
Recursive queries on trees and data trees ∗

Serge Abiteboul
INRIA Saclay & ENS Cachan

Serge.Abiteboul@inria.fr

Pierre Bourhis
Oxford University

bourhis@comlab.ox.ac.uk

Anca Muscholl
LaBRI, University of Bordeaux

anca@labri.fr

Zhilin Wu
State Key Lab. of Comp. Sci., Inst. of Software, Chinese Academy of Sciences

wuzl@ios.ac.cn

ABSTRACT
The analysis of datalog programs over relational structures
has been studied in depth, most notably the problem of con-
tainment. The analysis problems that have been considered
were shown to be undecidable with the exception of (i) con-
tainment of arbitrary programs in nonrecursive ones, (ii)
containment of monadic programs, and (iii) emptiness. In
this paper, we are concerned with a much less studied prob-
lem, the analysis of datalog programs over data trees. We
show that the analysis of datalog programs is more complex
for data trees than for arbitrary structures. In particular,
we prove that the three aforementioned problems are unde-
cidable for data trees. But in practice, data trees (e.g., XML
trees) are often of bounded depth. We prove that all three
problems are decidable over bounded depth data trees.

Another contribution of the paper is the study of a new
form of automata called pattern automata, that are essen-
tially equivalent to linear datalog programs. We use pat-
tern automata to show that the emptiness problem for lin-
ear monadic datalog programs with data value inequalities
is decidable over arbitrary data trees.

1. INTRODUCTION
In this paper, we study recursive queries over data trees.

The trees we consider are unordered, unranked, labelled
trees with data from an infinite domain. For specifying re-
cursive queries, we use datalog on a relational representation
of the trees. We show that the analysis of datalog programs
is more complex for data trees than for arbitrary structures.
We show that for bounded depth data trees, one can solve

∗This work has been partially funded by the European Re-
search Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013), ERC grant Web-
dam, agreement 226513, http://webdam.inria.fr/, by the
National Natural Science Foundation of China under Grant
No. 61100062 by the Engineering and Physical Sciences Re-
search Council project ”Query-Driven Data Acquisition from
Web-based Datasources” (EPSRC EP/H017690/1) and by
LaBRI for Zhilin Wu’s visit 2012.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

analysis problems that are undecidable for data trees in gen-
eral. In our study, we introduce and use pattern automata,
that correspond to linear datalog programs.

Following [5, 12], we describe a data tree by a relational
structure as follows. A tree is described by relations child
and desc (for descendant) between nodes. Each node has a
label from a finite fixed alphabet of labels and a value from
an infinite set of data values. For each label α, a unary
relation gives all the nodes with that particular label. The
“data” is captured by a relation ∼, with n1 ∼ n2 if the two
nodes n1, n2 have the same data value.

The analysis of datalog programs has been studied in
depth, most notably the problem of containment. The prob-
lems that have been considered were shown to be unde-
cidable with the exception of (i) containment of arbitrary
programs in nonrecursive ones, (ii) containment of monadic
programs, and (iii) emptiness. We show that the analysis
of datalog programs is more complex for data trees than for
arbitrary structures. In particular, we prove that the three
aforementioned problems are undecidable for data trees.

We show that emptiness of a datalog program over trees is
undecidable even for trees without data, and even for words.
This illustrates the complexity introduced by the constraints
of the tree structure. On the positive side, emptiness over
trees becomes decidable for linear monadic programs for
trees with data, and even for queries with inequalities. This
shows notably the power of arity 2 that allows keeping track
simultaneously of two computations. Whether decidability
also holds for non-linear monadic programs remains open.

In practice, data trees (like in XML) are often of bounded
depth. We prove that (i), (ii) and (iii) are decidable over
bounded depth data trees. From a practical viewpoint, these
are probably the most meaningful results of the paper, in
spite of the double exponential lower bounds. This shows
that, when attempting to analyse datalog programs over
trees (e.g. for optimization), assuming the boundedness of
trees may greatly simplify the problem.

Another contribution of the paper is the study of a new
form of automata called pattern automata, that are essen-
tially equivalent to linear datalog programs. We use pat-
tern automata to show that the emptiness problem for lin-
ear monadic datalog programs with data value inequalities
is decidable over arbitrary data trees.

2. DEFINITIONS
Consider a finite alphabet Σ of labels and an infinite set N

of nodes. The structures we consider here are finite, labeled,
unranked and unordered trees. To represent trees, we use the

relational schema S = {child , desc} ∪Σ. The representation
I of a tree t is defined by the following (with n, n1, n2 ∈ N):

• child(n1, n2) if n2 is a child of n1;

• desc(n1, n2) if n2 is a strict descendant of n1;

• For each σ in Σ, σ(n) if the label of n is σ.

Observe that the instances satisfy some particular constraints
because they represent trees. For instance,

• The second attribute of the relation child is a primary
key (each node has at most one parent)

• There exists a single value n that occurs in the first
column of child and not the second (the unique root).

• desc is the (nonreflexive) transitive closure of child .

• The relations σ ∈ Σ partition the set of nodes.

Data trees. In this paper, the focus is on queries over data
trees defined as follows.

Consider an infinite set D of data values. A data tree t is
a tree such that to each of its nodes is also associated some
value of D. To represent data trees, we use the relational
schema S∼ = {child , desc,∼} ∪ Σ.

The representation I of a data tree t is defined by

• child , desc and each σ in Σ are as in the definition of
trees, and

• n1 ∼ n2 if the nodes n1, n2 in t have the same data
value.

Note that ∼ is an equivalence relation. Data words can be
defined as the special case of data trees where each non-leaf
node has exactly one child.

Datalog and UCQs. We assume that the reader is familiar
with datalog. We recall briefly some definitions next. A
datalog program consists of a finite set of rules of the form:

R(x) :- R1(x1), . . . , Rk(xk)

such that k ≥ 0, x and each xi are vectors of variables
and constants and each variable occurring in the head R
of the rule also occurs in the body. A datalog program is
defined over a database schema Sch and predicates from
Sch are called extensional, the other predicates are called
intensional. Only intensional predicates can occur in rule
heads. A distinguished intensional predicate is called the
goal. A datalog program defines a mapping from database
instances over Sch to relational instances over goal.

We also consider some restrictions. A datalog program is:

• linear if each rule body includes at most one inten-
sional atom;

• k-datalog if the arity of each intensional predicate is
at most k, and monadic if it is at most one, i.e., it
is 1-datalog (k is also called the arity of the datalog
program); and

• Boolean if the arity of the goal predicate is zero.

The answer of a datalog program P over an instance I,
denoted by P (I), is the set of tuples appearing in the goal
predicate after having filled the intensional predicates by
using recursively the rules of the datalog program until a
fixpoint is reached.

In this paper, we consider datalog programs over the schema
S, S∼ and S∼,�, where S∼,� = S∼ ∪ {6=,�} is the extended
schema for data trees, with 6= and � interpreted respectively
as node inequality and data value inequality. We use the no-
tation datalog∼,� to denote the datalog programs over the
schema S∼,�.

A conjunctive query (CQ) is an existential formula of
the form ∃x1 · · · ∃xkϕ, where ϕ is a conjunction of positive
atomic formulas over the given signature. We will consider
unions of conjunctive queries, UCQs for short. A UCQ is
Boolean if it has no free variable.

To conclude this section, we briefly recall some known
decidability results on the containment problem for datalog
programs.

First, we consider arbitrary structures, then trees. For
arbitrary structures, the following result (that will be used
in Section 4) is known:

Theorem 2.1. [9]

• The problem of containment of a datalog program in a
UCQ for relational structures is 2Exptime-complete.

• The problem of containment of a linear datalog pro-
gram in a UCQ for relational structures is Expspace-
complete.

The following result for trees without data and monadic
datalog programs not using the descendant relation is also
known:

Theorem 2.2. [14] Let P be a monadic datalog program
over the schema S \ {desc} = {child}∪Σ. Then there exists
an unranked query tree automaton 1 AP such that for each
tree t over Σ and the representation I of t, P (I) = AP (t).

Using the previous result, we observe:

Corollary 2.3. The containment problem for monadic
datalog programs over trees not using the relation desc (i.e.,
over the schema {child} ∪ Σ) is decidable.

The containment problem for monadic datalog programs
over trees remains open. We will see in the next section that
it is undecidable over data trees. And in the following one,
that the problem is decidable for bounded-depth data trees.

3. UNDECIDABILITY RESULTS
The containment problem for datalog programs is known

to be undecidable for arbitrary structures [1]. However, it
has been shown to be decidable for two important natural
restrictions: (i) for the containment of a datalog program
in a non-recursive program [9], and (ii) for monadic datalog
programs [10]. These decidability results hold for arbitrary
structures. In this section, we show that the problem is more
complex for datalog programs over data trees.

With respect to (i), we show that the problem of the con-
tainment of datalog programs in UCQs over trees (even with-
out data) is undecidable (Corollary 3.2). Indeed, we even

1For a definition of query tree automaton, see [15].

prove that the problem of emptiness of datalog programs on
trees without data is undecidable (Proposition 3.1).

With respect to (ii), we show that the problem of con-
tainment of a linear monadic datalog program in a union of
conjunctive queries on data trees is undecidable (Proposi-
tion 3.3).

Lastly, we also consider bounded depth data trees. We
show that the containment of a linear monadic datalog pro-
gram in a union of conjunctive queries with data inequal-
ities is undecidable for bounded depth data trees (Propo-
sition 3.5). This is to set limitations to a result of next
section that states that this problem is decidable in absence
of inequalities.

Datalog on trees without data
A datalog program P over schema S is empty if for each in-
stance I over S, P (I) is empty. Checking datalog program
emptiness is decidable over relational structures [1]. How-
ever, it becomes undecidable if the instances are constrained
to be trees. We believe this result to be known. But since
we could not find a reference for it, we include it here for
completeness.

Proposition 3.1. Emptiness of datalog programs over
words or trees with schema S, is undecidable.

Proof. We encode a run of a deterministic Turing ma-
chine on empty input by a datalog program over trees as
follows. Let Γ be the tape alphabet, Q the set of states and
∆ : Q × Γ → Q × Γ × {−1, 0, 1} the transition function. A
run C0 ` C1 ` · · · ` Cn is a sequence of configurations Ci,
where each Ci is encoded as a word from Γ∗(Γ × Q)Γ∗ of
length K (where K ≥ maxi |Ci|). The datalog program will
check that an accepting run #C0#C1# · · ·Cn# labels some
path leading upwards in the tree.

The program consists of three subprograms, with binary
goal predicates R0, R∆, Rf . We define R0 such that for any
two nodes n, n′, we have R0(n, n′) iff n′ is an ancestor of
n and the path from n to n′ is labeled by #C0#. The
program R∆ is such that R∆(n, n′) iff n′ is an ancestor of
n separated by one #, and such that n corresponds to the
j-th position in some configuration C, whereas n′ is the j-th
position in the configuration C′ with C ` C′. Finally, Rf
is such that Rf (n, n′) iff R∆(n, n′) and n′ has label from
ΓF = Γ × F , with F the set of accepting states. All three
programs are linear (and binary). Let ΓQ = Γ ∪ Γ×Q and
S ⊆ (ΓQ)4 be the relation corresponding to the transition
function of the TM: (α, β, γ, δ) ∈ S iff for some C ` C′ and
some position 1 ≤ j ≤ K = |C| = |C′|, the j-th symbol in
C′ is δ, and the j − 1, j, j + 1-th symbols in C are α, β, γ,
respectively (for i = 0 and i = K + 1 we set the symbol
to be #). Below, we use S(x, y, z, w) as a shorthand for∨

(α,β,γ,δ)∈S α(x) ∧ β(y) ∧ γ(z) ∧ δ(w) and describe R∆ and

Rf (R0 is similar).

• R∆(x, y) :- ΓQ(x),ΓQ(y), child(x, x1), child(y, y1),
child(z, x), S(x1, x, z, y), R0(x1, y1)

• R∆(x, y) :- ΓQ(x),ΓQ(y), child(x, x1), child(y, y1),
child(z, x), S(x1, x, z, y), R∆(x1, y1)

• Rf (x, y) :- R∆(x, y),ΓF (y)

Observe that the datalog program in the above proof is
linear and binary (i.e., 2-datalog). Now this implies:

Corollary 3.2. Containment of 2-datalog programs in
CQs over words or trees with schema S, is undecidable.

Proof. Let P be a datalog program and let Q be the con-
junctive query ∃x child(x, x), then Q never holds for trees.
Thus over trees, P ⊆ Q iff P is empty.

Linear monadic datalog over data trees
We show the following result:

Proposition 3.3. Containment of linear monadic data-
log programs in UCQs over data words or over data trees
with schema S∼, is undecidable.

Proof. We first show the result for words. We reduce
the Post Correspondence Problem (PCP) to our problem
on data words. Let (ui, vi)1≤i≤k be a PCP instance over
alphabet Σ.

We want to build a linear, monadic datalog program P
and a UCQ Q (both Boolean) such that P is not contained
in Q iff there exist m ≥ 1 and indices i1, . . . , im such that
ui1 · · ·uim = vi1 · · · vim .

We start with an informal description. The linear monadic
program encodes a data word with labels from Σ∪Σ̄∪{#, $},
where Σ̄ is a (disjoint) copy of Σ. The following conditions
should hold:

1. The string projection of this data word belongs to the
set #(

⋃
1≤i≤k uivi)

+$, where v denotes the copy of the

word v over Σ̄.

2. All positions labelled by Σ (Σ̄, respectively) carry dif-
ferent data values.

3. Let ρ (ρ̄, respectively) denote the sequence of data
values of the subword with labels from Σ (Σ̄, respec-
tively). The sequences ρ and ρ̄ are equal, and any two
positions in ρ and ρ̄ with equal data value have the
same label (i.e., a and ā for some a ∈ Σ).

A monadic datalog program P can check Condition (1),
assuming that we have the special markers #, $ for the first
and last position, respectively (that these markers are used
only at the first and last position, respectively, can be guar-
anteed by the UCQ). More generally, any finite-state au-
tomaton A can be simulated by a monadic datalog program,
ensuring that the string projection of the data word belongs
to #L(A)$.

Condition (2) is enforced by the negation of the UCQ Q,
as follows. A UCQ can express the existence of two positions
x 6= y such that both x, y have label in Σ (Σ̄, respectively)
and x ∼ y. Notice that we do not actually need the atomic
predicate x 6= y: due to Condition (1) we can distinguish
several cases, depending on whether x, y belong to the same
occurrence of some ui (vi, respectively), so we can use the
child (successor) predicate, or they are separated by some
symbol from Σ̄) (Σ, respectively), so we use the desc (linear
order) predicate.

Condition (3) is enforced by the datalog program: First,
P checks that the first (last, respectively) node with label
from Σ has the same value as the first (last, respectively)
node with label from Σ̄, and that the labels are the same.
For identifying these nodes, the special markers #, $ for the

first/last node are used. Then, P checks recursively for every
node x in ρ: there exists a node x′ in ρ̄ such that x ∼ x′

and y ∼ y′ hold, where y is the successor of x in ρ and y′

is the successor of x′ in ρ̄. Notice that P can refer to the
successor in ρ (resp. ρ̄) by using the child predicate, since
the distance between two consecutive nodes labeled by Σ (Σ̄,
respectively) is bounded by the maximal length of the words
vi and ui. The requirement for equal labels a, ā is checked
at the same time.

For data trees, the crux is (as in Proposition 3.1) to fol-
low paths leading upwards in the tree. One needs to pay
attention in particular to Condition (3) above.

It is interesting to note that Proposition 3.3 remains true
even for programs using desc but not child . It remains open
whether using child , but not desc, remains undecidable.

Proposition 3.4. Containment of linear monadic data-
log programs in UCQs over data words or trees (with schema
S∼) is undecidable, even for programs without the child re-
lation.

Bounded depth and inequalities
The inclusion problem for conjunctive queries over data trees
where queries can use data inequalities, is known to be un-
decidable [5]. We will prove in the next section that con-
tainment of a linear monadic datalog program in a UCQ is
decidable for bounded depth data trees, in absence of node
and data inequalities. This is in the spirit of [12], which
showed that satisfiability of certain queries restricted to trees
of bounded depth is decidable, while being undecidable for
unbounded depth. We next show that the decidability re-
sult in the next section cannot be extended to datalog and
UCQs using inequalities.

Proposition 3.5. Containment of linear, monadic data-
log programs in UCQs over schema S∼,�, is undecidable for
data trees of depth 2.

Proof. We simulate the proof of Proposition 3.3 on data
trees of depth 2 as follows. The basic idea is to encode a list
L on (some of) the nodes at depth 1. We describe first how
trees satisfying P ∩ ¬Q should look like.

1. Nodes at depth 1 have labels from Σ ∪ Σ̄, and nodes
at depth 2 have label L or R.

2. If an L-node and an R-node have the same parent,
then they have different data.

3. If two L-nodes have the same parent, then they have
equal data, too. Same for R-nodes.

4. If two nodes x, y at depth 1 are such that their L-
children have equal data, then their R-children also
have equal data (if they exist), and both the labels
and the data of x, y are identical. Same for L,R inter-
changed.

5. There are two distinguished nodes at depth 1, one de-
noted as “start”, the other as “end”.

6. Node “end” can be reached from “start” by iterating
the following successor relation: y is the successor of
x if the data of the L-child of y is equal to the data
of the R-child of x. Notice that there might be several

nodes y that satisfy this condition, but they all agree in
their label and data (Condition (4)). So the path from
“start” to “end” is unique (if it exists) if we consider
the label/data of the nodes on the path.

Note that the datalog∼,� program P can enforce Condi-
tion (6) (and the existence of “start”, “end”), whereas the
remaining conditions are expressed by the negation of Q.

We show how to mimic the proof of Proposition 3.3 on
the list L from “start” to “end”.

First, notice that the program P can verify the first and
last condition in the proof of Proposition 3.3, by restricting
the checks to nodes in L. It suffices to start the checks at
node “start” - the unicity of the path from “start” to “end”
ensures that we are considering only nodes in the list L.

The condition ensured by the UCQ in the proof of Propo-
sition 3.3 is that there exist two nodes x 6= y both with label
from Σ (or Σ̄) such that x ∼ y. We can express x 6= y by
saying that the L-child of x, say x′, and the L-child of y, say
y′, are such that x′ � y′.

4. CONTAINMENT PROBLEM: DECIDABI-
LITY

As shown in the previous section, the static analysis of
datalog programs over trees rapidly leads to undecidability
results. In this section, we show two positive results about
query containment for data trees, both for trees of bounded
depth. A third positive result for the emptiness problem
over unbounded depth trees is presented in the next section.

As already mentioned, the undecidability results in Sec-
tion 3 rely in an essential way on the presence of data values.
(Recall the decidability results mentioned in Section 2.) In-
terestingly, we next show that one regains decidability in
the presence of data values by imposing that the depth is
bounded. We next consider inclusion of datalog in UCQs,
then monadic datalog.

Bounded depth, datalog and UCQs
We show next that surprisingly, containment of datalog pro-
grams into UCQs becomes decidable over bounded depth
data trees. Note that the restriction to bounded depth trees
is reasonable, since in practice, XML trees are quite often of
very small depth.

Theorem 4.1. Let k > 0 be a fixed integer. The problem
of containment of datalog programs in UCQs with schema
S∼ over data trees of depth less than k, is decidable. The
complexity is in 3Exptime and 2Exptime-hard.

Proof. Let P be a datalog program and Q be a UCQ
with the schema S∼. We assume without loss of generality
that both P,Q are Boolean. The proof goes as follows. We
define a new relational schema S′ and transform P and Q
into a datalog program P ′ and a UCQ Q′ over S′ (both
Boolean) such that:

P ⊆ Q over data trees of depth at most k iff P ′ ⊆ Q′.

Then using Theorem 2.1, this will show decidability.
The key point in the translation is as follows. Each node

n at depth j ∈ {0, . . . , k} in the data tree t will be identified
by a relational tuple (n0, v0, . . . , nj , vj). The v-components
in the tuples are needed for translating the predicate ∼.
Different tuples represent different tree nodes, and the node

encoded by (n0, v0, . . . , nj , vj) is a child of the node encoded
by (n0, v0, . . . , nj−1, vj−1). Moreover, two tuples (n0, v0, . . . ,
ni, vi, . . .) and (n0, v0, . . . , ni, wi, . . .) with vi 6= wi represent
different tree nodes. We will need to assert some more things
in order to ensure that a relational structure can be indeed
decoded into a data tree.

We will do the transformation for each rule r of P sep-
arately. We show first that we may assume that the pred-
icate desc does not occur in the body of r, at the cost of
increasing the number of rules by kd, where d is the maxi-
mal number of desc atoms in the body of a rule. We may do
this by replacing every atom desc(x, y) by some conjunction
child(x, z1), child(z1, z2,), . . . , child(zi, y), 0 ≤ i < k − 1,
where z1, . . . , zi are new variables (by convention, for i = 0
the sequence equals child(x, y)).

Without loss of generality, we also assume that (**) no
rule contains atoms child(x, z) and child(y, z) with x 6= y,
since in this case, x, y denote the same node in the data tree
and y can be replaced by x or vice versa. In the following,
we show how to transform every rule r over S∼ into a set
of datalog rules over the relational schema S′ = {αj | α ∈
Σ, 0 ≤ j ≤ k}. First we fix a new variable name u, which
will stand for the root and will be used in all transformations
of rules.

Let Var(r) be the set of variables in the body of a rule
r. We assign to each variable x in Var(r) a depth: let D :
Var(r) → {0, . . . , k}. This assignment is done consistently
with the child(x, y) atoms in r, so thatD(y) = D(x)+1 must
hold in that case. For each variable x in r such that there
is no atom child(z, x) in r we also add to r the sequence of
atoms child(u, x1), child(x1, x2), . . . , child(xD(x)−1, x), with
x1, . . . fresh variables (we might have xi = yj for some x 6= y,
but we should respect the constraint (**) above). We call
the modified rule r(D).

Let us consider a rule r(D) modified as above and choose
a labeling `(x) ∈ Σ for the variables in r(D). This choice
should be consistent with the atoms of the form α(x) in

r(D). Note that there are at most ((k + 1)|̇Σ|)|Var(r)| many
pairs (r(D), `).

For each pair (r(D), `) we define now a rule r′ over S′ as
follows:

1. For every variable z in r(D) add a new variable, say
vz. The variable vu associated with the“root”u should
be the same for all transformations.

Suppose that u, z1, . . . , zj = z is the “path” from the
“root”u to variable z in r(D), with D(z) = j. Set πz to
be the sequence of variable-pairs (u, vu), (z1, vz1), . . . ,
(zj , vzj).

2. For every intensional predicate R(x1, . . . , xl) in r(D)
there is a (new) intensional predicate R′(πx1 , . . . , πxl)

in r′, of arity
∑l
i=1 D(xi).

3. For each variable x in r(D) with D(x) = j and `(x) =
α we have an atom αj(πx) in r′.

4. For every intensional predicate x ∼ y in r(D) we have
the atom vx = vy in r′.

The datalog program P ′ over S′ consists of all rules r′

obtained from some pair r(D), ` as above. The size of P ′ is
at most exponential in the size of P .

Similar transformations can be applied to each disjunct in
the UCQ Q and we get an UCQ Q′ over S′.

There remains one final issue: by choosing the mapping
` we ensure that every node in the tree decoded from some
instance over S′ has a label from Σ. However we also need to
guarantee that the label is unique. To ensure this, for every
i : 0 ≤ i ≤ k and α, β ∈ Σ with α 6= β, we add the formula
∃x0, v0, . . . xi, vi(αi(x0, v0, . . . , xi, vi) ∧ βi(x0, v0, . . . , xi, vi))
as a disjunct of Q′.

Finally we show that P ⊆ Q over data trees of depth at
most k iff P ′ ⊆ Q′.

Suppose first that there is some data tree t (of depth at
most k) such that P (I) holds but Q(I) does not, for some
I representing t over S∼. Let I ′ be some representation of
t over S′, according to our encoding of nodes by sequences
of nodes/values. It is easy to check that P ′(I ′) holds, but
Q′(I ′) does not.

Conversely, assume that P ′ holds but Q′ does not, and
let I ′ be an instance over S′ witnessing this. Consider a
proof tree showing that P ′(I ′) holds, and let I ′′ be the in-
stance obtained from I ′ by keeping each fact occurring in
this proof tree. Observe that I ′′ is the representation of a
(data) tree t of depth at most k, since there is a unique root
node (corresponding to the variable pair u, vu), and each
node (corresponding to a distinct tuple) has a unique label
from Σ - otherwise Q′(I ′) would hold. Moreover, it is easy
to check that P holds on t, but Q does not.

Complexity upper bound. First there is an exponential
blow-up in the translation from P to P ′ and from Q to Q′.
Due to the fact that the containment of a datalog program in
a UCQ over arbitrary relational structures is in 2Exptime,
we conclude that the containment of datalog programs in
UCQs over the schema S∼ is in 3Exptime.

Hardness. 2Exptime hardness is proved by a reduction
from the problem of containment of a datalog program P
in a UCQ Q over arbitrary relational structures. Consider
a relational schema R. An instance of R is represented as a
tree with one subtree labelled p of the root for each relation
p in R. The p-node has a child labeled ptup for each tuple
in p with children labelled p1, ..., pl if p has arity l. In each
rule r of P , an atom p(x1, ..., xl) is translated into the con-
junction of the following atoms, root(y), child(y, z), p(z),
child(z, x), ptup(x), child(x, x′1), p1(x′1), child(x′1, x1), . . . ,
child(x, x′l), pl(x

′
l), child(x′l, xl), where x, y, z, x′1, . . . , x

′
l are

new variables. In addition, an atom x1 = x2 is replaced by
x1 ∼ x2. Let P ′, Q′ denote the resulting datalog program
and the UCQ. Then one can show that P ⊆ Q over the in-
stances of R iff P ′ ⊆ Q′ over bounded depth data trees.

As a corollary we have:

Corollary 4.2. Let k > 0 be fixed. The emptiness prob-
lem for datalog programs over data trees of depth less than
k over the schema S∼, is decidable.

Bounded depth and monadic datalog
Our result in this section shows that the containment prob-
lem for monadic datalog programs over bounded depth data
trees is also decidable. For comparison, containment of

monadic datalog programs over relational structures is 2Exptime-
complete [10, 3]. We do not have a precise complexity bound
for data trees, as explained below.

We use the following result2, which is a specialization of
Theorem 5.5 of [11] to datalog programs. Note that the up-
per bound in the corollary below is (at least) non-elementary,
since [11] talks about inclusion of hypergraph grammars in
monadic second-order logic. We conjecture that the com-
plexity is lower for datalog.

Corollary 4.3. The problem of containment of data-
log programs in monadic datalog programs over relational
schemes is decidable.

Proof. It is known that each Boolean monadic datalog
program over a relational schema can be rewritten into an
MSO formula without free variables over the same schema.
In addition, properties expressed by Boolean monadic data-
log programs are closed under homomorphisms, as a result
of the lack of negation symbols in datalog programs. Then
the result follows from Theorem 5.5 in [11].

Now we have the following result.

Theorem 4.4. The problem of containment of datalog pro-
grams in monadic datalog programs with the schema S∼ over
bounded depth data trees is decidable.

Proof. We reduce the problem to the problem of con-
tainment of datalog programs in monadic datalog programs
over relational structures. Let P and Q be two datalog pro-
grams over S∼, with Q monadic. We assume that P does
not use node equalities (they can be replaced by syntacti-
cally replacing variable names). We translate P to a re-
lational datalog program P ′ using the construction in the
proof of Theorem 4.1. Note that P ′ does not use vari-
able equalities either. We would like to proceed similarly
with Q, to obtain Q′. However doing it naively would lead
to a non-monadic program, since a variable in Q is simu-
lated by a tuple of variables in Q′. Nevertheless, it turns
out that it suffices to use one variable to represent the tu-
ple of variables in Q′. The main idea is that Q′ does not
need to enforce the tree structure anymore, since P ′ does.
So let Q′ be the non-monadic datalog program obtained
from Q as in the proof of Theorem 4.1. We define Q′′ as
the monadic datalog program obtained from Q′ by replac-
ing each intensional atom R′(x0, v0, . . . , xi, vi) by R′(xi). If
R′(x0, v0, . . . , xi, vi) was the head of a rule, this means of
course that x0, v0, . . . , xi−1, vi−1, vi will be quantified exis-
tentially in the body of the rule.

In the following, we will show that

P ⊆ Q over data trees of depth at most k iff
P ′ ⊆ Q′′. (∗)

To prove (∗), we need to make sure that in a relational
instance a2i properly identifies the node of the tree that
we previously identified by the tuple a0, a1, . . . , a2i, a2i+1.
For that, consider the following property for the instances I
over S′. Assume that (a0, a1, . . . , a2i, a2i+1) and (b0, b1, . . . ,
b2i, b2i+1) are two tuples occurring in the interpretations of
some extensional predicate αi in I. Then the following two
conditions hold:

2We thank Michael Benedikt for pointing this result to us.

1. if a2j = b2j , then for each j′ < 2j, aj′ = bj′ , and
a2j+1 = b2j+1.

2. for each j 6= j′, a2j 6= a2j′ .

First suppose P ′ * Q′′. Let I be an instance satisfying P ′

but not Q′′. Now, consider the proof tree that demonstrates
P ′ using I. We can assume without loss of generality that
I only contains facts occurring in that proof tree. Similar
to the argument in the proof of Theorem 4.1, we also ob-
serve that I is the representation of a data tree t of depth at
most k. The instance I may not satisfy conditions (1) and
(2) above. But for every tuple (n0, v0, . . . , ni, vi) in I, we
can choose a tuple of new elements (n′0, . . . , n

′
i) and replace

the tuple (n0, v0, . . . , ni, vi) by (n′0, v0, . . . , n
′
i, vi), so that

conditions (1) and (2) above are satisfied. We do this by
preserving common prefixes: if (n0, v0, . . . , ni, vi) is a com-
mon prefix of two tuples, then we use the same new elements
(n′0, . . . , n

′
i) in both tuples. Let I ′ be the resulting instance.

It is easy to observe that there is a (non-injective) map-
ping ϕ from the domain of I ′ to that of I such that ϕ is
consistent with the interpretations of the relations αi in I ′

and I, more precisely, if αi(n0, v0, . . . , ni, vi) holds in I ′, then
αi(ϕ(n0), ϕ(v0), . . . , ϕ(ni), ϕ(vi)) holds in I. Clearly, I ′ sat-
isfies P ′, because I already did and because P ′ does not
use equalities. We show by contradiction that I ′ does not
satisfy Q′′. Because Q′′ contains no negations, if I ′ would
satisfy Q′′ then I would satisfy Q′′ as well, a contradiction.
Therefore, we get an instance I ′ which satisfies P ′ but not
Q′′, and that satisfies the condition (1) and (2) above. Since
I ′ is also a representation of t, it follows that t satisfies P .
Since I ′ satisfies conditions (1) and (2), we also infer that t
does not satisfy Q. We conclude that P 6⊆ Q.

Now suppose P * Q. Let t be a bounded depth data tree
satisfying P but not Q, and I be an encoding of t, satisfying
conditions (1) and (2). Then P ′ and Q′′ on I correctly
simulate P and Q on t, respectively, thus I satisfies P ′ but
not Q′′. Hence P ′ * Q′′.

5. EMPTINESS PROBLEM AND PATTERN
AUTOMATA

In this section, we define pattern automata that are essen-
tially equivalent to linear datalog programs over data trees.
Using these automata, we show that over data trees, the
emptiness problem for datalog∼,� programs is decidable.

We first describe pattern automata informally. They use
data tree patterns in the form of state invariants and tran-
sition constraints. Transitions are guarded by constraints
that relate variables of the source and the target state.

Data tree patterns (patterns for short) are conjunctive
queries over the schema S∼,�, or equivalently, formulas of the
form ∃x1 · · · ∃xkϕ with ϕ a conjunction of positive atomic
formulas over S∼,�. Free variables of patterns are defined
as usual. For a pattern P , let Var(P) (resp. Free(P)) de-
note the set of variables (resp. free variables) occurring in
P . Matchings of patterns into data trees have the standard
(non-injective) meaning. Let also P denote the collection of
all patterns. It is easy to see that the satisfiability problem
of patterns can be solved in NP.

For notational convenience, in this section, we will use
the schema S∼,�,−1 which is the extension of the schema
S∼,� with child−1 and desc−1, the inverse relation of child
and desc. The formula child−1(x, y) and desc−1(x, y) can be

thought as respectively the formula child(y, x) and desc(y, x)
within the schema S∼,�.

A constraint ψ is a conjunction of atomic formulas over
S∼,�,−1\Σ and variables x, y, . . . and x′, y′, Let C denote
the collection of all constraints. For ψ ∈ C, let Var(ψ) denote
the set of variables occurring in ψ.

Definition 5.1. A pattern automaton (PA for short) A

is a tuple (Q, I, F, γ,∆) such that

• Q is a finite set of states, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states,

• γ : Q → P assigns to each state in Q a pattern (state
invariant),

• ∆ ⊆ Q × C × Q is a set of guarded transitions: for
each (q, ψ, q′) ∈ ∆, the constraint ψ is such that each
atom is of the form α(x, x′), where α ∈ S∼,�,−1 \ Σ,
x ∈ Free(γ(q)), and x′ ∈ Free(γ(q′)). Notice that the
first variable in ψ refers to q, whereas the second one
refers to q′.

We assume for the remaining of the section that all state
invariants and transition constraints of PA are satisfiable3.

A run of A over a data tree t is a sequence

(q0, π0)(q0, ψ1, q1)(q1, π1) · · · (qk−1, πk−1)(qk−1, ψk, qk)(qk, πk)

such that for every i,

• (qi, ψi+1, qi+1) ∈ ∆,

• πi is a matching of γ(qi) into t,

• let ψi+1 =
∧
j αj(xj , x

′
j), where for every j: αj ∈

S∼,�,−1 \ Σ, xj ∈ Free(γ(qi)), x
′
j ∈ Free(γ(qi+1));

moreover, αj(πi(xj), πi+1(x′j)) holds in t.

A run (q0, π0) · · · (qk, πk) on t as above is accepting if q0 ∈
I and qk ∈ F . The PA A is said to be non-empty if it has
some accepting run.

Let A = (Q, I, F, γ,∆) be a PA. The arity of a transition
(q, ψ, q′) ∈ ∆ is defined as

max
(
|Free(γ(q)) ∩Var(ψ)|, |Free(γ(q′)) ∩Var(ψ)}|

)
.

The arity of a PA is the maximum of the arities of its tran-
sitions.

A PA of arity one is called unary. So, if A is unary then
each transition (q, ψ, q′) of A can be written as ψ(x, x′) =∧
α α(x, x′) for some x ∈ Free(γ(q)), x′ ∈ Free(γ(q′)) and

each α is from S∼,�,−1 \ Σ.

Example 5.2 A pattern automaton A = (Q, I, F, γ,∆) is
illustrated in Figure 1, where

• Q = {q0, q1, q2}, I = {q0}, F = {q2},

• γ is defined as follows,

– γ(q0) = ∃x1∃x3 (a(x1)∧b(x2)∧c(x3)∧child(x1, x2)∧
desc(x1, x3) ∧ x2 ∼ x3),

– γ(q1) = ∃x6(b(x4)∧ b(x5)∧ c(x6)∧ child(x4, x5)∧
desc(x4, x6) ∧ x5 ∼ x6),

3This check can be seen as a preprocessing in Exptime and
will not affect the 2Exptime upper bound in Theorem 5.5.

– γ(q2) = ∃x8∃x9(b(x7)∧d(x8)∧c(x9)∧child(x7, x8)∧
desc(x7, x9) ∧ x8 � x9),

• ∆ = {(q0, x2 = x4, q1), (q1, x5 = x4, q1), (q1, x5 = x7, q2)}.

Intuitively, A starts from an a-node, looks downwards for a
sequence of b-nodes v, each of them having another c-node
v′ such that v′ is a descendant of the parent of v, and v′

has the same data value as v; finally, A stops at a d-node w
such that there is a c-node w′ which is a descendant of the
parent of w, and has a different data value from w.

q0 q1 q2

x2 = x4

x5 = x4

x5 = x7

x1

x2x3 ∼

a

bc

x4

x5x6 ∼
b

bc x7

x8x9 6∼
b

dc

γ(q0)

γ(q1)

γ(q2)

Figure 1: Example for pattern automata

The following theorem shows that pattern automata are
equivalent to (Boolean) linear datalog∼,� programs.

Theorem 5.3. The following result holds.

1. For any Boolean linear datalog∼,� program P , a PA
A of the same arity as P can be constructed in linear
time such that for every data tree t, P evaluates to true
over t iff t is accepted by A.

2. For any PA A, a Boolean linear datalog∼,� program
P of the same arity as A can be constructed in linear
time, such that for every data tree t, t is accepted by
A iff P evaluates to true over t.

Proof. (Sketch) A PA can simulate a datalog∼,� pro-
gram with states corresponding to rules, state invariants cor-
responding to the body of the corresponding rule, and tran-
sition constraints relating the variables of the intensional
predicate of the body with the one of the head. Conversely,
a datalog∼,� program simulates a PA by using one inten-
sional predicate for each transition.

Example 5.4 We first illustrate how to transform the PA
A in Example 5.2 into a datalog∼,� program PA. Then
we show how to translate PA back into a (different) PA
B. Using one intentional predicate for each transition, say
R1, R2, R3 for respectively the transition (q0, x2 = x4, q1),
(q1, x5 = x4, q1), and (q1, x5 = x7, q2), the datalog∼,� pro-
gram PA for A in Example 5.2 is constructed as follows,

• r1 : R0() :- γ(q0), R1(x2),

• r2 : R1(x2) :- x2 = x4, γ(q1), R2(x5),

• r3 : R1(x2) :- x2 = x4, γ(q1), R3(x5),

• r4 : R2(x5) :- x5 = x′4, γ
′(q1), R2(x′5),

• r5 : R2(x5) :- x5 = x′4, γ
′(q1), R3(x′5),

• r6 : R3(x5) :- x5 = x7, γ(q2),

where x′i’s are new variables and γ′(q1) is obtained from
γ(q1) by replacing each variable xi with x′i.

Note here we abuse the notations a bit: For instance, by
γ(q0), we mean the tuple of atomic formulas occurring in
γ(q0). Similarly for γ(q1), γ(q2), γ′(q1).

With one state per rule, we can translate PA back into
the PA B = ({r1, . . . , r6}, {r1}, {r6}, γ1,∆1) illustrated in
Figure 2, where for every i : 1 ≤ i ≤ 6, γ1(ri) is an existential
quantification of the conjunction of the extensional atoms
in the body of the rule ri, e.g. γ1(r2) = ∃x4∃x6(x2 = x4 ∧
γ(q1)), with variables x2 and x5 free.

r1

r2

r6

x2 = x2

r3

x′
5 = x5

r4

r5

x2 = x2

x5 = x5

x5 = x5

x5 = x5

x′
5 = x5

x′
5 = x5

Figure 2: Transformation from datalog∼,� to PA

From Theorem 5.3 and Proposition 3.1, we know that the
nonemptiness of PA of arity two is already undecidable over
data trees (actually even over trees). On the other hand, in
the following, we will prove that the nonemptiness problem
for unary PA is decidable over data trees.

Theorem 5.5. The nonemptiness problem for unary PA
over data trees is in 2Exptime and Exptime-hard.

Using the previous theorem, it follows that:

Corollary 5.6. The emptiness problem for linear
monadic datalog∼,� programs over data trees is in 2Exptime
and Exptime-hard.

Before giving the proof of the theorem, we need some ad-
ditional notations.

Let P be a pattern and x a variable in P . Then the set of
all variables y in P (in particular, x itself) such that there is a
sequence of variables z1, . . . , zk satisfying that z1 = x, zk = y
and for every i : 1 ≤ i < k, child(zi, zi+1) or child(zi+1, zi)
or zi = zi+1, is called a component of P . A local pattern
is a pattern with a unique component, which is the set of
all its variables. Then a non-local pattern has at least two
distinct components.

Definition 5.7. Let A = (Q, I, F, γ,∆) be a unary PA. A
run ρ of A is said to be local if the following two conditions
are satisfied:

• for every (q, ψ, q′) in ρ, the constraint ψ(x, y) has an
atomic formula of the form child(x, y), or child−1(x, y),
or x = y.

• for every two consecutive transitions (q, ψ, q′), (q′, ψ′, q′′)
in ρ, if ψ(x, y) and ψ′(x′, y′) (where x ∈ Free(γ(q)),
y, x′ ∈ Free(γ(q′)) and y′ ∈ Free(γ(q′′))), then x′, y
belong to the same component of γ(q′). Notice that in
this case, every matching of γ(q′) maps x′, y to nodes
that are at bounded distance in the tree.

A run ρ of A is said to be global if for every (q, ψ, q′) in ρ,
the constraint ψ(x, y) is such that every conjunct is of the
form α(x, y) with α ∈ {desc, desc−1,∼,�, 6=}.

A two-way nondeterministic tree walking automaton over
ranked trees (TWA for short) is a finite state automaton
with transitions defined by the rules of the following form:
“if the current state is q and the reading head is at some
node n labeled by σ, then the state changes to q′, and the
reading head goes to the parent of n or goes to the i-th child
of n (where i ∈ N)”. Such an automaton starts at the root
and accepts if it reaches a final state.

We are ready to present the proof of Theorem 5.5 and we
first focus on the upper bound.

Upper bound
The proof schema of the upper bound goes as follows.

1. First we show how to decide in polynomial time whether
a unary PA has a global accepting run.

2. Second we show how to decide in doubly exponential
time whether a unary PA has some local accepting run.
Here we use tree-walking automata.

3. Finally, we combine the previous proof ideas to show
the general case.

For the proposition below, recall that we assume that all
invariants and constraints in our PA are satisfiable.

Global runs for unary PA

Proposition 5.8. The following question is in PTIME.
Given a unary PA and two states q, q′, does a data tree

exist with a global run from q to q′?

Proof. We prove the result by showing the following
claim.

Claim. There exists a data tree with a global run
from q to q′ iff state q′ can be reached from q in
the transition graph of A by global transitions,
only.

The “only if” direction is immediate. For the “if” direction
let us consider a path (q0, ψ1, q1)(q1, ψ2, q2), . . . , (qk−1, ψk, qk)
in the transition graph of A, such that q = q0, qk = q′, and
all transitions (qi−1, ψi, qi) are global. Recall that we assume
that all state invariants (and constraints) are satisfiable. So
for each i, let si be a data tree such that there is a matching
from γ(qi) to si. We show how to construct a data tree t,
together with a run

(q0, π0)(q0, ψ1, q1)(q1, π1) · · · (qk−1, ψk, qk)(qk, πk)

of A on t.
Suppose that t′ is already defined, together with a run

(q0, π0)(q0, ψ1, q1)(q1, π1) · · · (qi, πi) on t′. The construction
procedure goes as follows.

• If ψi+1 requires desc(x, y) (with x in γ(qi), y in γ(qi+1)),
then let ρ be a path in t′ to which πi(x) belongs and
n be the leaf of t′ in ρ. We extend t′ by attaching s′i+1

as a subtree of n, where s′i+1 is obtained from si+1

by renaming possibly data values to account for data
constraints in ψi+1.

• If ψi+1 requires desc−1(x, y) (with x in γ(qi), y in
γ(qi+1)), then let π be a matching of γ(qi+1) to si+1,
ρ be a path in si+1 to which π(y) belongs to, and n be
the leaf of si+1 in ρ. We extend t′ by attaching t′ as a
subtree of n in s′i+1, where s′i+1 is obtained from si+1

by renaming possibly data values to account for data
constraints in ψi+1.

• Otherwise, we extend t′ by choosing an arbitrary node
n in t′ and attaching s′i+1 as a subtree of n, where s′i+1

is obtained from si+1 just as before.

Step 2 of the upper bound proof is more complicated. We
start with the slightly simpler case where all state invariants
γ(q) of a unary PA A are local patterns.

Suppose A = (Q, I, F, γ,∆) is a unary PA such that all
its state invariants are local patterns. Because we are con-
cerned with the existence of local accepting runs, we as-
sume that each transition (q, ψ, q′) in A is such that the
constraint ψ(x, y) is local, i.e. ψ(x, y) contains an atomic
formula child(x, y) or child−1(x, y) or x = y. Let PA be the
collection of all local patterns occurring in A.

In the following, when we mention accepting runs of A,
we always mean local accepting runs.

Proposition 5.9. Let A be a unary PA such that all its
state invariants are local patterns and for each transition
(q, ψ, q′) of A, the constraint ψ(x, y) is local. Then A can be
transformed into an equivalent unary PA A1 in linear time
such that all the state invariants of A1 are still local patterns,
and for each transition (q, ψ, q′) of A1, the constraint ψ(x, y)
is equal to x = y.

By Proposition 5.9 we assume in the following that:

For every transition (q, ψ, q′) in A, ψ is equal to
x = y for some variables x, y.

The algorithm to decide the existence of local accepting
runs for A (for local invariants) goes as follows.

1. At first, a concept of “backbones of accepting runs” is
defined and it is shown that the nonemptiness of A can
be reduced to the nonemptiness of a PA A′ to check
the existence of “accepting” backbones. Moreover, the
size of A′ is polynomial over the size of A.

2. We show that if A′ is nonempty, then it accepts a data
tree where every node have exponentially many chil-
dren (with respect to the size of A′).

3. In addition, we prove that if A′ is nonempty, then A′

accepts a data tree containing only exponentially many
data values.

4. Finally A′ can be seen as a TWA B over ranked (non-
data) trees with exponentially many states.

Because it is known that the nonemptiness of a TWA
over ranked trees can be solved in exponential time, it fol-
lows that the existence of local accepting runs of a unary
PA where all the state invariants are local patterns, can be
solved in doubly exponential time.

Before presenting the detailed proof, we introduce some
vocabulary. Let t be a tree or data tree. We use paths and
walks to distinguish between directed paths and undirected
paths in t. A path from n to n′ in t is a sequence of nodes
n1, . . . , nk in t such that n1 = n, nk = n′, and for every
i : 1 ≤ i < k, child(ni, ni+1) holds in t. Note that the
sequence n1 . . . nk in a path of t must be non-repeating. On
the other hand, a walk between n and n′ in t is a sequence of
vertices n1, . . . , nk such that n1 = n, nk = n′, and for every
i : 1 ≤ i < k, child(ni, ni+1) or child(ni+1, ni) holds in t.
A walk n1 . . . nk is simple if n1 . . . nk is non-repeating. It is
easy to observe that for every two distinct nodes in trees or
data trees, there is a unique simple walk between them.

Backbones of accepting runs
Let ρ = (q0, π0)(q0, ψ1, q1)(q1, π1) . . . (qk−1, ψk, qk)(qk, πk)

be an accepting run of A over a data tree t.
Let x0, x1,1, x1,2, . . . , xk−1,1, xk−1,2, xk be a list of vari-

ables such that ψ1 = (x0 = x1,1), ψk = (xk−1,2 = xk),
and for every 1 < i < k, ψi = (xi−1,2 = xi,1). In addi-
tion, for every 1 ≤ i < k, let πt[xi,1, xi,2] denote the unique
simple walk between πi(xi,1) and πi(xi,2) in t.

The backbone of ρ is the walk

πt[x1,1, x1,2], πt[x2,1, x2,2], . . . , πt[xk−1,1, xk−1,2].

Note that in general the backbone of an accepting run is
not a simple walk in t.

Roughly speaking, the backbone of an accepting run de-
scribes all the essential information of the run. Thus the
nonemptiness of a local unary PA is reduced to the exis-
tence of an “accepting” backbone.

Example 5.10 The backbone of an accepting run for the
PA in Example 5.2 is the (simple) walk consisting of the
downward path of b-nodes. Each πt[xj,1, xj,2] is a child-edge
from one b-node to the next b-node.

We define a unary PA A′ = (Q′, I ′, F ′, γ′,∆′) from A as
follows.

• Q′ = {(y, q, x) | x, y ∈ Free(γ(q))},

• I ′ = {(y, q, x) | q ∈ I}, F ′ = {(y, q, x) | q ∈ F},

• For every state (y, q, x) ∈ Q′, the invariant γ′((y, q, x))
is defined as follows. Let first P ′q be the data pat-
tern obtained from γ(q) by applying successively the
following operation until no more new constraints are
obtained:

– if x ∼ y and y ∼ z are two atomic formulas, then
x ∼ z is added,

– if x ∼ y and y � z are two atomic formulas, then
x � z is added.

The invariant γ′((y, q, x)) is now defined as P ′q restricted
to the set of nodes consisting of all ancestors of x, y in
γ(q), and of all nodes on the unique simple walk be-
tween x and y in γ(q).

• ((y1, q, x1), ψ, (y2, q
′, x2)) ∈ ∆′ if (q, ψ, q′) ∈ ∆ and

ψ = (x1 = y2).

Remark 5.11. Note that each state invariant γ′((y, q, x))
in A′ is either a tree consisting of exactly a path (if x is the
ancestor of y or vice versa), or a tree consisting of three

paths sharing a common endpoint (if neither x is the ances-
tor of y nor y is the ancestor of x). In the PA of Example 5.2
all invariants γ′((y, q, x)) are a single child-edge between two
b-nodes.

The following lemma is shown by completing every ac-
cepting run of A′ to an accepting run of A. This is possible,
since every matching of state invariants in A′ can be lifted
to a matching of state invariants in A by adding subtrees.

Lemma 5.12. A is nonempty iff A′ is nonempty.

In the following, we let r denote the maximum size of the
state invariants of A′.

Bounding the number of branches
We introduce some additional notations.
Let

ρ =

((x0,1, q0, x0,2), π0)((x0,1, q0, x0,2), ψ1, (x1,1, q1, x1,2))
((x1,1, q1, x1,2), π1) . . .

((xk−1,1, qk−1, xk−1,2), ψk, (xk,1, qk, xk,2))
((xk,1, qk, xk,2), πk)

be an accepting run of A′ over a data tree t. As in the
definition of backbones of the accepting runs of A, we can
define the simple walks πt[xi,1, xi,2] for every i : 0 ≤ i ≤ k.
Suppose that n is a node in t and i : 1 ≤ i ≤ k. The
simple walk πt[xi,1, xi,2] is said to be around n if n appears
in πt[xi,1, xi,2].

Lemma 5.13. If A′ is nonempty, then it accepts a data
tree where each node has at most exponentially many chil-
dren.

Proof. (sketch) Suppose A′ is nonempty and

ρ =

((x0,1, q0, x0,2), π0)((x0,1, q0, x0,2), ψ1, (x1,1, q1, x1,2))
((x1,1, q1, x1,2), π1) . . .

((xk−1,1, qk−1, xk−1,2), ψk, (xk,1, qk, xk,2))
((xk,1, qk, xk,2), πk)

is an accepting run of A′ over a data tree t.
By a technical argument, we can show that there exists

another tree t′ and an accepting run ρ′ over t′ such that any
node n in t′ has exponentially many children. The idea is
to consider all simple walks πt[xi,1, xi,2] around n in ρ, say
πt[xi1,1, xi1,2], . . . , πt[xil,1, xil,2] (where 0 ≤ i1 < · · · < il ≤
k), and modify t and ρ such that ρ′ has only exponentially
many walks around n. For this we consider the set Dc(n)
of data values occurring in ancestors of n at distance at
most r, together with data values in πt[xi1,1, xi1,2] and in
πt[xil,1, xil,2]. If two walks πt[xij1 ,1, xij1 ,2], πt[xij2 ,1, xij2 ,2]
around n have the same (data-free) structure, contain the
same values from Dc(n), and have the same data equality
relation among the nodes, then we can use them, renaming
some data values, in order to get a run ρ′ with less simple
walks around n. The argument is iterated until there are
only exponentially many simple walks around n. Details
can be found in the extended version.

Because only the simple walks around n in ρ′ may visit
the children of t′, it follows that the arity of n in t′ can
be assumed to be at most exponential. This argument is
applied bottom-up for every node n.

From Lemma 5.13, it follows that A′ can be seen as a
unary PA over ranked data trees of exponential arity.

In the following, we restrict our discussion to ranked data
trees of exponential arity.

Bounding the number of data values

Lemma 5.14. If A′ is nonempty (over ranked data trees
of exponential arity), then it accepts a data tree containing
only exponentially many data values.

Proof. Recall that r is the maximum size of the state
invariants of A′. For a ranked data tree t and a node n in
t, let trn denote the subtree of t rooted at n, with all the
descendants of n at distance (strictly) greater than r from
n removed. The profile of trn is the tree trn, with the data
values removed and replaced by the data value (in)equality
relations ∼,� (restricted to trn).

Because all the state invariants in A′ are local patterns,
it is not difficult to observe that

if two data trees t, t′ of the same tree structure
satisfy that for every node n, trn and t′rn have the
same profile, then t is accepted by A′ iff t′ is
accepted by A′.

From the fact that there are at most exponentially many
data values in each of those trn (this is due to the fact that a

2k-ary ranked tree of depth at most r has 2O(kr) nodes), it
follows that if t is a data tree accepted by A′, then some data
renaming can be applied bottom-up to t, and a data tree t′

can be obtained so that for every node n, trn and t′rn have the
same profile, moreover, t′ contains only exponentially many
data values. According to the above observation, it follows
that t′ is accepted by A′.

TWA over ranked trees
From Lemma 5.14, it follows that for the nonemptiness

problem we can restrict our attention to data trees contain-
ing exponentially many data values. By viewing the expo-
nentially many data values as additional labelings, A′ can be
seen as a TWA B over ranked (non-data) trees. Because B

needs to remember only polynomially many such labelings
(data values), in order to check the data constraints in state
invariants of A′, it follows that B has exponentially many
states.

On the other hand, it is known that the nonemptiness of
TWA over ranked trees can be solved in exponential time
[6]. Thus it follows that the nonemptiness of A′, thus the
nonemptiness of A, can be solved in doubly exponential
time.

Local runs for unary PA where state invariants are
not local patterns

Finally to decide the local accepting runs of a unary PA
A, we consider the slightly more general case that the state
invariants of A are not necessarily local patterns. In this sit-
uation, for each state q with the state invariant P in A, there
is a variable x in P such that for every transition into or out
of q, if a variable y in P is used in the transition invariant of
the transition, then y belongs to the same component of P
as x. Therefore, for each state q with the state invariant P ,
we are able to first ignore the variables of P not in the same
component as x and get a unary PA A1 whose state invari-
ants are all local patterns. Moreover, it is easy to see that
A is nonempty iff A1 is nonempty, since from any data tree
t accepted by A1, we can append some additional subtrees

to t and get a tree t′ accepted by A. Because all the state
invariants of A1 are local patterns, it follows that the algo-
rithm stated above can be used to solve the nonemptiness
of A1, thus also the nonemptiness of A.

Nonemptiness for arbitrary unary PAs
Let A = (Q, I, F, γ,∆) be a unary PA. By the arguments

for the local accepting runs of unary PAs, we can first com-
pute all tuples (q, q′) with q, q′ ∈ Q such that there is a local
run of A from q to q′ over some data tree t. Actually we need
a more precise computation. We say that a run ρ starts in
state q at the i-th component if ρ = (q, π)(q, ψ, q1) · · · and
the variable x ∈ Free(γ(q)) of ψ is mapped by π to the i-th
component of γ(q). Similarly, we say that a run ends in state
q′ at the j-th component. It is clear from the arguments for
local accepting runs of unary PAs that all tuples (q, q′, i, j)
such that there is a data tree with a local run starting at q at
the i-th component and ending at q′ at the j-th component,
can be computed in 2Exptime. Let X be the set of all such
tuples.

Similarly to the proof of Proposition 5.8, we claim that A

is nonempty iff there exist tuples

(q1, q
′
1, i1, j1), . . . , (qk, q

′
k, ik, jk)

in X satisfying the following:

• there exist global runs from some q0 ∈ I to q1, and
from q′k to some qf ∈ F ,

• for every 1 ≤ l < k, either there is a global run from
q′l to ql+1, or otherwise q′l = ql+1 and jl 6= il+1.

The “only if” direction is clear, since every run can be
decomposed as above. For the “if” direction we show as in
Proposition 5.8 how to build a data tree together with an
accepting run of A. Suppose that a data tree t′ together with
a run on t′ from q0 to q′l have been defined. If there exists
a global run from q′l to ql+1, then we proceed as before; if
q′l = ql+1, then we attach a data tree t0 witnessing the local
run for (ql+1, q

′
l+1, il+1, jl+1) at a proper place of t′ according

to the relative position of the jl-th component and il+1-th
component in γ(q′l), by renaming some data values in t0
according to γ(q′l).

Lower bound
For the lower bound, we show a polynomial-time reduction
from Pspace alternating Turing machines to the nonempti-
ness of unary PA over data trees. Then the lower bound
follows from the equivalence of Exptime and APspace.

Let M be a polynomial-space alternating Turing machine
and w be an input of length m. We can construct a unary
PA A to simulate the computation of M on w as follows.
Each configuration in the computation of M over w is en-
coded by a path of polynomial length m′ = p(m) and the
computation of M over w is encoded into a tree, by repre-
senting configurations vertically.

The automaton A needs to traverse a (sub)tree represent-
ing an accepting computation tree of M. If the current con-
figuration C is existential then A guesses a branch to go
down. If C is universal, then a first guess downwards is
done, and when returning to C from below, the next guess
downwards needs to be done (we assume that every configu-
ration has 0 or 2 successors, and that we see at the beginning
of the encoding if it is the first or the second successor).

Suppose that from C the automaton went down into a
branch corresponding to C′. The automaton checks that
C ` C′ as follows: going down on C′ it checks the i-th
position of C′ w.r.t. the i-th position in C. Notice that
the latter is the (unique) position located at distance m′+ 1
upwards, so this can be expressed by the state invariants and
the transition constraints (formally we have a disjunction on
polynomially many cases accounting for the symbols that
should occur at some in C′ and C, respectively; this can be
handled by nondeterministic transitions of A).

Remark 5.15. Over data words, we can show that the up-
per and lower bound match, and the nonemptiness problem
of unary PA is Pspace-complete.

Moreover, if we assume that all the data tree patterns in a
unary PA A are over the schema S∼, instead of S∼,�, then
we basically have no data values, since all values can be made
equal. So we have to consider TWA over unranked trees and
the complexity can be shown to be Exptime-complete.

6. RELATED WORK
The datalog language has been studied in depth for twenty

five years. The emptiness problem of datalog is decidable [1].
On the other hand, the containment problem is in general
undecidable [16]. As already stated, decidability is obtained
in two restricted settings: (i) the problem of containment
of datalog programs in non-recursive datalog programs [9]
and (ii) the containment problem for monadic datalog pro-
grams [10]. The first problem is 3Exptime-complete and the
second is 2Exptime-complete. The lower bound of the sec-
ond problem is proved in [3]. It is shown in [8, 3] that the
containment for monadic datalog programs becomes more
tractable under some restrictions.

Query languages over data trees have been studied for
less than a decade. Some restrictions of the language XPath
over unranked ordered data trees have been notably studied.
In general, XPath does not allow recursive operators other
than the descendant relation and restricts the use of the node
equality tests. In general, the problem of the satisfiability
of XPath queries is undecidable over unranked ordered data
trees [4]. Decidability for some restricted fragments of the
language is shown in [13]. Other decidable fragments of logic
over data trees with restricted data value comparisons have
been studied. In particular, the satisfiability of the fragment
of first-order logic over data trees using only two variables
is decidable [7].

The language XPath can be generalized to tree pattern
queries or conjunctive queries over unordered data trees that
allow data equality test. [12] studies some kind of tree pat-
terns that have to be mapped to the tree by an injective ho-
momorphism. The problem of the containment of these tree
patterns with equality and inequality tests is undecidable.
However it becomes decidable over bounded depth trees.
The containment of conjunctive queries over unordered data
trees under regular language constraints is considered in [5].
They show the decidability of the fragment where only data
value equalities are allowed and the undecidability when
both data value equalities and inequalities are allowed.

Datalog over trees have been originally considered in [14].
They show that monadic datalog over unranked ordered
trees with the signature first-child, next-sibling, last-child
is equivalent to monadic second order logic on the same sig-
nature. A query language based on recursive patterns is

introduced in [2]. They show that for some restricted form
of data value equalities, the problem of containment of two
recursive patterns is decidable.

7. CONCLUSION
We have presented an in-depth study of the analysis of

datalog programs over data trees. We have shown that the
structure of data trees greatly complicates the problem. We
have demonstrated that on the other hand, bounding the
depth of the trees simplifies the problem. We have also in-
troduced the new notion of pattern automata that roughly
correspond to linear datalog programs and used them to ob-
tain a novel decidability result in presence of data inequali-
ties.

Some important questions remain open.

• One can consider restrictions on the use of navigational
operators:

– It is proved in [14] that monadic datalog over trees
without data and MSO over trees are equivalent
in absence of the relation desc. This result leads
to the decidability of the containment problem for
monadic datalog programs over trees using only
the relation child (and not desc). The problem is
still open when desc is considered.

– The problem of containment of monadic datalog
programs in unions of conjunctive queries over
data trees is undecidable. This is for data trees
with the operator desc. The question remains for
programs without desc.

• One can consider restrictions on the use of data equal-
ities. Indeed [2] shows that the containment problem,
for a regular language of patterns with data equali-
ties, is decidable when the use of data equalities is
contrained in some manner. It would be interesting
to consider analogous restrictions in the context of the
containment of monadic datalog programs in unions of
conjunctive queries.

• By Corollary 5.6, the emptiness problem for linear
monadic datalog∼,� programs is decidable. On the
other hand, by Proposition 3.1, the emptiness prob-
lem for linear binary datalog∼,� programs is undecid-
able over data trees. The decidability of the emptiness
problem for non-linear and monadic datalog∼,� pro-
grams over data trees remains open.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, B. ten Cate, and Y. Katsis. On the
equivalence of distributed systems with queries and
communication. In ICDT, pages 126–137, 2011.

[3] M. Benedikt, P. Bourhis, and P. Senellart. Monadic
datalog containment. In ICALP (2), pages 79–91,
2012.

[4] M. Benedikt, W. Fan, and F. Geerts. Xpath
satisfiability in the presence of DTDs. J. ACM, 55(2),
2008.

[5] H. Björklund, W. Martens, and T. Schwentick.
Optimizing conjunctive queries over trees using
schema information. In MFCS, pages 132–143, 2008.

[6] M. Bojańczyk. Tree-walking automata. In Language
and Automata Theory and Applications, pages 1–2,
2008. Also available at http://www.mimuw.edu.pl/
∼bojan/papers/twasurvey.pdf.

[7] M. Bojanczyk, A. Muscholl, T. Schwentick, and
L. Segoufin. Two-variable logic on data trees and
XML reasoning. J. ACM, 56(3), 2009.

[8] S. Chaudhuri and M. Y. Vardi. On the complexity of
equivalence between recursive and nonrecursive
datalog programs. In PODS, pages 107–116, 1994.

[9] S. Chaudhuri and M. Y. Vardi. On the equivalence of
recursive and nonrecursive datalog programs. J.
Comput. Syst. Sci., 54(1):61–78, 1997.

[10] S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and
M. Y. Vardi. Decidable optimization problems for
database logic programs (preliminary report). In
STOC, pages 477–490, 1988.

[11] B. Courcelle. Recursive queries and context-free graph
grammars. Theor. Comput. Sci., 78(1):217–244, 1991.

[12] C. David. Complexity of data tree patterns over XML
documents. In MFCS, pages 278–289, 2008.

[13] D. Figueira and L. Segoufin. Bottom-up automata on
data trees and vertical XPath. In T. Schwentick and
C. Dürr, editors, 28th International Symposium on
Theoretical Aspects of Computer Science (STACS
2011), volume 9 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 93–104, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[14] G. Gottlob and C. Koch. Monadic datalog and the
expressive power of languages for web information
extraction. J. ACM, 51(1):74–113, 2004.

[15] F. Neven and T. Schwentick. Query automata over
finite trees. Theor. Comput. Sci., 275(1-2):633–674,
2002.

[16] O. Shmueli. Decidability and expressiveness of logic
queries. In PODS, pages 237–249, 1987.

