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Abstract

The paper introduces symbolic bisimulations for a sim-
ple probabilistic π-calculus to overcome the infinite branch-
ing problem that still exists in checking ground bisimula-
tions between probabilistic systems. Especially the defini-
tion of weak (symbolic) bisimulation does not rely on the
random capability of adversaries and suggests a solution to
the open problem on the axiomatization for weak bisimula-
tion in the case of unguarded recursion. Furthermore, we
present an efficient characterization of symbolic bisimula-
tions for the calculus, which allows the ”on-the-fly” instan-
tiation of bound names and dynamic construction of equiv-
alence relations for quantitative evaluation. This directly
results in a local decision algorithm that can explore just
a minimal portion of the state spaces of the probabilistic
processes in question.

1 Introduction

Probability has been introduced into process calculi for
the specification and verification of systems that present un-
certainty aspects amenable to quantitative treatment. Bisim-
ulations were defined correspondingly [23, 22, 11] and have
been applied in the context of security analysis. To name
a few, [1, 5] employed probabilistic bisimulation notions
to specify the information flow security properties; [15]
formalized the non-repudiation property through a weak
bisimulation between two probabilistic models, one with a
well-behaved recipient and the other with a malicious recip-
ient.

In the non-probabilistic case, symbolic bisimulations
[16, 4] were proposed to overcome the ”infinite branching”
problem, namely the definition of ground bisimulation re-
quires infinite many residuals to be further checked after
matching input actions, each residual representing one pos-

sible instantiation of input names. The same problem exists
for probabilistic systems but has got less attention so far.

This paper introduces symbolic bisimulations for a sim-
ple probabilistic π-calculus, abbreviated as πsp, which is
a newly defined extension of π-calculus with a probabilis-
tic blind choice. πsp stems from [14, 3, 7] and supports
the co-existence of nondeterministic and probabilistic be-
haviors in two ways: by allowing probabilistic distribu-
tion over nondeterminism and by allowing nondetermin-
ism among probabilistic distributions. Besides, [11] showed
that weak bisimulation cannot be defined on a probabilistic
mixed-guarded choice without using combined transitions,
and also left as an open problem how to define an axioma-
tizable relation of weak bisimulation. This paper presents a
revised definition of weak bisimulation that does not rely on
probabilistic combinations of transitions and paves a way
for axiomatization. We also present probabilistic versions
of symbolic bisimulations for completeness.

As in the non-probabilistic case, a symbolic bisimulation
for πsp is a family of equivalence relations over processes,
indexed by equality and(or) inequality conditions over fi-
nite sets of names. As far as an input action is concerned,
the symbolic bisimulation requires an input name to be in-
stantiated only with fresh names for each element of a finite
partition of current indexing condition.

In total four symbolic bisimulations are presented,
including strong/weak symbolic bisimulations and
strong/weak probabilistic symbolic bisimulations. More-
over, we propose a practical way to characterize symbolic
bisimulations, based on which a local decision algorithm
(framework) is proposed in the sense that only a minimal
portion of the state spaces of πsp processes in question will
be explored for checking the bisimilarity between them.
The characterization relaxes the underlying equivalence
relations in the definitions of symbolic bisimulations to
be symmetric relations, which make a local algorithm
possible. Furthermore, the characterization avoids con-



structing the finite partitions of indexing conditions, which
is expensive, by considering an ordered name space. Our
work is adapted from [16, 17, 18, 19] and improves the
efficiency of the algorithm in [18] by tabling the intermedi-
ate dependencies between pairs of processes. As far as we
know, this is the first efficient local algorithm for checking
bisimulations for probabilistic systems.

The rest of this paper is organized as follows. Section 2
introduces the syntax of πsp with its concrete and symbolic
operational semantics. Section 3 presents the strong and
weak symbolic bisimulations and shows the relationships
between ground and symbolic bisimulations. The proba-
bilistic versions of ground and symbolic bisimulations for
πsp are presented in Section 4. The practical characteri-
zation of these bisimulations is proposed in Section 5, fol-
lowed by the ”on-the-fly” decision algorithm in Section 6.
Section 7 concludes the paper with some future work out-
lined.

2 A Simple Probabilistic π-Calculus

We presuppose a countably infinite set N of names,
ranged over by x, y, z. Let x̃, ỹ, z̃ range over name vec-
tors. A substitution σ ≡ {ỹ/x̃} is a mapping from a vector
of distinct names x̃ to a name vector ỹ, where x̃ and ỹ are
of same length.

2.1 Syntax

Let t, u range over processes, A over process identifiers
and p, q over real numbers in (0, 1]. The syntax of πsp is
given by the following BNF grammar:

α ::= τ | x(y) | x̄y

t ::= α.t |
∑

i∈I ti |
∑

i∈I piτ.ti | t | t | νxt

| [x = y]t | A(ỹ)

where I is an index set.
The prefixed process α.t can evolve into t with proba-

bility 1, after performing action α. There are three types of
basic actions: an input action x(y), an output action x̄y and
the silent action τ .

Two types of summations are involved:
∑

i∈I ti and∑
i∈I piτ.ti, which indicate a nondeterministic and a prob-

abilistic blind (or internal) choice among ti’s, respectively.
Herein, the probabilistic branches are prefixed explicitly
with silent actions, each associated with a positive proba-
bility pi such that

∑
i∈I pi = 1. We will use 0 (inactive

process) to stand for the empty summation, t + u for a bi-
nary nondeterministic choice and pτ.t + (1 − p)τ.u for a
binary probabilistic blind choice.

Such a simple probabilistic choice does not lose the ex-
pressiveness of more general probabilistic choices [12, 24].

The notion of a reactive probabilistic choice α.
∑

i∈I piti
can be represented in πsp as α.

∑
i∈I piτ.ti, while a gen-

erative probabilistic choice
∑

i∈I piαiti can be represented
as

∑
i∈I piτ.αi.ti.

In composition t | u, the component t and u can proceed
in parallel and can also interact via shared names. It can be
seen that in πsp, probabilistic choices have no extra effect
on parallel composition [24], because only probabilistic in-
ternal choices are involved.

The restriction νxt, match construction [x = y]t and
identifier A take meanings from π-calculus.

An occurrence of name y in process t is bound if it is in
a subexpression of t of the form x(y).u or νyu; otherwise,
it is free. The sets of free and bound names of process t are
denoted by fn(t) and bn(t), respectively.

2.2 Operational Semantics

We specify the concrete operational semantics of πsp as
a probabilistic automaton [23], and its symbolic operational
semantics based on a probabilistic extension of symbolic
transition graph [16, 4]. The notion of a probability space
is used to interpret the probabilistic aspect of probabilistic
systems. For notational convenience, index sets I will be
omitted, if no distinction is necessary. Especially, the nota-
tion {· | i ∈ I} will be simplified as {·}i.

2.2.1 Probability Spaces

A probability space is a triplet P = (Ω, F, η) where Ω
is a set, F is a collection of subsets of Ω that includes
Ω and is closed under complement and countable union,
and η : F → [0, 1] is a probability distribution func-
tion such that η(Ω) = 1 and for any collection {Ci}i of
at most countably many pairwise disjoint elements of F ,
η(

⋃
i Ci) =

∑
i η(Ci).

A probability space (Ω, F, η) is discrete if F = 2Ω, and
hence abbreviated as (Ω, η). Let PROB(X) denote the set
of all discrete probability spaces (Ω, η) on a set X such that
Ω ⊆ X . The Dirac distribution over the singleton set {x}
constitutes the probability space with the unique element x,
denoted by D(x).

Suppose Pi = (Ωi, ηi), i ∈ {1, 2} and Z ⊆ Ω1,
P1 +Z P2 denotes the probability space (Ω, η) such that
Ω = (Ω1 − Z) ∪ Ω2 and for each set Y ⊆ Ω,

• if Y ⊆ Ω1 − Ω2, η(Y ) = η1(Y );

• if Y ⊆ Ω2 − Ω1, η(Y ) = η1(Z)η2(Y );

• otherwise, η(Y ) = η1(Y ∩ Ω1) + η1(Z)η2(Y ∩ Ω2).

Intuitively, P1+ZP2 means to replace the distribution of
P1 over Z by the one of P2. This operation will be referred
to later in Section 3 to define weak transition relations.



Given probability spaces {Pi = (Ωi, ηi)}i on X and
weights wi > 0 for each i such that

∑
i wi = 1, we de-

fine a convex combination
∑

i wiPi as the probability space
(Ω, η) such that Ω =

⋃
i Ωi and for each set Y ⊆ Ω,

η(Y ) =
∑

Y ∩Ωi �=∅ wiηi(Y ∩ Ωi)

2.2.2 Semantics

Let {pi : ti}i denote a probability space P = ({ti}i, η)
such that η({ti}) = pi for each i. The sets of free and bound
names of P are defined as follows: fn(P) =

⋃
i fn(ti),

bn(P) =
⋃

i bn(ti). Especially, fn(α.P) =
⋃

i fn(α.ti).
The application of a substitution σ to P , written Pσ, results
in {pi : tiσ}i.

The operational semantics of πsp can be given as a
probabilistic automaton (S,Act, T, s0), where S is a non-
empty set of processes (states), Act is a set of actions,
T ⊆ S × Act × PROB(S) is a set of probabilistic tran-
sitions and s0 ∈ S is the initial state. The transition relation
T is defined by the rules in Figure 1, where each probabilis-
tic transition takes the form t

α−→ {pi : ti}i. The symmet-
ric rule for PAR is omitted. A Dirac probabilistic transition
t

α−→ D(u) is abbreviated as t
α−→ u.

It can be seen that only a transition t
τ−→ P may introduce

a non-Dirac probabilistic distribution, which is the main
difference from the transitions in π-calculus. Such a light-
weight extension inherits most semantical properties from
π-calculus, in which, instead, the input and bound output
actions are paid highly attention to.

In addition to the actions from the syntax, a bound output
action x̄(y) is also introduced in the probabilistic automaton
to model scope extrusion. The sets of free and bound names
of actions are defined as follows: fn(x(y)) = fn(x̄(y)) =
{x}, fn(x̄y) = {x, y}, bn(x(y)) = bn(x̄(y)) = {y} and
fn(τ) = bn(τ) = bn(x̄y) = ∅. Let n(α) indicate all the
names that occur in action α, that is, n(α) = fn(α)∪bn(α).

2.2.3 Symbolic Semantics

Symbolic transition graphs were proposed to define the
symbolic semantics of value-passing CCS [13]and π-
calculus [16, 17, 18, 19]. We recall some notations and
properties of conditions below.

Let B,D,M,N denote conditions in forms of true,
[x = y], ¬M or M ∧ N . Especially,‘ ¬[x = y] will be
abbreviated as x 	= y. A condition M is consistent if there
is no x, y ∈ N such that M ⇒ x = y and M ⇒ x 	= y. M
is maximally consistent on V ⊂ N , written M ∈ MCV , if
M is consistent and for any x, y ∈ V , either M ⇒ x = y
or M ⇒ x 	= y. N is a maximally consistent exten-
sion of M on V , written N ∈ MCEV (M), if N ⇒ M ,
n(N) − n(M) ⊆ V and N is maximally consistent on V .
σ � N indicates Nσ = true.

PRE
α.t

α−→ t

PROB
(
∑

i piτ.ti)
τ−→ {pi : ti}i

SUM
tj

α−→ P
(
∑

i∈I ti)
α−→ P

j ∈ I

PAR
t

α−→ {pi : ti}i

t | u α−→ {pi : (ti | u)}i

bn(α) ∩ fn(u) = ∅

RES
t

α−→ {pi : ti}i

νxt
α−→ {pi : νxti}i

x 	∈ n(α)

COM
t

x(z)−−−→ t′ u
x̄y−→ u′

t | u τ−→ t′{y/z} | u′

OPEN
t

ȳx−→ u

νxt
ȳ(x)−−−→ u

x 	= y

CLOSE
t

x(z)−−−→ t′ u
x̄(y)−−−→ u′

t | u τ−→ νy(t′{y/z} | u′)

MATCH
t

α−→ P
[x = x]t α−→ P

x 	∈ bn(α)

IDE
t{ỹ/x̃} α−→ P
A(ỹ) α−→ P

A(x̃) � t

Figure 1. Concrete Semantics of πsp

The restriction operator νx is defined on conditions as
follows (where x 	= y 	= z).

νx true = true νx[x = x] = true
νx[x = y] = false νx[y = z] = [y = z]

νx(M ∧ N) = νxM ∧ νxN

We quote Lemma 2.3 from [19] below.

Lemma 1. Suppose a condition N ∈ MCV and M such
that n(M) ⊆ V . If σ � N and σ � M for some σ, then
N ⇒ M .

The symbolic operational semantics of πsp is given as a
probabilistic symbolic transition graph (PSTG), which we
define as a probabilistic extension of symbolic transition
graphs. A PSTG is a rooted directed graph (S,Act, T , s0),
where T is a set of probabilistic symbolic transitions. The
transition relation T is defined by the rules in Figure 2. The
symmetric rule for PAR is omitted.



In Figure 2, each probabilistic symbolic transition takes

the form t
M,α−−−→ {pi : ti}i, which means if condition M

holds, process t can perform action α and evolve into pro-

cess ti with probability pi. Similarly, t
M,α−−−→ D(u) is abbre-

viated as t
M,α−−−→ u. The condition true is omitted without

causing any confusion. Herein, only the transition t
M,τ−−−→ P

may introduce a non-Dirac probabilistic symbolic distribu-
tion.

PRE
α.t

α−→ t

PROB
(
∑

i piτ.ti)
τ−→ {pi : ti}i

SUM
tj

M,α−−−→ P
(
∑

i∈I ti)
M,α−−−→ P

j ∈ I

PAR
t

M,α−−−→ {pi : ti}i

t | u M,α−−−→ {pi : (ti | u)}i

bn(α) ∩ fn(u) = ∅

RES
t

M,α−−−→ {pi : ti}i

νxt
νxM,α−−−−→ {pi : νxti}i

x 	∈ n(α)

COM
t

M,y(z)−−−−→ t′ u
N,x̄v−−−→ u′

t | u [x=y]∧M∧N,τ−−−−−−−−−→ t′{v/z} | u′

OPEN
t

M,ȳx−−−→ u

νxt
νxM,ȳ(x)−−−−−−→ u

x 	= y

CLOSE
t

M,y(z)−−−−→ t′ u
N,x̄(v)−−−−→ u′

t | u [x=y]∧M∧N,τ−−−−−−−−−→ νv(t′{v/z} | u′)

MATCH
t

M,α−−−→ P

[x = y]t
[x=y]∧M,α−−−−−−−→ P

{x, y} ∩ bn(α) = ∅

IDE
t{ỹ/x̃} M,α−−−→ P
A(ỹ)

M,α−−−→ P
A(x̃) � t

Figure 2. Symbolic Semantics of πsp

Lemma 2. If t
M,α−−−→ P , n(M) ∪ fn(α) ⊆ fn(t).

Proof. By transition induction.

The following lemma relates the symbolic and concrete
operational semantics of πsp.

Lemma 3. 1. If t
M,α−−−→ P then for any σ � M with

bn(α) ∩ (fn(t) ∪ n(σ)) = ∅, tσ
ασ−−→ Pσ.

2. If tσ
α′
−→ P ′ then there are M , α, and P such that

σ � M , α′ ≡ ασ, P ′ ≡ Pσ and t
M,α−−−→ P .

Proof. By transition induction. Details are similar to
Lemma 2.6 in [19].

3 Symbolic Bisimulations

This paper focuses on late bisimulations, while the re-
sults can be carried over to early bisimulations in a sys-
tematic manner. As usual, we need to lift an equivalence
relation on S to a relation on PROB(S) for defining bisim-
ulations for probabilistic systems.

Definition 1. Let R be an equivalence relation over S. Two
discrete probability spaces P1 = (S, η1) and P2 = (S, η2)
are R-equivalent, written P1 ≡R P2, if for each equiv-
alence class C of S/R, η1(C) = η2(C). Especially,
D(t) ≡R D(u) will be abbreviated as t ≡R u.

3.1 Strong Symbolic Bisimulation

We formalize the notion of strong bisimulation for πsp,
following the lines of [23], in order to show the relation-
ship between symbolic bisimulations and ground ones in
the probabilistic settings.

Definition 2 (Strong Bisimulation). An equivalence rela-
tion R is a late bisimulation if (t, u) ∈ R implies

1. whenever t
x(y)−−−→ t′ with x 	∈ fn(t, u) then u

x(y′)−−−→ u′

for some u′ such that for any z, t′{z/y} ≡R u′{z/y′};

2. whenever t
α−→ P for any other action α with bn(α) ∩

fn(t, u) = ∅ then u
α−→ Q for some Q such that P ≡R

Q.

Write t ∼l u if there exists a late bisimulation R such that
(t, u) ∈ R.

Let α =B β mean that actions α and β are identical
under condition B, as defined in [17, 19]. Now we are set
to introduce strong symbolic bisimulation for πsp.

Definition 3 (Strong Symbolic Bisimulation). A condition
indexed family of equivalence relations between processes,
S = {SB}, is a late symbolic bisimulation if (t, u) ∈ SB

implies whenever t
M,α−−−→ P with bn(α) ∩ fn(t, u,B) = ∅,

for each D ∈ MCEfn(t,u)(B ∪ M) there is a u
N,β−−→ Q

such that D ⇒ N , α =D β and P ≡SD′ Q where

• if α = x̄(y), D′ = D ∪ {y 	= z | z ∈ fn(α.P, β.Q)}.



• otherwise, D′ = D.

Write t ∼B
L u if (t, u) ∈ SB ∈ S for some late symbolic

bisimulation S.

By the similar proof for bisimulations defined in [12], ∼l

and ∼L can be shown to be equivalence relations. We relate
∼L with ∼l through the following propositions.

Proposition 1. Suppose B ∈ MCfn(t,u), t ∼B
L u iff tσ ∼l

uσ for any σ � B.

Proof. We outline the proof below and more details are
given in Appendix A.

(⇒) Define R = {(tσ, uσ) | t ∼B
L u for some B ∈

MCfn(t,u), and σ � B}. It can be shown that R is a late
bisimulation.

(⇐) Define SB = {(t, u) | B ∈ MCfn(t,u), tσ ∼l

uσ for some σ � B}. Let S = {SB}. It can be shown
that S is a late symbolic bisimulation.

Then Proposition 2 relaxes the requirement on indexing
conditions in Proposition 1.

Proposition 2. t ∼B
L u iff t ∼D

L u for any D ∈
MCEfn(t,u)(B).

Proof. Similar to Proposition 2.14 in [19].

With the above two propositions, we can show that ∼L

captures ∼l.

Theorem 1. t ∼B
L u iff tσ ∼l uσ for any σ � B.

Proof. By Lemma 1, Proposition 1 and 2.

3.2 Weak Symbolic Bisimulation

3.2.1 Weak Bisimulation

Weak bisimulations have been proposed for various prob-
abilistic systems. However, [11] showed that the ”natu-
ral” weak bisimulation cannot be defined upon probabilistic
guarded choices (i.e.

∑
i piαi.ti), even for finite-state prob-

abilistic processes, because it turns out to be non-transitive.
Meanwhile, [11] proposed an alternative definition that re-
lies on the random capability of adversaries (explained later
in Section 4). Furthermore, [11] left as an open problem
how to define weak bisimulation that allows axiomatization
with finitary inference rules. Herein, πsp uses a simpler
notation of probabilistic choice (i.e.

∑
i piτ.ti), which al-

lows direct definitions of weak (symbolic) bisimulations in
a usual way.

Definition 4. The late weak probabilistic transitions t
α=⇒l

P are defined as the least relation satisfying the rules shown
in Figure 3(a). Furthermore, we extend ⇒l onto discrete
probability spaces with the rule shown in Figure 3(b). Let
τ̂ = ε and α̂ be α for α 	= τ . Especially, let ⇒l be

ε=⇒l.

1)
t

ε=⇒l t
2)

t
α−→ P

t
α=⇒l P

3)
t

τ−→ {pi : ti | i ∈ I} ∀ti 	= t, i ∈ I ti
α=⇒l Pi

t
α=⇒l

∑
i∈I,ti �=t

pi

1 − λ
Pi

where λ =
∑

i∈I,ti=t pi

4)
t

α=⇒l {pi : ti | i ∈ I} tk
τ−→l P

t
α=⇒l {pi : ti | i ∈ I} +{tk} P

where k ∈ I, α 	= x(y)
(a)

∀i ti ⇒l Pi

{pi : ti}i ⇒l

∑
i

piPi

(b)

t

0.5τ

��
0.5τ �� t′

α �� t′′

(c)

Figure 3. Weak Concrete Transition Relations

Definition 4 gives rise to a wider notation of weak proba-
bilistic choice in the form of t

α=⇒l P , where in case α 	= τ ,
P is no longer restricted to be a probability space with only
one element. This certainly complements the expressive-
ness of πsp from the observational perspective. Particularly,
rule 3) in Figure 3(a) can compute out an observable proba-
bilistic choice from a concrete one containing self τ -loops.
For example, the case shown in Figure 3(c) will result in a
weak probabilistic transition t

α=⇒ t′′. In this way, a ”natu-
ral” weak variant of Definition 2 would be as follows.

Definition 5. An equivalence relation R is a late weak
bisimulation if (t, u) ∈ R implies

1. whenever t
x(y)−−−→ P with x 	∈ fn(t, u) then

u
x(y′)
===⇒l Q′ for some Q′ such that for any z, there

is Q′{z/y′} ⇒l Q and P{z/y} ≡R Q;

2. whenever t
α−→ P for any other action α with bn(α) ∩

fn(t, u) = ∅ then u
α̂=⇒l Q for some Q such that

P ≡R Q.

Definition 5 shows a way to define weak bisimulation
without referring to the random capability of adversaries.
The axiomatization results in [11] can also be applied onto
the finite-state fragment of πsp. However, Definition 5 suf-
fers the same problem as mentioned in [11], that is, it is not
always finitely computable, even for finite-state processes.
This problem not only affects the work on axiomatization,
but also rules out some reasonable case of weak bisimilarity,
such as the one shown in Figure 41.

1This example was presented in [22] to illustrate the notion of weak
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Figure 4. Weak Bisimulation

Both t and u can perform actions α and β equally likely.
But u may randomly reach v that is weakly bisimilar to t
(because of the transition v

τ−→ u). This leads to an obser-
vation that u weakly performs actions α and β with equal
probability 0.5. Therefore, t and u should be regarded as
weakly bisimilar. However such probability distribution can
only be derived from u by applying the weak transition rules
in Figure 3 infinitely many times. Due to the presence of a
τ -loop (like in u), [11] also conjectured that the observa-
tional equivalence are not finitely axiomatizable.

This example suggests a finer version of weak bisimula-
tion to capture its intuitive sense [20, 21]. In fact, we only
need to revise the definition of lifting equivalences.

Definition 6. Let R be an equivalence relation over S and
s ∈ S. [s]R = {s′ | (s, s′) ∈ R} denotes the equivalence
class of s. Two discrete probability spaces P1 = (S, η1)
and P2 = (S, η2) on X are weak R-equivalent with respect
to s, written P1 ≡R�s

P2, if for each equivalence class C
of S/R− [s]R, ξ1(C) = ξ2(C) where

ξi(C) =




ηi(C)
1 − ηi([s]R)

if ηi([s]R) 	= 1

ηi(C) otherwise

for i = 1, 2.

Definition 6 evaluates probability distributions weighted
by the probability of a given equivalence class. In this way,
τ -loops in weak probabilistic transitions can be ignored,
while the extreme probability distributions (e.g. {0.5 :
u1, 0.5 : u2} from u) can be reached without an infinite
number of calls to weak transition rules. Therefore, the def-
inition of weak bisimulation for πsp can be given as follows.

Definition 7 (Weak Bisimulation). An equivalence relation
R is a late weak bisimulation if (t, u) ∈ R implies

bisimulation for labeled concurrent Markov chains, which is defined in
terms of schedulers and requires computing probabilities of traces, but not
of single transitions. Here we reuse this example for πsp, a more complex
probabilistic model, to present an algebraic solution for weak bisimulation.

1. whenever t
x(y)−−−→ P with x 	∈ fn(t, u) then

u
x(y′)
===⇒l Q′ for some Q′ such that for any z, there

is Q′{z/y′} ⇒l Q and P{z/y} ≡R Q;

2. whenever t
τ−→ P then u ⇒l Q for some Q such that

P ≡R�t
Q.

3. whenever t
α−→ P for any other action α with bn(α) ∩

fn(t, u) = ∅ then u
α̂=⇒l Q for some Q such that

P ≡R Q.

Write t ≈l u if there exists a late weak bisimulation R such
that (t, u) ∈ R.

Note that only the case α = τ requires special con-
cerns because it is the unique case where τ -loops may oc-
cur. Thus, Definition 7 paves a way for the axiomatization
of weak bisimulation with finitary inference rules.

3.2.2 Weak Symbolic Bisimulation

Definition 8. The late weak probabilistic symbolic transi-

tions t
M,α
===⇒L P are defined as the least relation satisfying

the rules shown in Figure 5(a). Furthermore, we extend ⇒L

onto discrete probability spaces with the rule shown in Fig-

ure 5(b). Similarly, let
M=⇒L be

M,ε
==⇒L.

1)
t

true,ε
====⇒L t

2)
t

M,α−−−→ P
t

M,α
===⇒L P

3)
t

M,τ−−−→ {pi : ti | i ∈ I} ∀ti 	= t, i ∈ I ti
Ni,α===⇒L Pi

t
M∧(

∧
i Ni),α=========⇒L

∑
i∈I,ti �=t

pi

1 − λ
Pi

where λ =
∑

i∈I,ti=t pi

4)
t

M,α
===⇒L {pi : ti | i ∈ I} tk

Nk,τ−−−→L P
t

M∧Nk,α
======⇒L {pi : ti | i ∈ I} +{tk} P

where k ∈ I, α 	= x(y)
(a)

∀i ti
Ni==⇒L Pi

{pi : ti}i

∧
i Ni====⇒L

∑
i

piPi

(b)

Figure 5. Weak Symbolic Transition Relations

Now we are set to introduce weak symbolic bisimulation
for πsp.



Definition 9 (Weak Symbolic Bisimulation). A condition
indexed family of equivalence relations S = {SB} is a late
weak symbolic bisimulation if (t, u) ∈ SB implies when-

ever t
M,α−−−→ P with bn(α)∩ fn(t, u,B) = ∅, then for each

D ∈ MCEfn(t,u)(B ∪ M) there is a u
N,β̂
==⇒L Q such that

D ⇒ N,α =D β, and

• if α = x(y) then for each D′ ∈ MCEfn(t,u)∪{y}(D)

there is Q N ′
==⇒L Q′ such that D′ ⇒ N ′ and P ≡SD′

Q′.

• if α = x̄(y) then P ≡SD∪{y �=u | u∈fn(α.P,β.Q)} Q.

• if α = τ then P ≡SD�t
Q.

• otherwise P ≡SD Q.

Write t ≈B
L u if (t, u) ∈ SB ∈ S for some late weak

symbolic bisimulation S.

It can be shown that ≈B
L captures ≈l.

Theorem 2. t ≈B
L u iff tσ ≈l uσ for any σ � B.

Proof. Similar to Theorem 1, combining the part of the
proof of Theorem 2.16 in [19] for the treatment on input
actions.

4 Probabilistic Symbolic Bisimulations

In the probabilistic settings, adversaries (or schedulers)
were introduced to resolve the nondeterminism among
probability distributions. Moreover, an adversary can deter-
mine the next probabilistic transition probabilistically, that
is, by combining several probabilistic transitions of the peer
process. This gave rise to the notion of probabilistic bisimu-
lation in the sense that one system can simulate the other by
combining its probabilistic transitions and vive versa [23].
We can also formalize this notion for πsp in the symbolic
framework.

Definition 10 (Combined Probabilistic Transition (Sym-

bolic Transition)). Given {t α−→ Pi}i ({t Ni,α−−−→ Pi}i) and
weights wi ≥ 0 for each i such that

∑
i wi = 1, a combined

probabilistic transition (symbolic transition) is denoted by

t
α−→c P (t

∧iNi,α−−−−→c P) where P =
∑

i wiPi.

Note that a combined probabilistic transition t
α−→c P ,

as well as a combined probabilistic symbolic transition

t
∧iNi,α−−−−→c P , is a fully reactive probabilistic transition be-

cause for any action α, the residual P is no longer restricted
to be a probability space with only one element.

The probabilistic version of Definition 2 is straightfor-
ward as follows.

Definition 11 (Strong Probabilistic Bisimulation). An
equivalence relation R is a late probabilistic bisimulation
if (t, u) ∈ R implies

1. whenever t
x(y)−−−→ P with x 	∈ fn(t, u) then u

x(y′)−−−→c

Q for some Q such that for any z, P{z/y} ≡R
Q{z/y′};

2. whenever t
α−→ P for any other action α with bn(α) ∩

fn(t, u) = ∅ then u
α−→c Q for some Q such that

P ≡R Q.

Write t
.∼lu if there exists a late probabilistic bisimulation

R such that (t, u) ∈ R.

Similarly, replacing u
N,β−−→ Q in Definition 3 with

u
N,β−−→c Q results in a strong probabilistic symbolic bisimu-

lation, written
.∼B

L . It is easy to see that ∼B
L is a special case

of
.∼B

L because a probabilistic symbolic transition itself is a
special case of combined probabilistic symbolic transitions.
Moreover,

.∼B
L captures

.∼l.

Theorem 3. t
.∼B

Lu iff tσ
.∼luσ for any σ � B.

Proof. Similar to Theorem 1.

In the same way, we can define a weak probabilistic
bisimulation, written

.≈l, and a weak probabilistic symbolic

bisimulation, written
.≈B

L , while ≈B
L is also a special case

of
.≈B

L . Moreover,
.≈B

L captures
.≈l.

Theorem 4. t
.≈B

Lu iff tσ
.≈luσ for any σ � B.

Proof. Similar to Theorem 2.

In the sequel, we will consider mainly probabilistic sym-
bolic bisimulations, while the results are also applicable for
symbolic bisimulations.

5 Characterization

Symbolic bisimulations for πsp inherit the feature from
those for π-calculus, namely avoiding instantiating input ac-
tions with infinitely many names, while instead, allowing
the construction of maximal consistent extensions to divide
the name space. The advantage of symbolic bisimulations
rests in an observation that if a name set V is finite, MCV

is also finite. However, it is generally expensive to compute
these structures.

In addition, as far as we know, the existing bisimulation
decision algorithms for probabilistic systems are mostly
based on the equivalence partition techniques, where the
set of states of the processes in question is regarded as the
largest equivalence class and then is refined iteratively un-
til the set of bisimulation equivalence classes is reached



[2, 6]. This is partly because the definitions of bisimulations
for probabilistic systems requires equivalence relations as
premises.

We present a practical characterization of symbolic
bisimulations, which can release the efforts for comput-
ing maximal consistent extensions and relax the premises
of equivalence relations. Following the line of [18], we in-
troduce probabilistic schematic bisimulations for πsp as fol-
lows.

Definition 12. Let R+ be the transitive closure of R. A
symmetric relation R between processes is a probabilistic
schematic bisimulation if (t, u) ∈ R implies

• if t
x(y)−−−→ P then u

x(y′)−−−→c Q for some Q and

– for each v ∈ fn(t, u), P{v/y} ≡R+ Q{v/y′};

– for a fresh z 	∈ fn(t, u), P{z/y} ≡R+

Q{z/y′};

• if t
x̄(y)−−−→ P then u

x̄(y′)−−−→c Q for some Q and for a
fresh z 	∈ fn(t, u), P{z/y} ≡R+ Q{z/y′};

• if t
α−→ P for any other action α then u

α−→c Q for
some Q and P ≡R+ Q.

Write t
.�lu if there exists a probabilistic schematic bisimu-

lation R such that (t, u) ∈ R.

Theorem 5. For any B ∈ MCfn(t,u), t
.∼B

Lu iff tσ
.�luσ

for any σ � B.

Proof. We outline the proof below. Details are similar to
Theorem 1, combining the part of the proof of Theorem 3.2
in [18] for the treatments on bound names.

(⇒) Define R = {(tσ, uσ) | t ∼B
L u for some B ∈

MCfn(t,u), and σ � B}. It can be shown that R is a prob-
abilistic schematic bisimulation.

(⇐) Define SB = {(t, u) | B ∈
MCfn(t,u), tσ

.∼luσ for some σ � B}. Let S = {SB+}.

It is obvious that SB is symmetric. Hence SB+
is an

equivalence relation. Then it can be shown that S is a
probabilistic symbolic bisimulation.

The characterization for weak probabilistic symbolic
bisimulation can be defined similarly, except that for action
τ , the revised lifting equivalence should be applied, that is,

if t
τ−→ P , then u ⇒c Q for some Q and P ≡R+�t

Q.

6 A Computing Algorithm

The definition of probabilistic schematic bisimulation
triggers an efficient decision algorithm, as shown in Figure
6. The algorithm is adapted from the ”on-the-fly” algorithm
for π-calculus [18]. It assumes a totally ordered subset of
names SN ⊂ N . The function nextSN(t, u) returns a
fresh name, namely the smallest name in SN that does not
appear in fn(t, u).

The function bisim(t, u) is the main function of the al-
gorithm, which attempts to find the smallest bisimulation
containing the pair (t, u). The function match(t, u) invokes
a depth-first traversal to match outgoing probabilistic tran-
sitions of the pair (t, u). The algorithm differs from the one
in [18] in the following aspects.

Numerical Computation The function check tests the
numerical equalities among probability distributions. For
each probability distribution of one process, say {pi : ti}i,
the function solve({pi : ti}i, {{qjk

: ujk
}k}j , E) checks if

it can be simulated by a convex combination of probability
distributions {{qjk

: ujk
}k}j of the other process, with re-

spect to the equivalence relation E over processes involved
in these distributions. The implementation of the function
solve depends on the type of bisimulation in question.

Let S = {ti}i and Tj = {ujk
}k. For checking proba-

bilistic bisimulation, the function is to solve a linear pro-
gramming problem whether there is wj ≥ 0 for each
j such that

∑
j wj = 1 and for each equivalence class

C ∈ (S ∪
⋃

j Tj)/E,
∑

ti∈C∩S

pi =
∑
j

wj

∑
ujk

∈C∩Tj

qjk

For checking bisimulation, the function is to solve a spe-
cial case of the problem above, namely whether there is a j
such that for each equivalence class C ∈ (S ∪ Tj)/E,

∑
ti∈C∩S

pi =
∑

ujk
∈C∩Tj

qjk

The function equiv(B) returns the smallest equivalence
relation generated by the symmetric relation B.

Tabling An exception WrongAssumption was used in
[18] to force a rerun of bisimulation checking from the root
level. This would invoke redundant executions on pairs of
processes that are not related to the pair raising the excep-
tion.

Our algorithm can avoid such redundancy by associat-
ing each pair (t, u) with a table Assumedt,u. Assumedt,u

stores the pairs of processes, of which the bisimilarities de-
pend on the bisimilarity of (t, u). When a loop is detected
on a pair (t, u) (Line 44), the pair being checked is to be
inserted into Assumedt,u (Line 45). If the pair (t, u) is



found not to be bisimilar after finishing searching the loop
(Line 12), we add it into NotBisim (Line 13) and then re-
cursively clear all its dependent pairs from V isited (Line
14).

The algorithm will always terminate because each time
a pair of processes is rematched, the size of NonBisim
has been increased by at least one. If bisim(t, u) termi-
nates with true, the set V isited−NonBisim constitutes a
probabilistic schematic bisimulation containing (t, u); oth-
erwise, (t, u) ∈ NonBism, which means they are not
bisimilar.

In addition, the algorithm can be well extended for
checking weak probabilistic schematic bisimulation by enu-
merating weak transitions in match. Weak transitions can
be derived by calling the rules in Figure 3 recursively. The
following rule is needed to cut off τ -loops, according to
Definition 6.

t
N=⇒L pkt +

∑
i�=k piti

t
N=⇒L

∑
i�=k

pi

1 − pk
ti

k ∈ I,
∑

i∈I pi = 1

7 Conclusion

This paper has presented symbolic bisimulations for πsp,
which is a probabilistic extension of π-calculus with a prob-
abilistic blind choice. Such a light-weight extension con-
tributes to the definition of weak (symbolic) bisimulation
that does not rely on the random capability of adversaries.
The open problem on the axiomatization for weak bisimu-
lation has been addressed by considering weighted proba-
bilistic distributions in the definition of weak bisimulation.
Furthermore, the paper has presented a practical characteri-
zation for symbolic bisimulations, which can avoid comput-
ing maximal consistent extensions of indexing conditions
and relax the premises of equivalence relations. Based on
the characterization, a decision algorithm (framework) has
been proposed that can explore just a minimal portion of the
state spaces of the probabilistic processes in question.

As future work, we would like to further investigate the
axiomatizations and inference systems for symbolic bisimu-
lations presented in this paper, and move on to probabilistic
systems with metrics [10]. We are also interested in the ap-
plications of bisimulations. To name a few, the framework
for anonymity checking [9] can be reinforced with symbolic
bisimulations for probabilistic systems.

To take the Dining Cryptographers Problem [8] as an ex-
ample, the property of strong anonymity on the cryptog-
raphers can be proved through checking if the system is
weakly bisimilar to

1
4
τ.Obsdaa +

1
4
τ.Obsada +

1
4
τ.Obsaad +

1
4
τ.Obsddd

where each Obsxxx (x = a or d) represents a possible ob-
servation.

On the other hand, the numerical computation involved
in the decision algorithm can be reused to compute the prob-
ability of reachability. The above specification can be pa-
rameterized as

x0τ.Obsdaa + x1τ.Obsada + x2τ.Obsaad + x3τ.Obsddd

with the constraint
∑4

i=0 xi = 1. The probability xi(i =
0, ..., 3) can be resolved through the bisimulation decision
algorithm.
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A Proof of Proposition 1

Proposition 1 Suppose B ∈ MCfn(t,u), t ∼B
L u iff tσ ∼l

uσ for any σ � B.

Proof. (⇒) Define R = {(tσ, uσ) | t ∼B
L u for some B ∈

MCfn(t,u), and σ � B}. We show R is a late bisimulation.
It is easy to see that R is an equivalence relation.

Suppose (tσ, uσ) ∈ R. Let (t, u) ∈ SB ∈ S for
some late symbolic bisimulation S and tσ

α−→ P ′ with
bn(α) ∩ fn(tσ, uσ) = ∅. Four cases are to be considered
on the types of α. Herein we mainly examine the cases
α = τ, x̄(y).

• α = τ . By Lemma 3(2), there exists M , P such that

σ � M , P ′ ≡ Pσ and t
M,τ−−−→ P . By Lemma 2,

n(M) ⊆ fn(t). Since B ∈ MCfn(t,u), by Lemma 1,
B ⇒ M . Hence up to logical equivalence, B is the
only element in MCEfn(t,u)(B ∪ M). By Definition

3, there exists u
N,τ−−→ Q such that B ⇒ N and P ≡SB

Q. Hence σ � N and by Lemma 3(1), uσ
τ−→ Qσ.

The next step is to show Pσ ≡R Qσ, which is not as
obvious as the one for π-calculus in [18, 19]. Suppose
P = {pi : ti | i ∈ I} and Q = {qj : uj | i ∈ J}.
By Lemma 2, for any i ∈ I , j ∈ J , fn(ti, uj) ⊆
fn(t, u). Since B ∈ MCfn(t,u), B ∈ MCfn(ti,uj)

for any i ∈ I , j ∈ J . Recall that σ � B , it follows
that up to logical equivalence, for any i ∈ I , j ∈ J ,
(tiσ, ujσ) ∈ R iff (ti, uj) ∈ SB . Therefore, from
P ≡SB Q we get Pσ ≡R Qσ.

• α = x̄(y). Suppose tσ
x̄(y)−−−→ t′σ. For sake of

simplicity, we assume that y is a fresh name, that is,
y 	∈ fn(t, u) ∪ n(σ) ∪ n(C). In the same way, it fol-

lows there exists x′, z′ and uσ
x̄(y)−−−→ u′σ such that

x ≡ x′σ ≡ z′σ, x′ =B z′, t′ ≡SD u′ and D =
B ∪ {y 	= z | z ∈ fn(x̄′(y).t′, z̄′(y).u′)}. Then from
B ∈ MCfn(t,u), fn(t′, u′) ⊆ fn(x̄′(y).t′, z̄′(y).u′)∪
{y} and fn(x̄′(y).t′, z̄′(y).u′) ⊆ fn(t, u), we have
D ∈ MCfn(t′,u′). Furthermore, since σ � B and
y 	∈ fn(t, u) ∪ n(σ), σ � D. Hence, (t′σ, u′σ) ∈ R.
By Definition 1, it follows that t′σ ≡R u′σ.

• The other cases are similar.

(⇐) Define SB = {(t, u) | B ∈ MCfn(t,u), tσ ∼l

uσ for some σ � B}. Let S = {SB}. We show S is a
late symbolic bisimulation. It is easy to see that SB is an
equivalence relation.

Suppose (t, u) ∈ SB . Let (tσ, uσ) ∈ R for some

late strong bisimulation R and t
M,α−−−→ P with bn(α) ∩

fn(t, u,B) = ∅. It is reliable to assume bn(α)∩n(σ) = ∅.
By Lemma 2, n(M) ⊆ fn(t, u). If M is inconsistent

with B then the conclusion follows from MCEfn(t,u)(B ∪
M) = ∅; otherwise, for the same reason mentioned in the
first part, B is the only element of in MCEfn(t,u)(B ∪M)
and σ � M . The proof proceeds by finding a matching
symbolic transition from u.

• α = τ . By Lemma 3(1), tσ
τ−→ P ′ ≡ Pσ. Thus, by

Definition 2, there exists uσ
τ−→ Q′ such that P ′ ≡R

Q′. Then by Lemma 3(2), there exists N,Q such that

σ � N , Q′ ≡ Qσ and u
N,τ−−→ Q. Since σ � B,

B ⇒ N by Lemma 1.

The last step is to show P ≡SB Q. Suppose P = {pi :
ti | i ∈ I} and Q = {qj : uj | i ∈ J}. It follows that
B ∈ MCfn(ti,ui) for any i ∈ I , j ∈ J , by Lemma
2 and B ∈ MCfn(t,u). Furthermore, since σ � B,
(ti, uj) ∈ SB iff (tiσ, ujσ) ∈ R for any i ∈ I , j ∈ J .
Therefore, from Pσ ≡R Qσ we get P ≡SB Q.

• α = x̄(y). Suppose t
M,x̄(y)−−−−→ t′ and y is a

fresh name. In the same way, it follows that there
exists N , x′, u′ such that σ � N , x =B x′,

t′σ ≡R u′σ and u
N,x̄′(y)−−−−−→ u′. By Lemma

2, n(N) ∈ fn(u). Since B ∈ MCfn(t,u) and
σ � B, B ⇒ N by Lemma 1. Furthermore, let
D = B ∪ {y 	= z | z ∈ fn(x̄(y).t′, x̄′(y).u′)}.
Since fn(t′, u′) ⊆ fn(x̄(y).t′, x̄′(y).u′) ∪ {y} and
fn(x̄(y).t′, x̄′(y).u′) ⊆ fn(t, u), D ∈ MCfn(t′,u′).
From σ � B and y 	∈ fn(t, u) ∪ n(σ), we get σ � D.
Hence, (t′, u′) ∈ SD. By Definition 1, it follows that
t′ ≡SD u′.

• The other cases are similar.


