
Solving Not-Substring Constraint with Flat
Abstraction ?

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Yu-Fang Chen2, Bui Phi Diep2,
Lukáš Hoĺık3, Denghang Hu4, Wei-Lun Tsai2, Zhillin Wu4, and Di-De Yen2

1 Uppsala University
{parosh,mohamed faouzi.atig,bui.phi-diep}@it.uu.se

2 Academia Sinica
yfc@iis.sinica.edu.tw,alan23273850@gmail.com,bottlebottle13@gmail.com

3 Brno University of Technology
holik@fit.vutbr.cz

4 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

{hudh,wuzl}@ios.ac.cn

Abstract. Not-substring is currently among the least supported types
of string constraints, and existing solvers use only relatively crude heuris-
tics. Yet, not-substring occurs relatively often in practical examples and
is useful in encoding other types of constraints. In this paper, we propose
a systematic way to solve not-substring using based on flat abstraction.In
this framework, the domain of string variables is restricted to flat lan-
guages and subsequently the whole constraints can be expressed as linear
arithmetic formulae. We show that non-substring constraints can be flat-
tened efficiently, and provide experimental evidence that the proposed
solution for not-substring is competitive with the state of the art string
solvers.

Keywords: String Constraints · Not-substring relation · Flat abstrac-
tion · Formal Verification.

1 Introduction

Due to the fast growth of web applications, string data type plays an increasingly
important role in computer software. Many software security vulnerabilities, such
as cross-site scripting and injection attack, are caused by careless treatment of
strings in programs [1], which jeopardize the end-users’ trust in digital tech-
nology. There is therefore a crucial need of rigorous engineering techniques to
ensure the correctness of string manipulating programs. Such techniques (e.g.
(bounded) model checking [10, 15, 21], symbolic execution techniques [11, 19],

? This work has been supported by the Czech Ministry of Education, Youth and Sports
ERC.CZ project LL1908, the FIT BUT internal project FIT-S-20-6427, Guangdong
Science and Technology Department grant (No. 2018B010107004), the NSFC grants
(No. 61872340), and the INRIA-CAS joint research project VIP.

2 Authors Suppressed Due to Excessive Length

and concolic testing [17,24]) are highly based on efficient symbolic encodings of
executions into a formula, and rely on highly performing constraint solvers for
computing on such encodings. The types of constraints needed depend on the
types of program expressions to be analyzed. In the case of scripting languages,
constraint solvers need to support different combinations of string operations.

Thus, string constraint solvers such as [3–5, 7, 8, 12, 18, 20, 25] are the engine
of modern web program analysis techniques. Due to the high demand, there is a
boosting amount of publications on this subject in recent years (e.g., [3,9,13,22]).
Implementing a constraint solver to cover all standard string libraries in pro-
gramming languages is a challenging task. One can choose to develop a spe-
cialized solving procedure for each string operation, but it requires enormous
maintenance efforts. A more feasible solution is to define a minimal set of core
constraints that is expressive to encode all others and develop solving procedures
only for these core constraints. A common set of such constraints includes: (1)
equality constraints, e.g., x.y = y.z, which says the concatenation of string vari-
ables x and y equals the concatenation of y and z, (2) membership constraints,
e.g., x ∈ L(ab∗), which says the value of x is the character a followed by a
sequence of b’s, and (3) length constraints, e.g., |x| = |y| + 3, which says the
length of x is the length of y plus 3, and (4) “not substring constraints”, e.g.,
NotSubstr(x, y), which says x is not a substring of y. Most of the early works
focused on the first three types of constraints. The “not substring” constraints
have not been systematically studied before5. In fact, many common string oper-
ations, such as, indexOf and replace, cannot be precisely expressed without using
“not substring constraints”. Previous study [23] suggests that those operations
are among the most commonly used string operation in the applications they
studied. The same observation holds while checking existing string constraint
benchmarks [2].

More concretely, for two string variables x, y, the operations indexOf(x, y)
should return the first occurrence of y in x. We can use the equality and length
constraints to encode the position y in x as follows. We need two extra free
variables p and s. Then we can use x = p.y.s to express that y is a substring of
x and in this case, |p| is the position of y in x. However, there is no guarantee
that this y is the first occurrence in x. To do so, we still need to make sure
y never occurs in p.y′ where y′ is the prefix of y with only the last character
removed, i.e., y′.z = y ∧ |z| = 1 for some z. This can be guaranteed using the
constraint NotSubStr(y, p.y′). In fact, this is exactly how the Z3 SMT solver
encodes indexOf constraint [20].

Observe that the positive version x v y (i.e., x is a substring of y) can be
easily encoded as y = p.x.s using two extra variables. However, the negated
version of x v y is not equivalent to y 6= p.x.s. For example, (x, y, p, s) =
(“a”, “ab”, ε, ε) is a model for this latter formula, but x is a substring of y in this
case. To capture the not-substring relation precisely, we need to establish that,

5 More precisely, “replace all” constraints [5] and string-integer conversion con-
straints [3] are not covered by these common set of constraints. Nevertheless, both
have been systematically discussed in recent years.

Solving Not-Substring Constraint with Flat Abstraction 3

for all strings p and s, y does not equal p.x.s; or more formally ∀p, s : y 6= p.x.s.
Unfortunately, it is known that equality constraint with universal quantifiers
is undecidable [16]. Although state-of-the-art solvers, such as Z3, reduce the
indexOf and replace constraints by the not-substring constraint, their procedures
for solving the latter do not provide much guarantee regarding completeness. It is
not hard to find instances with not-substring constraints that the most advanced
solvers like CVC4 and Z3 fail to solve (see Figure 1).

v.u = u.v ∧ u = p1.“123456”.s1 ∧ v = p2.“12345”.s2 ∧ |u| = 21 ∧ u.“a”.v 6v v.“a”.y

Fig. 1. An example that both CVC4 and Z3 fail to solve in 3 minutes

In this work, we extend the framework of flat underapproximation [3–5] to
handle not substring. The framework has been shown efficient and easily ex-
tensible to a rich set of string constraints. It was for instance one of the first
approaches to handle string-to-int constraints [3] and it is competitive in effi-
ciency with the best solvers. It relies on construction of so called flattening as an
underapproximation of string constraints. Namely, it restricts domains of string
variables to flat languages of the form w∗1w

∗
2 · · ·w∗n, where n and the length of

the words w1, . . . , wn are parameters controlling the balance between the cost
and the precision of the underapproximation. Under this restriction, string con-
straints are losslesly translated into quantifier-free linear integer arithmetic for-
mula. The formula is then efficiently handled by the state-of-art SMT solvers.
The flat underapproximation is then combined with an overapproximation mod-
ule capable of proving unsatisfiability. In this work, we are using particularly
the method of [13, 14], implemented in the tool OSTRICH, to prove the unsat-
isfiability. The overapproximation module either solves the constraint as is, if it
fits the straight-line fragment of OSTRICH, or it solves an overapproximation
of the constraints that fits the fragment. Namely, not-substring constraints of
the form t1 6v t2 are first overapproximated as disequalities t1 6= t2, and if the
straight-line restriction is broken after that, it is recovered by replacing certain
occurrences of variables by fresh variables. String-integer conversion constraints,
that are not handled by OSTRICH, are simply removed.

A main contribution of this work is a construction that allows to flatten
also non-substring constraints. Our solution is efficient despite that the final
arithmetic formula for not-substring is not entirely quantifier free—it contains
a single universal quantifier. The SMT solver Z3 apparently solves the formulae
generated by our implementation fast.

We have evaluated our implementation of the extended framework on a large
set of benchmarks from the literature, and a new benchmark collected from
executions of the symbolic executor Py-Conbyte6 on three GitHub projects. Our
experimental results show that our prototype, STR, is among the best tools for

6 https://github.com/alan23273850/py-conbyte

4 Authors Suppressed Due to Excessive Length

solving basic string constraints and outperforms all other tools on benchmarks
with not substring constraints.

2 Preliminaries

We use N (resp., Z+) to denote the set of non-negative integers (resp., positive
integers). For m,n ∈ Z+, we write [n] (resp. [m,n]) to denote the set {1, . . . , n}
(resp. {m,m+ 1, . . . , n}). We use x,y, . . . to denote the integer variables.

In this paper, we assume that Σ is a finite alphabet satisfying Σ ⊆ N. The
elements of Σ are called characters. We use a, b, . . . to denote the characters.
A string u over Σ is a sequence a1 . . . an where ai ∈ Σ for all i. We use ε to
represent the empty string. For two strings u and v, u is said to be a substring of
v if there exist strings w and w′ such that v = wuw′. For a string u = a1 . . . an,
|u| represents the length of u, that is n; moreover, for i ∈ [n], u(i) = ai represents
the i-th character of u. In addition, for a string u and a ∈ Σ, we use |u|a to
denote the number of occurrences of a in u. We use Σ∗ to denote the set of
strings over Σ, and Σ≤n to denote the set of strings in Σ∗ of length at most n.
For convenience, we assume that ε is encoded by a fixed natural number from
N \Σ, and let Σε denote Σ ∪ {ε}.

We use x, y, . . . to denote string variables ranging over Σ∗ and we use X to
denote the set of string variables. A string term is a sequence over Σε ∪X.

A linear integer arithmetic (LIA) formula is defined by φ ::= t o 0 | t ≡
c mod c | φ ∧ φ | φ ∨ φ | ¬φ | ∃x. φ | ∀x. φ and t ::= c | x | t + t | t − t, where
o ∈ {=, 6=, <,>,≤,≥} and x, c are integer variables and constants respectively. A
quantifier-free LIA (QFLIA) formula is an LIA formula containing no quantifiers.
The set of free variables of φ, denoted by Var(φ), is defined in a standard manner.
Given an LIA formula φ, and an integer interpretation of Var(φ), i.e. a function
I : Var(φ) → Z, we denote by I |= φ that I satisfies φ (which is defined in the
standard manner), and call I a model of φ. We use JφK to denote the set of
models of φ.

Finally, the Parikh image of a word w ∈ Σ∗ maps each Parikh (integer)
variable #a, where a ∈ Σ, to the number of occurrences of a in w. Let #Σ =
{#a | a ∈ Σ}. The Parikh image of w is a function P(w) : #Σ → N such that
P(w)(#a) = |w|a, for each a ∈ Σ. The Parikh image of a language L is defined
as P(L) = {P(w) | w ∈ L}. It is well known that the Parikh image of a regular
language can be characterized by an LIA formula.

3 String Constraints

In this paper, we extend the class of atomic constraints handled in the frame-
work of [3–5] with not-substring. We focus especially on the core contraints,
conjunctions of the atomic constraints of the following forms:

– a string equality constraint t1 = t2, where t1, t2 are string terms,
– a not-substring constraint t1 6v t2, where t1, t2 are string terms,

Solving Not-Substring Constraint with Flat Abstraction 5

– a QFLIA formula over the integer variables |x| for string variables x,
– a regular constraint x ∈ A, where x is a string variable and A is an FA.

We note that presented extension is compatible also with the other types of con-
straints handled by [3–5], especially context-free membership, transducer con-
straints, string-integer conversions, negated membership, and disequality. We
omit these for simplicity of presentation. For a string constraint φ, let us use
StrVar(φ) and LenVar(φ) to denote the set of string variables and the set of
length (integer) variables respectively.

While the semantics of linear integer constraints and regular constraints are
standard, let us explain the semantics of the string equality constraints and
string not-substring constraints:

– A string equality constraint t1 = t2 has a solution iff there is a homomor-
phism h from (X ∪ Σ)∗ to Σ∗ such that h(u) = u for all u ∈ Σ∗ and
h(t1) = h(t2). For instance, let t1 = abxc, t2 = yc, and t3 = ya. Then
h(x) = ε and h(y) = ab is a solution of t1 = t2. However, for all homomor-
phisms h, h(t1) 6= h(t3), thus t1 = t3 is not satisfiable.

– A not-substring constraint t1 6v t2 has a solution iff there is a homomorphism
h from (X ∪Σ)∗ to Σ∗ such that h(u) = u for all u ∈ Σ∗ and h(t1) is not a
substring of h(t2). For instance, let t1 = ax, t2 = abxc, and t3 = bx. Then
h(x) = a is a solution of t1 6v t2. However, t3 6v t2 is not satisfiable since
t3 = bx is a subterm of t2 = abxc.

We would like to remark that although the aforementioned class of string con-
straints does not include explicitly the constraint that t1 is a substring of t2,
they can be encoded by the string equality constraint t2 = xt1y, where x, y are
the freshly introduced string variables.

4 Solving String Constraints with Flattening

In this section, we will recall the principles of the flattening approach to string
solving used in the works [3–5], which we will then extend with not-substring
constraints in Section 5.

4.1 (Parametric) Flat Languages

We will present our underapproximations in terms of flat languages, which are
used to restrict the domain of string variables, and parametric flat languages,
that are used to specify them.

For integers k and ` and a string variable x, we define the family of indexed
character variables CharVark,`(x) = {xij | 1 ≤ i ≤ k, 1 ≤ j ≤ `}. A parametric
flat language (PFL) with the period ` and the cycle count k is the language
PFLk,` of strings over the alphabet CharVark,`(x) that conform to the regular
expression

(x11 . . . x
1
`)
∗ · . . . · (xk1 . . . xk`)∗

6 Authors Suppressed Due to Excessive Length

That is, the words of PFLk,` consist of k consecutive parts, each created by
iterating a cycle, a string xi1 . . . x

i
` of ` unique character variables.

A word w = x1 . . . xn ∈ PFLk,` will be interpreted respective to an in-
terpretation of the character variables IChar : CharVark,`(x) → Σε as a string
IChar(w) = IChar(x1) · · · IChar(xn) over Σ.

The property of a PFL that is central in our approach is that every PFL is
fully characterised by its Parikh image. Let ParVark,`(x) = {#xji | 1 ≤ i ≤ `, 1 ≤
j ≤ k} be the set of Parikh variables for CharVark,`(x). Their interpretation
IPar : ParVark,`(x) → N can be unambiguously decoded as a word from the
language PFLk,`:

Proposition 1. There is a function P−1k,` : (ParVark,`(x)→ N)→ PFLk,` which

acts as the inverse function of P, namely, P−1k,`(P(w)) = w for each w ∈ PFLk,`.

Intuitively, the function P−1k,` computes the word w ∈ PFLk,` by repeating each

cycle several times, the number of repetitions of the i-the cycle being P(w)(#xi1)
(note that P(w)(#xij) is the same for all xij , j ∈ [`]).

Hence, an interpretation of Parikh variables IPar : ParVark,`(x)→ N together
with an interpretation of character variables IChar : CharVark,`(x) → Σε encode
a word over Σ, namely the word IChar(P−1k,`(IPar)).

The set of all strings over Σ that can be encoded as such pair of interpreta-
tions IChar, IPar is the flat language with the cycle count k and period `:

FLk,` = {IChar(P−1k,`(IPar)) | IChar : CharVark,`(x)→ Σε, IPar : ParVark,`(x)→ N}

We note that we implement parametric flat languages as parametric flat au-
tomata. A parametric flat automaton is a finite automaton with a restricted
structure—a sequence of cycles, each representing a cycle of the parametric lan-
guage, as illustrated on Fig. 2. The automata form is needed for computing
flattening of regular, context free, and other constraints (presented in [3, 4]).
Flattening of non-substring constraints, the subject of this paper, can be how-
ever explained using the simpler language view, hence we can abstract from the
technicalities of automata in the current paper.

q10 q20 qk0

q11

q12

q1` q21

q22

q2` qk1

qk2

qk`

x11

x12

x1`
ε ε ε

xk1

xk2

xk`x21

x22

x2`

Fig. 2. The flat automaton A accepting the language PFLk,`.

4.2 Flattening of String Constraints

Let us now formalise the notion of flattening, a construction of LIA formulas
that encode string constraints restricted to the domain of flat languages.

Solving Not-Substring Constraint with Flat Abstraction 7

A flat semantics for a string constraint φ is obtained from the semantics of
φ by restricting the domain of each string variable to the language FLk,`, for
chosen k and `. Let k and ` be fixed for the rest of this section.

An assignment I of Var(φ) is called k, `-flat if for each x ∈ StrVar(φ), I(x) ∈
FLk,`. The flat semantics of φ is then defined as

JφKk,` = {I ∈ JφK | I is k, `-flat}

Our approach to string solving is built on that the flat semantics of the string
constraint can be precisely encoded by a QFLIA formula in which every string
variable x ∈ StrVar(φ) is represented by the character and Parikh variables
CharVark,`(x) and ParVark,`(x), respectively, and which inherits the integer vari-
ables.

A flat solution of φ, I ∈ JφKk,`, is encoded as an assignment I ′ = IFlat ∪ IInt.
IFlat is the assignment of flattening variables that encodes the values of the orig-
inal string variables. In other words, I ′ is the union of assignments ICharVark,`(x) :
CharVark,`(x) → Σε and IParVark,`(x) : ParVark,`(x) → N for every x ∈ StrVar(φ)
satisfying that

I(x) = ICharVark,`(x)(P
−1
k,`(IParVark,`(x)))

The encoding is not unique (a string can often be k, `-encoded in multiple
ways), hence the encoding function returns the set of all encodings of I, de-
note encodek,`(I).

Decoding is the inverse of encoding, though, due to Proposition 1 it is un-
ambiguous, as stated by this lemma:

Lemma 1. If encodek,`(I) ∩ encodek,`(J) 6= ∅, then I = J .

Hence we can define the decoding as a function that returns an unique inter-
pretation of variables (not a set, as in the case of encoding):

decodek,`(I
′) = I iff I ′ ∈ encodek,`(I)

We can now specify the required properties of the flattening QFLIA of φ. It
is formula flattenk,`(φ) that encodes the flat semantics of φ, that is

JφKk,` = decodek,`(J∃AuxVar : flattenk,`(φ)K) (1)

The existential quantification is above used to abstract away additional auxil-
iary variables AuxVar, variables other than FlatVar(φ) and LenVar(φ), which the
formula flattenk,`(φ) is sometimes constructed with.

The formula flattenk,`(φ) is constructed inductively by following the structure
of φ: flattenk,`(φ1∧φ2) = flattenk,`(φ1)∧flattenk,`(φ2). Therefore, it is sufficient
to show how to construct flattenk,`(φ) for atomic constraints φ. Later on in
Section 5, we will show how to construct flattenk,`(t1 6v t2). The construction of
flattenk,`(φ) for the other atomic constraints is discussed in [3].

For the inductive construction to work, flattening of the atomic constraint has
to satisfy a stronger condition than Equation 1. Namely, the obtained QFLIA

8 Authors Suppressed Due to Excessive Length

formula must capture all encodings of the solutions of the string constraint,
not only some of them. Otherwise for instance the inductive construction of
flattening of a conjunction from flattenings of its conjuncts could be incorrect
(the intersection of solution encodings could be empty while the sets of solutions
themselves do intersect). Formally, the flattening of the atomic constraints must
satisfy that:

encodek,`(JφKk,`) = J∃AuxVar : flattenk,`(φ)K (2)

where, again, AuxVar contains auxiliary variables of flattenk,`(φ) other than
FlatVar(φ) and LenVar(φ)). A major point of this paper is a construction of
flattening of non-substring constraints satisfying Equation 2, as presented in
Section 5.

4.3 String Constraint Solving Algorithm

We now shortly recall the whole string solving algorithm. It uses an underap-
proximation module based on the flat abstraction and an overapproximation
module. The two modules are run in parallel. The main loop is summarised in
Algorithm 1.

The underapproximation module tries to prove satisfiability of a flat under-
approximation, gradually incrementing both the period and cycle count, until
the underapproximation is SAT or a limit is reached.

The overapproximation can use any algorithm capable of proving UNSAT.
We do not claim any contribution in the overapproximation part, but to demon-
strate that such combination indeed yields a capable tool, we combine our un-
derapproximation technique with the method of [13,14] implemented in the tool
OSTRICH. It is a complete method for the so called straight-line fragment of
string constraints that supports regular and transducer constraints, replace-all,
word-equations and other constraints. The straight-line restriction imposes, in-
tuitively, that the constraint must have been obtained from a program in a single
static assignment form in which every string variables is assigned at most once
and is not used on the right side of an assignment before it is itself assigned.
The length constraints are unrestricted (we refer the reader to [13, 14] for the
precise definition). The overapproximation module either solves the constraint
as is, if it fits the straight-line fragment, or it solves an overapproximation of the
constraints that fits the fragment. Namely, not-substring constraints of the form
t1 6v t2 are first overapproximated as disequalities t1 6= t2, and if the straight-line
restriction is broken after that, it is recovered by replacing certain occurrences
of variables by fresh variables. String-integer conversion constraints, that are not
handled by OSTRICH, are simply removed.

5 Flattening of Not-Contains Constraints

We will now describe the construction of the flattening formula for not-substring,
the formula flatten(1,`)(t1 6v t2), for given terms t1, t2.

Solving Not-Substring Constraint with Flat Abstraction 9

Algorithm 1: String solving via flattening

Input: string constraint φ, initial period k0 and cycle count `0, flattening
limit flim

do in parallel
for i from 0 to flim do

if flattenk0+i,`0+i(φ) is SAT then return SAT ;

if Overapproximate(φ) is UNSAT then return UNSAT ;
return UNKNOWN

5.1 Simplifying Assumptions

To simplify the presentation, we will consider flat domain restrictions with the
cycle count k = 1 only. This is without loss of generality since using a flat domain
restriction FLk,` with k > 1 is equivalent to replacing every substituting string
variable x by the concatenation x1 · · ·xk and using FL1,`. The assumption of
k = 1 makes the upper index 1 of the character variables x1i superfluous, hence
we will omit it and write only xi.

7

We also make the following simplifying assumptions on the input string con-
straint φ:

1. We assume that StrVar(t1)∩ StrVar(t2) = ∅. Note that any string constraint
can be made to satisfy this by replacing one of the occurrences of a string
variable y ∈ StrVar(t1) ∩ StrVar(t2) by its fresh primed variant y′ and intro-
ducing an additional constraint y = y′.

2. We assume that t1 and t2 do not contain constant strings, that is, they are
concatenations of string variables. Every equality or not substring constraint
can be transformed into this form by replacing each occurrence of a constant
a with a fresh variable xoc (each occurrence with a unique fresh variable)
together with the regular constraint xoc ∈ {a}. Such modification does not
influence the constraints membership in the decidable fragment used for
overapproximation (whereas replacing all occurrences of a by a single fresh
variable could).

5.2 Construction of the Flattening Formula

The construction of flatten(1,`)(t1 6v t2) is based on the following observation.

Observation 1 For every two strings u, v ∈ Σ∗, u 6v v iff either |u| > |v| or
|u| ≤ |v| and for every shift ∈ [0, |v| − |u|], there exists pos ∈ [|u|], u(pos) 6=
v(shift + pos).

Intuitively, either t1 is longer than t2, or, as illustrated on Figure 3, for any
position shift where we try to fit t1 inside t2, we can find a position pos in t1
which will not match the corresponding position shift + pos in t2.

The core of the flattening formula will be constructed as a disjunction of two
formulae that express the two cases of Observation 1, ψ|t1|>|t2| and ψ|t1|≤|t2|.

7 Our implementation however handles cycle counts k larger than one directly.

10 Authors Suppressed Due to Excessive Length

String lengths and effective periods. To express the two cases of Observation 1,
we will speak about effective periods of string variables and about their lengths,
for which we introduce auxiliary constants and variables.

First, the effective period of a string variable z is the number `z of character
variables in CharVar(1,`)(z) that are assigned a non-ε value (a character from
Σ) under a given assignment of character variables. Whenever a constant repre-
senting an effective period is used, we must ensure that it is indeed the effective
period.

To make this test easier and the formula testing this more compact, we
restrict the space of encodings of strings by requiring that the interpretations of
the variables x ∈ StrVar(φ) to ones that are sorted. That means that character
variables xj assigned ε appear only at the end of the cycle, namely after all
character variables that are assigned letters of Σ. This is achieved by conjoining
the flattening of φ with the formula ψε-end:

ψε-end =
∧

x∈StrVar(φ)

∧
j∈[`−1]

(xj = ε→ xj+1 = ε)

Note that this only restricts the encodings of the solutions of φ but not the set
of solutions itself, since every solution has among its encodings one with aligned
ε’s.

In sorted interpretations, it holds that `z ∈ [`] if and only if z`z is the last
character variable assigned a non-ε character, and `z = 0 if and only if z1 is

assigned ε. This is checked by the formula ψ
(z,`z)
period:

ψ
(z,`z)
period =

 z`z 6= ε ∧ z`z+1 = ε if `z ∈ [`− 1]
z` 6= ε if `z = `
z1 = ε if `z = 0

The length lenz of z is then determined from `z and the value of the Parikh
variable #z1 as lenz = `z ∗#z1. Indeed, #z1, the number of occurrences of z1,
is the number of iterations of the cycle z1 · · · z`, and each iteration of the cycle
produces a string of the length equals to the effective period `z. Additionally,
we also need to ensure that #z1, . . . ,#z` are the same, since z1 · · · z` is iterated
as a whole, which is captured by

∧
i∈[`−1] #zi = #zi+1. Put together, we create

the formula ψlen :

ψlen = ψε-end ∧
∧

z∈StrVar(t1 6vt2)

ψ
(z,`z)
period ∧ lenz = `z ∗#z1 ∧

∧
i∈[`−1]

#zi = #zi+1

Since `z is a constant, lenz = `z ∗ #z1 is not a multiplication of two integer
variables, but only an abbreviation of `z-fold addition of #z1.

Formula for Observation 1, case t1 longer than t2. Using the effective periods
and lengths, the first case of Observation 1 with t1 longer than t2 can now be
expressed as the formula ψ|t1|>|t2|.

Solving Not-Substring Constraint with Flat Abstraction 11

Suppose that t1 = x1 · · ·xm and t2 = y1 · · · yn. The case |t1| > |t2| is specified
simply by the formula

ψ|t1|>|t2| =
∑
i∈[m]

lenxi >
∑
i∈[n]

lenyi

Formula for Observation 1, case t1 not longer than t2. The second case of Ob-
servation 1, with t1 no longer than t2, is expressed as the formula ψ|t1|≤|t2|. It is
more complicated than the previous case.

Recall that it states that |t1| ≤ |t2| and for every shift ∈ [0, |t2| − |t1|], there
exists pos ∈ [|t1|], t1(pos) 6= t2(shift + pos), as shown on Figure 3. The formula,
that allows to check this, is constructed as follows:

1. For every positions shift where t1 could fit into t2 (|t1|+ shift ≤ |t2|),
2. find a position pos in t1 such that t2 could fit inside t1 at this position,
3. find a string variable (xm′)α and a string variable (yn′)β of t2 which appear

at positions pos and pos + shift , respectively, and
4. verify (xm′)α 6= (yn′)β (hence t1 at pos differs from t2 at pos + shift).

First, t1 shifted by shift must still “fit” inside t2, that is:

ψshift = (0 ≤ shift ≤
∑
i∈[n]

lenyi −
∑
i∈[m]

lenxi)

Second, there are conflict variables xm′ and yn′ , m′ ∈ [m] and n′ ∈ [n] such
that t1(pos) corresponds to some character of xm′ and such that t2(shift + pos)
corresponds to some character of yn′ . This is formally expressed by the formulas

ψxm′ =
∑

i∈[m′−1]
lenxi

< pos ≤
∑

i∈[m′]

lenxi

ψyn′ =
∑

i∈[n′−1]
lenyi < shift + pos ≤

∑
i∈[n′]

lenyi

Third, t1(pos) and t2(shift+pos) must correspond to the values of some character
variables (xm′)α in (xm′)1 · · · (xm′)`x

m′
and (yn′)β in (yn′)1 · · · (yn′)`y

n′
. The

indices α and β are specified as follows:

– The following formula checks that (xm′)α is indeed at the position pos in
t1. The formula assumes an effective period of xm′ and also verifies that
assumption:

ψ
(`x

m′ ,α)
xm′ = ψ

(xm′ ,`x
m′)

period ∧ (pos −
∑

i∈[m′−1]

lenxi
) ≡ α mod `xm′

– Similarly, the following formula checks that (yn′)β is indeed at the posi-
tion shift + pos in t2. It assumes an effective period of yn′ and verifies that
assumption:

ψ
(`y

n′ ,β)
yn′ = ψ

(yn′ ,`y
n′)

period ∧ (shift + pos −
∑

i∈[n′−1]

lenyi) ≡ β mod `yn′

12 Authors Suppressed Due to Excessive Length

Fig. 3. An overview of the construction of ψ|t1|≥|t2|.

Fourth, having the indices α, β of character variables specified as above, t1(pos) 6=
t2(shift + pos) can be expressed as (xm′)α 6= (yn′)β . The entire formula ψ|t1|≤|t2|
then is:

ψ|t1|≤|t2| =
∑
i∈[m]

lenxi
≤
∑
i∈[n]

lenyi ∧ ∀shift ∃pos. ψshift →

∨
m′ ∈ [m],
n′ ∈ [n]

ψxm′ ∧ ψyn′ ∧∨
`x

m′ ,`yn′∈[`]

∨
α ∈ [`x

m′],

β ∈ [`y
n′]

(
ψ
(`x

m′ ,α)
xm′ ∧ ψ

(`y
n′ ,β)

yn′ ∧
(xm′)α 6= (yn′)β

)
Finally, we construct the flattening of the not substring constraint as:

flatten(1,`)(t1 6v t2) = ψlen ∧ (ψ|t1|>|t2| ∨ ψ|t1|≤|t2|)

Theorem 1 states that the construction is indeed correct in the sense that it
satisfies Equation 2, only with modified, primed, variant of encode(1,`), restricted
only to sorted interpretations (satisfying ψε-end). This is still enough for Equa-
tion 2 to be true for conjunctive constraints that contain non-substring atomic
predicates. AuxVar are variables other than string and length variables x and |x|,
x ∈ Var(t1 6v t2).

Theorem 1. encode ′(1,`)(Jt1 6v t2K(1,`)) = J∃AuxVar : flatten(1,`)(t1 6v t2)K

6 Implementation and Evaluation

We compare STR8 with the other state-of-the-art string solvers, namely, CVC4
(version 1.8)9 [8] and Z3 (version 4.8.9)10 [20]. For these tools, the versions we

8 The github link will be made available after the double blind review process
9 https://github.com/CVC4/CVC4/releases/tag/1.8

10 https://github.com/Z3Prover/z3/releases/tag/z3-4.8.9

Solving Not-Substring Constraint with Flat Abstraction 13

used are the latest release version. Observe that CVC4 and Z3 are DPLL(T)-
based string solvers. We do not compare with Sloth [18] since it does not support
length constraints, which occur in most of our benchmarks. Moreover, we do not
compare with ABC [7] (a model counter for string constraints) and Trau+ [4–6]
as well, because they do not support many string functions occurring in our
benchmarks, especially those containing the ”not contains” functionality.

We performed the experiments on two benchmark suites. The first benchmark
suite is new and obtained by running the symbolic executor Py-Conbyte11 on
the following three GitHub projects,

– biopython12: freely available Python tools for computational molecular biol-
ogy and bioinformatics,

– django13: a high-level Python Web framework that encourages rapid devel-
opment and clean, pragmatic design,

– thefuck14: an app that corrects errors in previous console commands, inspired
by a @liamosaur tweet.

The symbolic exeuctor Py-Conbyte produces files in the SMT2 format. We only
keep those SMT2 files where the function “(str.contains x y)” or “(str.indexof x
y n)” with a non-constant first or second argument occurs.

The second benchmark suite contains sets of standard benchmarks from [3]
that have been used previously in the comparison of existing string solvers.

We carry out the experiments on a PC with an Intel Core i7-10700 (2.90 GHz)
processor with 8 cores and 16 threads, a 48 GB of RAM, and a 1.8TB, 7200 rpm
hard disk drive running the Ubuntu 20.04.1 LTS operating system. The timeout
was set to 10s for each SMT file. In the implementation of STR, we modify the
SAT handling component of Trau to the version described in this paper, and use
it to handle SAT instances. Then STR run Ostrich and the modified Trau in
parallel, and terminate when Ostrich reports UNSAT or Trau reports SAT. The
experimental results are summarized in Table 1. Columns with heading SAT
(resp. UNSAT) show the number of SAT (resp. UNSAT) test cases for which
the solver returns correct answers. Column with heading FAILED indicates the
number of test cases for which the solver returns UNKNOWN or cannot finished
with 10 seconds.

From Table 1, we can see that overall STR is better than Z3 and has a
similar performance to CVC4 in handling SAT instances. The handling of UN-
SAT instances is worse than the others, but this is mainly due to the use of
OSTRICH. Observe that the over-approximation module is not the main fo-
cus of this paper since our main goal is to address the major weakness of the
flattening framework of handling not-substring constraint and to provide an
under-approximation technique which has at least as good, and in many cases
better, performance than the state-of-the-art tools.

11 https://github.com/alan23273850/py-conbyte
12 https://github.com/biopython/biopython
13 https://github.com/django/django
14 https://github.com/nvbn/thefuck

14 Authors Suppressed Due to Excessive Length

SAT UNSAT FAILED

BENCHMARK z3 cvc4 STR z3 cvc4 STR z3 cvc4 STR

biopython (77222) 5180 5707 5770 70190 70518 62435 1852 997 9017

django (52645) 8404 9297 9487 41871 42161 33471 2370 1187 9687

thefuck (19872) 1883 2313 2194 17545 17530 16018 444 29 1660

Leetcode (2666) 880 881 876 1785 1785 1658 1 0 132

PyEx (25421) 16656 20651 21420 3775 3857 3316 4990 913 685

aplas (600) 122 54 132 100 205 1 378 341 467

cvc4-str (1880) 22 18 25 1802 1841 184 56 21 1671

full-str-int (21571) 2875 4379 4433 16708 16985 12234 1988 207 4904

slog (3391) 1296 1309 1290 2082 2082 2054 13 0 47

stringfuzz (1065) 429 716 534 208 243 62 428 106 469

Table 1. Results on new and existing benchmarks

7 Conclusion and Future Work

We have proposed an extension of the flattening techniques for string constraints
that handles constraints of the type not-substring. Our techniques generates
flattening formulae that express the flat semantics of string constraints precisely.
Although they do contain a single universal quantifier, they can still be handled
efficiently by existing solvers. Our experimental results show that our prototype
can solve not-substring constraints better than other tools (especially SAT cases)
and it is competitive on the other types of constraints.

An interesting possibility for future is to solve string logic with not substring
constraint precisely, not only under the flat abstraction. A possibility of flat
abstraction of not substring which would be fully quantifier free is also not
closed and is worth further investigation.

References

1. OWASP top ten web application security risk, https://owasp.org/www-project-
top-ten (2017), https://owasp.org/www-project-top-ten

2. Trauc string constraints benchmark collection (2020), https://github.com/

plfm-iis/trauc_benchmarks
3. Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Dolby, J., Janku, P.,

Lin, H., Hoĺık, L., Wu, W.: Efficient handling of string-number conver-
sion. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15-20, 2020. pp. 943–957.
ACM (2020). https://doi.org/10.1145/3385412.3386034, https://doi.org/10.

1145/3385412.3386034
4. Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Hoĺık, L., Rezine, A., Rümmer, P.:

Flatten and conquer: a framework for efficient analysis of string constraints. In: Co-
hen, A., Vechev, M.T. (eds.) Proceedings of the 38th ACM SIGPLAN Conference

Solving Not-Substring Constraint with Flat Abstraction 15

on Programming Language Design and Implementation, PLDI 2017, Barcelona,
Spain, June 18-23, 2017. pp. 602–617. ACM (2017)

5. Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Hoĺık, L., Rezine, A., Rümmer, P.:
Trau: SMT solver for string constraints. In: Bjørner, N., Gurfinkel, A. (eds.) 2018
Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA,
October 30 - November 2, 2018. pp. 1–5. IEEE (2018)

6. Abdulla, P.A., Atig, M.F., Diep, B.P., Hoĺık, L., Janku, P.: Chain-free string con-
straints. In: Chen, Y., Cheng, C., Esparza, J. (eds.) Automated Technology for
Verification and Analysis - 17th International Symposium, ATVA 2019, Taipei,
Taiwan, October 28-31, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11781, pp. 277–293. Springer (2019)

7. Aydin, A., Eiers, W., Bang, L., Brennan, T., Gavrilov, M., Bultan, T., Yu, F.: Pa-
rameterized model counting for string and numeric constraints. In: Leavens, G.T.,
Garcia, A., Pasareanu, C.S. (eds.) Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018. pp. 400–410. ACM (2018)

8. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6806, pp. 171–177. Springer (2011)

9. Berzish, M., Kulczynski, M., Mora, F., Manea, F., Day, J.D., Nowotka, D., Ganesh,
V.: A length-aware regular expression SMT solver. CoRR abs/2010.07253 (2020),
https://arxiv.org/abs/2010.07253

10. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
bdds. In: TACAS. vol. 1579, pp. 193–207. Springer (1999)

11. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

12. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string
constraints with the replaceall function. PACMPL 2(POPL), 3:1–3:29 (2018)

13. Chen, T., Hague, M., He, J., Hu, D., Lin, A.W., Rümmer, P., Wu, Z.: A de-
cision procedure for path feasibility of string manipulating programs with inte-
ger data type. In: Hung, D.V., Sokolsky, O. (eds.) Automated Technology for
Verification and Analysis - 18th International Symposium, ATVA 2020, Hanoi,
Vietnam, October 19-23, 2020, Proceedings. Lecture Notes in Computer Science,
vol. 12302, pp. 325–342. Springer (2020). https://doi.org/10.1007/978-3-030-59152-
6 18, https://doi.org/10.1007/978-3-030-59152-6_18

14. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. PACMPL
3(POPL), 49:1–49:30 (2019)

15. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logics of Programs, Workshop, Yorktown
Heights, New York, USA, May 1981. LNCS, vol. 131, pp. 52–71. Springer (1981)

16. Day, J.D., Ganesh, V., He, P., Manea, F., Nowotka, D.: The satisfiability of ex-
tended word equations: The boundary between decidability and undecidability.
CoRR abs/1802.00523 (2018), http://arxiv.org/abs/1802.00523

17. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI. pp. 213–223. ACM (2005)

16 Authors Suppressed Due to Excessive Length

18. Hoĺık, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. PACMPL 2(POPL), 4:1–4:32
(2018)

19. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

20. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008)

21. Queille, J., Sifakis, J.: Specification and verification of concurrent systems in CE-
SAR. In: International Symposium on Programming. LNCS, vol. 137, pp. 337–351.
Springer (1982)

22. Reynolds, A., Nötzli, A., Barrett, C.W., Tinelli, C.: Reductions for strings and
regular expressions revisited. In: 2020 Formal Methods in Computer Aided De-
sign, FMCAD 2020, Haifa, Israel, September 21-24, 2020. pp. 225–235. IEEE
(2020). https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 30, https://doi.

org/10.34727/2020/isbn.978-3-85448-042-6_30

23. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for javascript. In: 31st IEEE Symposium on Security and
Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA. pp. 513–
528. IEEE Computer Society (2010). https://doi.org/10.1109/SP.2010.38, https:
//doi.org/10.1109/SP.2010.38

24. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ESEC/SIGSOFT FSE. pp. 263–272. ACM (2005)

25. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a z3-based string solver for web appli-
cation analysis. In: Meyer, B., Baresi, L., Mezini, M. (eds.) Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Rus-
sian Federation, August 18-26, 2013. pp. 114–124. ACM (2013)

