
45

Solving String Constraints with Regex-Dependent Functions
through Transducers with Priorities and Variables

TAOLUE CHEN, Birkbeck, University of London, United Kingdom

ALEJANDRO FLORES-LAMAS, Royal Holloway, University of London, United Kingdom

MATTHEW HAGUE, Royal Holloway, University of London, United Kingdom

ZHILEI HAN, Tsinghua University, China

DENGHANG HU, Institute of Software, Chinese Academy of Sciences & University of Chinese Academy

of Sciences, China

SHUANGLONG KAN, University of Kaiserslautern, Germany

ANTHONY W. LIN, University of Kaiserslautern & Max-Planck Institute, Germany

PHILIPP RÜMMER, Uppsala University, Sweden

ZHILIN WU, Institute of Software, Chinese Academy of Sciences & University of Chinese Academy of

Sciences, China

Regular expressions are a classical concept in formal language theory. Regular expressions in programming

languages (RegEx) such as JavaScript, feature non-standard semantics of operators (e.g. greedy/lazy Kleene

star), as well as additional features such as capturing groups and references. While symbolic execution of

programs containing RegExes appeals to string solvers natively supporting important features of RegEx, such

a string solver is hitherto missing. In this paper, we propose the first string theory and string solver that

natively provides such support. The key idea of our string solver is to introduce a new automata model, called

prioritized streaming string transducers (PSST), to formalize the semantics of RegEx-dependent string functions.

PSSTs combine priorities, which have previously been introduced in prioritized finite-state automata to capture

greedy/lazy semantics, with string variables as in streaming string transducers to model capturing groups. We

validate the consistency of the formal semantics with the actual JavaScript semantics by extensive experiments.

Furthermore, to solve the string constraints, we show that PSSTs enjoy nice closure and algorithmic properties,

in particular, the regularity-preserving property (i.e., pre-images of regular constraints under PSSTs are

regular), and introduce a sound sequent calculus that exploits these properties and performs propagation of

regular constraints by means of taking post-images or pre-images. Although the satisfiability of the string

constraint language is generally undecidable, we show that our approach is complete for the so-called straight-

line fragment. We evaluate the performance of our string solver on over 195 000 string constraints generated

Authors’ addresses: Taolue Chen, Department of Computer Science, Birkbeck, University of London, Malet Street, London,

United Kingdom, t.chen@bbk.ac.uk; Alejandro Flores-Lamas, Department of Computer Science, Royal Holloway, University

of London, Egham Hill, Egham, Surrey, TW20 0EX, United Kingdom, Alejandro.Flores-Lamas@rhul.ac.uk; Matthew Hague,

Department of Computer Science, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, United

Kingdom, matthew.hague@rhul.ac.uk; Zhilei Han, School of Software, Tsinghua University, China, hzl21@mails.tsinghua.

edu.cn; Denghang Hu, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

& University of Chinese Academy of Sciences, China, hudenghang15@mails.ucas.ac.cn; Shuanglong Kan, University of

Kaiserslautern, Kaiserslautern, Germany, shuanglong@cs.uni-kl.de; Anthony W. Lin, University of Kaiserslautern & Max-

Planck Institute, Kaiserslautern, Germany, lin@cs.uni-kl.de; Philipp Rümmer, Department of Information Technology,

Uppsala University, Box 337, Uppsala, SE-751 05, Sweden, philipp.ruemmer@it.uu.se; Zhilin Wu, State Key Laboratory

of Computer Science, Institute of Software, Chinese Academy of Sciences & University of Chinese Academy of Sciences,

China, wuzl@ios.ac.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART45

https://doi.org/10.1145/3498707

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

HTTPS://ORCID.ORG/0000-0002-5993-1665
HTTPS://ORCID.ORG/0000-0003-4913-3800
HTTPS://ORCID.ORG/0000-0001-9171-4997
HTTPS://ORCID.ORG/0000-0003-4715-5096
HTTPS://ORCID.ORG/0000-0002-2733-7098
HTTPS://ORCID.ORG/0000-0003-0899-628X
https://orcid.org/0000-0002-5993-1665
https://orcid.org/0000-0003-4913-3800
https://orcid.org/0000-0001-9171-4997
https://orcid.org/0000-0003-4715-5096
https://orcid.org/0000-0002-2733-7098
https://orcid.org/0000-0003-0899-628X
https://doi.org/10.1145/3498707

45:2 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

from an open-source RegEx library. The experimental results show the efficacy of our approach, drastically

improving the existing methods (via symbolic execution) in both precision and efficiency.

CCS Concepts: • Theory of computation → Automated reasoning; Program verification; Regular
languages; Logic and verification; Complexity classes.

Additional Key Words and Phrases: String Constraint Solving, Regular Expressions, Transducers, Symbolic

Execution

ACM Reference Format:
Taolue Chen, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu, Shuanglong Kan, Anthony

W. Lin, Philipp Rümmer, and Zhilin Wu. 2022. Solving String Constraints with Regex-Dependent Functions

through Transducers with Priorities and Variables. Proc. ACM Program. Lang. 6, POPL, Article 45 (January 2022),
31 pages. https://doi.org/10.1145/3498707

1 INTRODUCTION
In modern programming languages—such as JavaScript, Python, Java, and PHP—the string data type

plays a crucial role. A quick look at the string libraries for these languages is enough to convince

oneself how well supported string manipulations are in these languages, in that a wealth of string

operations and functions are readily available for the programmers. Such operations include usual

operators like concatenation, length, substring, but also complex functions such as match, replace,

split, and parseInt. Unfortunately, it is well-known that string manipulations are error-prone and

could even give rise to security vulnerabilities (e.g. cross-site scripting, a.k.a. XSS). One powerful

method for identifying such bugs in programs is symbolic execution (possibly in combination with

dynamic analysis), which analyses symbolic paths in a program by viewing them as constraints

whose feasibility is checked by constraint solvers. Together with the challenging problem of string

analysis, this interplay between program analysis and constraint solvers has motivated the highly

active research area of string solving, resulting in the development of numerous string solvers

in the last decade or so including Z3 [de Moura and Bjørner 2008], CVC4 [Liang et al. 2014],

Z3-str/2/3/4 [Berzish et al. 2017; Berzish, Murphy 2021; Zheng et al. 2015, 2013], ABC [Bultan and

contributors 2015], Norn [Abdulla et al. 2014], Trau [Abdulla et al. 2017, 2018; Bui and contributors

2019], OSTRICH [Chen et al. 2019], S2S [Le and He 2018], Qzy [Cox and Leasure 2017], Stranger [Yu

et al. 2010], Sloth [Abdulla et al. 2019; Holík et al. 2018], Slog [Wang et al. 2016], Slent [Wang et al.

2018], Gecode+S [Scott et al. 2017], G-Strings [Amadini et al. 2017], HAMPI [Kiezun et al. 2012],

among many others.

One challenging problem in the development of string solvers is the need to support an increasing

number of real-world string functions, especially because the initial stage of the development

of string solvers typically assumed only simple functions (in particular, concatenation, regular

constraints, and sometimes also length constraints). For example, the importance of supporting

functions like the replaceAll function (i.e. replace with global flag) in a string solver was elaborated

in [Chen et al. 2018]; ever since, quite a number of string solvers support this operator. Unfortunately,

the gap between the string functions that are supported by current string solvers and those supported

by modern programming languages is still too big. As convincingly argued in [Loring et al. 2019]

in the context of constraint solving, the widely used Regular Expressions in modern programming

languages (among others, JavaScript, Python, etc.)—which we call RegEx in the sequel—are one

important and frequently occurring feature in programs that are difficult for existing SMT theories

over strings to model and solve, especially because their syntaxes and semantics substantially differ

from the notion of regular expressions in formal language theory [Hopcroft and Ullman 1979].

Indeed, many important string functions in programming languages—such as exec, test, search,

match, replace, and split in JavaScript, as well as match, findall, search, sub, and split in Python—can

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

https://doi.org/10.1145/3498707

Solving String Constraints with Regex-Dependent Functions 45:3

and often do exploit RegEx, giving rise to path constraints that are difficult (if not impossible)

to precisely capture in existing string solving frameworks. We illustrate these difficulties in the

following two examples.

Example 1.1. We briefly mention the challenges posed by the replace function in JavaScript; a

slightly different but more detailed example can be found in Section 2. Consider the Javascript code

snippet

var namesReg = /([A-Za-z]+) ([A-Za-z]+)/g;
var newAuthorList = authorList.replace(nameReg, "$2, $1");

Assuming authorList is given as a list of ;-separated author names — first name, followed by a

last name — the above program would convert this to last name, followed by first name format. For

instance, "Don Knuth; Alan Turing" would be converted to "Knuth, Don; Turing, Alan". A
natural post condition for this code snippet one would like to check is the existence of at least one

“,” between two occurrences of “;”.

Example 1.2. We consider the match function in JavaScript, in combination with replace. Con-

sider the code snippet in Figure 1. The function normalize removes leading and trailing zeros

from a decimal string with the input decimal. For instance, normalize("0.250") == "0.25",
normalize("02.50") == "2.5", normalize("025.0") == "25", and finally normalize("0250")
== "250". As the reader might have guessed, the function match actually returns an array of strings,

corresponding to those that are matched in the capturing groups (two in our example) in the RegEx

using the greedy semantics of the Kleene star/plus operator. One might be interested in checking,

for instance, that there is a way to generate a the string "0.0007", but not the string "00.007".

function normalize(decimal) {
const decimalReg = /^(\d+)\.?(\d*)$/;
var decomp = decimal.match(decimalReg);
var result = "";
if (decomp) {
var integer = decomp[1].replace(/^0+/, "");
var fractional = decomp[2].replace(/0+$/, "");
if (integer !== "") result = integer; else result = "0";
if (fractional !== "") result = result + "." + fractional;

}
return result;

}

Fig. 1. Normalize a decimal by removing the leading and trailing zeros

The above examples epitomize the difficulties that have arisen from the interaction between

RegEx and string functions in programs. Firstly, RegEx uses deterministic semantics for pattern

matching (like greedy semantics in the above example, but the so-called lazy matching is also

possible), and allows features that do not exist in regular expressions in formal language theory, e.g.,

capturing groups (those in brackets) in the above example. Secondly, string functions in programs

can exploit RegEx in an intricate manner, e.g., by means of references $1 and $2 in Example 1.1.

Hitherto, no existing string solvers can support any of these features. This is despite the fact that

idealized versions of regular constraints and the replace functions are allowed in modern string

solvers (e.g. see [Abdulla et al. 2018; Chen et al. 2019; Holík et al. 2018; Liang et al. 2014; Trinh et al.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:4 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

2016; Yu et al. 2014]), i.e., features that can be found in the above examples like capturing groups,

greedy/lazy matching, and references are not supported. This limitation of existing string solvers

was already mentioned in the recent paper [Loring et al. 2019].

In view of the aforementioned limitation of string solvers, what solutions are possible? One re-

cently proposed solution is to map the path constraints generated by string-manipulating programs

that exploit RegEx into constraints in the SMT theories supported by existing string solvers. In

fact, this was done in recent papers [Loring et al. 2019], where the path constraints are mapped to

constraints in the theory of strings with concatenation and regular constraints in Z3 [de Moura

and Bjørner 2008]. Unfortunately, this mapping is an approximation, since such complex string

manipulations are generally inexpressible in any string theories supported by existing string solvers.

To leverage this, CEGAR (counter-example guided abstraction and refinement) is used in [Loring

et al. 2019], while ensuring that an under-approximation is preserved. This results in a rather

severe price in both precision and performance: the refinement process may not terminate even for

extremely simple programs (e.g. the above examples).

Therefore, the current state-of-affairs is unsatisfactory because even the introduction of very

simple RegEx expressions in programs (e.g. the above examples) results in path constraints that

can not be solved by existing symbolic executions in combination with string solvers. In this paper,

we would like to firstly advocate that string solvers should natively support important features

of RegEx in their SMT theories. Existing work (e.g. the reduction to Z3 provided by [Loring et al.

2019]) shows that this is a monumental theoretical and programming task, not to mention the loss

in precision and the performance penalty. Secondly, we present the first string theory and string

solver that natively provide such a support.

Contributions. In this paper, we provide the first string theory and string solver that natively

support RegEx. Not only can our theory/solver easily express and solve Example 1.1 and Example 1.2

— which hitherto no existing string solvers and string analysis can handle — our experiments using

a library of 98,117 real-world regular expressions indicate that our solver substantially outperforms

the existing method [Loring et al. 2019] in terms of the number of solved problems and runtime.

We provide more details of our contributions below.

Our string theory provides for the first time a native support of the match and the replace

functions, which use JavaScript
1
RegEx in the input arguments. Here is a quick summary of our

string constraint language (see Section 3 for more details):

𝜑
def

= 𝑥 = 𝑦 | 𝑧 = 𝑥 · 𝑦 | 𝑦 = extract𝑖,𝑒 (𝑥) | 𝑦 = replace
pat,rep (𝑥) |

𝑦 = replaceAll
pat,rep (𝑥) | 𝑥 ∈ 𝑒 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ¬𝜑

where 𝑒, pat are RegExes, 𝑖 ∈ N, 𝑥,𝑦, 𝑧 are variables, and rep is called the replacement string and

might refer to strings matched in capturing groups, as in Example 1.1. Apart from the standard

concatenation operator ·, we support extract, which extracts the string matched by the 𝑖th capturing

group in the RegEx 𝑒 (note that match can be simulated by several calls to extract). We also support

replace (resp. replaceAll), which replaces the first occurrence (resp. all occurrences) of substrings

in 𝑥 matched by pat by rep. Our solver/theory also covers the most important features of RegEx

(including greedy/lazy matching, capturing groups, among others) that make up 74.97% of the

RegEx expressions of [Loring et al. 2019] across 415,487 NPM packages.

A crucial step in the development of our string solver is a formalization of the semantics of the

extract, replace, and replaceAll functions in an automata-theoretic model that is amenable to analy-

sis (among others, closure properties; see below). To this end, we introduce a new transducer model

1
JavaScript was chosen because it is relevant to string solving [Hooimeijer et al. 2011; Saxena et al. 2010], due to vulnerabilities

in JavaScripts caused by string manipulations. Our method can be easily adapted to RegEx semantics in other languages.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:5

called Prioritized Streaming String Transducers (PSSTs), which is inspired by two automata/transducer

models: prioritized finite-state automata [Berglund and van der Merwe 2017a] and streaming string

transducers [Alur and Cerný 2010; Alur and Deshmukh 2011]. PSSTs allow us to precisely capture

the non-standard semantics of RegEx operators (e.g. greedy/lazy Kleene star) by priorities and deal

with capturing groups by string variables. We show that extract, replace, and replaceAll can all be

expressed as PSSTs. More importantly, we have performed an extensive experiment validating our

formalization against JavaScript semantics.

Next, by means of a sound sequent calculus, our string solver (implemented in the standard

DPLL(T) setting of SMT solvers [Nieuwenhuis et al. 2006]) will exploit crucial closure and algo-

rithmic properties satisfied by PSSTs. In particular, the solver attempts to (1) propagate regular
constraints (i.e. the constraints 𝑥 ∈ 𝑒) in the formula around by means of the string functions

·, replace, replaceAll, and extract, and (2) either detect conflicting regular constraints, or find a

satisfiable assignment. A single step of the regular-constraint propagation computes either the

𝑝𝑜𝑠𝑡-image or the 𝑝𝑟𝑒-image of the above functions. In particular, it is crucial that each step of

our constraint propagation preserves regularity of the constraints. Since the 𝑝𝑜𝑠𝑡-image does not

always preserve regularity, we only propagate by taking 𝑝𝑜𝑠𝑡-image when regularity is preserved.

On the other hand, one of our crucial results is that taking 𝑝𝑟𝑒-image always preserves regularity:

regular constraints are effectively closed under taking 𝑝𝑟𝑒-image of functions captured in PSSTs.
Finally, despite the fact that our above string theory is undecidable (which follows from [Lin and

Barceló 2016]), we show that our string solving algorithm is guaranteed to terminate (and therefore

is also complete) under the assumption that the input formula syntactically satisfies the so-called

straight-line restriction.
We implement our decision procedure on top of the open-source solver OSTRICH [Chen et al.

2019], and carry out extensive experiments to evaluate the performance. For the benchmarks, we

generate two collections of JavaScript programs (with 98,117 programs in each collection), from

a library of real-world regular expressions [Davis et al. 2019], by using two simple JavaScript

program templates containing match and replace functions, respectively. Then we generate all

the four (resp. three) path constraints for each match (resp. replace) JavaScript program and put

them into one SMT-LIB script. OSTRICH is able to answer all four (resp. three) queries in 97% (resp.

91.5%) of the match (resp. replace) scripts, with the average time 1.57s (resp. 6.62s) per file. Running

ExpoSE [Loring et al. 2019] with the same time budget on the same benchmarks, we show that

OSTRICH offers a 8x–18x speedup in comparison to ExpoSE, while being able to cover substantially

more paths (9.6% more for match, 49.9% more for replace), making OSTRICH the first string solver

that is able to handle RegExes precisely and efficiently.

Organization. In Section 2, more details of Example 1.1 are worked out to illustrate our approach.

The string constraint language supporting RegExes is presented in Section 3. The semantics of

the RegEx-dependent string functions are formally defined via PSSTs in Section 4. The sequent

calculus for solving the string constraints is introduced in Section 5. The implementation of the

string solver and experiments are described in Section 6. The related work is given in Section 7.

Finally, Section 8 concludes this paper.

2 A DETAILED EXAMPLE
In this section, we provide a detailed example to illustrate our string solving method. Consider the

JavaScript program in Fig. 2; this example is similar to Example 1.1 from the Introduction. The

function “authorNameDBLPtoACM” in Figure 2 transforms an author list in the DBLP BibTeX style

to the one in the ACM BibTeX style. For instance, if a paper is authored by Alice M. Brown and

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:6 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

John Smith, then the author list in the DBLP BibTeX style is “Alice M. Brown and John Smith”,

while it is “Brown, Alice M. and Smith, John” in the ACM BibTeX style.

The input of the function “authorNameDBLPtoACM” is authorList, which is expected to follow

the pattern specified by the regular expression autListReg. Intuitively, autListReg stipulates that

authorList joins the strings of full names as a concatenation of a given name, middle names, and

a family name, separated by the blank symbol (denoted by \s). Each of the given, middle, family

names is a concatenation of a capital alphabetic letter (denoted by [A-Z]) followed by a sequence of

letters (denoted by \w) or a dot symbol (denoted by .). Between names, the word “and” is used as

the separator. The symbols ˆ and $ denote the beginning and the end of a string input respectively.

function authorNameDBLPtoACM(authorList)
{

var autListReg
= /^[A-Z](\w*|.)(\s[A-Z](\w*|.))*(\sand\s[A-Z](\w*|.)(\s[A-Z](\w*|.))*)*$/;

if (autListReg.test(authorList)) {
var nameReg = /([A-Z](?:\w*|.)(?:\s[A-Z](?:\w*|.))*)(\s[A-Z](?:\w*|.))/g;
return authorList.replace(nameReg, "$2, $1");

}
else return authorList;

}

Fig. 2. Change the author list from the DBLP format to the ACM format

The DBLP name format of each author is specified by the regular expression nameReg in Fig. 2,

which describes the format of a full name.

• There are two capturing groups in nameReg, one for recording the concatenation of the given

name and middle names, and the other for recording the family name. Note that the symbols

?: in (?:\s[A-Z](?:\w*|.)) denote the non-capturing groups, i.e. matching the subexpression,

but not remembering the match.

• The greedy semantics of the Kleene star * is utilized here to guarantee that the subexpression

(?:\s[A-Z](?:\w*|\.))* matches all the middle names (since there may exist multiple middle

names) and thus nameReg matches the full name. For instance, the first match of nameReg

in “Alice M. Brown and John Smith” should be “Alice M. Brown”, instead of “Alice M.”. In

comparison, if the semantics of * is assumed to be non-greedy, then (?:\s[A-Z](?:\w*|\.))*
can be matched to the empty string, thus nameReg is matched to “Alice M.”, which is not
what we want. Therefore, the greedy semantics of * is essential for the correctness of “au-

thorNameDBLPtoACM”.

• The global flag “g” is used in nameReg so that the name format of each author is transformed.

The name format transformation is via the replace function, i.e. authorList.replace(nameReg, “$2,

$1”), where $1 and $2 refer to the match of the first and second capturing group respectively.

A natural post-condition of authorNameDBLPtoACM is that there exists at least one occurrence

of the comma symbol between every two occurrences of “and”. This post-condition has to be

established by the function on every execution path. As an example, consider the path shown in

Fig. 3, in which the branches taken in the program are represented as assume statements. The

negated post-condition is enforced by the regular expression in the last assume. For this path, the
post-condition can be proved by showing that the program in Fig. 3 is infeasible: there does not

exist an initial value authorList so that no assumption fails and the program executes to the end.

To enable symbolic execution of the JavaScript programs like in Fig. 3, one needs to model

both the greedy semantics of the Kleene star and store the matches of capturing groups. For this

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:7

var autListReg =
/^[A-Z](\w*|.)(\s[A-Z](\w*|.))*(\sand\s[A-Z](\w*|.)(\s[A-Z](\w*|.))*)*$/;

assume(autListReg.test(authorList));
var nameReg = /([A-Z](?:\w*|.)(?:\s[A-Z](?:\w*|.))*)(\s[A-Z](?:\w*|.))/g;
var result = authorList.replace(nameReg, "$2, $1");
assume(/\sand[^,]*\sand/.test(result));

Fig. 3. Symbolic execution of a path of the JavaScript program in Fig. 2

purpose, we introduce prioritized streaming string transducers (PSST, cf. Section 4) by which

replace(nameReg, “$2, $1”) is represented as a PSST T , where the priorities are used to model the

greedy semantics of ∗ and the string variables are used to record the matches of the capturing

groups as well as the return value. Then the symbolic execution of the program in Fig. 3 can be

equivalently turned into the satisfiability of the following string constraint,

authorList ∈ autListReg ∧ result = T (authorList) ∧ result ∈ postConReg, (1)

where postConReg = /^.*\sand[^,]*\sand.*$/, and autListReg is as in Fig. 2.

Our solver is able to show that (1) is unsatisfiable. On the calculus level (introduced in more

details in Section 5), the main inference step applied for this purpose is the computation of the

pre-image of postConReg under the function T ; in other words, we compute the language of all

strings that are mapped to incorrect strings (containing two “and”s without a comma in between)

by T . This inference step relies on the fact that the pre-images of regular languages under PSSTs

are regular (see Lemma 5.5). Denoting the pre-image of postConReg by B, formula (1) is therefore

equivalent to

authorList ∈ B ∧ authorList ∈ autListReg ∧ result = T (authorList) ∧ result ∈ postConReg. (2)

To show that this formula (and thus (1)) is unsatisfiable, it is now enough to prove that the

languages defined by B and autListReg are disjoint.

3 A STRING CONSTRAINT LANGUAGE NATIVELY SUPPORTING REGEX
In this section, we define a string constraint language natively supporting RegEx. Throughout the

paper, Z+ denotes the set of positive integers, andN denotes the set of natural numbers. Furthermore,

for 𝑛 ∈ Z+, let [𝑛] := {1, . . . , 𝑛}. We use Σ to denote a finite set of letters, called alphabet. A string
over Σ is a finite sequence of letters from Σ. We use Σ∗ to denote the set of strings over Σ, Y to
denote the empty string, and ΣY to denote Σ ∪ {Y}. A string𝑤 ′ is called a prefix (resp. suffix) of𝑤 if

𝑤 = 𝑤 ′𝑤 ′′ (resp.𝑤 = 𝑤 ′′𝑤 ′) for some string𝑤 ′′.
We start with the syntax of RegEx which is essentially that used in JavaScript. (We do not include

backreferences though.)

Definition 3.1 (Regular expressions, RegEx).

𝑒
def

= ∅ | Y | 𝑎 | (𝑒) | [𝑒 + 𝑒] | [𝑒 · 𝑒] | [𝑒?] | [𝑒??] |
[𝑒∗] | [𝑒∗?] | [𝑒+] | [𝑒+?] | [𝑒 {𝑚1,𝑚2 }] | [𝑒 {𝑚1,𝑚2 }?]

where 𝑎 ∈ Σ, 𝑛 ∈ Z+,𝑚1,𝑚2 ∈ N with𝑚1 ≤ 𝑚2.

For Γ = {𝑎1, . . . , 𝑎𝑘 } ⊆ Σ, we write Γ for [[· · · [𝑎1 + 𝑎2] + · · ·] + 𝑎𝑘] and thus [Γ∗] ≡ [[[· · · [𝑎1 +
𝑎2] + · · ·] + 𝑎𝑘]∗]. Similarly for [Γ∗?], [Γ+], and [Γ+?]. We write |𝑒 | for the length of 𝑒 , i.e., the

number of symbols occurring in 𝑒 . Note that square brackets [] are used for the operator precedence
and the parentheses () are used for capturing groups.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:8 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

The operator [𝑒∗] is the greedy Kleene star, meaning that 𝑒 should be matched as many times as

possible. In contrast, the operator [𝑒∗?] is the lazy Kleene star, meaning 𝑒 should be matched as

few times as possible. The Kleene plus operators [𝑒+] and [𝑒+?] are similar to [𝑒∗] and [𝑒∗?] but 𝑒
should be matched at least once. Moreover, as expected, the repetition operators [𝑒 {𝑚1,𝑚2 }] require
the number of times that 𝑒 is matched is between𝑚1 and𝑚2 and [𝑒 {𝑚1,𝑚2 }?] is the lazy variant.

Likewise, the optional operator has greedy and lazy variants [𝑒?] and [𝑒??], respectively.
For two RegEx 𝑒 and 𝑒 ′, we say that 𝑒 ′ is a subexpression of 𝑒 , if one of the following conditions

holds: 1) 𝑒 ′ = 𝑒 , 2) 𝑒 = [𝑒1 ·𝑒2] or [𝑒1+𝑒2], and 𝑒 ′ is a subexpression of 𝑒1 or 𝑒2, 3) 𝑒 = [𝑒?
1
], [𝑒??

1
], [𝑒∗

1
],

[𝑒+
1
], [𝑒∗?

1
], [𝑒+?

1
], [𝑒 {𝑚1,𝑚2 }

1
], [𝑒 {𝑚1,𝑚2 }?

1
] or (𝑒1), and 𝑒 ′ is a subexpression of 𝑒1. We use 𝑆 (𝑒) to

denote the set of subexpressions of 𝑒 .

We shall formalize the semantics of RegEx, in particular, for a given regular expression and an

input string, how the string is matched against the regular expression, in Section 4.2.

In the rest of this section, we define the string constraint language STR.

The syntax of STR is defined by the following rules.

𝜑
def

= 𝑥 = 𝑦 | 𝑧 = 𝑥 · 𝑦 | 𝑦 = extract𝑖,𝑒 (𝑥) | 𝑦 = replace
pat,rep (𝑥) |

𝑦 = replaceAll
pat,rep (𝑥) | 𝑥 ∈ 𝑒 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ¬𝜑

where

• · is the string concatenation operation which concatenates two strings,

• 𝑒 ∈RegEx and pat ∈RegEx,
• for the extract function, 𝑖 ∈ N,
• for the replace and replaceAll operation, rep ∈ REP, where REP is defined as a concatenation

of letters from Σ, the references $𝑖 (𝑖 ∈ N), as well as $← and $
→
. (Intuitively, $0 denotes the

matching of pat, $𝑖 with 𝑖 > 0 denotes the matching of the 𝑖-th capturing group, $
←

and $
→

denote the prefix before resp. suffix after the matching of pat.)

The extract𝑖,𝑒 (𝑥) function extracts the match of the 𝑖-th capturing group in the successful match

of 𝑒 to 𝑥 for 𝑥 ∈ L (𝑒) (otherwise, the return value of the function is undefined). Note that

extract𝑖,𝑒 (𝑥) returns 𝑥 if 𝑖 = 0. Moreover, if the 𝑖-th capturing group of 𝑒 is not matched, even

if 𝑥 ∈ L (𝑒), then extract𝑖,𝑒 (𝑥) returns a special symbol null, denoting the fact that its value is

undefined. For instance, when [[𝑎+] + ([𝑎∗])] is matched to the string 𝑎𝑎, [𝑎+], instead of ([𝑎∗]),
will be matched, since [𝑎+] precedes ([𝑎∗]). Therefore, extract1, [[𝑎+]+([𝑎∗])] (𝑎𝑎) = null.

Remark 1. The match function in programming languages, e.g. str.match(reg) in JavaScript, finds
the first match of reg in str, assuming that reg does not contain the global flag. We can use extract
to express the first match of reg in str by adding [Σ∗?] and [Σ∗] before and after reg respectively.
More generally, the value of the 𝑖-th capturing group in the first match of a 𝑅𝑒𝑔𝐸𝑥 reg in str can
be specified as extract𝑖+1,reg′ (str), where reg′ = [[[Σ∗?] · (reg)] · [Σ∗]]. The other string functions
involving regular expressions, e.g. exec and test, without global flags, are similar to match, thus can
be encoded by extract as well.

The function replaceAll
pat,rep (𝑥) is parameterized by the pattern pat ∈ 𝑅𝑒𝑔𝐸𝑥 and the replacement

string rep ∈ REP. For an input string 𝑥 , it identifies all matches of pat in 𝑥 and replaces them with

strings specified by rep. More specifically, replaceAll
pat,rep (𝑥) finds the first match of pat in 𝑥 and

replaces the match with rep, let 𝑥 ′ be the suffix of 𝑥 after the first match of pat, then it finds the

first match of pat in 𝑥 ′ and replace the match with rep, and so on. A reference $𝑖 where 𝑖 > 0 is

instantiated by the matching of the 𝑖-th capturing group. There are three special references
2
$0,

2
The corresponding syntax for $0, $

←
and $

→
in JavaScript are $&, $‘, and $

′
.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:9

$
←
, and $

→
. These are instantiated by the matched text, the text occurring before the match, and

the text occurring after the match respectively. In particular, if the input word is 𝑢𝑣𝑤 where 𝑣 has

been matched and will be replaced, then $0 takes the value 𝑣 , $← takes the value 𝑢, and $
→

takes

the value𝑤 . When there are multiple matches in a replaceAll, the values of $
←

and $
→

are always

with respect to the original input string 𝑥 .

The replace
pat,rep (𝑥) function is similar to replaceAll

pat,rep (𝑥), except that it replaces only the

first (leftmost) match of pat.

A STR formula 𝜑 is said to be straight-line, if 1) it contains neither negation nor disjunction, 2)

the equations in 𝜑 can be ordered into a sequence, say 𝑥1 = 𝑡1, . . . , 𝑥𝑛 = 𝑡𝑛 , such that 𝑥1, . . . , 𝑥𝑛 are

mutually distinct, moreover, for each 𝑖 ∈ [𝑛], 𝑥𝑖 does not occur in 𝑡1, . . . , 𝑡𝑖−1. Let STRSL denote the

set of straight-line STR formulas.

As a crucial step for solving the string constraints in STR, we shall define the formal semantics

of the extract, replace, and replaceAll functions in the next section.

4 SEMANTICS OF STRING FUNCTIONS VIA PSST

Our goal in this section is to define the formal semantics of the string functions involving RegEx

used in STR, that is, extract, replace and replaceAll. To this end, we need to first define the semantics

of RegEx-string matching. One of the key novelties here is to utilize an extension of finite-state

automata with transition priorities and string variables, called prioritized streaming string trans-

ducers (abbreviated as PSST). It turns out that PSST provides a convenient means to capture the

non-standard semantics of RegEx operators and to store the matches of capturing groups in RegEx,

which paves the way to define the semantics of string functions (and the string constraint language).

4.1 Prioritized Streaming String Transducers (PSST)
PSSTs can be seen as an extension of finite-state automata with transition priorities and string

variables. We first recall the definition of classic finite-state automata.

Definition 4.1 (Finite-state Automata). A (nondeterministic) finite-state automaton (FA) over a

finite alphabet Σ is a tuple A = (Σ, 𝑄, 𝑞0, 𝐹 , 𝛿) where 𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is the initial

state, 𝐹 ⊆ 𝑄 is a set of final states, and 𝛿 ⊆ 𝑄 × ΣY ×𝑄 is the transition relation.

For an input string 𝑤 , a run of A on 𝑤 is a sequence 𝑞0𝑎1𝑞1 . . . 𝑎𝑛𝑞𝑛 such that 𝑤 = 𝑎1 · · ·𝑎𝑛
and (𝑞 𝑗−1, 𝑎 𝑗 , 𝑞 𝑗) ∈ 𝛿 for every 𝑗 ∈ [𝑛]. The run is said to be accepting if 𝑞𝑛 ∈ 𝐹 . A string 𝑤 is

accepted by A if there is an accepting run of A on 𝑤 . The set of strings accepted by A, i.e., the

language recognized by A, is denoted by L (A). The size |A| of A is the cardinality of 𝛿 , the set

of transitions.

For a finite set 𝑄 , let 𝑄 =
⋃

𝑛∈N{(𝑞1, . . . , 𝑞𝑛) | ∀𝑖 ∈ [𝑛], 𝑞𝑖 ∈ 𝑄 ∧ ∀𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 → 𝑞𝑖 ≠ 𝑞 𝑗 }.
Intuitively, 𝑄 is the set of sequences of non-repetitive elements from 𝑄 . In particular, the empty

sequence () ∈ 𝑄 . Note that the length of each sequence from 𝑄 is bounded by |𝑄 |. For a sequence
𝑃 = (𝑞1, . . . , 𝑞𝑛) ∈ 𝑄 and 𝑞 ∈ 𝑄 , we write 𝑞 ∈ 𝑃 if 𝑞 = 𝑞𝑖 for some 𝑖 ∈ [𝑛]. Moreover, for

𝑃1 = (𝑞1, . . . , 𝑞𝑚) ∈ 𝑄 and 𝑃2 = (𝑞′1, . . . , 𝑞′𝑛) ∈ 𝑄 , we say 𝑃1∩𝑃2 = ∅ if {𝑞1, . . . , 𝑞𝑚}∩{𝑞′1, . . . , 𝑞′𝑛} = ∅.

Definition 4.2 (Prioritized Streaming String Transducers). A prioritized streaming string transducer
(PSST) is a tuple T = (𝑄, Σ, 𝑋, 𝛿, 𝜏, 𝐸, 𝑞0, 𝐹), where
• 𝑄 is a finite set of states,

• Σ is the input and output alphabet,

• 𝑋 is a finite set of string variables,

• 𝛿 ∈ 𝑄 × Σ → 𝑄 defines the non-Y transitions as well as their priorities (from highest to

lowest),

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:10 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

• 𝜏 ∈ 𝑄 → 𝑄 ×𝑄 such that for every 𝑞 ∈ 𝑄 , if 𝜏 (𝑞) = (𝑃1; 𝑃2), then 𝑃1 ∩ 𝑃2 = ∅, (Intuitively,
𝜏 (𝑞) = (𝑃1; 𝑃2) specifies the Y-transitions at 𝑞, with the intuition that the Y-transitions to the

states in 𝑃1 (resp. 𝑃2) have higher (resp. lower) priorities than the non-Y-transitions out of 𝑞.)

• 𝐸 associates with each transition a string-variable assignment function, i.e., 𝐸 is partial

function from 𝑄 × ΣY ×𝑄 to 𝑋 → (𝑋 ∪ Σ)∗ such that its domain is the set of tuples (𝑞, 𝑎, 𝑞′)
satisfying that either 𝑎 ∈ Σ and 𝑞′ ∈ 𝛿 (𝑞, 𝑎) or 𝑎 = Y and 𝑞′ ∈ 𝜏 (𝑞),
• 𝑞0 ∈ 𝑄 is the initial state, and

• 𝐹 is the output function, which is a partial function from 𝑄 to (𝑋 ∪ Σ)∗.

For 𝜏 (𝑞) = (𝑃1; 𝑃2), we will use 𝜋1 (𝜏 (𝑞)) and 𝜋2 (𝜏 (𝑞)) to denote 𝑃1 and 𝑃2 respectively. The

size of T , denoted by |T |, is defined as

∑
(𝑞,𝑎,𝑞′) ∈dom(𝐸)

∑
𝑥 ∈𝑋
|𝐸 ((𝑞, 𝑎, 𝑞′)) (𝑥) |, where |𝐸 ((𝑞, 𝑎, 𝑞′)) (𝑥) |

is the length of 𝐸 (𝑞, 𝑎, 𝑞′) (𝑥), i.e., the number of symbols from 𝑋 ∪ Σ in it. A PSST T is said to

be copyless if for each transition (𝑞, 𝑎, 𝑞′) in T and each 𝑥 ∈ 𝑋 , 𝑥 occurs in (𝐸 (𝑞, 𝑎, 𝑞′) (𝑥 ′))𝑥 ′∈𝑋 at

most once. A PSST T is said to be copyful if it is not copyless. For instance, if 𝑋 = {𝑥1, 𝑥2} and
𝐸 (𝑞, 𝑎, 𝑞′) (𝑥1) = 𝑥1 and 𝐸 (𝑞, 𝑎, 𝑞′) (𝑥2) = 𝑥1𝑎 for some transition (𝑞, 𝑎, 𝑞′), then 𝑥1 occurs twice in

(𝐸 (𝑞, 𝑎, 𝑞′) (𝑥 ′))𝑥 ′∈𝑋 , thus T is copyful.

A run of T on a string𝑤 is a sequence 𝑞0𝑎1𝑠1𝑞1 . . . 𝑎𝑚𝑠𝑚𝑞𝑚 such that

• for each 𝑖 ∈ [𝑚],
– either 𝑎𝑖 ∈ Σ, 𝑞𝑖 ∈ 𝛿 (𝑞𝑖−1, 𝑎𝑖), and 𝑠𝑖 = 𝐸 (𝑞𝑖−1, 𝑎𝑖 , 𝑞𝑖),
– or 𝑎𝑖 = Y, 𝑞𝑖 ∈ 𝜏 (𝑞𝑖−1) and 𝑠𝑖 = 𝐸 (𝑞𝑖−1, Y, 𝑞𝑖),
• for every subsequence 𝑞𝑖𝑎𝑖+1𝑠𝑖+1𝑞𝑖+1 . . . 𝑎 𝑗𝑠 𝑗𝑞 𝑗 such that 𝑖 < 𝑗 and 𝑎𝑖+1 = · · · = 𝑎 𝑗 = Y, it

holds that each Y-transition occurs at most once in it, namely, for every 𝑘, 𝑙 : 𝑖 ≤ 𝑘 < 𝑙 < 𝑗 ,

(𝑞𝑘 , 𝑞𝑘+1) ≠ (𝑞𝑙 , 𝑞𝑙+1).
Note that it is possible that 𝛿 (𝑞, 𝑎) = (), that is, there is no 𝑎-transition out of 𝑞. From the assumption

that each Y-transition occurs at most once in a sequence of Y-transitions, we deduce that given a

string𝑤 , the length of a run of T on𝑤 , i.e. the number of transitions in it, is 𝑂 (|𝑤 | |T |).
For any pair of runs 𝑅 = 𝑞0𝑎1𝑠1 . . . 𝑎𝑚𝑠𝑚𝑞𝑚 and 𝑅′ = 𝑞0𝑎

′
1
𝑠 ′
1
. . . 𝑎′𝑛𝑠

′
𝑛𝑞
′
𝑛 such that 𝑎1 . . . 𝑎𝑚 =

𝑎′
1
. . . 𝑎′𝑛 , we say that 𝑅 is of a higher priority over 𝑅′ if

• either 𝑅′ is a prefix of 𝑅 (in this case, the transitions of 𝑅 after 𝑅′ are all Y-transitions),
• or there is an index 𝑗 satisfying one of the following constraints:

– 𝑞0𝑎1𝑞1 . . . 𝑞 𝑗−1𝑎 𝑗 = 𝑞0𝑎
′
1
𝑞′
1
. . . 𝑞′𝑗−1𝑎

′
𝑗 , 𝑞 𝑗 ≠ 𝑞′𝑗 , 𝑎 𝑗 ∈ Σ, and we have that 𝛿 (𝑞 𝑗−1, 𝑎 𝑗) =

(. . . , 𝑞 𝑗 , . . . , 𝑞
′
𝑗 , . . .),

– 𝑞0𝑎1𝑞1 . . . 𝑞 𝑗−1𝑎 𝑗 = 𝑞0𝑎
′
1
𝑞′
1
. . . 𝑞′𝑗−1𝑎

′
𝑗 , 𝑞 𝑗 ≠ 𝑞′𝑗 , 𝑎 𝑗 = Y, and one of the following holds:

(i) 𝜋1 (𝜏 (𝑞 𝑗−1)) = (. . . , 𝑞 𝑗 , . . . , 𝑞
′
𝑗 , . . .), (ii) 𝜋2 (𝜏 (𝑞 𝑗−1)) = (. . . , 𝑞 𝑗 , . . . , 𝑞

′
𝑗 , . . .), or (iii) 𝑞 𝑗 ∈

𝜋1 (𝜏 (𝑞 𝑗−1)) and 𝑞′𝑗 ∈ 𝜋2 (𝜏 (𝑞 𝑗−1)),
– 𝑞0𝑎1𝑞1 . . . 𝑞 𝑗−1 = 𝑞0𝑎

′
1
𝑞′
1
. . . 𝑞′𝑗−1, 𝑎 𝑗 = Y, 𝑎′𝑗 ∈ Σ, 𝑞 𝑗 ∈ 𝜋1 (𝜏 (𝑞 𝑗−1)), and 𝑞′𝑗 ∈ 𝛿 (𝑞 𝑗−1, 𝑎′𝑗),

– 𝑞0𝑎1𝑞1 . . . 𝑞 𝑗−1 = 𝑞0𝑎
′
1
𝑞′
1
. . . 𝑞′𝑗−1, 𝑎 𝑗 ∈ Σ, 𝑎′𝑗 = Y, 𝑞 𝑗 ∈ 𝛿 (𝑞 𝑗−1, 𝑎 𝑗), and 𝑞′𝑗 ∈ 𝜋2 (𝜏 (𝑞 𝑗−1)).

An accepting run of T on𝑤 is a run of T on𝑤 , say 𝑅 = 𝑞0𝑎1𝑠1 . . . 𝑎𝑚𝑠𝑚𝑞𝑚 , such that 1) 𝐹 (𝑞𝑚) is
defined, 2) 𝑅 is of the highest priority among those runs satisfying 1). The output of T on𝑤 , denoted

byT (𝑤), is defined as[𝑚 (𝐹 (𝑞𝑚)), where[0 (𝑥) = Y for each 𝑥 ∈ 𝑋 , and[𝑖 (𝑥) = [𝑖−1 (𝑠𝑖 (𝑥)) for every
1 ≤ 𝑖 ≤ 𝑚 and 𝑥 ∈ 𝑋 . Note that here we abuse the notation [𝑚 (𝐹 (𝑞𝑚)) and [𝑖−1 (𝑠𝑖 (𝑥)) by taking a

function [from 𝑋 to Σ∗ as a function from (𝑋 ∪Σ)∗ to Σ∗, which maps each 𝑥 ∈ 𝑋 to [(𝑥) and each
𝑎 ∈ Σ to 𝑎. If there is no accepting run of T on𝑤 , then T (𝑤) = ⊥, that is, the output of T on𝑤 is

undefined. The string relation defined by T , denoted by RT , is {(𝑤,T (𝑤)) | 𝑤 ∈ Σ∗,T (𝑤) ≠ ⊥}.

Example 4.3. The PSST T = (𝑄, Σ, 𝑋, 𝛿, 𝜏, 𝐸, 𝑞0, 𝐹) to extract the match of the first capturing group

for the regular expression (\d+)(\d*) is illustrated in Fig. 4, where 𝑥1 and 𝑥2 store the matches of

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:11

the two capturing groups. More specifically, in T we have Σ = {0, · · · , 9}, 𝑋 = {𝑥1, 𝑥2}, 𝐹 (𝑞4) = 𝑥1
denotes the final output, and 𝛿, 𝜏, 𝐸 are illustrated in Fig. 4, where the dashed edges denote the

Y-transitions of lower priorities than the non-Y-transitions and the symbol ℓ denotes the currently

scanned input letter. For instance, for the state𝑞2, 𝛿 (𝑞2, ℓ) = (𝑞2) for ℓ ∈ {0, . . . , 9}, 𝜏 (𝑞2) = ((); (𝑞3)),
𝐸 (𝑞2, ℓ, 𝑞2) (𝑥1) = 𝑥1ℓ , 𝐸 (𝑞2, ℓ, 𝑞2) (𝑥2) = 𝑥2, 𝐸 (𝑞2, Y, 𝑞3) (𝑥1) = 𝑥1, and 𝐸 (𝑞2, Y, 𝑞3) (𝑥2) = Y. Note that

the identity assignments, e.g. 𝐸 (𝑞2, Y, 𝑞3) (𝑥1) = 𝑥1, are omitted in Fig. 4 for readability. For the input

string𝑤=“2050”, the accepting run of T on𝑤 is

𝑞0
Y−−−−→

𝑥1:=Y
𝑞1

2−−−−−→
𝑥1:=𝑥12

𝑞2
0−−−−−→

𝑥1:=𝑥10
𝑞2

5−−−−−→
𝑥1:=𝑥15

𝑞2
0−−−−−→

𝑥1:=𝑥10
𝑞2

Y−−−−→
𝑥2:=Y

𝑞3
Y−→ 𝑞4,

where the value of 𝑥1 and 𝑥2 when reaching the state 𝑞4 are “2050” and Y respectively.

q2
εq1

` ∈ {0, · · · , 9}
x1 := x1`

x1 := x1`

q3 q4
ε

` ∈ {0, · · · , 9}

F (q4) = x1

q0
ε

x1 := ε x2 := ε

x2 := x2`
` ∈ {0, · · · , 9}

Fig. 4. The PSST T : Extract the matching of the first capturing group in (\d+)(\d*)

4.2 Semantics of RegEx-String Matching
We now define the formal semantics of RegEx. Traditionally they are interpreted as a regular

language which can be defined inductively. In our case, where RegEx are mainly used in string

functions, what matters is the intermediate result when parsing a string against the given RegEx.

As a result, we shall present an operational (as opposed to traditional denotational) account of the

RegEx-string matching by constructing PSSTs out of regular expressions.

Note that in [Berglund et al. 2014; Berglund and van der Merwe 2017a], a construction from

RegEx to prioritized finite transducers (PFT) was given. The construction therein is a variant of

the classical Thompson construction from regular expressions to nondeterministic finite automata

[Thompson 1968]. In particular, the size of the constructed PFT is linear in the size of the given

RegEx. One may be tempted to think that the construction in [Berglund et al. 2014; Berglund

and van der Merwe 2017a] can be easily adapted to construct PSSTs out of regular expressions.

Nevertheless, the construction in [Berglund et al. 2014; Berglund and van der Merwe 2017a] does

not work for so called problematic regular expressions, i.e., those regular expressions that contain
the subexpressions 𝑒∗ or 𝑒∗? with Y ∈ L (𝑒). Moreover, the construction therein did not consider

the repetition operators [𝑒 {𝑚1,𝑚2 }
1

] or [𝑒 {𝑚1,𝑚2 }?
1

]. Our construction, which is considerably different

from that in [Berglund et al. 2014; Berglund and van der Merwe 2017a], works for arbitrary regular

expressions. In particular, the size of the constructed PSST can be exponential in the size of the

given regular expression in the worst case. Moreover, we validate by extensive experiments that

our construction is consistent with the actual RegEx-string matching in JavaScript.

For technical convenience, we assume that 𝐹 in a PSST is a set of final states, instead of an output

function, in the sequel. The main idea of the construction is to split the set of final states, 𝐹 , into

two disjoint subsets 𝐹1 and 𝐹2, with the intention that 𝐹1 and 𝐹2 are responsible for accepting the

empty string resp. non-empty strings. Therefore, the PSSTs constructed below are of the form

(𝑄, Σ, 𝑋, 𝛿, 𝜏, 𝐸, 𝑞0, (𝐹1, 𝐹2)). The necessity of this splitting will be illustrated in Example 4.6.

Furthermore, to deal with the situation that some capturing group may not be matched to any

string and its value is undefined, we introduce a special symbol null and assume that the initial

values of all the string variables are null. For simplicity, in the definition of a PSST, if 𝛿 (𝑞, 𝑎, 𝑞′) = ()

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:12 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

or 𝜏 (𝑞, Y, 𝑞′) = ((); ()), they will not be stated explicitly. Moreover, we will omit all the assignments

𝐸 (𝑞, 𝑎, 𝑞′) (𝑥) such that 𝐸 (𝑞, 𝑎, 𝑞′) (𝑥) = 𝑥 .

For PSSTs of the form (𝑄, Σ, 𝑋, 𝛿, 𝜏, 𝐸, 𝑞0, (𝐹1, 𝐹2)), we introduce a notation to be used in the

construction, namely, the concatenation of two PSSTs.

Definition 4.4 (Concatenation of two PSSTs). For 𝑖 ∈ {1, 2}, let T𝑖 be a PSST such that T𝑖 =

(𝑄𝑖 , Σ, 𝑋𝑖 , 𝛿𝑖 , 𝜏𝑖 , 𝐸𝑖 , 𝑞𝑖,0, (𝐹𝑖,1, 𝐹𝑖,2)). Then the concatenation of T1 and T2, denoted by T1 · T2, is defined
as follows (see Fig. 5): Let T ′

2
= (𝑄 ′

2
, Σ, 𝑋2, 𝛿

′
2
, 𝜏 ′

2
, 𝐸 ′

2
, 𝑞′

2,0, (𝐹 ′2,1, 𝐹 ′2,2)) be a fresh copy of T2, but with
the string variables of T2 kept unchanged. Then

T = (𝑄1 ∪𝑄2 ∪𝑄 ′2, Σ, 𝑋1 ∪ 𝑋2, 𝛿, 𝜏, 𝑞1,0, (𝐹2,1, 𝐹2,2 ∪ 𝐹 ′2,1 ∪ 𝐹 ′2,2))

where

• 𝛿 comprises the transitions in 𝛿1, 𝛿2, and 𝛿
′
2
,

• 𝜏 comprises the transitions in 𝜏1, 𝜏2, 𝜏
′
2
, and the following transitions,

– for every 𝑓1,1 ∈ 𝐹1,1, 𝜏 (𝑓1,1) = ((𝑞2,0); ()),
– for every 𝑓1,2 ∈ 𝐹1,2, 𝜏 (𝑓1,2) = ((𝑞′2,0), ()),
• 𝐸 inherits all the assignments in 𝐸1, 𝐸2, and 𝐸 ′

2
, and includes the following assignments:

for every 𝑓1,1 ∈ 𝐹1,1, 𝑓1,2 ∈ 𝐹1,2, and 𝑥 ′ ∈ 𝑋2, 𝐸 (𝑓1,1, Y, 𝑞2,0) (𝑥 ′) = 𝐸 (𝑓1,2, Y, 𝑞′2,0) (𝑥 ′) = null.

(Intuitively, the values of all the variables in 𝑋2 are reset when entering T2 and T ′2 .)

T1 · T2

q1,0

f1,1 ∈ F1,1 f1,2 ∈ F1,2

· · ·

q2,0

f2,1 ∈ F2,1
f2,2 ∈ F2,2

· · · · · ·

F1 F2

ε ε

q′2,0

f ′
2,1 ∈ F ′

2,1
f ′
2,2 ∈ F ′

2,2

∀x′ ∈ X2,
x′ := null

∀x′ ∈ X2,
x′ := null

Fig. 5. T1 · T2: Concatenation of T1 and T2

Note that in the above definition, it is possible that 𝑋1 ∩ 𝑋2 ≠ ∅. We remark that if 𝐹1,1 = ∅ or
𝐹2,1 = ∅, then one copy of T2, instead of two copies, is sufficient for the concatenation.

We shall recursively construct a PSST T𝑒 for each RegEx 𝑒 , such that the initial state has no

incoming transitions and each of its final states has no outgoing transitions. Moreover, all the

transitions out of the initial state are Y-transitions. We assume that in T𝑒 , a string variable 𝑥𝑒′ is

introduced for each subexpression 𝑒 ′ of 𝑒 .
The construction is technical and below we only select to present some representative cases. The

other cases are given in the long version of this paper [Chen et al. 2021].

Case 𝑒 = (𝑒1). T𝑒 is adapted from T𝑒1 = (𝑄𝑒1 , Σ, 𝑋𝑒1 , 𝛿𝑒1 , 𝜏𝑒1 , 𝐸𝑒1 , 𝑞𝑒1,0, (𝐹𝑒1,1, 𝐹𝑒1,2)) by adding the

string variable 𝑥𝑒 and the assignments for 𝑥𝑒 , that is, 𝑋𝑒 = 𝑋𝑒1 ∪ {𝑥𝑒 } and for each transition

(𝑞, 𝑎, 𝑞′) in T𝑒1 with 𝑎 ∈ ΣY , we have 𝐸𝑒 (𝑞, 𝑎, 𝑞′) (𝑥𝑒) = 𝐸𝑒1 (𝑞, 𝑎, 𝑞′) (𝑥𝑒1).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:13

Case 𝑒 = [𝑒1 + 𝑒2] (see Fig. 6). For 𝑖 ∈ {1, 2}, let T𝑒𝑖 = (𝑄𝑒𝑖 , Σ, 𝑋𝑒𝑖 , 𝛿𝑒𝑖 , 𝜏𝑒𝑖 , 𝐸𝑒𝑖 , 𝑞𝑒𝑖 ,0, (𝐹𝑒𝑖 ,1, 𝐹𝑒𝑖 ,2)).
Moreover, assume 𝑋𝑒1 ∩ 𝑋𝑒2 = ∅. Then

T𝑒 = (𝑄𝑒1 ∪𝑄𝑒2 ∪ {𝑞𝑒,0}, Σ, 𝑋𝑒1 ∪ 𝑋𝑒2 ∪ {𝑥𝑒 }, 𝛿𝑒 , 𝜏𝑒 , 𝐸𝑒 , 𝑞𝑒,0, (𝐹𝑒1,1 ∪ 𝐹𝑒2,1, 𝐹𝑒1,2 ∪ 𝐹𝑒2,2))
where

• 𝛿𝑒 comprises the transitions in 𝛿𝑒1 and 𝛿𝑒2 ,

• 𝜏𝑒 comprises the transitions in 𝜏𝑒1 and 𝜏𝑒2 , as well as the transition 𝜏𝑒 (𝑞𝑒,0) = ((𝑞𝑒1,0); (𝑞𝑒2,0)),
• 𝐸𝑒 inherits 𝐸𝑒1 , 𝐸𝑒2 , plus the assignments 𝐸𝑒 (𝑞𝑒,0, Y, 𝑞𝑒1,0) (𝑥𝑒) = 𝐸𝑒 (𝑞𝑒,0, Y, 𝑞𝑒2,0) (𝑥𝑒) = Y, as

well as 𝐸𝑒 (𝑞, 𝑎, 𝑞′) (𝑥𝑒) = 𝑥𝑒𝑎 for every transition (𝑞, 𝑎, 𝑞′) in T𝑒1 and T𝑒2 (where 𝑎 ∈ ΣY).

T[e1+e2]

qe,0

qe1,0

fe1,1 ∈ Fe1,1 fe1,2 ∈ Fe1,2

· · · · · ·

Fe,1 Fe,2

ε
ε

qe2,0

fe2,1 ∈ Fe2,1 fe2,2 ∈ Fe2,2

xe := ε xe := ε

Fig. 6. The PSST T[𝑒1+𝑒2]

Case 𝑒 = [𝑒1 · 𝑒2]. For 𝑖 ∈ {1, 2}, let T𝑒𝑖 = (𝑄𝑒𝑖 , Σ, 𝑋𝑒𝑖 , 𝛿𝑒𝑖 , 𝜏𝑒𝑖 , 𝐸𝑒𝑖 , 𝑞𝑒𝑖 ,0, (𝐹𝑒𝑖 ,1, 𝐹𝑒𝑖 ,2)). Moreover, let

us assume that 𝑋𝑒1 ∩ 𝑋𝑒2 = ∅. Then T𝑒 is obtained from T𝑒1 · T𝑒2 (the concatenation of T𝑒1 and
T𝑒2 , see Fig. 5) by adding a string variable 𝑥𝑒 , a fresh state 𝑞𝑒,0 as the initial state, the Y-transition

𝜏𝑒 (𝑞𝑒,0) = ((𝑞𝑒1,0); ()), and the assignments 𝐸𝑒 (𝑞𝑒,0, Y, 𝑞𝑒1,0) (𝑥𝑒) = Y, 𝐸𝑒 (𝑝, 𝑎, 𝑞) (𝑥𝑒) = 𝑥𝑒𝑎 for every

transition (𝑝, 𝑎, 𝑞) in T𝑒1 , T𝑒2 , and T ′𝑒2 (where 𝑎 ∈ Σ
Y
).

Case 𝑒 = [𝑒?
1
] (see Fig. 7). Let T𝑒1 = (𝑄𝑒1 , Σ, 𝑋𝑒1 , 𝛿𝑒1 , 𝜏𝑒1 , 𝐸𝑒1 , 𝑞𝑒1,0, (𝐹𝑒1,1, 𝐹𝑒1,2)). Then
T𝑒 = (𝑄𝑒1 ∪ {𝑞𝑒,0, 𝑓Y }, Σ, 𝑋𝑒1 ∪ {𝑥𝑒 }, 𝛿𝑒 , 𝜏𝑒 , 𝐸𝑒 , 𝑞𝑒,0, ({𝑓Y }, 𝐹𝑒1,2))

where

• 𝛿𝑒 is exactly 𝛿𝑒1 ,
• 𝜏𝑒 comprises the transitions in 𝜏𝑒1 , as well as the transition 𝜏𝑒 (𝑞𝑒,0) = ((𝑞𝑒1,0, 𝑓Y); ()),
• 𝐸𝑒 inherits 𝐸𝑒1 and includes the assignments 𝐸𝑒 (𝑞𝑒,0, Y, 𝑞𝑒1,0) (𝑥𝑒) = 𝐸𝑒 (𝑞𝑒,0, Y, 𝑓Y) (𝑥𝑒) = Y, as

well as 𝐸𝑒 (𝑞, 𝑎, 𝑞′) (𝑥𝑒) = 𝑥𝑒𝑎 for every transition (𝑞, 𝑎, 𝑞′) in T𝑒1 (where 𝑎 ∈ ΣY).
Note that 𝐹𝑒1,1 is not included into 𝐹𝑒,1 here.

Case 𝑒 = [𝑒??
1
] (see Fig. 7). In this case, T[𝑒??

1
] is almost the same as T[𝑒?

1
] . The only difference is

that the priorities of the two Y-transitions out of 𝑞𝑒,0 are swapped, namely, 𝜏𝑒 (𝑞𝑒,0) = ((𝑓Y , 𝑞𝑒1,0); ())
here.

Case 𝑒 = [𝑒∗
1
] (see Fig. 8). Let T𝑒1 = (𝑄𝑒1 , Σ, 𝑋𝑒1 , 𝛿𝑒1 , 𝜏𝑒1 , 𝐸𝑒1 , 𝑞𝑒1,0, (𝐹𝑒1,1, 𝐹𝑒1,2)). Then
T𝑒 = (𝑄𝑒1 ∪ {𝑞𝑒,0, 𝑓𝑒,1, 𝑓𝑒,2}, Σ, 𝑋𝑒 , 𝛿𝑒 , 𝐸𝑒 , 𝜏𝑒 , 𝑞𝑒,0, ({𝑓𝑒,1}, {𝑓𝑒,2}))

where

• 𝛿𝑒 is exactly 𝛿𝑒1 ,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:14 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

T[e?]

qe1,0

fe1,1 ∈ Fe1,1
fe1,2 ∈ Fe1,2

· · ·

qe,0

fε

Fe,2

ε
ε

T[e??]

Fe,1

qe1,0

fe1,1 ∈ Fe1,1
fe1,2 ∈ Fe1,2

· · ·

qe,0

fε

Fe,2

εε

Fe,1

Te1 Te1

xe := ε
xe := ε

xe := ε
xe := ε

Fig. 7. The PSST T[𝑒?
1
] and T[𝑒??

1
]

• 𝜏𝑒 comprises the transitions in 𝜏𝑒1 , as well as the transitions 𝜏𝑒 (𝑞𝑒,0) = ((𝑞𝑒1,0, 𝑓𝑒,1); ()),
𝜏𝑒 (𝑓𝑒1,1) = ((𝑞𝑒1,0); ()) for every 𝑓𝑒1,1 ∈ 𝐹𝑒1,1, and 𝜏𝑒 (𝑓𝑒1,2) = ((𝑞𝑒1,0, 𝑓𝑒,2); ()) for every 𝑓𝑒1,2 ∈
𝐹𝑒1,2,

• 𝐸𝑒 inherits 𝐸𝑒1 , and includes the assignments 𝐸𝑒 (𝑞𝑒,0, Y, 𝑓𝑒,1) (𝑥𝑒) = 𝐸𝑒 (𝑞𝑒,0, Y, 𝑞𝑒1,0) (𝑥𝑒) = Y,

𝐸𝑒 (𝑓𝑒1,1, Y, 𝑞𝑒1,0) (𝑥) = 𝐸𝑒 (𝑓𝑒1,2, Y, 𝑞𝑒1,0) (𝑥) = null for every 𝑓𝑒1,1 ∈ 𝐹𝑒1,1, 𝑓𝑒1,2 ∈ 𝐹𝑒1,2, and 𝑥 ∈ 𝑋𝑒1 ,

as well as 𝐸𝑒 (𝑞, 𝑎, 𝑞′) (𝑥𝑒) = 𝑥𝑒𝑎 for every transition (𝑞, 𝑎, 𝑞′) in T𝑒1 with 𝑎 ∈ ΣY . (Intuitively,
the values of all the string variables in 𝑋𝑒1 are reset when starting a new iteration of 𝑒1.)

T[e∗1]

qe1,0

fe1,1 ∈ Fe1,1
fe1,2 ∈ Fe1,2

· · ·

qe,0

fe,1

fe,2

ε
ε

T[e∗?1]

ε ε

ε

xe := ε xe := ε

∀x ∈ Xe1 ,
x := null

∀x ∈ Xe1 ,
x := null

xe := xea

qe1,0

fe1,1 ∈ Fe1,1
fe1,2 ∈ Fe1,2

· · ·

qe,0

fe,1

fe,2

ε
ε

ε ε

ε

xe := ε xe := ε

∀x ∈ Xe1 ,
x := null

∀x ∈ Xe1 ,
x := null

xe := xea

Fig. 8. The PSST T[𝑒∗
1
] and T[𝑒∗?

1
]

Case 𝑒 = [𝑒∗?
1
] (see Fig. 8). The construction is almost the same as 𝑒 = [𝑒∗

1
]. The only difference is

that the priorities of the Y-transitions out of 𝑞𝑒,0 resp. 𝑓𝑒1,2 ∈ 𝐹𝑒1,2 are swapped.

Case 𝑒 = [𝑒+
1
]. We first construct T𝑒1 and T −[𝑒∗

1
] , where T

−
[𝑒∗

1
] is obtained from T[𝑒∗

1
] by dropping

the string variable 𝑥 [𝑒∗
1
] . Therefore, T𝑒1 and T −[𝑒∗

1
] have the same set of string variables, 𝑋𝑒1 . Then

we construct T𝑒 by adding into T𝑒1 · T −[𝑒∗
1
] a fresh state 𝑞𝑒,0 as the initial state, and the transitions

𝜏𝑒 (𝑞𝑒,0) = ((𝑞𝑒1,0); ()), as well as the assignments 𝐸𝑒 (𝑞𝑒,0, Y, 𝑞𝑒1,0) (𝑥𝑒) = Y, 𝐸𝑒 (𝑞, 𝑎, 𝑞′) (𝑥𝑒) = 𝑥𝑒𝑎 for

every transition (𝑞, 𝑎, 𝑞′) in T𝑒1 · T −[𝑒∗
1
] .

Case 𝑒 = [𝑒 {𝑚1,𝑚2 }
1

] for 1 ≤ 𝑚1 < 𝑚2 (see Fig. 9). We first construct T {𝑚1 }
𝑒1 as the concatenation of

𝑚1 copies of T𝑒1 (Recall Definition 4.4 for the concatenation of PSSTs). Note that T {𝑚1 }
𝑒1 is different

from T𝑒𝑚1

1

, the PSST constructed from 𝑒
𝑚1

1
, the concatenation of the expression 𝑒1 for𝑚1 times. In

particular, the set of string variables in T {𝑚1 }
𝑒1 is 𝑋𝑒1 , which is different from that of T𝑒𝑚1

1

.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:15

Then we construct the PSST T {1,𝑚2−𝑚1 }
𝑒1 (see Fig. 9), which consists of𝑚2 −𝑚1 copies of T𝑒1 ,

denoted by (T (𝑖)𝑒1)𝑖∈[𝑚2−𝑚1] , as well as the Y-transition from 𝑞
(1)
𝑒1,0

to a fresh state 𝑓 ′
0
(of the lowest

priority), and the Y-transitions from each 𝑓
(𝑖)
𝑒1,2
∈ 𝐹

(𝑖)
𝑒1,2

with 1 ≤ 𝑖 < 𝑚2 − 𝑚1 to 𝑞
(𝑖+1)
𝑒1,0

(of the

highest priority) and a fresh state 𝑓 ′
1
(of the lowest priority). The final states of T {1,𝑚2−𝑚1 }

𝑒1 are

({𝑓 ′
0
}, {𝑓 ′

1
}). (Intuitively, each T (𝑖)𝑒1 accepts only nonempty strings, thus 𝑓

(𝑖)
𝑒1,1
∈ 𝐹

(𝑖)
𝑒1,1

contains no

outgoing transitions in T {1,𝑚2−𝑚1 }
𝑒1 .) Note that the set of string variables in T {1,𝑚2−𝑚1 }

𝑒1 is still 𝑋𝑒1 .

q
(1)
e1,0

f
(1)
e1,1
∈ F

(1)
e1,1

f
(1)
e1,2
∈ F

(1)
e1,2

· · ·

f ′1

ε ε

. . .

ε
ε

ε

ε

m2 −m1 copies of Te1

q
(2)
e1,0

f
(2)
e1,1
∈ F

(2)
e1,1

f
(2)
e1,2
∈ F

(2)
e1,2

· · ·
q
(m2−m1)
e1,0

f
(m2−m1)
e1,1

∈ F
(m2−m1)
e1,1

f
(m2−m1)
e1,2

∈ F
(m2−m1)
e1,2

· · ·
T (1)
e1 T (2)

e1 T (m2−m1)
e1

ε

f ′0

Fig. 9. The PSST T {1,𝑚2−𝑚1 }
𝑒1

Finally, we construct T𝑒 from T {𝑚1 }
𝑒1 · T {1,𝑚2−𝑚1 }

𝑒1 , the concatenation of T {𝑚1 }
𝑒1 and T {1,𝑚2−𝑚1 }

𝑒1 ,

by adding a fresh state 𝑞𝑒,0, a string variable 𝑥𝑒 , the Y-transition 𝜏𝑒 (𝑞𝑒,0) = ((𝑞𝑒1,0); ()) (assuming

that 𝑞𝑒1,0 is the initial state of T
{𝑚1 }

𝑒1), and also the assignments 𝐸𝑒 (𝑞𝑒0 , Y, 𝑞𝑒1,0) (𝑥𝑒) = Y, as well as

𝐸𝑒 (𝑞, 𝑎, 𝑞′) (𝑥𝑒) = 𝑥𝑒𝑎 for each transition (𝑞, 𝑎, 𝑞′) in T {𝑚1 }
𝑒1 · T {1,𝑚2−𝑚1 }

𝑒1 .

Example 4.5. Consider RegEx 𝑒 = [𝑎+]. We first construct T𝑎 and T −
𝑎∗ (recall that T −𝑎∗ is obtained

from T𝑎∗ by removing the string variable 𝑥 [𝑎∗] , see Fig. 10). Then we construct T𝑒 from T𝑎 · T −𝑎∗ by
adding the initial state 𝑞 [𝑎+],0, the string variable 𝑥 [𝑎+] , as well as the assignments for 𝑥 [𝑎+] (see
Fig. 10). Note here only one copy of T −

𝑎∗ is used in T𝑎 · T −𝑎∗ , since Y is not accepted by T𝑎 .

The following example illustrates the necessity of splitting final states into two disjoint subsets.

Example 4.6. Consider RegEx 𝑒 = [([𝑎∗?])∗]. If we execute “𝑎𝑎𝑎”.match(/(𝑎*?)*/) in node.js, then

the result is the array [“𝑎𝑎𝑎”, “𝑎”], which means (𝑎*?)* is matched to “𝑎𝑎𝑎” and (𝑎*?) is matched to

𝑎. If we did not split the set of final states into two disjoint subsets, we would have obtained a PSST

T ′𝑒 as illustrated in Fig. 11, to simulate the matching of 𝑒 against words. The accepting run of T ′𝑒
on𝑤 = 𝑎𝑎𝑎 is

𝑞 [([𝑎∗?])∗]
Y−→ 𝑞 ([𝑎∗?]),0

Y−→ 𝑓([𝑎∗?])
Y−→ 𝑞 ([𝑎∗?]),0

Y−→ 𝑞𝑎,0
Y−→ 𝑞𝑎,1

𝑎−→ 𝑓𝑎
Y−→ 𝑓([𝑎∗?])

Y−→
𝑞 ([𝑎∗?]),0

Y−→ 𝑞𝑎,0
Y−→ 𝑞𝑎,1

𝑎−→ 𝑓𝑎
Y−→ 𝑓([𝑎∗?])

Y−→ 𝑞 ([𝑎∗?]),0
Y−→ 𝑞𝑎,0

Y−→ 𝑞𝑎,1
𝑎−→ 𝑓𝑎

Y−→ 𝑓([𝑎∗?])
Y−→

𝑞 ([𝑎∗?]),0
Y−→ 𝑓([𝑎∗?])

Y−→ 𝑓[([𝑎∗?])∗],

where 𝑥𝑒 = 𝑎𝑎𝑎 and 𝑥 ([𝑎∗?]) = Y, namely, 𝑒 is matched to “𝑎𝑎𝑎” and ([𝑎∗?]) is matched to Y. Therefore,

the semantics of 𝑒 defined by T ′𝑒 is inconsistent with semantics of /(𝑎*?)*/ in node.js. Intuitively, the

semantics of /(𝑎*?)*/ in node.js requires that either it is matched to Y in whole and the subexpression

𝑎*? is not matched at all, or it is matched to a concatenation of non-empty strings each of which

matches 𝑎*?. This semantics can be captured by (adapted) PSSTs where the set of final states is split

into two disjoint subsets.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:16 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

Ta
qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa

T −
[a∗]

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa

ε

xa := null

f[a∗],2

q[a∗],0

ε

f[a∗],1

ε

ε

T[a+]

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa
ε

xa := null

f[a∗],2

q[a∗],0

ε

f[a∗],1

ε

ε

qa,0

qa,1

ε

fa,0

a

xa := ε

xa := xaa

ε

xa := null

q[a+],0
ε

x[a+] := ε

x[a+] := x[a+]a

x[a+] := x[a+]a

Fig. 10. The PSST T𝑒 for 𝑒 = [𝑎+]

T ′
a

qa,0

qa,1

ε

fa

a

xa := ε

xa := xaa

T ′
([a∗?])

qa,0

qa,1

ε

fa

a

xa := ε

xa := xaa

ε

xa := null

f([a∗?])

q([a∗?]),0

ε
ε

ε

T ′
[([a∗?])∗]

x([a∗?]) := ε

x([a∗?]) := x([a∗?])a

qa,0

qa,1

ε

fa

a

xa := ε

xa := xaa
ε

xa := null

f([a∗?])

q([a∗?]),0

ε
ε

ε

x([a∗?]) := ε

x([a∗?]) := x([a∗?])a

q[([a∗?])∗],0

ε

f[([a∗?])∗]

ε

ε

x[([a∗?])∗] := x[([a∗?])∗]a

x([a∗?]) := null

x[([a∗?])∗] := εε
x([a∗?]) := ε x[([a∗?])∗] := ε

x([a∗?]) := ε

Fig. 11. The PSST T ′𝑒 for 𝑒 = [([𝑎∗?])∗] with a single set of final states

Validation experiments for the formal semantics. We have defined RegEx-string matching by

constructing PSSTs. In the sequel, we conduct experiments to validate the formal semantics against

the actual JavaScript RegEx-string matching.

Let O denote the set of RegEx operators: alternation +, concatenation ·, optional ?, lazy optional

??, Kleene star ∗, lazy Kleene star ∗?, Kleene plus +, lazy Kleene plus +?, repetition {𝑚1,𝑚2}, and lazy
repetition {𝑚1,𝑚2}?. Moreover, let O2

(resp. O3
) denote the set of pairs (resp. triples) of operators

from O . Aiming at a good coverage of different syntactical ingredients of RegEx, we generate

regular expressions for every element of O ≤3 = O ∪ O2 ∪ O3
. As arguments of these operators,

we consider the following character sets: S = {a, . . ., z}, C = {A, . . ., Z}, D = {0, . . . , 9}, and O, the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:17

set of ASCII symbols not belonging to S ∪ C ∪ D. Intuitively, these character sets correspond to

JavaScript character classes [a-z], [A-Z], [0-9], and [^a-zA-Z0-9] (where ^ denotes complement).

Moreover, for the regular expression generated for each element of O ≤3, we set the subexpression
corresponding to its first component as the capturing group. For instance, for the pair (∗?, ∗), we
generate the RegEx [([S∗?])∗]. In the end, we generate 10 + 10 ∗ 10 + 10 ∗ 10 ∗ 10 = 1110 RegExes.

For each generated RegEx 𝑒 , we construct a PSST T𝑒 , whose output corresponds to the matching

of the first capturing group in 𝑒 . Moreover, we generate from T𝑒 an input string𝑤 as well as the

corresponding output𝑤 ′. We require that the length of𝑤 is no less than some threshold (e.g., 10), in

order to avoid the empty string and facilitate a meaningful comparison with the actual semantics of

JavaScript regular-expression matching. Let reg be the JavaScript regular expression corresponding

to 𝑒 . Then we execute the following JavaScript program P𝑒,𝑤 ,
var x = w; console.log(x.match(reg)[1]);

and confirm that its output is equal to 𝑤 ′, thus validating that the formal semantics of RegEx-

string matching defined by PSSTs is consistent with the actual semantics of JavaScript match

function. For instance, for the RegEx expression [([S∗?])∗], we generate from the T𝑒 the input

string𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, together with the output 𝑎. Then we generate the JavaScript program from

reg and𝑤 , execute it, and obtain the same output 𝑎.

In all the generated RegExs, we confirm the consistency of the formal semantics of RegEx-string

matching defined by PSSTs with the actual JavaScript semantics, namely, for each RegEx 𝑒 , the

output of the PSST T𝑒 on𝑤 is equal to the output of the JavaScript program P𝑒,𝑤 .

4.3 Modeling String Functions by PSSTs
The extract, replace and replaceAll functions can be accurately modeled using PSSTs. That is, we

can reduce satisfiability of our string logic to satisfiability of a logic containing only concatenation,

PSST transductions, and membership of regular languages.

Lemma 4.7. The satisfiability of STR reduces to the satisfiability of boolean combinations of formulas
of the form 𝑧 = 𝑥 · 𝑦, 𝑦 = T (𝑥), and 𝑥 ∈ A, where T is a PSST and A is an FA.

First, observe that regular constraints (aka membership queries) 𝑥 ∈ 𝑒 can be reduced to FA

membership queries 𝑥 ∈ A using standard techniques. Features such a greediness and capture

groups do not affect whether a word matches a RegEx, they only affect how a string matches it.

Thus, for regular constraints, these features can be ignored and a standard translation from regular

expressions to finite automata can be used.

The extract𝑖,𝑒 function can be defined by a PSST T𝑖,𝑒 obtained from the PSST T𝑒 (see Section 4.2)

by removing all string variables, except 𝑥𝑒′ , where 𝑒
′
is the subexpression of 𝑒 corresponding to the

𝑖th capturing group, and setting the output expression of the final states as 𝑥𝑒′ .

We give a sketch of the encoding of replaceAll here. Full formal details are given in the long

version of the paper [Chen et al. 2021]. The encoding of replace is almost identical to that of

replaceAll.

A call replaceAll
pat,rep (𝑥) replaces every match of pat by a value determined by the replacement

string rep. Recall, repmay contain references $𝑖 , $←, or $→. The first step in our reduction to PSSTs

is to eliminate the special references $0, $
←
, and $

→
. In essence, this simplification uses PSST

transductions to insert the contextual information needed by $
←

and $
→

alongside each substring

that will be replaced. Then, the call to replaceAll can be rewritten to include this information in

the match, and use standard references ($𝑖) in the replacement string. The reference $0 can be

eliminated by wrapping each pattern with an explicit capturing group.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:18 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

We show informally how to construct the PSST for replaceAll
pat,rep where all the references in

rep are of the form $𝑖 with 𝑖 > 0. The full reduction is given in the long version of the paper [Chen

et al. 2021].

Let rep = 𝑤1$𝑖1𝑤2 · · ·𝑤𝑘$𝑖𝑘𝑤𝑘+1. For each 𝑗 ∈ [𝑘], we introduce a fresh string variable 𝑦 𝑗 . Let

us use rep[(𝑦1, · · · , 𝑦𝑘)/($𝑖1, · · · , $𝑖𝑘)] to denote the sequence𝑤1𝑦1𝑤2 · · ·𝑤𝑘𝑦𝑘𝑤𝑘+1. For instance,
if rep = 𝑎$1𝑎$2𝑎$1𝑎, then rep[(𝑦1, 𝑦2, 𝑦3)/(1, 2, 1)] = 𝑎𝑦1𝑎𝑦2𝑎𝑦3𝑎. Moreover, let 𝑒 ′𝑖1 , . . . , 𝑒

′
𝑖𝑘
be the

subexpressions of pat corresponding to the 𝑖1th, . . ., 𝑖𝑘 th capturing groups. Note here we use

mutually distinct fresh variables 𝑦1, · · · , 𝑦𝑘 for $𝑖1, · · · , $𝑖𝑘 , even if 𝑖 𝑗 and 𝑖 𝑗 ′ may be equal for 𝑗 ≠ 𝑗 ′.
We make this choice for the purpose of satisfying the copyless property [Alur and Cerný 2010]

of PSSTs, which leads to improved complexity results in some cases (discussed in the sequel). If

we tried to use the same variable for the different occurrences of the same reference – then the

resulting transition in the encoding below would not be copyless. Moreover, the construction below

guarantees that the values of different variables for the multiple occurrences of the same reference

are actually the same.

Suppose Tpat = (𝑄pat, Σ, 𝑋pat, 𝛿pat, 𝜏pat, 𝐸pat, 𝑞pat,0, (𝐹pat,1, 𝐹pat,2)). Then TreplaceAll
pat,rep

is obtained

from Tpat by adding the fresh string variables 𝑦1, · · · , 𝑦𝑘 and a fresh state 𝑞′
0
such that (see Fig. 12)

• TreplaceAll
pat,rep

goes from 𝑞′
0
to 𝑞pat,0 via an Y-transition of higher priority than the non-Y-

transitions, in order to search the first match of pat starting from the current position,

• when TreplaceAll
pat,rep

stays at 𝑞′
0
, it keeps appending the current letter to the end of 𝑥0, which

stores the output of TreplaceAll
pat,rep

,

• starting from 𝑞pat,0, TreplaceAll
pat,rep

simulates Tpat and stores the matches of capturing groups

of pat into the string variables (in particular, the matches of the 𝑖1th, . . ., 𝑖𝑘 th capturing

groups into the string variables 𝑥𝑒′
𝑖
1

, · · · , 𝑥𝑒′
𝑖𝑘
respectively), moreover, for each 𝑗 ∈ [𝑘], 𝑦 𝑗 is

updated in the same way as 𝑥𝑒′
𝑖 𝑗
(in particular, for each transition (𝑞, 𝑎, 𝑞′) in Tpat such that

𝐸pat (𝑞, 𝑎, 𝑞′) (𝑥𝑒′
𝑖 𝑗
) = 𝑥𝑒′

𝑖 𝑗
𝑎, we have 𝐸pat (𝑞, 𝑎, 𝑞′) (𝑦 𝑗) = 𝑦 𝑗𝑎),

• when the first match of pat is found,TreplaceAll
pat,rep

goes from 𝑓pat,1 ∈ 𝐹pat,1 or 𝑓pat,2 ∈ 𝐹pat,2 to𝑞′0
via an Y-transition, it then appends rep[(𝑦1, · · · , 𝑦𝑘)/($𝑖1, · · · , $𝑖𝑘)] (which is the replacement

string) to the end of 𝑥0, resets the values of all the string variables, except 𝑥0, to null, and

keeps searching for the next match of pat.

q′0
ε

Tpat

F (q′0) = x0

a
x0 := x0a

qpat,0 · · ·

fpat,1 ∈ Fpat,1

fpat,2 ∈ Fpat,2

x0 := x0rep[(y1, · · · , yk)/($i1, · · · , $ik)]

ε

ε

∀x′ ∈ Xpat ∪ {y1, · · · , yk}, x′ := null

x0 := x0rep[(y1, · · · , yk)/($i1, · · · , $ik)]
∀x′ ∈ Xpat ∪ {y1, · · · , yk}, x′ := null

yj := yja

xe′
ij

:= xe′
ij

a

Fig. 12. The PSST T
replaceAll

pat,rep

It may be observed that the PSST will be copyless. That is, the value of a variable is not copied

to two or more variables during a transition. In all but the last case, variables are only copied to

themselves, via assignments of the form 𝑥𝑒′ := 𝑥𝑒′𝑎, 𝑥𝑒′ := 𝑥𝑒′ , 𝑥𝑒′ := Y, or 𝑥𝑒′ := null. In the final

case, when a replacement is made, the assignments are 𝑥0 := 𝑥0𝑤1𝑦1𝑤2 · · ·𝑤𝑘𝑦𝑘𝑤𝑘+1 and 𝑥
′
:= null

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:19

Table 1. Rules of the one-sided sequent calculus. A term 𝑒𝑐 denotes the complement of a regular expression 𝑒 ,

i.e., L(𝑒𝑐) = Σ∗ \ L(𝑒).

Γ, 𝜑,𝜓
∧

Γ, 𝜑 ∧𝜓
Γ,¬𝜑,¬𝜓

¬∨
Γ,¬(𝜑 ∨𝜓)

Γ, 𝜑 Γ,𝜓
∨

Γ, 𝜑 ∨𝜓
Γ,¬𝜑 Γ,¬𝜓

¬∧
Γ,¬(𝜑 ∧𝜓)

Γ, 𝜑¬¬
Γ,¬¬𝜑

Γ, 𝑥 ∈ 𝑒𝑐
∉

Γ, 𝑥 ∉ 𝑒

Γ, 𝑥 ≠ 𝑦,𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛)
≠ where 𝑦 is fresh

Γ, 𝑥 ≠ 𝑓 (𝑥1, . . . , 𝑥𝑛)
Γ, 𝑥 ∈ 𝑒 Γ, 𝑥 ∈ 𝑒𝑐

Cut

Γ

Γ, 𝑥 ∈ 𝑒, 𝑥 = 𝑦,𝑦 ∈ 𝑒
=-Prop

Γ, 𝑥 ∈ 𝑒, 𝑥 = 𝑦

Γ, 𝑥 ∈ 𝑒1, 𝑦 ∈ 𝑒2
≠-Subsume if L(𝑒1) ∩ L(𝑒2) = ∅Γ, 𝑥 ∈ 𝑒1, 𝑥 ≠ 𝑦,𝑦 ∈ 𝑒2

Γ, 𝑥 ∈ 𝑒,𝑦 ∈ 𝑒
=-Prop-Elim if |L(𝑒) | = 1

Γ, 𝑥 ∈ 𝑒, 𝑥 = 𝑦

Γ, 𝑥 ∈ 𝑒,𝑦 ∈ 𝑒𝑐
≠-Prop-Elim if |L(𝑒) | = 1

Γ, 𝑥 ∈ 𝑒, 𝑥 ≠ 𝑦

Close

Γ, 𝑥 ∈ 𝑒1, . . . , 𝑥 ∈ 𝑒𝑛 if L(𝑒1) ∩ · · · ∩ L(𝑒𝑛) = ∅

Γ, 𝑥 ∈ 𝑒1, . . . , 𝑥 ∈ 𝑒𝑛
Subsume

Γ, 𝑥 ∈ 𝑒, 𝑥 ∈ 𝑒1, . . . , 𝑥 ∈ 𝑒𝑛
if L(𝑒1) ∩ · · · ∩ L(𝑒𝑛) ⊆ L(𝑒)

Γ, 𝑥 ∈ 𝑒
Intersect

Γ, 𝑥 ∈ 𝑒1, . . . , 𝑥 ∈ 𝑒𝑛
if

𝑛 > 1 and

L(𝑒1) ∩ · · · ∩ L(𝑒𝑛) = L(𝑒)

Γ, 𝑥 ∈ 𝑒, 𝑥 = 𝑓 (𝑥1, . . . , 𝑥𝑛), 𝑥1 ∈ 𝑒1, . . . , 𝑥𝑛 ∈ 𝑒𝑛
Fwd-Prop

Γ, 𝑥 = 𝑓 (𝑥1, . . . , 𝑥𝑛), 𝑥1 ∈ 𝑒1, . . . , 𝑥𝑛 ∈ 𝑒𝑛
if L(𝑒) = 𝑓 (L(𝑒1), . . . ,L(𝑒𝑛))

Γ, 𝑥 ∈ 𝑒, 𝑥1 ∈ 𝑒1, . . . , 𝑥𝑛 ∈ 𝑒𝑛
Fwd-Prop-Elim

Γ, 𝑥 = 𝑓 (𝑥1, . . . , 𝑥𝑛), 𝑥1 ∈ 𝑒1, . . . , 𝑥𝑛 ∈ 𝑒𝑛
if

L(𝑒) = 𝑓 (L(𝑒1), . . . ,L(𝑒𝑛))
and |L(𝑒) | = 1{

Γ, 𝑥 ∈ 𝑒, 𝑥 = 𝑓 (𝑥1, . . . , 𝑥𝑛), 𝑥1 ∈ 𝑒𝑖
1
, . . . , 𝑥𝑛 ∈ 𝑒𝑖𝑛

}𝑘
𝑖=1

Bwd-Prop

Γ, 𝑥 ∈ 𝑒, 𝑥 = 𝑓 (𝑥1, . . . , 𝑥𝑛)
if

𝑓 −1 (L(𝑒)) =⋃𝑘
𝑖=1

(
L
(
𝑒𝑖
1

)
× · · · × L

(
𝑒𝑖𝑛
))

for all the variables 𝑥 ′ ∈ 𝑋pat ∪ {𝑦1, · · · , 𝑦𝑘 }. Again, only one copy of the value of each variable is

retained.

Copyful PSSTs are only needed when removing $
←

and $
→

from the replacement strings. To see

this, consider the prefix preceding the first replacement in a string. If $
←

appears in the replacement

string, this prefix will be copied an unbounded number of times (once for each matched and replaced

substring). Conversely, references of the form $𝑖 are “local” to a single match. By having a separate

variable for each occurence of $𝑖 in the replacement string, we can avoid having to make copies of

the values of the variables.

5 A PROPAGATION-BASED CALCULUS FOR STRING CONSTRAINTS
Wenow introduce our calculus for solving string constraints in STR (see Table 1), state its correctness,

and observe that it gives rise to a decision procedure for the fragment STRSL of straightline formulas.

The calculus is based on the principle of propagating regular language constraints by computing

images and pre-images of string functions. We deliberately keep the calculus minimalist and

focus on the main proof rules; for an implementation, the calculus has to be complemented with

a suitable strategy for applying the rules, as well as standard SMT optimizations such as non-

chronological back-tracking and conflict-driven learning. An implementation also has to choose a

suitable effective representation of RegEx membership constraints, for instance using finite-state

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:20 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

Close

𝑥 ∈ 𝑎+Σ∗, 𝑥 = 𝑦 · 𝑧,𝑦 ∈ 𝑎+, 𝑧 ∈ Σ∗, 𝑥 ∈ 𝑏+ (𝑎𝑐)∗, 𝑥 = replaceAll𝑎,𝑏 (𝑥)
Fwd-Prop

𝑥 ∈ 𝑎+Σ∗, 𝑥 = 𝑦 · 𝑧,𝑦 ∈ 𝑎+, 𝑧 ∈ Σ∗, 𝑥 = replaceAll𝑎,𝑏 (𝑥)
Fwd-Prop

𝑥 = 𝑦 · 𝑧,𝑦 ∈ 𝑎+, 𝑧 ∈ Σ∗, 𝑥 = replaceAll𝑎,𝑏 (𝑥)∧∗
𝑥 = 𝑦 · 𝑧 ∧ 𝑦 ∈ 𝑎+ ∧ 𝑧 ∈ Σ∗ ∧ 𝑥 = replaceAll𝑎,𝑏 (𝑥)

Fig. 13. Proof of unsatisfiability for (3) in Example 5.1

𝑥 ∈ 𝑎, 𝑧 ∈ 𝑎,𝑦 ∈ 𝜖, 𝑟 ∈ 𝑏
Subsume

∗
𝑥 ∈ 𝑎, 𝑧 ∈ 𝑎,𝑦 ∈ 𝜖, 𝑟 ∈ 𝑏, . . .

FPE

𝑧 ∈ 𝑎,𝑦 ∈ 𝜖, 𝑥 ∈ 𝑎, 𝑟 = replaceAll𝑎,𝑏 (𝑥), . . .
FPE

𝑧 ∈ 𝑎,𝑦 ∈ 𝜖, 𝑥 = 𝑦 · 𝑧, . . .

...

𝑧 ∈ 𝑎𝑐 , . . .
Cut

𝑦 ∈ 𝜖, 𝑧 ∈ 𝑎+, 𝑥 = 𝑦 · 𝑧, 𝑥 ∈ 𝑎+, . . .

...

𝑦 ∈ 𝑎+, 𝑧 ∈ 𝑎∗, . . .
Bwd-Prop

𝑥 = 𝑦 · 𝑧, 𝑥 ∈ 𝑎+, 𝑟 = replaceAll𝑎,𝑏 (𝑥)∧∗
𝑥 = 𝑦 · 𝑧 ∧ 𝑥 ∈ 𝑎+ ∧ 𝑟 = replaceAll𝑎,𝑏 (𝑥)

Fig. 14. Proof of satisfiability for (4) in Example 5.2. FPE stands for Fwd-Prop-Elim

automata.
3
In particular, we use the fact that—for membership—RegEx can be complemented. We

denote the complement of 𝑒 in a membership constraint by 𝑒𝑐 . Our calculus is parameterized in the

set of considered string functions; in this paper, we work with the set {·, extract, replace, replaceAll}
consisting of concatenation, extraction, and replacement, but this set can be extended by other

functions for which images and/or pre-images can be computed (see Section 5.2).

5.1 Sequents and Examples
The calculus operates on one-sided sequents, and can be interpreted as a sequent calculus in the

sense of Gentzen [Gentzen 1935] in which all formulas are located in the antecedent (to the left

of the turnstile ⊢). A one-sided sequent is a finite set Γ ⊆ STR of string constraints. For sake of

presentation, we write sequents as lists of formulas separated by comma, and Γ, 𝜑1, . . . , 𝜑𝑛 for the

union Γ∪{𝜑1, . . . , 𝜑𝑛}. We say that a sequent Γ is unsatisfiable if
∧

Γ is unsatisfiable. Our calculus is

refutational and has the purpose of either showing that some initial sequent Γ is unsatisfiable, or that
it is satisfiable by constructing a solution for it. A solution is a sequent 𝑥1 ∈ 𝑤1, 𝑥2 ∈ 𝑤2, . . . , 𝑥𝑛 ∈ 𝑤𝑛

that defines the values of string variables using RegExes that only consist of single words.

Example 5.1. We first illustrate the calculus by showing unsatisfiability of the constraint
4
:

𝑥 = 𝑦 · 𝑧 ∧ 𝑦 ∈ 𝑎+ ∧ 𝑧 ∈ Σ∗ ∧ 𝑥 = replaceAll𝑎,𝑏 (𝑥) (3)

To this end, we construct a proof tree that has (3) as its root, by applying proof rules until all proof

goals have been closed (Fig. 13). The proof is growing upward, and is built by first eliminating

the conjunctions ∧, resulting in a list of formulas. Next, we apply the rule Fwd-Prop for forward-
propagation of a regular expression constraint. Given that 𝑦 ∈ 𝑎+, 𝑧 ∈ Σ∗, from the equation 𝑥 = 𝑦 ·𝑧
we can conclude that 𝑥 ∈ 𝑎+Σ∗. From 𝑥 ∈ 𝑎+Σ∗ and 𝑥 = replaceAll𝑎,𝑏 (𝑥), we can next conclude that

3
Recall features such as greediness do not need to be modeled for simple membership queries as they do not change the

accepted language.

4
Note here for convenience, in the regular constraints 𝑥 ∈ 𝑒 , we write 𝑒 as in classical regular expressions and do not

strictly follow the syntax of STR, since in this case, only the language defined by 𝑒 matters.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:21

𝑥 ∈ 𝑏+ (𝑎𝑐)∗, i.e., 𝑥 starts with 𝑏 and cannot contain the letter 𝑎. Finally, the proof can be closed

because the languages 𝑎+Σ∗ and 𝑏+ (𝑎𝑐)∗ are disjoint.

Example 5.2. We next consider the case of a satisfiable formula in STRSL:

𝑥 = 𝑦 · 𝑧 ∧ 𝑥 ∈ 𝑎+ ∧ 𝑟 = replaceAll𝑎,𝑏 (𝑥) (4)

Fig. 14 shows how a solution can be constructed for this formula. The strategy is to first derive

constraints for the variables 𝑦, 𝑧 whose value is not determined by any equation. Given that 𝑥 ∈ 𝑎+,
from the equation 𝑥 = 𝑦 · 𝑧 we can derive that either 𝑦 ∈ 𝜖, 𝑧 ∈ 𝑎+ or 𝑦 ∈ 𝑎+, 𝑧 ∈ 𝑎∗, using rule Bwd-

Prop. We focus on the left branch 𝑦 ∈ 𝜖, 𝑧 ∈ 𝑎+. Since propagation is not able to derive further

information for 𝑦, 𝑧, and no contradiction was detected, at this point we can conclude satisfiability

of (4). To construct a solution, we pick an arbitrary value for 𝑧 satisfying the constraint 𝑧 ∈ 𝑎+,
and use Cut to add the formula 𝑧 ∈ 𝑎 to the branch. Again following the left branch, we can

then use Fwd-Prop-Elim to evaluate 𝑥 = 𝑦 · 𝑧 and add the formula 𝑥 ∈ 𝑎, and after that 𝑟 ∈ 𝑏
due to 𝑟 = replaceAll𝑎,𝑏 (𝑥). Finally, Subsume is used to remove redundant RegEx constraints from

the proof goal. The resulting sequent (top-most sequent on the left-most branch) is a witness for

satisfiability of (4).

5.2 Proofs and Proof Rules
More formally, proof rules are relations between a finite list of sequents (the premises), and a single

sequent (the conclusion). Proofs are finite trees growing upward, in which each node is labeled with

a sequent, and each non-leaf node is related to the node(s) directly above it through an instance of

a proof rule. A proof branch is a path from the proof root to a leaf. A branch is closed if a closure

rule (a rule without premises) has been applied to its leaf, and open otherwise. A proof is closed if

all of its branches are closed.

The proof rules of the calculus are shown in Table 1. The first row shows standard proof rules to

handle Boolean operators; see, e.g., [Harrison 2009]. Rule ∉ turns negated membership predicates

into positive ones through complementation, and rule ≠ negative function applications into positive

ones. As a result, only disequalities between string variables remain. The rule Cut can be used to

introduce case splits, and is mainly needed to extract solutions once propagation has converged (as

shown in Example 5.2).

The next four rules handle equations between string variables. Rule =-Prop propagates RegEx

constraints from the left-hand side to the right-hand side of an equation; =-Prop-Elim in addition

removes the equation in the case where the propagated constraint has a unique solution. The rule ̸=-
Prop-Elim similarly turns a singleton RegEx for the left-hand side of a disequality into a RegEx

constraint on the right-hand side. As a convention, we allow application of =-Prop, =-Prop-Elim,

and ̸=-Prop-Elim in both directions, left-to-right and right-to-left of equalities/disequalities. Finally,

≠-Subsume eliminates disequalities that are implied by the RegEx constraints of a proof goal.

The rule Close closes proof branches that contain contradictory RegEx constraints, and is the

only closure rule needed in our calculus. Subsume removes RegEx constraints that are implied by

other constraints in a sequent, and Intersect replaces multiple RegExes with a single constraint.

The last three rules handle applications of functions 𝑓 ∈ {·, extract, replace, replaceAll} through
propagation. Rule Fwd-Prop defines forward propagation, and adds a RegEx constraint 𝑥 ∈ 𝑒 for
the value of a function by propagating constraints about the arguments. The RegEx 𝑒 encodes the

image of the argument RegExes under 𝑓 :

Definition 5.3 (Image). For an 𝑛-ary string function 𝑓 : Σ∗ × · · · × Σ∗ → Σ∗ and languages

𝐿1, . . . , 𝐿𝑛 ⊆ Σ∗, we define the image of 𝐿1, . . . , 𝐿𝑛 under 𝑓 as 𝑓 (𝐿1, . . . , 𝐿𝑛) = {𝑓 (𝑤1, . . . ,𝑤𝑛) ∈ Σ∗ |
𝑤1 ∈ 𝐿1, . . . ,𝑤𝑛 ∈ 𝐿𝑛}.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:22 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

Forward propagation is often useful to prune proof branches. It is easy to see, however, that the

images of regular languages under the functions considered in this paper are not always regular;

for instance, replace
pat,$0$0 can map regular languages to context-sensitive languages. In such cases,

the side condition of Fwd-Prop cannot be satisfied by any RegEx 𝑒 , and the rule is not applicable.

Rule Fwd-Prop-Elim handles the special case of forward propagation producing a singleton

language. In this case, the function application is not needed for further reasoning and can be

eliminated. This rule is mainly used during the extraction of solutions (as shown in Example 5.2).

Rule Bwd-Prop defines the dual case of backward propagation, and derives RegEx constraints for

function arguments from a constraint about the function value. The argument constraints encode

the pre-image of the propagated language:

Definition 5.4 (Pre-image). For an 𝑛-ary string function 𝑓 : Σ∗ × · · · × Σ∗ → Σ∗ and a language

𝐿 ⊆ Σ∗, we define the pre-image of 𝐿 under 𝑓 as the relation 𝑓 −1 (𝐿) = {(𝑤1, . . . ,𝑤𝑛) ∈ (Σ∗)𝑛 |
𝑓 (𝑤1, . . . ,𝑤𝑛) ∈ 𝐿}.

A key result of the paper is that pre-images of regular languages under the functions considered

in the paper can always be represented in the form

⋃𝑘
𝑖=1 (L

(
𝑒𝑖
1

)
× · · · × L

(
𝑒𝑖𝑛
)
), i.e., they are

recognizable languages [Carton et al. 2006]. This implies that Bwd-Prop is applicable whenever a

RegEx constraint for the result of a function application exists, and prepares the ground for the

decidability result in the next section. For concatenation, recognizability was shown in [Abdulla

et al. 2014; Chen et al. 2019]. This paper contributes the corresponding result for all functions

defined by PSSTs:

Lemma 5.5 (Pre-image of regular languages under PSSTs). Given a PSST T = (𝑄𝑇 , Σ, 𝑋 , 𝛿𝑇 ,
𝜏𝑇 , 𝐸𝑇 , 𝑞0,𝑇 , 𝐹𝑇) and an FA A = (𝑄𝐴, Σ, 𝛿𝐴, 𝑞0,𝐴, 𝐹𝐴), we can compute an FA B = (𝑄𝐵, Σ, 𝛿𝐵, 𝑞0,𝐵, 𝐹𝐵)
in exponential time such that L (B) = R−1T (L (A)).

The proof of Lemma 5.5 is given in the long version of the paper [Chen et al. 2021]. Moreover,

we have already shown in Lemma 4.7 that extract, replace, and replaceAll can be reduced to PSSTs.

We can finally observe that the calculus is sound:

Lemma 5.6 (Soundness). The sequent calculus defined by Table 1 is sound: (i) the root of a closed
proof is an unsatisfiable sequent; and (ii) if a proof has an open branch that ends with a solution 𝑥1 ∈
𝑤1, 𝑥2 ∈ 𝑤2, . . . , 𝑥𝑛 ∈ 𝑤𝑛 , then the assignment {𝑥1 ↦→ 𝑤1, 𝑥2 ↦→ 𝑤2, . . . , 𝑥𝑛 ↦→ 𝑤𝑛} is a satisfying
assignment of the root sequent.

Proof. By showing that each of the proof rules in Table 1 is an equivalence transformation: the

conclusion of a proof rule is equivalent to the disjunction of the premises. □

5.3 Decision Procedure for STRSL

One of the main results of this paper is the decidability of the STRSL fragment of straightline

formulas including concatenation, extract, replace, and replaceAll:

Theorem 5.7. Satisfiability of STRSL formulas is decidable.

Proof. We define a terminating strategy to apply the rules in Table 1 to formulas in the STRSL

fragment. The resulting proofs will either be closed, proving unsatisfiability, or have at least one

satisfiable goal containing a solution:

• Phase 1: apply the Boolean rules (first row of Table 1) to eliminate Boolean operators.

• Phase 2: apply rule Bwd-Prop to all regex constraints and all function applications on all

proof branches. Whenever contradictory regex constraints occur in a proof goal, use Close to

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:23

close the branch. Also apply =-Prop to systematically propagate constraints across equations.

This phase terminates because STRSL formulas are acyclic.

If all branches are closed as a result of Phase 2, the considered formula is unsatisfiable;

otherwise, we can conclude satisfiability, and Phase 3 will extract a solution.

• Phase 3: select an open branch of the proof. On this branch, determine the set 𝐼 of input

variables, which are the string variables that do not occur as left-hand side of equations or

function applications. For every 𝑥 ∈ 𝐼 , use rule Cut to introduce an assignment 𝑥 ∈ 𝑤 that

is consistent with the regex constraints on 𝑥 . Then systematically apply Subsume, =-Prop,

Fwd-Prop-Elim to evaluate remaining formulas and produce a solution.

□

Complexity analysis. Because the pre-image computation for each PSST incurs an exponential

blow-up in the size of the input automaton A, the aforementioned decision procedure has a non-

elementary complexity in the worst-case. In fact, this is optimal and a matching lower-bound is

given in the long version of the paper [Chen et al. 2021].

When $
←

and $
→

are not used, the PSSTs in the reduction are copyless, and the exponential

blow-up in the size of the input FA A can be avoided. That is, the pre-image automaton B such

that L (B) = R−1T (L (A)) is exponential only in the size of T and not the size of A. Hence,

the exponentials do not stack on top of each other during the backwards analysis and the non-

elementary blow-up is not necessary. Since the PSST T may be exponential in the size of the

underlying regular expression, we may compute automata that are up to double exponential in

size. The states of these automata can be stored in exponential space and the transition relation

can be computed on the fly, giving an exponential space algorithm. More details are given in the

long version of this paper [Chen et al. 2021].

Moreover, as the number of PSSTs is usually small in the path constraints of string-manipulating

programs, the performance of the decision procedure is actually good on the benchmarks we tested,

with the average running time per query a few seconds (see Section 6).

6 IMPLEMENTATION AND EXPERIMENTS
We extend the open-source solver OSTRICH [Chen et al. 2019] to support for STR based on the

calculus. In particular, it can decide the satisfiability of STRSL formulas. The extension can handle

most of the other operations of the SMT-LIB theory of Unicode strings.
5

6.1 Implementation
Our solver extends classical regular expressions in SMT-LIBwith indexed re.capture and re.reference

operators, which denote capturing groups and references to them. We also add re.*?, re.+?, re.opt?

and re.loop? as the lazy counterparts of Kleene star, plus operator, optional operator and loop

operator.

Three new string operators are introduced to make use of these extended regular expressions:

str.replace_cg, str.replace_cg_all, and str.extract. The operators str.replace_cg and str.replace_cg_all

are the counterparts of the standard str.replace_re and replace_re_all operators, and allow capturing

groups in the match pattern and references in the replacement pattern. E.g., the following constraint

swaps the first name and the last name, as in Example 1.1:

(= w (str.replace_cg_all v
(re.++ ((_ re.capture 1)

(re.+ (re.union (re.range "A" "Z") (re.range "a" "z"))))
(str.to.re " ")

5
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

45:24 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

((_ re.capture 2)
(re.+ (re.union (re.range "A" "Z") (re.range "a" "z")))))

(re.++ (_ re.reference 2) (_ re.reference 1))))

The replacement string is written as a regular expression only containing the operators re.++,

str.to_re, and re.reference. The use of string variables in the replacement parameter is not allowed,

since the resulting transformation could not be mapped to a PSST.

The indexed operator str.extract implements extract𝑖,𝑒 in STR. For instance,

((_ str.extract 1)
(re.++ (re.*? re.allchar)((_ re.capture 1) (re.+ (re.range "a" "z")) re.all))
x)

extracts the left-most, longest sub-string of lower-case characters from a string 𝑥 .

Our implementation is able to handle anchors as well, although for reasons of presentation we did

not introduce them as part of our formalism. Anchors match certain positions of a string without

consuming any input characters. In most programming languages, it is common to use ^ and $ in

regular expressions to signify the start and end of a string, respectively. We add re.begin-anchor

and re.end-anchor for them. Our implementation correctly models the semantics of anchors and is

able to solve constraints containing these operators.

OSTRICH implements the procedure in Theorem 5.7, and focuses on SL formulas. The three

string operators mentioned above will be converted into an equivalent PSST (see the full version of

the paper [Chen et al. 2021]). OSTRICH then iteratively applies the propagation rules from Section 5

to derive further RegEx constraints, and eventually either detect a contradiction, or converge and

find a fixed-point. For straight-line formulas, the existence of a fixed-point implies satisfiability,

and a solution can then be constructed as described in Section 5. In addition, similar to other SMT

solvers, OSTRICH applies simplification rules (e.g., Fwd-Prop-Elim, =-Prop, Subsume, Close, etc

in Table 1) to formulas before invoking the SL procedure. This enables OSTRICH to solve some

formulas outside of the SL fragment, but is not a complete procedure for non-SL formulas.

6.2 Experimental Evaluation
Our experiments have the purpose of answering the following main questions:

R1: How does OSTRICH compare to other solvers that can handle real-world regular expressions,

including greedy/lazy quantifiers and capturing groups?

R2: How does OSTRICH perform in the context of symbolic execution, the primary application of

string constraint solving?

For R1: There are no standard string benchmarks involving RegExes, and we are not aware of

other constraint solvers supporting capturing groups, neither among the SMT nor the CP solvers.

The closest related work is the algorithm implemented in ExpoSE, which applies Z3 [de Moura and

Bjørner 2008] for solving string constraints, but augments it with a refinement loop to approximate

the RegEx semantics.
6
For R1, we compared OSTRICH with ExpoSE+Z3 on 98,117 RegExes taken

from [Davis et al. 2019].

For each regular expression, we created four harnesses: two in SMT-LIB, as inputs for OSTRICH,

and two in JavaScript, as inputs for ExpoSE+Z3. The two harnesses shown in Fig. 15 use one of the

regular expressions from [Davis et al. 2019] (<re1>) in combination with the replace-all function to

simulate typical string processing; <re2> is the fixed pattern [a-z]+, and <repl> the replacement

string "$1". The three paths of the JavaScript function fun correspond to the three queries in the

6
We considered replacing Z3 with OSTRICH in ExpoSE for the experiments. However, ExpoSE integrates Z3 using its C

API, and changing to OSTRICH, with native support for capturing groups, would have required the rewrite of substantial

parts of ExpoSE.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:25

(declare-fun x () String)
(define-fun y () String (str.replace_cg_all x <re1> <repl>))
(push 1)
(assert (str.in.re x (re.++ re.all <re1> re.all)))
(assert (str.in.re y (re.++ re.all <re2> re.all)))
(check-sat) (get-model)
(pop 1) (push 1)
(assert (str.in.re x (re.++ re.all <re1> re.all)))
(assert (not (str.in.re y

(re.++ re.all <re2> re.all))))
(check-sat) (get-model)
(pop 1) (push 1)
(assert (not (str.in.re x (re.++ re.all <re1> re.all))))
(check-sat) (get-model)
(pop 1)

function fun(x) {
if(/<re1>/.test(x)) {

var y = x.replace(/<re1>/g, <repl>);
if(/<re2>/.test(y))
console.log("1");

else
console.log("2");

}
else

console.log("3");
}

var S$ = require("S$");
var x = S$.symbol("x", "");
fun(x);

Fig. 15. Harnesses with replace-all: SMT-LIB for OSTRICH (left), and JavaScript for ExpoSE (right).

SMT-LIB script, so that a direct comparison can be made between the results of the SMT-LIB queries

and the set of paths covered by ExpoSE+Z3. The other two harnesses are similar to the ones in

Fig. 15, but use the match function instead of replace-all, and contain four queries and four paths,

respectively.

The results of this experiment are shown in Table ??. OSTRICH is able to answer all four queries in

95,175 of the match benchmarks (97%), and all three queries in 89,794 of the replace-all benchmarks

(91.5%). The errors in 1,134 cases (resp., 1,135 cases) are mainly due to back-references in <re1>,
which are not handled by OSTRICH. ExpoSE+Z3 can cover 228,888 paths of the match problems in

total (91.2% of the number of sat results of OSTRICH), although the runtime of ExpoSE+Z3 is on

average 18x higher than that of OSTRICH. For replace, ExpoSE+Z3 can cover 173,007 paths (66.7%),

showing that this class of constraints is harder; the runtime of ExpoSE+Z3 is on average 8x higher

than that of OSTRICH. Overall, even taking into account that ExpoSE+Z3 has to analyze JavaScript

code, as opposed to the SMT-LIB given to OSTRICH, the experiments show that OSTRICH is a

highly competitive solver for RegExes.

For R2: For this experiment, we integrated OSTRICH into Aratha [Amadini et al. 2019], a

symbolic execution engine for Javascript. We compare Aratha+OSTRICH with ExpoSE+Z3 on

the regression test suite of ExpoSE [Loring et al. 2017], as well as a collection of other JavaScript

programs containing match or replace functions extracted from Github. In Table ??, we can see that

Aratha+OSTRICH can within 120s cover slightly more paths than ExpoSE+Z3. Aratha+OSTRICH

can discover feasible paths much more quickly than ExpoSE+Z3, however: on all three families

of benchmarks, Aratha+OSTRICH terminates on average in less than 10s, and it discovers all

paths within 20s. ExpoSE+Z3 needs the full 120s for 35 of the programs (“T.O.” in the table), and it

finds new paths until the end of the 120s. Since ExpoSE+Z3 handles the replace-all operation by

unrolling, it is not able to prove infeasibility of paths involving such operations, and will therefore

not terminate on some programs. Overall, the experiments indicate that OSTRICH is more efficient

than the CEGAR-augmented symbolic execution for dealing with RegExes.

7 RELATEDWORK
Modelling and Reasoning about RegEx. Variants and extensions of regular expressions to

capture their usage in programming languages have received attention in both theory and practice.

In formal language theory, regular expressions with capturing groups and backreferences were

considered in [Câmpeanu et al. 2003; Carle and Narendran 2009] and also more recently in [Berglund

and van der Merwe 2017b; Freydenberger 2013; Freydenberger and Schmid 2019; Schmid 2016],

where the expressibility issues and decision problems were investigated. Nevertheless, some basic

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

45:26 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

Table 2. The number of queries answered by OSTRICH, and number of paths covered by ExpoSE+Z3, in R1.
Experiments were done on an AMD Opteron 2220 SE machine, running 64-bit Linux and Java 1.8. Runtime per

benchmark was limited to 60s wall-clock time, 2GB memory, and the number of tests executed concurrently

by ExpoSE+Z3 to 1. Average time is wall-clock time per benchmark, timeouts count as 60s.

OSTRICH ExpoSE+Z3
queries solved within 60s # paths covered within 60s

0 1 2 3 4 #Err 0 1 2 3 4

Match 422 249 751 386 95,175 1,134 3,333 9,274 36,916 48,594 0

(98,117 Average time: 1.57s Average time: 28.0s

benchm.) Total #sat: 250,947, #unsat: 132,662 Total #paths covered: 228,888

Replace 4,170 2,463 555 89,794 — 1,135 5,281 18,221 69,059 5,556 —

(98,117 Average time: 6.62s Average time: 55.0s

bench.) Total #sat: 259,354, #unsat: 13,601 Total #paths covered: 173,007

Table 3. Results of Expose+Z3 and Aratha+OSTRICH on Javascript programs for R2. Experiments were done

on an Intel(R)-Core(TM)-i5-8265U-CPU-@1.60GHz cpu, running 64-bit Linux and Java 1.8. Runtime was

limited to 120s wall-clock time. Average time is wall-clock time needed per benchmark, and counts timeouts

as 120s. #Err is the number of non-straight-line path constraints that OSTRICH fails to deal with and #T.O is

the number of timeouts. Note that some paths may have already been covered before T.O.

Aratha+OSTRICH ExpoSE+Z3
paths covered within 120s # paths covered within 120s

0 1 2 3 ≥4 #Err 0 1 2 3 ≥4 #T.O.

ExpoSE 14 9 9 2 15 2 14 9 9 2 15 6

(49 programs) Average time: 4.66s Average time: 57.44s

Total #paths covered:124 Total #paths covered:121

Match 3 7 12 6 0 0 3 8 12 5 0 6

(28 programs) Average time: 5.19s Average time: 60.26s

Total #paths covered: 49 Total #paths covered: 47

Replace 12 20 6 0 0 0 15 21 2 0 0 23

(38 programs) Average time: 4.14s Average time: 95.34s

Total #paths covered: 32 Total #paths covered: 25

features of these regular expression, namely, the non-commutative union and the greedy/lazy

semantics of Kleene star/plus, were not addressed therein. In the software engineering community,

some empirical studies were recently reported for these regular expressions, including portability

across different programing languages [Davis et al. 2019] and DDos attacks [Staicu and Pradel

2018], as well as how programmers write them in practice [Michael et al. 2019].

Prioritized finite-state automata and transducers were proposed in [Berglund and van der Merwe

2017a]. Prioritized finite-state transducers add indexed brackets to the input string in order to

identify the matches of capturing groups. It is hard—if not impossible—to use prioritized finite-state

transducers to model replace(all) function, e.g., swapping the first and last name as in Example 1.1.

In contrast, PSSTs store the matches in string variables, which can then be referred to, allowing

us to conveniently model the match and replace(all) function. Streaming string transducers were

used in [Zhu et al. 2019] to solve the straight-line string constraints with concatenation, finite-state

transducers, and regular constraints.

String Constraint Solving. As we discussed Section 1, there has been much research focussing

on string constraint solving algorithms, especially in the past ten years. Solvers typically use a

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

Solving String Constraints with Regex-Dependent Functions 45:27

combination of techniques to check the satisfiability of string constraints, including word-based

methods, automata-based methods, and unfolding-based methods like the translation to bit-vector

constraints. We mention among others the following string solvers: Z3 [de Moura and Bjørner

2008], CVC4 [Liang et al. 2014], Z3-str/2/3/4 [Berzish et al. 2017; Berzish, Murphy 2021; Zheng

et al. 2015, 2013], ABC [Bultan and contributors 2015], Norn [Abdulla et al. 2014], Trau [Abdulla

et al. 2017, 2018; Bui and contributors 2019], OSTRICH [Chen et al. 2019], S2S [Le and He 2018],

Qzy [Cox and Leasure 2017], Stranger [Yu et al. 2010], Sloth [Abdulla et al. 2019; Holík et al. 2018],

Slog [Wang et al. 2016], Slent [Wang et al. 2018], Gecode+S [Scott et al. 2017], G-Strings [Amadini

et al. 2017], HAMPI [Kiezun et al. 2012], and S3 [Trinh et al. 2014]. Most modern string solvers

provide support of concatenation and regular constraints. The push (e.g. see [Ganesh and Berzish

2016; Ganesh et al. 2012; Kiezun et al. 2012; Lin and Barceló 2016; Saxena et al. 2010; Trinh et al.

2014]) towards incorporating other functions—e.g. length, string-number conversions, replace,

replaceAll—in a string theory is an important theme in the area, owing to the desire to be able to

reason about complex real-world string-manipulating programs. These functions, among others,

are now part of the SMT-LIB Unicode Strings standard.
7

To the best of our knowledge, there is currently no solver that supports RegEx features like

greedy/lazing matching or capturing groups (apart from our own solver OSTRICH). This was

remarked in [Loring et al. 2019], where the authors try to amend the situation by developing

ExpoSE — a dynamic symbolic execution engine — that maps path constraints in JavaScript to Z3.

The strength of ExpoSE is in a thorough modelling of RegEx features, some of which (including

backreferences) we do not cover in our string constraint language and string solver OSTRICH.

However, the features that we do not cover are also rare in practice, according to [Loring et al.

2019] — in fact, around 75% of all the RegEx expressions found in their benchmarks across 415,487

NPM packages can be covered in our fragment. The strength of OSTRICH against ExpoSE is in a

substantial improvement in performance (by 30–50 fold) and precision. ExpoSE does not terminate

even for simple examples (e.g. for Example 1.1 and Example 1.2), which can be solved by our solver

within a few seconds.

For string constraint solving in general, we refer the readers to the recent survey [Amadini 2020].

In this work, we consider a string constraint language which is undecidable in general, and propose

a propagation-based calculus to solve the constraints. However, we also identified a straight-line

fragment including concatenation, extract, replace(All) which turns to be decidable. Our decision

procedure extends the backward-reasoning approach in [Chen et al. 2019], where only standard

one-way and two-way finite-state transducers were considered.

8 CONCLUSION
The challenge of reasoning about string constraints with regular expressions stems from functions

like match and replace that exploit features like capturing groups, not to mention the subtle

deterministic (greedy/lazy) matching. Our results provide the first string solving method that

natively supports and effectively handles RegEx, which is a large order of magnitude faster than

the symbolic execution engine ExpoSE [Loring et al. 2019] tailored to constraints with regular

expressions, which is at themoment the only available method for reasoning about string constraints

with regular expressions. Our solver OSTRICH relies on two ingredients: (i) Prioritized Streaming

String Transducers (used to capture subtle non-standard semantics of RegEx, while being amenable

to analysis), and (ii) a sequent calculus that exploits nice closure and algorithmic properties of

PSST, and performs a kind of propagation of regular constraints by means of taking post-images or

pre-images. We have also carried out thorough empirical studies to validate our formalization of

7
See http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

45:28 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

RegEx as PSST with respect to JavaScript semantics, as well as to measure the performance of our

solver. Finally, although the satisfiability of the constraint language is undecidable, we have also

shown that our solver terminates (and therefore is complete) for the straight-line fragment.

Several avenues for future work are obvious. Firstly, it would be interesting to see how ExpoSE

could be used in combination with our solver OSTRICH. This would essentially lift OSTRICH to a

symbolic execution engine (i.e. working at the level of programs).

Secondly, we could incorporate other features of RegEx that are not in our framework, e.g.,

lookahead and backreferences. To handle lookahead, we may consider alternating variants of

PSSTs. Alternating automata [Chandra et al. 1981] are effectively able to branch and run parallel

checks on the input. We will need to model the subtle interplay between lookahead and references.

Backreferences could be handled by allowing some inspection of variable contents during transducer

runs. There is some precedent for this in higher-order automata [Engelfriet 1991; Masilov 1976],

whose stacks non-trivially store and use data. However, the pre-image of string functions supporting

RegEx with backreferences will not be regular in general, and emptiness of intersection of RegEx

with backreferences is undecidable [Carle and Narendran 2009]. Decidability can be recovered in

some cases [Freydenberger and Schmid 2019]. We may study these cases or look for incomplete

algorithms.

Finally, since strings do not live in isolation in a real-world program, there is a real need to also

extend our work with other data types, in particular the integer data type.

ACKNOWLEDGMENTS
We thank Johannes Kinder and anonymous referees for their helpful feedback. T. Chen is supported

by Birkbeck BEI School under Grant No. ARTEFACT, National Natural Science Foundation of

China under Grant No. 62072309, The State Key Laboratory of Novel Software Technology, Nanjing

University under Grant No. KFKT2018A16. M. Hague and A. Flores-Lamas are supported by the

Engineering and Physical Sciences Research Council under Grant No. EP/T00021X/1 S. Kan and

A. Lin is supported by the European Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme (grant agreement no 759969). P. Rümmer is supported

by the Swedish Research Council (VR) under grant 2018-04727, by the Swedish Foundation for

Strategic Research (SSF) under the project WebSec (Ref. RIT17-0011), by the Wallenberg project

UPDATE, and by grants from Microsoft and Amazon Web Services. Z. Wu is supported by the

National Natural Science Foundation of China under Grant No. 61872340.

REFERENCES
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukás Holík, Ahmed Rezine, and Philipp Rümmer.

2017. Flatten and conquer: a framework for efficient analysis of string constraints. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017.
602–617. https://doi.org/10.1145/3062341.3062384

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukás Holík, Ahmed Rezine, and Philipp

Rümmer. 2018. Trau: SMT solver for string constraints. In 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, Nikolaj Bjørner and Arie Gurfinkel (Eds.). IEEE, 1–5. https:

//doi.org/10.23919/FMCAD.2018.8602997

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman.

2014. String Constraints for Verification. In CAV. 150–166. https://doi.org/10.1007/978-3-319-08867-9_10

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bui Phi Diep, Lukás Holík, and Petr Janku. 2019. Chain-Free String Constraints.

In Automated Technology for Verification and Analysis - 17th International Symposium, ATVA 2019, Taipei, Taiwan, October
28-31, 2019, Proceedings. 277–293. https://doi.org/10.1007/978-3-030-31784-3_16

Rajeev Alur and Pavol Cerný. 2010. Expressiveness of streaming string transducers. In IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India.
1–12. https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

https://doi.org/10.1145/3062341.3062384
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1

Solving String Constraints with Regex-Dependent Functions 45:29

Rajeev Alur and Jyotirmoy V. Deshmukh. 2011. Nondeterministic Streaming String Transducers. In Automata, Languages
and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part
II (Lecture Notes in Computer Science, Vol. 6756), Luca Aceto, Monika Henzinger, and Jirí Sgall (Eds.). Springer, 1–20.

https://doi.org/10.1007/978-3-642-22012-8_1

Roberto Amadini. 2020. A Survey on String Constraint Solving. CoRR abs/2002.02376 (2020). arXiv:2002.02376 https:

//arxiv.org/abs/2002.02376

Roberto Amadini, Mak Andrlon, Graeme Gange, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2019. Constraint

Programming for Dynamic Symbolic Execution of JavaScript. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 16th International Conference, CPAIOR 2019, Thessaloniki, Greece, June 4-7, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11494), Louis-Martin Rousseau and Kostas Stergiou (Eds.). Springer,

1–19. https://doi.org/10.1007/978-3-030-19212-9_1

Roberto Amadini, Graeme Gange, Peter J. Stuckey, and Guido Tack. 2017. A Novel Approach to String Constraint Solving.

In Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC, Australia,
August 28 - September 1, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10416), J. Christopher Beck (Ed.).

Springer, 3–20. https://doi.org/10.1007/978-3-319-66158-2_1

Martin Berglund, Frank Drewes, and Brink van der Merwe. 2014. Analyzing Catastrophic Backtracking Behavior in

Practical Regular Expression Matching. In Proceedings 14th International Conference on Automata and Formal Languages,
AFL 2014, Szeged, Hungary, May 27-29, 2014 (EPTCS, Vol. 151), Zoltán Ésik and Zoltán Fülöp (Eds.). 109–123. https:

//doi.org/10.4204/EPTCS.151.7

Martin Berglund and Brink van der Merwe. 2017a. On the semantics of regular expression parsing in the wild. Theoretical
Computer Science 679 (2017), 69 – 82. https://doi.org/10.1016/j.tcs.2016.09.006

Martin Berglund and Brink van der Merwe. 2017b. Regular Expressions with Backreferences Re-examined. In Proceedings
of the Prague Stringology Conference 2017, Prague, Czech Republic, August 28-30, 2017, Jan Holub and Jan Zdárek (Eds.).

Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague,

30–41. http://www.stringology.org/event/2017/p04.html

Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A string solver with theory-aware heuristics. In 2017
Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017. 55–59. https://doi.org/10.

23919/FMCAD.2017.8102241

Berzish, Murphy. 2021. Z3str4: A Solver for Theories over Strings. Ph. D. Dissertation. http://hdl.handle.net/10012/17102

Diep Bui and contributors. 2019. Z3-Trau. https://github.com/diepbp/z3-trau.

Tevfik Bultan and contributors. 2015. ABC string solver. https://github.com/vlab-cs-ucsb/ABC.

Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. 2003. A Formal Study Of Practical Regular Expressions. Int. J. Found. Comput.
Sci. 14, 6 (2003), 1007–1018. https://doi.org/10.1142/S012905410300214X

Benjamin Carle and Paliath Narendran. 2009. On Extended Regular Expressions. In Language and Automata Theory and
Applications, Third International Conference, LATA 2009, Tarragona, Spain, April 2-8, 2009. Proceedings (Lecture Notes
in Computer Science, Vol. 5457), Adrian-Horia Dediu, Armand-Mihai Ionescu, and Carlos Martín-Vide (Eds.). Springer,

279–289. https://doi.org/10.1007/978-3-642-00982-2_24

Olivier Carton, Christian Choffrut, and Serge Grigorieff. 2006. Decision problems among the main subfamilies of rational

relations. ITA 40, 2 (2006), 255–275. https://doi.org/10.1051/ita:2006005

Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. 1981. Alternation. J. ACM 28, 1 (1981), 114–133. https:

//doi.org/10.1145/322234.322243

Taolue Chen, Yan Chen, Matthew Hague, Anthony W. Lin, and Zhilin Wu. 2018. What is decidable about string constraints

with the ReplaceAll function. PACMPL 2, POPL (2018), 3:1–3:29. https://doi.org/10.1145/3158091

Taolue Chen, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu, Shuanglong Kan, Anthony Widjaja Lin,

Philipp Rümmer, and ZhilinWu. 2021. Solving String ConstraintsWith Regex-Dependent Functions Through Transducers

With Priorities And Variables. CoRR abs/2111.04298 (2021). arXiv:2111.04298 https://arxiv.org/abs/2111.04298

Taolue Chen, Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. 2019. Decision Procedures for Path

Feasibility of String-Manipulating Programs with Complex Operations. PACMPL 3, POPL, Article 49 (Jan. 2019), 30 pages.

https://doi.org/10.1145/3290362

Arlen Cox and Jason Leasure. 2017. Model Checking Regular Language Constraints. arXiv:1708.09073 [cs.LO] http:

//arxiv.org/abs/1708.09073

James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. 2019. Why Aren’t

Regular Expressions a Lingua Franca? An Empirical Study on the Re-Use and Portability of Regular Expressions. In

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA, 443–454.

https://doi.org/10.1145/3338906.3338909

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

https://doi.org/10.1007/978-3-642-22012-8_1
https://arxiv.org/abs/2002.02376
https://arxiv.org/abs/2002.02376
https://arxiv.org/abs/2002.02376
https://doi.org/10.1007/978-3-030-19212-9_1
https://doi.org/10.1007/978-3-319-66158-2_1
https://doi.org/10.4204/EPTCS.151.7
https://doi.org/10.4204/EPTCS.151.7
https://doi.org/10.1016/j.tcs.2016.09.006
http://www.stringology.org/event/2017/p04.html
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.23919/FMCAD.2017.8102241
http://hdl.handle.net/10012/17102
https://github.com/diepbp/z3-trau
https://github.com/vlab-cs-ucsb/ABC
https://doi.org/10.1142/S012905410300214X
https://doi.org/10.1007/978-3-642-00982-2_24
https://doi.org/10.1051/ita:2006005
https://doi.org/10.1145/322234.322243
https://doi.org/10.1145/322234.322243
https://doi.org/10.1145/3158091
https://arxiv.org/abs/2111.04298
https://arxiv.org/abs/2111.04298
https://doi.org/10.1145/3290362
https://arxiv.org/abs/1708.09073
http://arxiv.org/abs/1708.09073
http://arxiv.org/abs/1708.09073
https://doi.org/10.1145/3338906.3338909

45:30 T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan, A. W. Lin, P. Rümmer, and Z. Wu

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Joost Engelfriet. 1991. Iterated Stack Automata and Complexity Classes. Inf. Comput. 95, 1 (1991), 21–75. https://doi.org/10.

1016/0890-5401(91)90015-T

Dominik D. Freydenberger. 2013. Extended Regular Expressions: Succinctness and Decidability. Theory Comput. Syst. 53, 2
(2013), 159–193. https://doi.org/10.1007/s00224-012-9389-0

Dominik D. Freydenberger and Markus L. Schmid. 2019. Deterministic regular expressions with back-references. J. Comput.
Syst. Sci. 105 (2019), 1–39. https://doi.org/10.1016/j.jcss.2019.04.001

Vijay Ganesh and Murphy Berzish. 2016. Undecidability of a Theory of Strings, Linear Arithmetic over Length, and

String-Number Conversion. CoRR abs/1605.09442 (2016). http://arxiv.org/abs/1605.09442

Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin C. Rinard. 2012. Word Equations with Length Constraints:

What’s Decidable?. InHardware and Software: Verification and Testing - 8th International Haifa Verification Conference, HVC
2012, Haifa, Israel, November 6-8, 2012. Revised Selected Papers. 209–226. https://doi.org/10.1007/978-3-642-39611-3_21

Gerhard Gentzen. 1935. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift 39 (1935), 176–210,

405–431. English translation, “Investigations into Logical Deduction,” in [Szabo 1969].

John Harrison. 2009. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press. I–XIX, 1–681

pages.

Lukás Holík, Petr Janku, Anthony W. Lin, Philipp Rümmer, and Tomás Vojnar. 2018. String constraints with concatenation

and transducers solved efficiently. PACMPL 2, POPL (2018), 4:1–4:32. https://doi.org/10.1145/3158092

Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Margus Veanes. 2011. Fast and Precise Sanitizer

Analysis with BEK. In USENIX Security Symposium. http://static.usenix.org/events/sec11/tech/full_papers/Hooimeijer.pdf

John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages and Computation. Addison-Wesley.

Adam Kiezun, Vijay Ganesh, Shay Artzi, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst. 2012. HAMPI: A solver for

word equations over strings, regular expressions, and context-free grammars. ACM Trans. Softw. Eng. Methodol. 21, 4
(2012), 25:1–25:28. https://doi.org/10.1145/2377656.2377662

Quang Loc Le and Mengda He. 2018. A Decision Procedure for String Logic with Quadratic Equations, Regular Expressions

and Length Constraints. In Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New
Zealand, December 2-6, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer,

350–372. https://doi.org/10.1007/978-3-030-02768-1_19

Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. 2014. A DPLL(T) Theory Solver for a

Theory of Strings and Regular Expressions. In CAV. 646–662. https://doi.org/10.1007/978-3-319-08867-9_43

Anthony W. Lin and Pablo Barceló. 2016. String Solving with Word Equations and Transducers: Towards a Logic for

Analysing Mutation XSS (POPL ’16). ACM, 123–136. https://doi.org/10.1145/2837614.2837641

Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE: practical symbolic execution of standalone JavaScript. In

Proceedings of the 24th ACM SIGSOFT International SPIN Symposium onModel Checking of Software, Santa Barbara, CA, USA,
July 10-14, 2017, Hakan Erdogmus and Klaus Havelund (Eds.). ACM, 196–199. https://doi.org/10.1145/3092282.3092295

Blake Loring, Duncan Mitchell, and Johannes Kinder. 2019. Sound regular expression semantics for dynamic symbolic

execution of JavaScript. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. ACM, 425–438. https://doi.org/10.1145/3314221.3314645

A. N. Masilov. 1976. Multilevel magazine automata. Probl. Peredachi Inf. 12, 1 (1976), 55–62.
Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and Francisco Servant. 2019. Regexes Are Hard: Decision-

Making, Difficulties, and Risks in Programming Regular Expressions. In Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’19). IEEE Press, 415–426. https://doi.org/10.1109/ASE.2019.00047

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. 2006. Solving SAT and SAT Modulo Theories: From an abstract

Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53, 6 (2006), 937–977. https://doi.org/10.1145/1217856.

1217859

Prateek Saxena, Devdatta Akhawe, Steve Hanna, FengMao, StephenMcCamant, and Dawn Song. 2010. A Symbolic Execution

Framework for JavaScript. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA. 513–528. https://doi.org/10.1109/SP.2010.38

Markus L. Schmid. 2016. Characterising REGEX languages by regular languages equipped with factor-referencing. Inf.
Comput. 249 (2016), 1–17. https://doi.org/10.1016/j.ic.2016.02.003

Joseph D. Scott, Pierre Flener, Justin Pearson, and Christian Schulte. 2017. Design and Implementation of Bounded-Length

Sequence Variables. In Integration of AI and OR Techniques in Constraint Programming - 14th International Conference,
CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10335), Domenico Salvagnin

and Michele Lombardi (Eds.). Springer, 51–67. https://doi.org/10.1007/978-3-319-59776-8_5

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/0890-5401(91)90015-T
https://doi.org/10.1016/0890-5401(91)90015-T
https://doi.org/10.1007/s00224-012-9389-0
https://doi.org/10.1016/j.jcss.2019.04.001
http://arxiv.org/abs/1605.09442
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1145/3158092
http://static.usenix.org/events/sec11/tech/full_papers/Hooimeijer.pdf
https://doi.org/10.1145/2377656.2377662
https://doi.org/10.1007/978-3-030-02768-1_19
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1145/3092282.3092295
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1016/j.ic.2016.02.003
https://doi.org/10.1007/978-3-319-59776-8_5

Solving String Constraints with Regex-Dependent Functions 45:31

Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study of ReDoS Vulnerabilities in Javascript-Based

Web Servers. In Proceedings of the 27th USENIX Conference on Security Symposium (Baltimore, MD, USA) (SEC’18). USENIX
Association, USA, 361–376. https://www.usenix.org/conference/usenixsecurity18/presentation/staicu

M. E. Szabo (Ed.). 1969. The Collected Papers of Gerhard Gentzen. North-Holland, Amsterdam.

Ken Thompson. 1968. Regular Expression Search Algorithm. Commun. ACM 11, 6 (1968), 419–422. https://doi.org/10.1145/

363347.363387

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Symbolic String Solver for Vulnerability Detection in Web

Applications. In CCS. 1232–1243. https://doi.org/10.1145/2660267.2660372

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2016. Progressive Reasoning over Recursively-Defined Strings. In

Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I. Springer, 218–240. https://doi.org/10.1007/978-3-319-41528-4_12

Hung-En Wang, Tzung-Lin Tsai, Chun-Han Lin, Fang Yu, and Jie-Hong R. Jiang. 2016. String Analysis via Automata

Manipulation with Logic Circuit Representation. In Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779). Springer,
241–260. https://doi.org/10.1007/978-3-319-41528-4

Hung-En Wang, Shih-Yu Chen, Fang Yu, and Jie-Hong R. Jiang. 2018. A Symbolic Model Checking Approach to the Analysis

of String and Length Constraints. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE 2018). ACM, 623–633. https://doi.org/10.1145/3238147.3238189

Fang Yu,Muath Alkhalaf, and Tevfik Bultan. 2010. Stranger: AnAutomata-Based String Analysis Tool for PHP. In TACAS. 154–
157. https://doi.org/10.1007/978-3-642-12002-2_13 Benchmark can be found at http://www.cs.ucsb.edu/~vlab/stranger/.

Fang Yu,MuathAlkhalaf, Tevfik Bultan, andOscar H. Ibarra. 2014. Automata-based Symbolic StringAnalysis for Vulnerability

Detection. Form. Methods Syst. Des. 44, 1 (2014), 44–70. https://doi.org/10.1007/s10703-013-0189-1

Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Julian Dolby, and Xiangyu Zhang. 2015. Effective Search-Space

Pruning for Solvers of String Equations, Regular Expressions and Length Constraints. In Computer Aided Verification -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. Springer, 235–254.
https://doi.org/10.1007/978-3-319-21690-4_14

Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: a Z3-based string solver for web application analysis. In

ESEC/SIGSOFT FSE. 114–124. https://doi.org/10.1145/2491411.2491456

Qizhen Zhu, Hitoshi Akama, and Yasuhiko Minamide. 2019. Solving String Constraints with Streaming String Transducers.

Journal of Information Processing 27 (2019), 810–821. https://doi.org/10.2197/ipsjjip.27.810

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 45. Publication date: January 2022.

https://www.usenix.org/conference/usenixsecurity18/presentation/staicu
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/2660267.2660372
https://doi.org/10.1007/978-3-319-41528-4_12
https://doi.org/10.1007/978-3-319-41528-4
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1007/978-3-642-12002-2_13
http://www.cs.ucsb.edu/~vlab/stranger/
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/978-3-319-21690-4_14
https://doi.org/10.1145/2491411.2491456
https://doi.org/10.2197/ipsjjip.27.810

	Abstract
	1 Introduction
	2 A Detailed Example
	3 A String Constraint Language Natively Supporting RegEx
	4 Semantics of string functions via PSST
	4.1 Prioritized Streaming String Transducers (PSST)
	4.2 Semantics of RegEx-String Matching
	4.3 Modeling String Functions by PSSTs

	5 A Propagation-Based Calculus for String Constraints
	5.1 Sequents and Examples
	5.2 Proofs and Proof Rules
	5.3 Decision Procedure for STRSL

	6 Implementation and Experiments
	6.1 Implementation
	6.2 Experimental Evaluation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

