyzing interoperability of protocols using model checking (2003),
accepted by the 1st International Workshop on Automated Technology for
Verification and Analysis (ATVA’03), Taipei, Taiwan.

[16] Wu, P. and D. Zhang, Compositional analysis of mobile IP with
symbolic transition graphs, in: 16th International Conference on Computer
Communication, 2004, pp. 1481–1488.

[17] Yu-jun, Z., T. Jun and L. Zhong-cheng, Mobile IPv6 and its conformance testing
(2002).

[18] Zhang, Y., “Extending a Model-Checking Tool with Non-trivial Data
Structures,” Master’s thesis, Institute of Software, Chinese Academy of Sciences
(2003).

29

	050314吴鹏－封面.pdf
	Peng Wu
	Dongmei Zhang

	mip-tr.pdf
	Introduction
	Modelling Network Protocols with STGA
	STGA
	Modelling Network Protocols
	Deadlock Freedom

	Case Study
	Mobile IPv4
	Mobile IPv6

	Conclusion
	References

