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Abstract
Formalisms over infinite alphabets have recently received much focus in the community of the-
oretical computer science. Data automata is a formal model for words over infinite alphabets
proposed by Bojanczyk, Muscholl, Schwentick et. al. in 2006. A data automaton consists of
two parts, a nondeterministic letter-to-letter transducer, and a class condition specified by a
finite automaton over the output alphabet of the transducer, which acts as a condition on the
subsequence of the outputs of the transducer in every class, namely, in every maximal set of po-
sitions with the same data value. It is open whether the nonemptiness of data automata can be
decided with elementary complexity. Very recently, a restriction of data automata with element-
ary complexity, called weak data automata, was proposed by Kara, Schwentick and Tan and its
nonemptiness problem was shown to be in 2-NEXPTIME. In weak data automata, the class condi-
tions are specified by some simple constraints on the number of occurrences of labels occurring in
every class. The aim of this paper is to demonstrate that the commutativity of class conditions
is the genuine reason accounting for the elementary complexity of weak data automata. For this
purpose, we define and investigate commutative data automata, which are data automata with
class conditions restricted to commutative regular languages. We show that while the express-
ive power of commutative data automata is strictly stronger than that of weak data automata,
the nonemptiness problem of this model can still be decided with elementary complexity, more
precisely, in 3-NEXPTIME. In addition, we extend the results to data ω-words and prove that
the nonemptiness of commutative Büchi data automata can be decided in 4-NEXPTIME. We also
provide logical characterizations for commutative (Büchi) data automata, similar to those for
weak (Büchi) data automata.
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1 Introduction

With the momentums from the XML document processing and the verification of computer
programs, formalisms over infinite alphabets have been intensively investigated in recent
years. In the database community, XML documents are usually represented by trees, where
the nodes can have tags together with several attributes e.g. identifiers. While the tags
are from a finite set, the attributes may take values from some infinite domains. On the
other hand, in the verification community, take concurrent systems as an example, if there
are unbounded number of processes in the system, then the behavior of the global system
consists of the sequences of observed events attached with the process identifiers.

With these motivations, researchers in the two communities have investigated various
formalisms over infinite alphabets, to name a few, register automata ([10]), pebble automata
([14]), data automata ([3]), XPath with data values ([7, 8]), LTL with freeze quantifiers ([6]),
Conference title on which this volume is based on.
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as well as two-variable logic interpreted on the words or trees over infinite alphabets ([3, 2]).
A survey on this topic can be found in [16].

By infinite alphabet, we mean Σ×D, with Σ a finite set of tags (labels) and D an infinite
data domain. Words and trees over the alphabet Σ×D are called data words and data trees.

Data automata was introduced by Bojanczyk, Muscholl, Schwentick, et. al. in [3] to
prove the decidability of two-variable logic over data words. A data automaton D over data
words consists of two parts, a nondeterministic letter-to-letter transducer A , and a class
condition specified by a finite automaton B over the output alphabet of A , which acts as a
condition on the subsequence of the outputs of A in every class, namely, every maximal set
of positions with the same data value. By a reduction to the reachability problem of Petri
nets (also called multicounter machines), the nonemptiness of data automata was shown to
be decidable. On the other hand, data automata is also powerful enough to simulate petri
nets easily. Since it is a well-known open problem whether the complexity of the reachability
problem for petri nets is elementary, it is also not known whether the nonemptiness of data
automata can be decided with elementary complexity.

Aiming at lowering down the complexity of data automata, a restriction of data automata,
called weak data automata, was introduced and investigated very recently by Kara, Schwentick,
and Tan ([11]). In weak data automata, the class conditions are replaced by some simple
constraints on the number of occurrences of labels occurring in every class. The nonemptiness
of weak data automata can be decided with elementary complexity, more precisely, can be
decided in 2-NEXPTIME.

By comparing data automata with weak data automata, we notice that to simulate Petri
nets in data automata, the ability to express the property La<b, “for every occurrence of
a, there is an occurrence of b on the right with the same data value”, is crucial; on the
other hand, as shown in [11], La<b is not expressible in weak data automata. It is a simple
observation that La<b is a non-commutative language while the class conditions of weak data
automata are commutative. This suggests that the commutativity of class conditions might
be the genuine reason accounting for the elementary complexity of weak data automata. With
this observation, we are motivated to define and investigate commutative data automata,
which are data automata with class conditions restricted to commutative regular languages.
We would like to see that the nonemptiness of commutative data automata can still be
decided with elementary complexity, even though they have stronger class conditions than
weak data automata. This is indeed the case, as we will show in this paper.

More specifically, the contributions of this paper consist of the following three aspects.
1. At first, we investigate the expressibility issues of commutative data automata. We show

that the expressive power of commutative data automata lies strictly between that of
data automata and weak data automata. In addition, commutative data automata are
closed under intersection and union, but not closed under complementation. We also
present a logical characterization of commutative data automata, similar to that for weak
data automata.

2. The nonemptiness of commutative data automata can be decided in 3-NEXPTIME, which
is the main result of this paper.

3. At last, we extend the results to the data ω-words. We define commutative Büchi data
automata and prove that the nonemptiness of commutative Büchi data automata can be
decided in 4-NEXPTIME.
The main ideas of most of the proofs in this paper come from those for weak data

automata ([11, 5]). Nevertheless, some proof steps become much more complicated as a result
of the additional intricacies brought upon by the stronger class conditions in commutative
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data automata.

Related work.
Several variants of data automata have been investigated. Bojanczyk and Lasota
proposed an (undecidable) extension of data automata, called class automata, to
capture the full XPath with data values; in addition, they established the correspond-
ences of various class conditions of class automata with the various models of counter
machines ([1]). Wu continued this line of research by introducing another decidable
extension of data automata and establishing the correspondence with priority mul-
ticounter machines ([19]). There is another automata model, called class counting
automata, relevant to this paper. Class counting automata was proposed by Manuel
and Ramanujan in [12]. In class counting automata, each data value is assigned a
counter; and in each transition step, if the value of the counter corresponding to the
current data value satisfies some constraint, then the value of the counter is updated
according to a prescribed instruction. The nonemptiness of class counting automata
was shown to be EXPSPACE-complete. Nevertheless, the expressive power of class
counting automata is relatively weak, for instance, the property “Each data value
occurs exactly twice” cannot be expressed by class counting automata, while this
property can be easily expressed by commutative data automata.
Commutative regular languages have been investigated by many researchers. Pin
presented a counting characterization of the expressibility of commutative regular
languages ([15]). Gomez and Alvarez investigated how commutative regular lan-
guages can be learned from positive and negative examples ([9]). Chrobak, Martinez
and To proposed polynomial time algorithms to obtain regular expressions from
nondeterministic finite automata over unary alphabets ([4, 13, 18]).
The rest of this paper is organized as follows. Some preliminaries are given in the

next section. Then in Section 3, the expressibility of commutative data automata are
investigated. Section 4 includes the main result of this paper, a 3-NEXPTIME algorithm
for the nonemptiness of commutative data automata. The results are extended to data
ω-words in Section 5. Finally in Section 6, some conclusions are given and the future work
are discussed. The missing proofs can be found in the appendix.

2 Preliminaries
In this section, we fix the notations used in this paper.

Let Σ be a finite alphabet. A finite word over Σ is an element of Σ∗ and a ω-word over Σ
is an element of Σω.

2.1 Presburger formulas and Commutative regular languages
Existential Presburger formulas (EP formulas) over a variable set X are formulas of the
form ∃x̄ϕ, where ϕ is a quantifier-free Presburger formula, i.e. a Boolean combination of
atomic formulas of the form t ≥ c, or t ≤ c, or t = c, or t ≡ r mod p, where c, r, p ∈ N,
p ≥ 2, 0 ≤ r < p and t is a term defined by t := c(c ∈ N) | cx(c ∈ N, x ∈ X) | t1 + t2 | t1 − t2.

Suppose Σ = {σ1, . . . , σk} and v ∈ Σ∗. The Parikh image of v, denoted by Parikh(v),
is a k-tuple (#v(σ1), . . . ,#v(σk)), where for each i : 1 ≤ i ≤ k, #v(σi) is the number of
occurrences of σi in v. Let VΣ = {xσ1 , . . . , xσk} and ϕ be a EP formula with free variables
from VΣ. The word v is said to satisfy ϕ, denoted by v |= ϕ, iff ϕ[Parikh(v)] holds. The
language defined by ϕ, denoted by L(ϕ), is the set of words v ∈ Σ∗ such that v |= ϕ.

A Presburger automaton over the alphabet Σ is a binary tuple (A , ϕ), where A is a
finite automaton over the alphabet Σ and ϕ is a EP formula with free variables from VΣ. A
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word v ∈ Σ∗ is accepted by a Presburger automaton (A , ϕ) iff v is accepted by A and at
the same time v |= ϕ[Parikh(v)]. The language accepted by a Presburger automaton (A , ϕ),
denoted by L((A , ϕ)), is the set of words accepted by (A , ϕ).

I Theorem 1 ([17]). The nonemptiness of Presburger automata can be decided in NP.

Let L be a language over the alphabet Σ. Then L is commutative iff for any u, v ∈ Σ∗,
uv ∈ L iff vu ∈ L. Commutative regular languages have a characterization in quantifier-free
simple Presburger formulas defined in the following.

Quantifier-free simple Presburger formulas (QFSP formulas) over a variable set X are
Boolean combinations of atomic formulas of the form x1 + · · ·+ xn ≤ c, or x1 + · · ·+ xn ≥ c,
or x1 + · · · + xn = c, or x1 + · · · + xn ≡ r mod p, where x1, . . . , xn ∈ X, c, r, p ∈ N, and
0 ≤ r < p.

Let VΣ = {xσ1 , . . . , xσk} and ϕ be a QFSP formula over the variable set VΣ. Similar to
EP formulas, we can define L(ϕ), the language defined by ϕ.

For a set of variables {x1, . . . , xk}, we use the notation ϕ(x1, . . . , xk) to denote a EP or
QFSP formula ϕ with the free variables from {x1, . . . , xk}.

I Proposition 2 ([15]). Let L be a regular language over the alphabet Σ = {σ1, . . . , σk}. Then
L is commutative iff L is defined by a QFSP formula ϕ(xσ1 , . . . , xσk).

The size of a EP or QFSP formula ϕ, denoted by |ϕ|, is defined as the length of a binary
encoding of ϕ (where the constants c, r and p are encoded in binary).

I Proposition 3. Let ϕ(x1, . . . , xk) be a QFSP formula. Then there exists an exponential-time
algorithm to transform ϕ into a QFSP formula

∨
i:1≤i≤m

ϕi of size 2O(k|ϕ|) such that there is

p0 : 2 ≤ p0 ≤ 2|ϕ| satisfying that
each ϕi is of the form

∧
1≤j≤k

ϕi,j;

for each j : 1 ≤ j ≤ k, ϕi,j is equal to xj = ci,j or xj ≥ p0 ∧ xj ≡ ri,j mod p0 for
ci,j , rij : 0 ≤ ci,j , ri,j < p0;
in addition, those ϕi’s are mutually exclusive.

For a QFSP formula ϕ(x1, . . . , xk), the number p0 and the QFSP formula
∨

i:1≤i≤m
ϕi in

Proposition 3 are called respectively the normalization number and the normal form of ϕ.

2.2 Data words, two-variable logic and data automata
Let Σ be a finite alphabet and D be an infinite set of data values. A data word over Σ is an
element of (Σ×D)∗ and a data ω-word is an element of (Σ×D)ω. Let σ ∈ Σ, a position in a
data word or a data ω-word is called a σ-position if the position is labelled by σ.

Given a data (finite or ω) word w =
(
σ1
d1

)(
σ2
d2

)
. . ., the projection of w to the finite

alphabet Σ, denoted by Proj(w), is the (finite or ω) word σ1σ2 . . . . Let X be a set of
positions in a word w, we use w|X to denote the restriction of w to the positions in X.
Similarly, w|X can be defined for ω-words, data words and data ω-words.

Let FO(+1,∼,Σ) denote the first-order logic with the following atomic formulas, σ(x)
(where σ ∈ Σ), x = y, x + 1 = y, and x ∼ y. Two positions x, y satisfy x + 1 = y

if y is the successor of the position x, and two positions satisfy x ∼ y if they have the
same data value. Let FO2(+1,∼,Σ) denote the two-variable fragment of FO(+1,∼,Σ).
In addition, let EMSO2(+1,∼,Σ) denote the extension of FO2(+1,∼,Σ) by existential
monadic second-order quantifiers in front of the FO2(+1,∼,Σ) formulas.



Zhilin Wu 5

A class of a data (finite or ω) word w is a maximal set of positions in w with the same
data value. Given a class X of a data word w, the class string of w corresponding to X is
Proj(w|X), the projection of w|X .

Let w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
be a data word and ϕ be a QFSP formula over the variable

set VΣ. Then w is said to satisfy the class condition ϕ, denoted by w |=c ϕ, if for each class
X of w, Proj(w|X) |= ϕ[Parikh(Proj(w|X))].

Given a data word w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
, the profile word of w, denoted by Profile(w),

is a word (σ1, s1) . . . (σn, sn) over the alphabet Σ× {⊥,>} such that for each i : 1 ≤ i < n,
si = > (resp. si = ⊥) iff di = di+1 (resp. di 6= di+1), and sn = ⊥ by convention.

A data automaton (DA) D is a tuple (A ,B), where A = (Q1,Σ× {⊥,>},Γ, δ1, q0,1, F1)
is a nondeterministic letter-to-letter transducer with the input alphabet Σ× {⊥,>} and the
output alphabet Γ, and B = (Q2,Γ, δ2, q0,2, F2) is a finite automaton over the alphabet Γ.

A data word w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
is accepted by a data automaton D = (A ,B) iff

there is an accepting run of A over Profile(w) which produces a word γ1 . . . γn such that for
each class X of w′ =

(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
, the class string Proj(w′|X) is accepted by B.

The data language defined by a data automaton D , denoted by L(D), is the set of data
words accepted by D .

A weak data automaton (WDA) is a data automaton (A ,C ), with the class condition C

specified by a collection of
key constraints of the form Key(γ) (where γ ∈ Γ), interpreted as “every two γ-positions
have different data values”,
inclusion constraints of the form D(γ) ⊆

⋃
γ′∈RD(γ′) (where γ ∈ Γ, R ⊆ Γ), interpreted

as “for every data value occurring in a γ-position, there is γ′ ∈ R such that the data
value also occurs in a γ′-position”,
and denial constraints of the form D(γ)∩D(γ′) = ∅ (where γ, γ′ ∈ Γ), interpreted as “no
data value occurs in both a γ-position and a γ′-position”.

A data word w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
is accepted by a weak data automaton D = (A ,C )

iff there is an accepting run of A over Profile(w) which produces a word γ1 . . . γn such that
the data word w′ =

(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
satisfies all the constraints in C .

A commutative data automaton (CDA) D is a binary tuple (A , ϕ) such that A =
(Q,Σ× {⊥,>},Γ, δ, q0, F ) is a letter-to-letter transducer and ϕ is a QFSP formula over the
variable set VΓ.

A data word w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
is accepted by a commutative data automaton

D = (A , ϕ) iff there is an accepting run of A over Profile(w) which produces a word γ1 . . . γn

such that the data word w′ =
(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
satisfies that w′ |=c ϕ.

I Remark. We choose to define the class conditions of commutative data automata by QFSP
formulas, instead of finite automata with commutative transition relations. The main purpose
of this choice is to ease the extension of the results to data ω-words (c.f. Section 5). J

From any WDA (A ,C ), an equivalent CDA (A , ϕC ) can be constructed such that
ϕC :=

∧
C∈C

ϕC , where ϕC is defined as follows,

if C is of the form Key(γ), then ϕC := xγ ≤ 1,
if C is of the form D(γ) ⊆

⋃
γ′∈R

D(γ′), then ϕC := xγ ≥ 1→
∑
γ′∈R

xγ′ ≥ 1,

if C is of the form D(γ) ∩D(γ′) = ∅, then ϕC := xγ ≥ 1→ xγ′ = 0.
I Remark. According to the above reduction of WDA to CDA, we remark that in some
sense, CDA = WDA + Modular constraints in class conditions.
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3 Expressiveness
In this section, we first show that the expressibility of CDA lies strictly between WDA and
DA, then we discuss the closure properties of CDA and provide a logical characterization of
CDA.

I Theorem 4. WDA < CDA < DA.

Proof.
CDA < DA.

It was shown in [11] that the language “for every occurrence of a, there is an occurrence
of b on the right with the same data value” cannot be expressed in WDA. The same proof
can be applied to show that the language is not expressible in CDA. On the other hand, it is
easy to see that the language can be defined by a DA.
WDA < CDA.

It is easy to see that the language “In each class of the data word, the letter a occurs an
even number of times” is expressible in CDA. By some pumping argument, we can show that
the language is not expressible in WDA. J

Similar to data automata, commutative data automata are not closed under complement-
ation.

I Theorem 5. CDAs are closed under union and intersection, but not closed under comple-
mentation.

In the following, we define EMSO2
#(+1,∼,Σ), a counting extension of EMSO2(+1,∼,Σ),

and show that it is expressively equivalent to CDA.
The logic EMSO2

#(+1,∼,Σ) includes all the formulas of the form ∃R1 . . . Rl(ϕ ∧ ∀xψ),
such that ϕ ∈ FO2(+1,∼,Σ, R1, . . . , Rl) and ψ is a Boolean combination of atomic formulas
of the form

∑
τ∈∆

#x∼y∧τ(y)(y) ≥ c, or
∑
τ∈∆

#x∼y∧τ(y)(y) ≤ c, or
∑
τ∈∆

#x∼y∧τ(y)(y) = c, or∑
τ∈∆

#x∼y∧τ(y)(y) ≡ r mod p, satisfying that ∆ ⊆ Σ × 2{R1,...,Rl}, c ∈ N, p ≥ 2, 0 ≤ r < p,

and if τ = (σ,R), then τ(y) = σ(y) ∧
∧

i:1≤i≤l
ηRi(y), where ηRi(y) = Ri(y) if Ri ∈ R, and

ηRi(y) = ¬Ri(y) otherwise.
The semantics of EMSO2(+1,∼,Σ) formulas can be extended naturally to EMSO2

#(+1,∼
,Σ) formulas by interpreting formulas ∀xψ as the counting constraints for each class. Let’s
take the formula ∀x

(
#x∼y∧τ(y)(y) ≥ c

)
as an example: Given a data word w over the

alphabet Σ ∪ 2{R1,...,Rl}, w |= ∀x
(
#x∼y∧τ(y)(y) ≥ c

)
iff for each class X of w, the number

of τ -positions in X is at least c.

I Theorem 6. EMSO2
#(+1,∼,Σ) and CDA are expressively equivalent.

Given a EMSO2
#(+1,∼,Σ) formula ∃R1 . . . Rl(ϕ ∧ ∀xψ), a CDA D = (A , ϕ′) of doubly

exponential size can be constructed such that L(D) = L(∃R1 . . . Rl(ϕ∧∀xψ)). In addition,
the size of the output alphabet of A is at most exponential over the size of ∃R1 . . . Rl(ϕ∧
∀xψ).
Given a CDA D = (A , ϕ), a EMSO2

#(+1,∼,Σ) formula ϕ′ of polynomial size can be
constructed such that L(D) = L(ϕ′).

4 The nonemptiness problem of CDA
I Theorem 7. The nonemptiness of CDA can be decided in 3-NEXPTIME.
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The rest of this section is devoted to the proof of Theorem 7. Although the structure of
the proof is similar to that for WDA in [11, 5], the proofs of several lemmas become more
complicated.

Through this section, let D = (A , ϕ) be a commutative data automaton such that
A = (Q,Σ× {⊥,>},Γ, δ, q0, F ) and ϕ is a QFSP formula over the variable set VΓ.

Because we are concerned with the nonemptiness problem, without loss of generality, we
can assume that A = (Q,Γ× {⊥,>}, δ, q0, F ) is just a finite automaton over the alphabet
Γ× {⊥,>}. Then the nonemptiness of D is reduced to the following problem.

PROBLEM: NONEMPTINESS-PROFILE
INPUT: A finite automaton A = (Q,Γ × {⊥,>}, δ, q0, F ) and a

QFSP formula ϕ over VΓ

QUESTION: is there a data word w over Γ accepted by (A , ϕ), i.e.
Profile(w) is accepted by A and w |=c ϕ?

The outline of the proof goes as follows.
At first, a finite automaton A ′ of exponential size over the alphabet Γ′, and a QFSP
formula ϕ′ in the normal form of doubly exponential size over the variable set VΓ′ , are
constructed from D = (A , ϕ) such that the problem of NONEMPTINESS-PROFILE is
reduced to the following problem,

“is there a locally different data word w over the alphabet Γ′ such that Proj(w) is
accepted by A ′ and w |=c ϕ

′?”
We would like to point out that the finite automaton A ′ runs directly on the projections
of data words, instead of the profile words of them.
Let’s call this problem NONEMPTINESS-LOCALLY-DIFFERENT, which is formally
defined as follows.

PROBLEM: NONEMPTINESS-LOCALLY-DIFFERENT
INPUT: A finite automaton A = (Q,Γ, δ, q0, F ) and a QFSP

formula ϕ over VΓ in the normal form
QUESTION: is there a locally different data word w over Γ accepted

by (A , ϕ), i.e. Proj(w) is accepted by A and w |=c ϕ?

Then a 2-NEXPTIME algorithm is presented to solve the problem of NONEMPTINESS-
LOCALLY-DIFFERENT.
From the above description of the proof outline, it is evident that NONEMPTINESS-

PROFILE can be decided in 4-NEXPTIME. By a finer analysis, the complexity can be shown
in 3-NEXPTIME.

Since the reduction of the problem of NONEMPTINESS-PROFILE to the problem of
NONEMPTINESS-LOCALLY-DIFFERENT completely mimics that for WDA In [11, 5], it
is omitted here due to the lack of space.

In the rest of this section, we will focus on the problem of NONEMPTINESS-LOCALLY-
DIFFERENT. Before presenting an algorithm to solve the problem, we will state and prove
two lemmas.

4.1 Two lemmas
We first introduce some notations.
I Definition 8. Let ϕ =

∨
1≤i≤m

ϕi be a QFSP formula in the normal form over the variable

set VΓ, p0 be the normalization number of ϕ, and for every i : 1 ≤ i ≤ m, ϕi =
∧
γ∈Γ

ϕi,γ , where
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ϕi,γ is either xγ = ci,γ or xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0 for some ci,γ , ri,γ : 0 ≤ ci,γ , ri,γ < p0.
Then for each γ ∈ Γ, define two subsets of {1, . . . ,m}, denoted by IE(ϕ, γ) and IM (ϕ, γ), as
follows: For every i : 1 ≤ i ≤ m,

i ∈ IE(ϕ, γ) iff ϕi,γ is xγ = ci,γ and ci,γ > 0,
i ∈ IM (ϕ, γ) iff ϕi,γ is xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0.
Note that if i 6∈ IE(ϕ, γ) ∪ IM (ϕ, γ), then it holds that ϕi,γ is xγ = ci,γ and ci,γ = 0.

I Definition 9. Let w be a data word over Γ and ϕ =
∨

1≤i≤m
ϕi be a QFSP formula over the

variable set VΓ in the normal form. If w |=c ϕ, then for each data value d occurring in w,
there is a unique i : 1 ≤ i ≤ m such that Proj(w|X) |= ϕi[Parikh(Proj(w|X))], where X is the
class of w corresponding to d. This unique number i is called the index of the class condition
ϕ for d, denoted by idxϕ(d).

We are ready to state and prove the two lemmas.
I Lemma 10. For every QFSP formula ϕ =

∨
1≤i≤m

ϕi over the variable set VΓ in the normal

form, there is an EP formula ψ = ∃y1 . . . ∃ymψ′ of polynomial size such that for each word v
over Γ, v |= ψ[Parikh(v)] iff there is a data word w such that Proj(w) = v and w |=c ϕ.
Proof. Suppose ϕ is a QFSP formula in the normal form over the variable set VΓ with the
normalization number p0. Then ϕ =

∨
i:1≤i≤m

ϕi, where ϕi is of the form
∧
γ∈Γ

ϕi,γ such that

ϕi,γ is equal to xγ = ci,γ or xγ ≥ p0 ∧xγ ≡ ri,γ mod p0 for some ci,γ , ri,γ : 0 ≤ ci,γ , ri,γ < p0.
In addition, those ϕi’s are mutually exclusive.

Let ψ = ∃y1 . . . ∃ymψ′ such that ψ′ is a conjunction of the quantifier-free Presburger
formulas ψ′1, ψ′2, and ψ′3, where

1. ψ′1 :=
∧
γ∈Γ

(
xγ −

( ∑
i∈IE(ϕ,γ)

ci,γyi

)
−

( ∑
i∈IM (ϕ,γ)

(p0 + ri,γ)yi

)
≥ 0
)
. In particular, if

IE(ϕ, γ) = ∅, then
∑

i∈IE(ϕ,γ)
ci,γyi is replaced by 0 in ψ′1. Similarly, if IM (ϕ, γ) = ∅, then∑

i∈IM (ϕ,γ)
(p0 + ri,γ)yi is replaced by 0 in ψ′1.

2. ψ′2 :=
∧
γ∈Γ

(( ∧
i∈IM (ϕ,γ)

yi = 0
)
→ xγ −

( ∑
i∈IE(ϕ,γ)

ci,γyi

)
= 0
)
. In particular, if IM (ϕ, γ) =

∅, then
( ∧
i∈IM (ϕ,γ)

yi = 0
)

is replaced by true; on the other hand, if IE(ϕ, γ) = ∅, then∑
i∈IE(ϕ,γ)

ci,γyi is replaced by 0.

3. ψ′3 :=
∧
γ∈Γ

(
xγ −

( ∑
i∈IE(ϕ,γ)

ci,γyi +
∑

i∈IM (ϕ,γ)
ri,γyi

)
≡ 0 mod p0

)
.

“If” part:
Suppose there is a data word w such that Proj(w) = v and w |=c ϕ, namely, for each class

X in w, Proj(w|X) |= ϕ[Parikh(Proj(w|X))].
For each i : 1 ≤ i ≤ m, let Di be the set of data values d occurring in w such that

idxϕ(d) = i. Note that (Di)1≤i≤m forms a partition of the set of all the data values occurring
in w. In addition, let ki = |Di| for each i : 1 ≤ i ≤ m.

It is sufficient to verify that v |= ψ′[Parikh(v), k] in order to show v |= ψ[Parikh(v)].
Let’s exemplify the argument by demonstrating that v |= ψ′2[Parikh(v), k].
Suppose ki = 0 for each i ∈ IM (ϕ, γ). Then Di = ∅ for each i ∈ IM (ϕ, γ). We want to

show that #v(γ) =
∑

i∈IE(ϕ,γ)
ci,γki.
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For each data value d ∈ Di such that i 6∈ IM (ϕ, γ),
if i ∈ IE(ϕ, γ), i.e. ϕi,γ is equal to xγ = ci,γ and ci,γ > 0, then the letter γ occurs exactly
ci,γ times in the class of w corresponding to d;
if i 6∈ IE(ϕ, γ) ∪ IM (ϕ, γ), i.e. ϕi,γ is equal to xγ = ci,γ and ci,γ = 0, then the letter γ
does not occur in the class of w corresponding to d.

Since (Di)1≤i≤m is a partition of the set of all the data values occurring in w, it follows that
#v(γ) =

∑
i∈IE(ϕ,γ)

ci,γki. So v |= ψ′2[Parikh(v), k].

“Only if” part:
Suppose v |= ψ[Parikh(v)]. Then there are a tuple of numbers k = k1, . . . , km such that

v |= ψ′[Parikh(v), k].
Let K = k1 + · · · + km. Define a function ξ : {1, . . . ,K} → {1, . . . ,m} such that

|ξ−1(i)| = ki for each i : 1 ≤ i ≤ m.
In the following, we assign the data values from {1, . . . ,K} to the positions in v to

get a data word w such that w |=c ϕ, namely, for each class X of w, Proj(w|X) |=
ϕ[Parikh(Proj(w|X))].

From the fact that v |= ψ′1[Parikh(v), k], we know that for each γ ∈ Γ,

#v(γ) ≥
∑

i∈IE(ϕ,γ)

ci,γki +
∑

i∈IM (ϕ,γ)

(p0 + ri,γ)ki.

We assign the data values in {1, . . . ,K} to the positions in v through the following
two-step procedure.
Step 1 For every γ ∈ Γ and every i : 1 ≤ i ≤ m, assign the data values in ξ−1(i) to the

γ-positions in v such that each data value in ξ−1(i) is assigned to exactly (ci,γ) γ-positions
if i ∈ IE(ϕ, γ), and is assigned to exactly (p0 + ri,γ) γ-positions if i ∈ IM (ϕ, γ).

Step 2 For every γ ∈ Γ such that there is i ∈ IM (ϕ, γ) satisfying that ki > 0, select such an
index i and a data value from ξ−1(i), denoted by dγ , and assign dγ to all the γ-positions
which have not been assigned data values after Step 1.
Now all the positions of v have been assigned data values from {1, . . . ,K}, let w be the

resulting data word.
For every γ ∈ Γ, if there are still γ-positions that have not been assigned data values

after Step 1, then #v(γ) >
∑

i∈IE(ϕ,γ)
ci,γki +

∑
i∈IM (ϕ,γ)

(p0 + ri,γ)ki ≥
∑

i∈IE(ϕ,γ)
ci,γki. From

the fact that v |= ψ′2[Parikh(v), k], it follows that there is i ∈ IM (ϕ, γ) such that ki > 0. So a
data value dγ can be selected and assigned to all the pending γ-positions in Step 2.

It remains to show that w |=c ϕ. It is sufficient to prove that for every i : 1 ≤ i ≤ m and
every data value d ∈ ξ−1(i), Proj(w|X) |= ϕi[Parikh(Proj(w|X))], where X is the class of w
corresponding to d. Because Proj(w|X) = v|X and ϕi =

∧
γ∈Γ

ϕi,γ , it is equivalent to show

that for every i : 1 ≤ i ≤ m, d ∈ ξ−1(i), and γ ∈ Γ, we have v|X |= ϕi,γ [#v|X (γ)], where X
is the class of w corresponding to d.

Suppose i : 1 ≤ i ≤ m, d ∈ ξ−1(i), and γ ∈ Γ. Let X be the class of w corresponding to
d. In the following, we show that v|X |= ϕi,γ [#v|X (γ)].

From the data value assignment procedure, we know that there are still
(
#v(γ) −∑

i∈IE(ϕ,γ)
ci,γki −

∑
i∈IM (ϕ,γ)

(p0 + ri,γ)ki
)
γ-positions which have not been assigned data

values after Step 1. Because v |= ψ′3[Parikh(v), k], it follows that #v(γ)−
∑

i∈IE(ϕ,γ)
ci,γki −
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∑
i∈IM (ϕ,γ)

(p0 + ri,γ)ki ≡ 0 mod p0. So there is tγ ∈ N such that #v(γ) −
∑

i∈IE(ϕ,γ)
ci,γki −∑

i∈IM (ϕ,γ)
(p0 + ri,γ)ki = tγp0.

We distinguish between the following three cases.
Case i ∈ IE(ϕ, γ). Then ϕi,γ is xγ = ci,γ and ci,γ > 0. From the data value assignment
procedure, we know that each data value in ξ−1(i), including d, has been assigned to exactly
(ci,γ) γ-positions. This implies that #v|X (γ) = ci,γ . So v|X |= ϕi,γ [#v|X (γ)].
Case i ∈ IM (ϕ, γ). Then ϕi,γ is xγ ≥ p0 ∧xγ ≡ ri,γ mod p0. From the data value assignment
procedure, we know that the data value d is assigned to (p0 + ri,γ) γ-positions if d 6= dγ ,
and assigned to (p0 + ri,γ + tγp0) γ-positions otherwise. Therefore, #v|X (γ) = p0 + ri,γ or
p0 + ri,γ + tγp0. It follows that v|X |= ϕi,γ [#v|X (γ)].
Case i 6∈ IE(ϕ, γ) ∪ IM (ϕ, γ). Then ϕi,γ is xγ = ci,γ and ci,γ = 0. From the data value
assignment procedure, we know that each data value in ξ−1(i), including d, has not been
assigned to any γ-position in v. Therefore, #v|X (γ) = 0 and v|X |= ϕi,γ [#v|X (γ)]. J

I Definition 11. Let ϕ =
∨

1≤i≤m
ϕi be a QFSP formula in the normal form over the variable

set VΓ with the normalization number p0 such that for each i : 1 ≤ i ≤ m, ϕi =
∧
γ∈Γ

ϕi,γ,

where ϕi,γ is xγ = ci,γ or xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0 for 0 ≤ ci,γ , ri,γ < p0. Moreover, for
each i : 1 ≤ i ≤ m, let

hi =
∑

γ:i∈IE(ϕ,γ)

ci,γ +
∑

γ:i∈IM (ϕ,γ)

(p0 + ri,γ).

Let w be a data word over the alphabet Γ, then w is said to satisfy the class condition
ϕ with “many” data values if w |=c ϕ and for each i : 1 ≤ i ≤ m, either ki = 0 or
ki ≥ max (2p0 + 1, 2hi + 3), where ki is the number of data values d occurring in w such
that idxϕ(d) = i.

Let v ∈ Γ∗ and ψ = ∃y1 . . . ∃ymψ′ be the EP formula obtained from ϕ as in Lemma
10. Then v is said to satisfy ψ with “large” numbers if there are a tuple of numbers
k = k1, . . . , km such that v |= ψ′[Parikh(v), k] and for each i : 1 ≤ i ≤ m, either ki = 0 or
ki ≥ max (2p0 + 1, 2hi + 3).

I Lemma 12. Let ϕ =
∨

1≤i≤m

∧
γ∈Γ

ϕi,γ be a QFSP formula in the normal form with the

normalization number p0. Moreover, let ψ = ∃y1 . . . ∃ymψ′ be the EP formula obtained from
ϕ as stated in Lemma 10. Then for any v ∈ Γ∗, v |= ψ with large numbers iff there is a
locally different data word w such that Proj(w) = v and w |=c ϕ with many data values.

Proof. “If” part: Obvious.
“Only if”part:
Suppose v satisfies ψ with large numbers, i.e. there are numbers k = k1, . . . , km such that

v |= ψ′[Parikh(v), k] and for each i : 1 ≤ i ≤ m, either ki = 0 or ki ≥ max(2p0 + 1, 2hi + 3).
Let K = k1 + · · · + km. Define a function ξ : {1, . . . ,K} → {1, . . . ,m} such that

|ξ−1(i)| = ki for each i : 1 ≤ i ≤ m.
As in the proof of Lemma 10, we assign data values in {1, . . . ,K} to the positions of v to

get a desired data word w. The assignment procedure is divided into two steps, Step 1 and
Step 2.
Step 1:

The same as Step 1 of the data value assignment procedure in the proof of the “Only
if” part of Lemma 10.
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After Step 1, we get a partial data word where some positions still have no data values.
Let’s assign a special data value, say ], to all those positions without data values, then we
get a data word w1 =

(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
.

In w1, there may exist positions j such that dj = dj+1 and dj , dj+1 6= ]. Let’s call these
positions as conflicting positions of w1.

Let j be a conflicting position of w1, a = γj , and i : 1 ≤ i ≤ m such that dj ∈ ξ−1(i). From
the description of Step 1, we know that dj occurs exactly hi =

∑
γ:i∈IE(ϕ,γ)

ci,γ +
∑

γ:i∈IM (γ)
(p0 +

ri,γ) times in w1. It follows that there are at most 2hi positions adjacent to a position
with the data value dj . Since ki ≥ max(2p0 + 1, 2hi + 3), it follows that there are (at least)
three positions j′1, j′2, j′3 such that dj′1 , dj′2 , dj′3 ∈ ξ−1(i), dj′1 , dj′2 , dj′3 are pairwise distinct,
γj′1 = γj′2 = γj′3 = a, and dj′1−1, dj′2−1, dj′3−1, dj′1+1, dj′2+1, dj′3+1 6= dj . From this, we deduce
that there is a position j′ such that γj′ = a, dj′ ∈ ξ−1(i), dj′ 6= dj−1, dj , and dj 6= dj′−1, dj′+1.
Because dj′ 6= dj−1, dj+1 (dj+1 = dj since j is conflicting) and dj 6= dj′−1, dj′+1, we can swap
the data value dj in the position j and the data value dj′ in the position j′ to make the two
positions j and j′ non-conflicting. Let w′1 be the data word after the swapping. It follows
that w′1 has less conflicting positions than w1.

Continue like this, we finally get a data word w′′1 without conflicting positions.
But w′′1 may still contain the special data value ]. If this is the case, then from the

description of Step 1, we know that there exists at least one γ ∈ Γ such that #v(γ) >∑
i∈IE(ϕ,γ)

ci,γki +
∑

i∈IM (γ)
(p0 + ri,γ)ki.

Let γ ∈ Γ such that #v(γ) >
∑

i∈IE(ϕ,γ)
ci,γki +

∑
i∈IM (γ)

(p0 + ri,γ)ki.

From the fact that v |= ψ′3[Parikh(v), k], it follows that #v(γ)−
∑

i∈IE(ϕ,γ)
ci,γki−

∑
i∈IM (γ)

(p0+

ri,γ)ki ≡ 0 mod p0. So there is tγ ≥ 1 such that #v(γ)−
∑

i∈IE(ϕ,γ)
ci,γki−

∑
i∈IM (γ)

(p0+ri,γ)ki =

tγp0. Therefore, there are (tγp0) γ-positions in w1 with the data value ]. Because w1 and
w′′1 have the same set of positions with the data value ], it follows that there are also (tγp0)
γ-positions in w′′1 with the data value ]. Let jγ,1 < · · · < jγ,tγp0 be a list of all such γ-positions
in w′′1 .

On the other hand, because v |= ψ′2[Parikh(v), k] and #v(γ) >
∑

i∈IE(ϕ,γ)
ci,γki, it follows

that there is i ∈ IM (ϕ, γ) such that ki > 0. Let iγ be such an index i. Then from the
assumption that v satisfies ψ with large numbers, we know that kiγ ≥ max(2p0 + 1, 2hiγ + 3).
Step 2:

For each γ ∈ Γ such that #v(γ) >
∑

i∈IE(ϕ,γ)
ci,γki +

∑
i∈IM (γ)

(p0 + ri,γ)ki, assign the

data values from {1, . . . ,K} to the γ-positions with the data value ] in w′′1 as follows.
We distinguish between the following two cases.

Case tγ ≥ 2.
Initially set s := 1. Repeat following procedure until s > tγ .

Let J = {jγ,s, jγ,tγ+s, . . . , jγ,tγ(p0−1)+s} and J ′ be the set of all positions
adjacent to a position in J . In addition, let D be the set of data values
(except ]) occurring in the positions belonging to J ′. Because |J | = p0, we
have |D| ≤ 2p0. On the other hand, kiγ ≥ 2p0 + 1, it follows that there is
d ∈ ξ−1(iγ) \D.
Assign the data value d to all the positions in J . Then we still get a non-
conflicting data word, since all the positions in J are not adjacent to each
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other.
Set s := s+ 1.

Case tγ = 1.
Let J = {jγ,1, jγ,2, . . . , jγ,p0} and J ′ be the set of all positions adjacent to a position
in J . In addition, let D be the set of data values (except ]) occurring in the
positions belonging to J ′. Because |J | = p0, we have |D| ≤ 2p0. On the other hand,
kiγ ≥ 2p0 + 1, it follows that there is d ∈ ξ−1(iγ) \D.
Because iγ ∈ IM (ϕ, γ), each data value in ξ−1(iγ) has been assigned to exactly
(p0 + riγ ,γ) γ-positions in Step 1. During Step 1, we can do the assignments in a
way so that all the positions in J , i.e. the p0 γ-positions without data value, are
not adjacent to each other. Therefore, we can assign the data value d to every
position in J and still get a non-conflicting data word.

Let w be the resulting data word after the two steps of data value assignments. Then w is
locally different. Similar to the proof of the “Only if” part of Lemma 10, we can show that for
each i : 1 ≤ i ≤ m and each data value d ∈ ξ−1(i), Proj(w|X) |=c ϕi[Parikh(Proj(w|X))], where
X is the class of w corresponding to d. From this, it follows that for each i : 1 ≤ i ≤ m, the
number of data values in w such that i ∈ idxϕ(d) is equal to ki. Since for each i : 1 ≤ i ≤ m,
either ki = 0 or ki ≥ max(2p0 + 1, 2hi + 3), we conclude that w |=c ϕ with many data
values. J

4.2 Algorithm for NONEMPTINESS-LOCALLY-DIFFERENT
We first give an algorithm for the following problem.

PROBLEM: NONEMPTINESS-LOCALLY-DIFFERENT-MANY
INPUT: A finite automaton A = (Q,Γ, δ, q0, F ) and a QFSP

formula ϕ over VΓ in the normal form
QUESTION: is there a locally different data word w over the alphabet

Γ such that Proj(w) is accepted by A and w |=c ϕ with
many data values?

From Lemma 12, it follows that NONEMPTINESS-LOCALLY-DIFFERENT-MANY can
be solved by the following algorithm.

Suppose the normalization number of ϕ is p0 and ϕ =
∨

i:1≤i≤m

∧
γ∈Γ

ϕi,γ such that

each ϕi,γ is either xγ = ci,γ or xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0 for some ci,γ , ri,γ : 0 ≤
ci,γ , ri,γ < p0. Let ψ = ∃y1 . . . ∃ymψ′ be the existential Presburger formula obtained
from ϕ as stated in Lemma 10. For every i : 1 ≤ i ≤ m, let hi =

∑
γ:i∈IE(ϕ,γ)

ci,γ +∑
γ:i∈IM (ϕ,γ)

(p0 + ri,γ).

1. Construct the following EP formula ψg,

ψg := ∃y1 . . . ∃ym

ψ′ ∧ ∧
1≤i≤m

(yi = 0 ∨ (yi ≥ 2p0 + 1 ∧ yi ≥ 2hi + 3))

 .

2. Decide the nonemptiness of the Presburger automaton (A , ψg).

Now we consider the problem of NONEMPTINESS-LOCALLY-DIFFERENT.
For a data word w ∈ (Γ×D)∗, if w |=c ϕ, then for each i : 1 ≤ i ≤ m, let ki be the number

of data values d occurring in w such that idxϕ(d) = i. For each i : 1 ≤ i ≤ m such that
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ki < max(2p0 + 1, 2hi + 3), if we take the ki data values d such that idxϕ(d) = i as constants,
then the problem of NONEMPTINESS-LOCALLY-DIFFERENT can be solved similar to
the problem of NONEMPTINESS-LOCALLY-DIFFERENT-MANY. More specifically, the
algorithm goes as follows.

1. Guess a set J ⊆ {1, . . . ,m} and sets of constants Dj’s.
a) Guess a set J ⊆ {1, . . . ,m}.
b) For each j ∈ J , guess an integer sj < max(2p0 + 1, 2hi + 3).
c) For each j ∈ J , fix a set Dj = {αj1, . . . , αjsj} of constants such that Dj’s are

mutually disjoint and Dj ∩ D = ∅. Let DJ = ∪j∈JDj.
2. Construct an automaton A ′ over the alphabet Γ ∪ Γ×DJ from (A , ϕ) such that

A ′ accepts a word v = λ1 . . . λn ∈ (Γ ∪ Γ×DJ)∗ iff the following conditions hold.
A symbol (γ, d) appears in v iff there exists j ∈ J such that j ∈ IE(ϕ, γ)∪IM (ϕ, γ)
and d ∈ Dj.
Let u = γ1 . . . γn ∈ Γ∗ such that

γi =
{
λi if λi ∈ Γ,
γ if λi = (γ, d) ∈ Γ×DJ .

Then u is accepted by A .
For any i : 1 ≤ i < n, if λi = (γ, d) and λi+1 = (γ′, d′), then d 6= d′.
For any j ∈ J and any γ ∈ Γ, the following holds: If j ∈ IE(ϕ, γ), then for each
d ∈ Dj, the letter (γ, d) occurs exactly cj,γ times in v. If j ∈ IM (ϕ, γ), then for
each d ∈ Dj, the number of occurrences of the letter (γ, d) is at least p0 and
equal to ri,γ modulo p0.

3. Construct the following EP formula ψg,J ,

ψg,J = ∃y1 . . . ∃ym

ψ′ ∧∧
i∈J

yi = 0 ∧
∧
i 6∈J

(yi ≥ 2p0 + 1 ∧ yi ≥ 2hi + 3)

 .

Note that ψg,J is a EP formula with free variables from VΓ, and contains no
variables x(γ,d) with (γ, d) ∈ Γ×DJ .

4. Decide the nonemptiness of the Presburger automaton (A ′, ψg,J).
The proof of the correctness of the above algorithm for NONEMPTINESS-LOCALLY-

DIFFERENT follows the same line as the proof for SAT-LOCALLY-DIFFERENT in [5].

5 Commutative Büchi data automata
In this section, we consider data automata with commutative class conditions over data
ω-words.

Let Nω = N∪{ω} with the linear order (<) and the addition (+) operation of N extended
in a natural way, i.e. n < ω for any n ∈ N, and ω + n = ω for any n ∈ Nω.

The definition of the Parikh images of finite words can be easily extended to ω-words:
Given an ω-word v over an alphabet Γ = {γ1, . . . , γl}, Parikh(v) = (#v(γ1), . . . ,#v(γl)),
where for each i : 1 ≤ i ≤ l, #v(γi) is still the number of occurrences of γi in v, in particular,
if γi occurs infinitely many times in v, then #v(γi) = ω.

Similar to QFSP formulas, we define ω-QFSP formulas over a variable set X as follows.
The syntax of ω-QFSP formulas is the same as QFSP formulas, except that the atomic

formulas can also be of the form x = ω (where x ∈ X).
The ω-QFSP formulas are interpreted on Nω: Let π : X → Nω, then the atomic ω-QFSP

formulas are interpreted as follows,
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π |= x1 + · · ·+ xn op c if π(x1) + · · ·+ π(xn) op c, where op ∈ {≤,≥,=},
π |= x1 + · · ·+xn ≡ r mod p if π(x1)+ · · ·+π(xn) < ω and π(x1)+ · · ·+π(xn) ≡ r mod p,
π |= x = ω if π(x) = ω;

in addition, the Boolean operators are interpreted in a standard way.
Similar to Proposition 3, there is a normal form for ω-QFSP formulas.

I Proposition 13. Let ϕ(x1, . . . , xk) be a ω-QFSP formula. Then there exists an exponential-
time algorithm to transform ϕ into a ω-QFSP formula

∨
i:1≤i≤m

ϕi of size 2O(k|ϕ|) such that

there is p0 : 2 ≤ p0 ≤ 2|ϕ| satisfying that
each ϕi is of the form

∧
1≤j≤k

ϕi,j;

for each j : 1 ≤ j ≤ k, ϕi,j is equal to xj = ci,j or xj ≥ p0 ∧ xj ≡ ri,j mod p0, or xj = ω

for ci,j , rij : 0 ≤ ci,j , ri,j < p0;
in addition, those ϕi’s are mutually exclusive.

Let w be a data ω-word over an alphabet Γ and ϕ be a ω-QFSP formula over the variable
set VΓ, then the definition of w |=c ϕ, i.e. w satisfies the class condition ϕ, is a natural
extension of that for data words.

A commutative Büchi data automaton (CBDA) is a binary tuple (A , ϕ), where A =
(Q,Σ× {⊥,>},Γ, δ, q0, F ) is a Büchi letter-to-letter transducer and ϕ is a ω-QFSP formula
over the variable set VΓ.

A CBDA (A , ϕ) accepts a data ω-word w =
(
σ1
d1

)(
σ2
d2

)
. . .
(
σn
dn

)
if there is an accepting

run of A over Profile(w) which produces a ω-word γ1γ2 . . . such that the data ω-word
w′ =

(
γ1
d1

)(
γ2
d2

)
. . . . . . satisfies that w′ |=c ϕ.

Similar to the logic EMSO2
#(+1,∼,Σ) in Section 3, we define the logic E∞MSO2

#(+1,∼
,Σ) as follows: It includes all the formulas ∃∞R1 . . . ∃∞Rk∃S1 . . . ∃Sl(ϕ ∧ ∀xψ), where
ϕ ∈ FO2(+1,∼,Σ, R1, . . . , Rk, S1, . . . , Sl) and ψ is the same as the ψ in EMSO2

#(+1,∼,Σ)
formulas, except that the atomic formulas in ψ can be also of the form #x∼y∧τ(y)(y) = ω.

The semantics of E∞MSO2(+1,∼,Σ) formulas are defined similar to EMSO2
#(+1,∼,Σ)

formulas, except that the unary relation symbols R1, . . . , Rk are restricted to bind to infinite
sets and #x∼y∧τ(y)(y) = ω are interpreted as the fact that the symbol τ appears infinitely
many times in the class that contains the position x.

Similar to CDA, we also have the following logical characterization of CBDA.

I Theorem 14. E∞MSO2
#(+1,∼,Σ) and CBDA are expressively equivalent.

The proof of Theorem 14 is similar to that for WBDA in [11].

I Theorem 15. The nonemptiness of CBDA can be decided in 4-NEXPTIME.

The proof of Theorem 15 is by a nondeterminstic exponential time reduction to the
nonemptiness of CDA on data words.

6 Conclusions and future work
In this paper, aiming at finding a formalism which achieves a good balance between ex-
pressibility and complexity, we introduced a natural restriction of data automata, called
commutative data automata, which are data automata with commutative class conditions.
We demonstrated that while the expressive power of commutative data automata is strictly
stronger than weak data automata, it still preserves the virtue of weak data automata,
namely, the elementary complexity for the nonemptiness problem. In addition, we defined
commutative Büchi data automata and extended the results to data ω-words.

There are several directions for the future work.
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At first, we plan to investigate the lower bound for the nonemptiness of commutative
data automata.
It is also interesting to investigate whether the commutative class conditions can be relaxed
to partially commutative languages, while still preserving the elementary complexity.
Finally, it is interesting to investigate whether similar models can be defined for data
trees.
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A Proofs in Section 2

Proposition 2 ([15]). Let L be a regular language over the alphabet Σ = {σ1, . . . , σk}. Then L
is commutative iff L is defined by a QFSP formula ϕ(xσ1 , . . . , xσk).

Proof. “Only if” part:
Let’s first consider the special case that the alphabet Σ = {σ}. Suppose L is defined

by a finite automaton A with n states. It is well-known that a Chrobak normal form for
L(A ), i.e. a union of O(n2) arithmetic progressions σr + σpN (where r = O(n2), p ≤ n), can
be constructed from A in polynomial time ([4, 13, 18]). For every arithmetic progression
σr + σpN, if p = 0, then the arithmetic progression is defined by the QFSP formula xσ = r; if
p = 1, then it is defined by the QFSP formula xσ ≥ r; otherwise, p ≥ 2, then the arithmetic
progression is defined by the QFSP formula xσ ≥ r ∧ xσ ≡ (r mod p) mod p. Let ϕ be the
disjunction of all these QFSP formulas corresponding to the arithmetic progressions, then L
is defined by ϕ.

If the alphabet is not unary, let Σ = {σ1, . . . , σk} for some k ≥ 2. Then for any word
v ∈ Σ∗, v ∈ L iff σ#v(σ1)

1 . . . σ
#v(σk)
k ∈ L.

Suppose A = (Q,Σ, δ, q0, F ) is a finite automaton with commutative transition relation
δ such that L(A ) = L.

Then σ
#v(σ1)
1 . . . σ

#v(σk)
k ∈ L iff there exist q1, . . . , qk such that qk ∈ F and σ

#v(σi)
i ∈

L(A (qi−1, qi)) for each i : 1 ≤ i ≤ k. From the above discussion for the unary alphabets, for
each i : 1 ≤ i ≤ k, a QFSP formula ϕqi−1,qi(xσi) can be constructed from A to define the
unary language

{
σji ∈ L(A (qi−1, qi))

∣∣j ∈ N
}
.

Therefore, L is defined by the QFSP formula ψ =
∨

q∈Qk−1×F

∧
1≤i≤k

ϕqi−1,qi(xσi).

“If” part:
Let ϕ be a QFSP formula. we want to show that for any QFSP formula ϕ, L(ϕ) is a

commutative regular language.
At first, it is not hard to prove that for each atomic QFSP formula ϕ, L(ϕ) is a

commutative regular language. For instance, for the atomic formula xσ ≡ r mod p, there is
a finite automaton which remembers the residual modulo p of the number of occurrences of
the letter γ when reading a word from left to right, and accepts only when the residual is r.

Since QFSP formulas are Boolean combinations of atomic QFSP formulas and commut-
ative regular languages are closed under all Boolean operations, it follows that the languages
defined by QFSP formulas are commutative regular languages. J

Proposition 3. Let ϕ(x1, . . . , xk) be a QFSP formula. Then there exists an exponential-time
algorithm to transform ϕ into a QFSP formula

∨
i:1≤i≤m

ϕi of size 2O(k|ϕ|) such that there is

p0 : 2 ≤ p0 ≤ 2|ϕ| satisfying that
each ϕi is of the form

∧
1≤j≤k

ϕi,j;

for each j : 1 ≤ j ≤ k, ϕi,j is equal to xj = ci,j or xj ≥ p0 ∧ xj ≡ ri,j mod p0 for
ci,j , rij : 0 ≤ ci,j , ri,j < p0;
in addition, those ϕi’s are mutually exclusive.

Proof. Let ϕ(x1, . . . , xk) be a QFSP formula.
Let p1 be the least common multiplier of all those p occurring in the atomic formulas

xi1 + · · ·+ xil ≡ r mod p of ϕ. If there are no formulas of the form xi1 + · · ·+ xil ≡ r mod p
in ϕ, then let p1 = 2. Let p0 be the least multiplier of p1 which is strictly greater than all
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the constants c occurring in the atomic formulas xi1 + · · ·+ xil ≥ c, or xi1 + · · ·+ xil ≤ c, or
xi1 + · · ·+ xil = c of ϕ. It is easy to see that p0 ≤ 2|ϕ|.

The formula ϕ(x1, . . . , xk) can be rewritten into the required form
∨

i:1≤i≤m
ϕi by the

following procedure.
1. Rewrite ϕ into a formula with negation symbols only occurring before the atomic formulas.
2. Remove the negation symbols.

Replace ¬(xi1 + · · ·+ xil ≤ c) by xi1 + · · ·+ xil ≥ c+ 1.
If c > 0, then replace ¬(xi1 + · · ·+xil ≥ c) by xi1 + · · ·+xil ≤ c−1, otherwise, replace
¬(xi1 + · · ·+ xil ≥ c) by false.
If c > 0, then replace ¬(xi1 +· · ·+xil = c) by xi1 +· · ·+xil ≤ c−1∨xi1 +· · ·+xil ≥ c+1,
otherwise, replace ¬(xi1 + · · ·+ xil = c) by xi1 + · · ·+ xil ≥ 1.
Replace ¬(xi1 + · · ·+ xil ≡ r mod p) by

∨
0≤s<p,s6=r

xi1 + · · ·+ xil ≡ s mod p.

3. Replace every atomic formula xi1 + · · ·+ xil ≥ c, xi1 + · · ·+ xil ≤ c, xi1 + · · ·+ xil = c,
and xi1 + · · ·+ xil ≡ r mod p by positive Boolean combinations of atomic formulas of
the form xi ≤ c, xi ≥ c, xi = c, and xi ≡ r mod p.
Let’s take the formula x+ y ≥ 3 and x+ y ≡ 1 mod 3 as examples to explain this step.

The formula x+ y ≥ 3 is equivalent to

x ≥ 3 ∨ y ≥ 3 ∨ (x = 2 ∧ y = 2) ∨ (x = 1 ∧ y = 2) ∨ (x = 2 ∧ y = 1).

While the formula x+ y ≡ 1 mod 3 is equivalent to

(x ≡ 1 mod 3∧y ≡ 0 mod 3)∨(x ≡ 0 mod 3∧y ≡ 1 mod 3)∨(x ≡ 2 mod 3∧y ≡ 2 mod 3).

4. Replace xi ≤ c by
∨
c′≤c

xi = c′.

Replace xi ≥ c by
( ∨
c≤c′<p0

xi = c′

)
∨

∨
0≤r<p0

(xi ≥ p0 ∧ xi ≡ r mod p0).

Replace xi ≡ r mod p by
t−1∨
j=0

xi = jp + r ∨
t−1∨
j=0

(xi ≥ p0 ∧ xi ≡ jp+ r mod p0), where

t = p0/p.
5. Rewrite the formula into a disjunctive normal form

∨
i ψi and only keep those satisfiable

disjuncts in
∨
i ψi.

For each ψi and j : 1 ≤ j ≤ k, let ψi,j be the conjunction of the atomic formulas involving
xj in ψi. If xj does not appear in ψi, let ψi,j := true.
It is not hard to see that each ψi,j is of the form true, xj = c, or xj ≥ p0∧xj ≡ r mod p0,
where 0 ≤ c, r < p0.

6. Make the disjuncts in the disjunctive normal form exclusive.
For each formula ψi,j , if ψi,j = true, then replace ψi,j by ∨

0≤c<p0

xj = c

 ∨ ∨
0≤r<p0

(xj ≥ p0 ∧ xj ≡ r mod p0) .

Finally rewrite the formula into the disjunctive normal form again.

Complexity analysis.



18 Commutative Data Automata

By a simple calculation, we know that after the 4th step, each literal (i.e. atomic
formula or negated atomic formula) in the original formula ϕ is replaced by a positive
Boolean combination of at most 2O(k|ϕ|) atomic formulas, so the size of the formula
after the 4th step is |ϕ|2O(k|ϕ|) = 2O(k|ϕ|).
In the 5th step, the number of distinct disjuncts in the disjunctive normal form is at
most 2k(2p0)k = 2O(k|ϕ|). The running time of the 5th step can be kept in 2O(k|ϕ|)

if some proper combinations and deletions of the disjuncts are applied during the
rewriting process.
The complexity analysis of the 6th step is similar to the 5th step.
Therefore, a formula

∨
i:1≤i≤m

ϕi of the required form with m = 2O(k|ϕ|) can be obtained

from ϕ in exponential time. Since for each i, ϕi =
∧

j:1≤j≤k
ϕi,j , and the size of each ϕi,j

is O(log k+log p0), it follows that the size of
∨

i:1≤i≤m
ϕi is 2O(k|ϕ|)O(k(log k+log p0)) =

2O(k|ϕ|).

J

B Proofs in Section 3

Theorem 4. WDA < CDA < DA.

Proof. We present the details of the proof that the language “In each class of the data word,
the letter a occurs an even number of times” is not expressible in WDA.

Let L denote the language “In each class of the data word, the letter a occurs an even
number of times”.

To the contrary, suppose that L is defined by a WDA D = (A ,C ), where A = (Q, {a}×
{⊥,>},Γ, δ, F ) and C is a collection of key constraints, inclusion constraints and denial
constraints.

Let k = |Q||Γ| + 1. In addition, if |Γ| is odd, then let n = |Γ|k + 1, otherwise let
n = |Γ|k + 2. Note that n is defined to be even.

Suppose w1 = un, where u =
(
a

1

)
. . .

(
a

k

)
. Then Profile(w1) = (a,⊥)kn.

Since n is even, it follows that w1 ∈ L. So w1 is accepted by D , namely, there is an
accepting run of A over w1, say,

(q0, (a,⊥), γ1, q1)(q1, (a,⊥), γ2, q2) . . . (qkn−1, (a,⊥), γkn, qkn),

such that the data word

w′1 =
((

γ1
1

)
. . .

(
γk
k

))
. . .

((
γk(n−1)+1

1

)
. . .

(
γkn
k

))
satisfies all the constraints in C .

Because n ≥ |Γ|k + 1, it follows that there are i, j : 0 ≤ i < j < n such that
γik+1 . . . γ(i+1)k = γjk+1 . . . γ(j+1)k. Therefore, for each d : 1 ≤ d ≤ k, the letter γik+d
occurs at least twice in the class of w′1 corresponding to d.

Consider the sequence (γik+1, qik+1) . . . (γ(i+1)k, q(i+1)k).
Because k = |Q||Γ| + 1, there are r, s : 1 ≤ r < s ≤ k such that (γik+r, qik+r) =

(γik+s, qik+s).
We distinguish between the two cases s ≥ r + 2 and s = r + 1.
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Case s ≥ r + 2.
Let w2 be the data word

uik
(
a

1

)
. . .

(
a

r

)((
a

r + 1

)
. . .

(
a

s

))2(
a

s+ 1

)
. . .

(
a

k

)
u(n−i−1)k.

It is easy to see that w2 is locally different, so Profile(w2) = (a,⊥)kn+s−r. Then

(q0, (a,⊥), γ1, q1) . . . (qik+r−1, (a,⊥), γik+r, qik+r)
((qik+r, (a,⊥), γik+r+1, qik+r+1) . . . (qik+s−1, (a,⊥), γik+s, qik+s))2

(qik+s, (a,⊥), γik+s+1, qik+s+1) . . . (qkn−1, (a,⊥), γkn, qkn)

is an accepting run of A over w2. Let

w′2 =

((
γ1
1

)
. . .

(
γk
k

))
. . .

(
γik+1

1

)
. . .

(
γik+r
r

)((
γik+r+1
r + 1

)
. . .

(
γik+s
s

))2

(
γik+s+1
s+ 1

)
. . .

((
γk(n−1)+1

1

)
. . .

(
γkn
k

)) .

In the following, we show that w′2 satisfies all the constraints in C . Because w′1 satisfies all
the constraints in C , it is sufficient to show that for each constraint in C , w′1 satisfies it iff
w′2 satisfies it.

For each γ ∈ Γ, let Dw′1
(γ) be the set of data values occurring in the γ-positions in w′1.

Similarly Dw′2
(γ) is defined for w′2. From the above construction for w′2, it is not hard to

see that for each γ ∈ Γ, Dw′1
(γ) = Dw′2

(γ). Therefore, w′1 satisfies the inclusion and denial
constraints in C iff w′2 satisfies them.

It remains to show that for each key constraint in C , w′1 satisfies it iff w′2 satisfies it. It
is sufficient to show that for each data value d : 1 ≤ d ≤ k and γ ∈ Γ, #Proj(w′1|X)(γ) ≤ 1 iff
#Proj(w′2|Y )(γ) ≤ 1, where X (resp. Y ) is the class of w′1 (resp. w′2) corresponding to d.

There are two situations.
Let d : 1 ≤ d ≤ r, or s + 1 ≤ d ≤ k, X (resp. Y ) be the class of w′1 (resp. w′2)
corresponding to d.
From the definition of w′1 and w′2, we know that for every γ ∈ Γ, #Proj(w′1|X)(γ) =
#Proj(w′2|Y )(γ), thus, #Proj(w′1|X)(γ) ≤ 1 iff #Proj(w′2|Y )(γ) ≤ 1.
Let d : r + 1 ≤ d ≤ s, X (resp. Y ) be the class of w′1 (resp. w′2) corresponding to d.
For every γ ∈ Γ such that γ 6∈ {γik+r+1, . . . , γik+s}, #Proj(w′1|X)(γ) = #Proj(w′2|Y )(γ).
For every γ ∈ {γik+r+1, . . . , γik+s}, #Proj(w′2|Y )(γ) = #Proj(w′1|X)(γ) + 1. Because we have
γik+1 . . . γi(k+1) = γjk+1 . . . γj(k+1), it follows that for every data value d′ : 1 ≤ d′ ≤ k and
every γ ∈ {γik+1, . . . , γi(k+1)}, #Proj(w′1|Z)(γ) ≥ 2, where Z is the class of w′1 corresponding
to d′. From this, we deduce that for every γ ∈ {γik+r+1, . . . , γik+s}, #Proj(w′1|X)(γ) ≥ 2
and #Proj(w′2|Y )(γ) ≥ 3.
Therefore, we conclude that for every γ ∈ Γ, #Proj(w′1|X)(γ) ≤ 1 iff #Proj(w′2|Y )(γ) ≤ 1.

Consequently, w′2 satisfies all the constraints in C . It follows that w2 is accepted by
(A ,C ), w2 ∈ L.

On the other hand, for every data value d : r + 1 ≤ d ≤ s, we have #Proj(w2|Y )(a) =
#Proj(w1|X)(a) + 1, where X (resp. Y ) is the class of w1 (resp. w2) corresponding to d. From
the fact that w1 ∈ L, it follows that w2 6∈ L, a contradiction.

Case s = r + 1.
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Let w2 be the data word

uik
(
a

1

)
. . .

(
a

r

)(
a

r + 1

)(
a

r

)(
a

r + 2

)
. . .

(
a

k

)
u(n−i−1)k.

Since w2 is locally different, Profile(w2) = (a,⊥)kn+1. Because (γik+r, qik+r) = (γik+r+1, qik+r+1),
it follows that

(q0, (a,⊥), γ1, q1) . . . (qik+r−1, (a,⊥), γik+r, qik+r)
(qik+r, (a,⊥), γik+r+1, qik+r+1)(qik+r+1, (a,⊥), γik+r, qik+r+1)
(qik+r+1, (a,⊥), γik+r+2, qik+r+2) . . . (qkn−1, (a,⊥), γkn, qkn)

is an accepting run of A over w2. Let

w′2 =

((
γ1
1

)
. . .

(
γk
k

))
. . .

(
γik+1

1

)
. . .

(
γik+r
r

)(
γik+r+1
r + 1

)(
γik+r
r

)
(
γik+r+2
r + 2

)
. . .

((
γk(n−1)+1

1

)
. . .

(
γkn
k

)) .

Similar to the argument for the case s ≥ r + 2, we can also show that w′2 satisfies all the
constraints in C , therefore, w2 is accepted by (A ,C ), so w2 ∈ L.

On the other hand, for the class X corresponding to the data value r, there is one more
occurrence of the letter a in the class X. Since w1 ∈ L, it follows that w2 6∈ L, a contradiction
as well. J

Theorem 5. CDAs are closed under union and intersection, but not closed under complement-
ation.

Proof.
Union.
Let D1 = (A1, ϕ1) and D2 = (A2, ϕ2) be two CDAs.
Suppose for each i = 1, 2, Ai = (Qi,Σ× {⊥,>},Γi, δi, q0,i, Fi) and ϕi is a QFSP formula

over the variable set VΓi . Without loss of generality, we assume that Q1 ∩ Q2 = ∅ and
Γ1 ∩ Γ2 = ∅. If this is not the case, then it is easy to construct two CDAs D ′1 and D ′2 which
are equivalent to D1 and D2 respectively and satisfy the above assumption.

Define D = (A , ϕ) as follows.
A nondeterministically chooses A1 or A2 to simulate. More formally, A := (Q,Σ ×
{⊥,>},Γ1 ∪ Γ2, δ, q0, F ), where
Q = Q1 ∪Q2 ∪ {q0},
δ is the union of δ1 and δ2 and the additional transitions from the state q0 defined by
the following rules,
∗ if (q0,1, (σ, s), γ1, q) ∈ δ1, then (q0, (σ, s), γ1, q) ∈ δ;
∗ if (q0,2, (σ, s), γ2, q) ∈ δ2, then (q0, (σ, s), γ2, q) ∈ δ.
F = F1 ∪ F2.

ϕ :=
(
ϕ1 ∧

∑
γ1∈Γ1

xγ1 ≥ 1
)
∨

(
ϕ2 ∧ ∧

∑
γ2∈Γ2

xγ2 ≥ 1
)
.

The two formulas
∑

γ1∈Γ1

xγ1 ≥ 1 and
∑

γ2∈Γ2

xγ2 ≥ 1 are used to avoid the possible interac-

tions between Ai and ϕ3−i in (A , ϕ) (where i = 1, 2).
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Then L(D) = L(D1) ∪ L(D2).
We would like to remark that the construction would be incorrect if we set ϕ := ϕ1 ∨ ϕ2.

For instance, let Σ = {a, b}, and D1 = (A1, ϕ1) and D2 = (A2, ϕ2) be two CDAs defined as
follows.

A1 is the transducer with the input alphabet Σ and it relabels each letter a (resp. b) by
(a, 1) (resp. (b, 1)), ϕ1 := x(a,1) = 0.
A2 is the transducer with the input alphabet Σ and it relabels each letter a (resp. b) by
(a, 2) (resp. (b, 2)), ϕ2 := x(b,2) = 0.

Then L(D1) (resp. L(D2)) is the set of data words which contains no letters a (resp. b).
It follows that the union of L(D1) and L(D2) is the set of data words which contains either
no letters a or no letters b.

If we let A be the CDA defined above and ϕ := x(a,1) = 0 ∨ x(b,2) = 0, then L(A , ϕ)
would accept every data word over Σ: For each data word w over Σ, A chooses A1 to
simulate and outputs (a, 1) or (b, 1) in each position, let w′ be the resulting data word, then
for each class X of w′, w′|X |= x(b,2) = 0, therefore, w′|X |= ϕ.

Intersection.
Let D1 = (A1, ϕ1) and D2 = (A2, ϕ2) be two CDAs.
Suppose for each i = 1, 2, Ai = (Qi,Σ× {⊥,>},Γi, δi, q0,i, Fi) and ϕi is a QFSP formula

over the variable set VΓi .
Define D = (A , ϕ) as follows.
A := (Q1 ×Q2,Σ× {⊥,>},Γ1 × Γ2, δ, (q0,1, q0,2), F ), where
δ is defined by the rule: ((q1, q2), (σ, s), (γ1, γ2), (q′1, q′2)) ∈ δ iff (q1, (σ, s), γ1, q

′
1) ∈ δ1

and (q2, (σ, s), γ2, q
′
2) ∈ δ2.

F = F1 × F2.
ϕ := ϕ′1∧ϕ′2, where ϕ′1 is obtained from ϕ1 by replacing each variable xγ1 with

∑
γ2∈Γ2

x(γ1,γ2)

and ϕ′2 is obtained from ϕ2 by replacing each variable xγ2 with
∑

γ1∈Γ1

x(γ1,γ2).

Then L(D) = L(D1) ∩ L(D2).

Complementation.
Define the language L over the alphabet {a, b} as the set of data words w satisfying the

following conditions,
Proj(w) ∈ a+b+,
each data value in w occurs exactly twice, one in a a-position, and the other in a b-position,
the sequence of data values in a-positions is the same as the sequence of the data values
in b-positions.

For instance, the data word
(
a

1

)(
a

2

)(
b

1

)(
b

2

)
belongs to L, while

(
a

1

)(
a

2

)(
b

2

)(
b

1

)
does not belong to L.

From [3], we know that L is not expressible in DA, thus not expressible in CDA as well.
In the following, we show that L, the complement of L, can be recognized by a CDA.

From this, we conclude that CDAs are not closed under complementation.
Let w be a data word such that w 6∈ L, then there are the following four situations,

1. Proj(w) 6∈ a+b+,
2. there is a data value which occurs in a a-position but not in a b position, or occurs in a

b-position but not in a a-position,
3. there are two a-positions or two b-positions with the same data value,
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4. there are two a-positions, say i, j : i < j, and two b-positions, say k, l : k < l, such
that the data value occurring in i is the same as that occurring in l and the data value
occurring in j is the same as that occurring in k.

Then a CDA D = (A , ϕ) to accept L is defined as the union of the CDAs (Ai, ϕi) (where
i = 1, 2, 3, 4) defined in the following.
(A1, ϕ1):

A1 verifies that Proj(w) 6∈ a+b+.
ϕ1 := true.

(A2, ϕ2):
A2 verifies that Proj(w) ∈ a+b+, moreover, it either guesses an a-position and relabels
it by (a,5), or guesses a b-position and relabels it by (b,5)
ϕ2 is defined as follows,

ϕ2 := (x(a,5) = 1 ∧ xb = 0) ∨ (x(b,5) = 1 ∧ xa = 0) ∨ (x(a,5) = 0 ∧ x(b,5) = 0).

(A3, ϕ3):
A3 verifies that Proj(w) ∈ a+b+, moreover, it either guesses two a-positions and
relabels them by 4, or guesses two b-positions and relabels them by 4.
ϕ3 := x4 = 2 ∨ x4 = 0.

(A4, ϕ4):
A4 verifies that Proj(w) ∈ a+b+, moreover, it guesses two a-positions i, j : i < j,
relabels i by © and j by F, in addition, it guesses two b-positions k, l : k < l, relabels
k by F and l by ©.
ϕ4 is defined as follows,

ϕ4 := (x© = 2 ∧ xF = 0) ∨ (xF = 2 ∧ x© = 0) ∨ (x© = 0 ∧ xF = 0).

Since w ∈ L iff there is i : 1 ≤ i ≤ 4 such that w is accepted by (Ai, ϕi), it follows that
L(A , ϕ) = L. J

Theorem 6. EMSO2
#(+1,∼,Σ) and CDA are expressively equivalent.

Given a EMSO2
#(+1,∼,Σ) formula ∃R1 . . . Rl(ϕ ∧ ∀xψ), a CDA D = (A , ϕ′) of doubly

exponential size can be constructed such that L(D) = L(∃R1 . . . Rl(ϕ∧∀xψ)). In addition,
the size of the output alphabet of A is at most exponential over the size of ∃R1 . . . Rl(ϕ∧
∀xψ).
Given a CDA D = (A , ϕ), a EMSO2

#(+1,∼,Σ) formula ϕ′ of polynomial size can be
constructed such that L(D) = L(ϕ′).

Proof. From EMSO2
#(+1,∼,Σ) to CDA.

Let ∃R1 . . . Rl(ϕ ∧ ∀xψ) be a EMSO2
#(+1,∼,Σ) formula.

According to the results in [11], from the EMSO2(+1,∼,Σ) formula ∃R1 . . . Rlϕ, an
equivalent WDA (A ,C ) of doubly exponential size can be constructed. In particular, the
output alphabet of A , denoted by Γ, is Σ× 2{R1,...,Rl,Rl+1,...,Rm}, where Rl+1, . . . , Rm are
some additional monadic predicates (besides R1, . . . , Rl); in addition, the size of Γ and the
number of constraints in C are both at most exponential over the size of ϕ.

Let ϕ′ be the QFSP formula constructed from C and ψ by the following procedure.
1. Construct a QFSP formula ηC from C as follows: ηC :=

∧
C∈C

ηC , where ηC is defined by

the following rules,
if C is a key constraint Key(γ), then ηC := xγ ≤ 1,
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if C is an inclusion constraint D(γ) ⊆
⋃
γ′∈R

D(γ′), then ηC := xγ ≥ 1→
∑
γ′∈R

xγ′ ≥ 1,

if C is a denial constraint D(γ) ∪D(γ′) = ∅, then ηC := xγ ≥ 1→ xγ′ = 0.

2. Construct a QFSP formula ψ′ from ψ as follows.
Replace each formula of the form

∑
τ∈∆

#x∼y∧τ(y)(y) ≥ c in ψ (where ∆ ⊆ Σ ×

2{R1,...,Rl}) by
∑

γ:(γ|
Σ×2{R1,...,Rl} )∈∆

xγ ≥ c, where γ|Σ×2{R1,...,Rl} is the projection of γ

to Σ× 2{R1,...,Rl} for every γ ∈ Γ.
Apply similar replacements for every formulas of the form

∑
τ∈∆

#x∼y∧τ(y)(y) ≤ c,∑
τ∈∆

#x∼y∧τ(y)(y) = c, and
∑
τ∈∆

#x∼y∧τ(y)(y) ≡ r mod p.

3. Let ϕ′ := ηC ∧ ψ′.

Then the CDA (A , ϕ′) is equivalent to ∃R1 . . . Rl(ϕ ∧ ∀xψ).
From the construction, we know that the size of ψ′ is at most exponential over the

size of ψ. Because both the size of Γ and the number of constraints in C are at most
exponential over the size of ∃R1 . . . Rlϕ, it follows that the size of ηC is at most exponential
over the size of ∃R1 . . . Rlϕ. Therefore, the size of ϕ′ is at most exponential over the size of
∃R1 . . . Rl(ϕ ∧ ∀xψ).

Since the size of A is also at most doubly exponential over the size of ∃R1 . . . Rlϕ, it
follows that the size of the CDA (A , ϕ′) is at most doubly exponential over the size of
∃R1 . . . Rl(ϕ∧ ∀xψ). In addition, the size of the output alphabet of A , namely Γ, is at most
exponential over the size of ∃R1 . . . Rl(ϕ ∧ ∀xψ).

From CDA to EMSO2
#(+1,∼,Σ).

Let D = (A , ϕ) be a CDA such that A = (Q,Σ× {⊥,>},Γ, δ, q0, F ) and ϕ be a QFSP
formula over the variable set VΓ. Suppose Q = {q0, q1, . . . , qn} and Γ = {γ1, . . . , γl}. In
addition, it can be assumed that the initial state q0 only occurs in the beginning of any run
of A .

As proved in [11], from a WDA (A ,C ), an equivalent EMSO2(+1,∼,Σ) formula η of
the following form can be constructed,

η := ∃Rq1 . . . RqnRγ1 . . . Rγl(ϕpart ∧ ϕstart ∧ ϕtrans ∧ ϕaccept ∧ ϕconstr),

where
the formula ϕpart describes the fact that both (Rqi)1≤i≤n and (Rγj )1≤j≤l form a partition
of all the positions in a run,
the formula ϕstart, ϕtrans and ϕaccept describe respectively the state in the first position,
the transition relation and the acceptance condition of the transducer A ,
and the formula ϕconstr describes all the constraints in C .

Let ψ be the formula obtained from the QFSP formula ϕ by replacing the formulas of
the form xγj1 + · · ·+ xγjk ≥ c with(

n∑
s=1

k∑
t=1

#x∼y∧Rqs (y)∧Rγjt (y)(y) ≥ c
)
,

and applying similar replacements for the formulas of the form xγj1 + · · · + xγjk ≤ c,
xγj1 + · · ·+ xγjk = c, and xγj1 + · · ·+ xγjk ≡ r mod p.



24 Commutative Data Automata

Then the desired EMSO2
#(+1,∼,Σ) formula ϕ′ is obtained from η by replacing ϕconstr

with ∀xψ,

ϕ′ := ∃Rq1 . . . RqnRγ1 . . . Rγl(ϕpart ∧ ϕstart ∧ ϕtrans ∧ ϕaccept ∧ ∀xψ).

It is a routine to check that L(ϕ′) = L(D).
Since the size of each of the formulas ϕpart, ϕstart, ϕtrans, ϕaccept is polynomial over the

size of A , and the size of ψ is polynomial over the size of A and the size of ϕ, it follows
that the size of ϕ′ is polynomial over the size of D . J

C Proofs in Section 4

C.1 Reduction to NONEMPTINESS-LOCALLY-DIFFERENT
Suppose A = (Q,Γ× {⊥,>}, δ, q0, F ) and ϕ is a QFSP formula over the variable set VΓ.

Let p0 ≥ 2 be the normalization number of ϕ and ψ =
∨

1≤i≤m

∧
γ∈Γ

ϕi,γ be the normal form

of ϕ.
Let v = γ1 . . . γn ∈ Γ∗. A summary of an interval [i, j] of v, denoted by S([i, j]), is a

function θ : Γ→ {≥, <} × {0, . . . , p0 − 1} such that
θ(γ) = (≥, r) iff there are at least p0 γ-positions in the interval [i, j] and the number of
γ-positions in the interval is equal to r modulo p0.
θ(γ) = (<, c) iff there are exactly c γ-positions in the interval (where c < p0).

Let w =
(
γ1
d1

)(
γ2
d2

)
. . .
(
γn
dn

)
be a data word over Γ. A zone of w is a maximal interval

[i, j] with the same data value, i.e. di = di+1 = · · · = dj , di−1 = di (if i > 1) and dj 6= dj+1
(if j < n). Let θ : Γ → {≥, <} × {0, . . . , p0 − 1}, then a zone is called a θ-zone if the
summary of the zone is θ. Let [1, k1], [k1 + 1, k2], . . . , [kl−1, n] be the collection of all zones
in w. Then the zonal word of w, denoted by Zonal(w), is a data word over the alphabet
Γ ∪ ({≥, <} × {0, . . . , p0 − 1})Γ defined as follows,

Zonal(w) = γ1 . . . γk1

(
θ1
dk1

)
γk1+1 . . . γk2

(
θ2
dk2

)
. . . γkl−1+1 . . . γn

(
θl
dn

)
,

where for each i : 0 ≤ i < l, θi = S([ki + 1, ki+1]) (k0 = 0, kl = n by convention).
Note that the sequence of data values dk1dk2 . . . dn in Zonal(w) is locally different.
In general, we call words of the form

γ1 . . . γk1

(
θ1
d1

)
γk1+1 . . . γk2

(
θ2
d2

)
. . . γkl−1+1 . . . γn

(
θl
dl

)
,

with the sequence of data values d1d2 . . . dl not necessarily locally different, as pseudo-zonal
words. A pseudo-zonal word is called locally different if the sequence of data values occurring
in it is locally different.

Let Θ = ({≥, <} × {0, . . . , p0 − 1})Γ and Γ′ = Γ ∪Θ.
In the following, we will construct a finite automaton A ′ over the alphabet Γ′ and a

QFSP formula ϕ′ over the variable set VΓ′ in the normal form such that there is a data
word w accepted by (A , ϕ) iff there is a locally different pseudo-zonal word w′ accepted by
(A ′, ϕ′).
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The finite automaton A ′ over the alphabet Γ′.
Over a word w = γ1 . . . γk1 θ1 γk1+1 . . . γk2 θ2 . . . γkl−1+1 . . . γn θl (where γ1, . . . , γn ∈ Γ
and θ1, . . . , θl ∈ Θ), which corresponds to the projection of a pseudo-zonal word

w = γ1 . . . γk1

(
θ1
d1

)
γk1+1 . . . γk2

(
θ2
d2

)
. . . γkl−1+1 . . . γn

(
θl
dl

)
,

the finite automaton A ′

simulates the run of A over the word

(γ1,>) . . . (γk1 ,⊥)(γk1+1,>) . . . (γk2 ,⊥) . . . (γkl−1+1,>) . . . (γn,⊥),

checks whether S([ki + 1, ki+1]) = θi for each i : 0 ≤ i < l (where k0 = 0, kl = n).
We remark that A ′ runs on the projections of the pseudo-zonal words, instead of the
profile words of them.
The QFSP formula ϕ′ over the variable set VΓ′ .
The formula ϕ′ is in fact a QFSP formula over the variable set VΘ = {xθ | θ ∈ Θ}. It is
constructed from ψ (the normal form of ϕ) by the following procedure.
1. Replace each atomic formula xγ = c by ∧

θ:π1(θ(γ))=≥

xθ = 0

∧ ∑
θ:π1(θ(γ))=<

π2(θ(γ))xθ = c

 ,

where π1(θ(γ)) and π2(θ(γ)) are respectively the first and second component of θ(γ).
2. Replace each formula xγ ≥ p0 ∧ xγ ≡ r mod p0 by ∨

θ:π1(θ(γ))=≥

xθ ≥ 1
∨ ∑

θ:π1(θ(γ))=<

π2(θ(γ))xθ ≥ p0

∧∑
θ

π2(θ(γ))xθ ≡ r mod p0.

3. Rewrite the formula into the normal form.

Consequently we have reduced the problem of NONEMPTINESS-PROFILE to the
following problem:

Decide whether there is a locally different pseudo-zonal word w accepted by (A ′, ϕ′).

Essentially this problem is the same as the problem of NONEMPTINESS-LOCALLY-
DIFFERENT, except some minor technical differences. Therefore, once we know how to
solve NONEMPTINESS-LOCALLY-DIFFERENT, we also know how to solve this problem
(with the same complexity).

C.2 Complexity analysis
Algorithm for NONEMPTINESS-LOCALLY-DIFFERENT-MANY.

The first step of the algorithm is in polynomial time since the size of ψ is polynomial
over the size of ϕ according to Lemma 10. From Theorem 1, it follows that the second
step can be solved in NP. Therefore, the complexity of the whole algorithm is in NP.

Algorithm for NONEMPTINESS-LOCALLY-DIFFERENT.



26 Commutative Data Automata

Since hi ≤ 2|Γ|p0 for every i : 1 ≤ i ≤ m, it follows that the size of Γ×DJ is at most

|Γ|
∑

1≤i≤m
max(2p0 + 1, 2hi + 3) ≤ m|Γ|(4|Γ|p0 + 3).

For each (γ, d) ∈ Γ × DJ , the automaton A ′ need remember the residual of the
number of (γ, d)-positions modulo p0 and whether it is greater than p0.
Therefore, the size of A ′ is O(|Q|(2p0)|Γ×DJ |) = O(|Q|(2p0)m|Γ|(4|Γ|p0+3)).
Because m ≤ |ϕ| and p0 ≤ 2|ϕ|, it follows that the size of A ′ is O(|Q|)2O(|ϕ|2|Γ|22|ϕ|)

by simple calculations.
The lengths of the binary encodings of p0 and hi’s are polynomial over |ϕ|. In addition,
|ψ| and |J | are both polynomial over |ϕ|. It follows that the size of ψg,J is polynomial
over |ϕ|.
From Theorem 1, we know that the last step of the algorithm is in NP. It follows that
the complexity of the whole algorithm is in 2-NEXPTIME.

Reduction of NONEMPTINESS-PROFILE to NONEMPTINESS-LOCALLY-
DIFFERENT.

From Proposition 3, we know that the size of ψ (the normal form of ϕ) is 2O(|Γ||ϕ|)

and p0 ≤ 2|ϕ|.
The size of A ′ is O(|Q||Θ|) = O(|Q|(2p0)|Γ|) ≤ |Q|2O(|Γ||ϕ|). In addition, the size of
the alphabet Γ′ = Γ ∪Θ is 2O(|Γ||ϕ|).
After the first two steps of the procedure to construct ϕ′ from ψ, the size of the
formula becomes O(|ψ||Θ| log p0 log |Θ|) = 2O(|Γ||ϕ|). The third step of the procedure
transforms the formula into a normal form. From Proposition 3, it follows that the
size of ϕ′ is 2|Θ|2O(|Γ||ϕ|) = 2(2p0)|Γ|2O(|Γ||ϕ|) = 22O(|Γ||ϕ|) . Note that the normalization
number of ϕ′ is still p0 ≤ 2|ϕ|.

Algorithm for NONEMPTINESS-PROFILE.

Let A = (Q,Γ× {⊥,>}, δ, q0, F ) be a finite automaton over the alphabet Γ× {⊥,>}
and ϕ be a QFSP formula over the variable set VΓ.
The nonemptiness of (A , ϕ) is decided by the following procedure.
1. Construct from (A , ϕ) a finite automaton A ′ = (Q′,Γ′, δ′, q′0, F ′) and a QFSP

formula ϕ′ =
∨

1≤i≤m
ϕ′i over the variable set VΓ′ in the normal form (c.f. Section

C.1).
2. Solve the problem of NONEMPTINESS-LOCALLY-DIFFERENT with input

(A ′, ϕ′) (c.f. Section 4.2).
a. Guess a set J ⊆ {1, . . . ,m} and a set of data values DJ .
b. Construct a finite automaton A ′′ = (Q′′,Γ′ ∪ Γ′ ×DJ , δ

′′, q′′0 , F
′′) and an exist-

ential Presburger formula ψg,J .
c. Decide the nonemptiness of the Presburger automaton (A ′′, ψg,J).

From the above analysis, we know that
|Q′|, the size of A ′, is |Q|2O(|Γ||ϕ|),
the size of Γ′ is 2O(|Γ||ϕ|),
the size of ϕ′ is 22O(|Γ||ϕ|) ,
p0, the normalization number of ϕ′, is at most 2|ϕ|,
the size of A ′′ is

O
(
|Q′|(2p0)m|Γ

′|(4|Γ′|p0+3)
)

= O
(
|Q′|(2p0)|ϕ

′||Γ′|(4|Γ′|p0+3)
)

= O(|Q|)222O(|Γ||ϕ|)

,
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the size of ψg,J is polynomial over |ϕ′|, thus 22O(|Γ||ϕ|) .
Since the nonemptiness of (A ′′, ψg,J ) can be decided in NP (Theorem 1), we conclude
that the complexity of the whole algorithm is in 3-NEXPTIME.

D Proofs in Section 5

Theorem 15. The nonemptiness of CBDA can be decided in 4-NEXPTIME.

Proof. We illustrate a nondeterministic exponential-time reduction of nonemptiness of CBDA
to that of CDA.

The main idea of the reduction is the same as the reduction of weak Büchi data automata
(WBDA) to WDA in [11].

In the reduction of WBDA to WDA, from a given WBDA, a nondeterministic polynomial
time algorithm constructs a WDA that accepts the finite witnesses for the WBDA. Similarly,
in the following, from a given CBDA, we will present a nondeterministic exponential time
algorithm to construct a CDA that accepts the finite witnesses for the CBDA. Nevertheless,
the reduction becomes more involved in the following sense.

There is an exponential increase in size of the CDA that accepts the finite witnesses for
the CBDA, compared to that for WBDA, as a result of the modular constraints in the
class conditions.
It is necessary to differentiate the labels that occur infinitely many times from those that
occur only finitely many times, because of the ω-constraints (i.e. constraints of the form
xγ = ω) in the class conditions.

Let (A , ϕ) be a CBDA such that A = (Q,Σ × {⊥,>},Γ, δ, q0, F ) and ϕ is a ω-QFSP
formula over VΓ.

Because we are concerned with the nonemptiness problem, we can assume that A is just
a Büchi automaton (Q,Γ× {⊥,>}, δ, q0, F ). Then the nonemptiness problem becomes into
the following problem,

“is there a data word w over the alphabet Γ such that Profile(w) is accepted by A

and w |=c ϕ?”

In addition, we assume that ϕ is in the normal form
∨

1≤i≤m

∧
γ∈Γ

ϕi,γ , and we will discuss

later the general case that ϕ is not in the normal form. Let p0 be the normalization number
of ϕ.

We first introduce some notations.
An adorned zone of a data word w is a zone together with a state-pair (q, q′) (where

q, q′ ∈ Q). For a zone z of w adorned with a state-pair (q, q′), the triple (Proj(z), q, q′) is
called the adorned projection of z in w, denoted by a-Projw(z).

A singular witness for (A , ϕ) is a data word uv over Γ× {0, 1} satisfying the following
properties.

Proj(u) ∈ (Γ× {0})∗ and Proj(v) ∈ (Γ× {1})∗.
uv |=c ϕ

′, where ϕ′ is constructed from ϕ by applying the following replacements.
If ϕi,γ := xγ = ci,γ , then replace ϕi,γ by ϕ′i,γ := x(γ,0) = ci,γ ∧ x(γ,1) = 0. Intuitively,
the formula x(γ,1) = 0 means that the letter γ does not occur in v.
If ϕi,γ := xγ ≥ p0∧xγ ≡ ri,γ mod p0, then replace ϕi,γ by ϕ′i,γ := x(γ,0) ≥ p0∧x(γ,0) ≡
ri,γ mod p0 ∧ x(γ,1) = 0.
If ϕi,γ := xγ = ω, then replace ϕi,γ by ϕ′i,γ := x(γ,1) ≥ 1. Intuitively, the formula
x(γ,1) ≥ 1 guarantees that the letter γ occurs in v.
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All the positions of v and the last zone of u have the same data value.
There is a state q̂ ∈ F and a (partial) run of A over Profile(u′v′)>, say ρ = ρuρv, such
that the state of ρ after reading Profile(u′) and the state after reading Profile(u′v′)> are
both q̂, where u′ (resp. v′) is the data word over Γ obtained from u (resp. v) by replacing
each letter (γ, b) (where b ∈ {0, 1}) with γ, and Profile(u′v′)> denotes the profile of u′v′
with the last profile symbol replaced by >.

Let Λ = Γ × {0, 1} × {black,white, blue} ∪ Γ × {1} × {yellow} × {fin, inf}. For every
color ∈ {black,white, blue} and b ∈ {0, 1}, let Λcolor,b = Γ × {b} × {color}. In addition,
for every color ∈ {black,white, blue}, let Λcolor = Λcolor,0 ∪ Λcolor,1. Finally, let Λyellow =
Γ× {1} × {yellow} × {fin, inf}.

A non-singular witness for (A , ϕ) is a data word uv over the alphabet Λ satisfying the
following conditions.

u ∈ (Λblack,0 ∪ Λwhite,0 ∪ Λblue,0)∗,
v ∈ (Λblack,1 ∪ Λwhite,1 ∪ Λblue,1 ∪ Λyellow)∗.
uv |=c ϕ

′, where ϕ′ is obtained from ϕ by the following procedure.
1. Construct the formula η which asserts that each class carries one color,

η :=
∧

color∈{black,white,yellow,blue}


( ∨
λ∈Λcolor

(xλ ≥ 1)
)
→∧

color′ 6=color

∧
λ∈Λcolor′

(xλ = 0)

 .

2. Construct ψ from ϕ by applying the following replacements.
Replace ϕi,γ := xγ = ci,γ by

ϕ′i,γ :=
∨

color∈{black,white}
(x(γ,0,color) = ci,γ ∧ x(γ,1,color) = 0)

∨
(x(γ,1,yellow,fin) = ci,γ ∧ x(γ,1,yellow,inf) = 0).

Replace ϕi,γ := xγ ≥ p0 ∧ xγ ≡ ri,γ mod p0 by

ϕ′i,γ :=
∨

color∈{black,white}
(x(γ,0,color) ≥ p0 ∧ x(γ,0,color) ≡ ri,γ mod p0 ∧ x(γ,1,color) = 0)

∨
(x(γ,1,yellow,fin) ≥ p0 ∧ x(γ,1,yellow,fin) ≡ ri,γ mod p0 ∧ x(γ,1,yellow,inf) = 0).

Replace ϕi,γ := xγ = ω by

ϕ′i,γ :=

 ∨
color∈{black,white}

x(γ,1,color) ≥ 1

∨x(γ,1,yellow,inf) ≥ 1.

Note that the blue color is not included in the construction of ψ. Intuitively, this
means that the blue classes are not required to satisfy the class condition ϕ.

3. Let ϕ′ := η ∧ ψ.
All zones are of length at most |Q|(2p0)|Γ|.
Every yellow zone z satisfy the condition that z does not contain the occurrences of “fin”
and “inf” simultaneously, more formally, for any γ, γ′ ∈ Γ, there do not exist two distinct
positions in z labeled by (γ, 1, yellow, fin) and (γ′, 1, yellow, inf) respectively. Therefore,
each yellow zone z can be called a “fin”-zone or a “inf”-zone, depending on the occurrences
of “fin” or “inf” in z.
The last position of u is the last position of a zone in uv (This implies that the data value
in the last position of u is different from that in the first position of v). The last zone of
v is a non-black and non-white zone.
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There is a state q̂ ∈ F and a (partial) run of A over Profile(u′v′), say ρ = ρuρv, such that
the state of ρ after reading Profile(u′) and the state after reading Profile(u′v′) are both
q̂, where u′ (resp. v′) is the data word over Γ obtained from u (resp. v) by replacing
each letter (γ, . . . ) ∈ Λ with γ. In the following, each zone z is adorned by the pair
(q, q′) where q is the state of ρ before reading z and q′ is the state after reading z; in
addition, for a zone z of u′v′ with the adornment (q, q′), a-Proju′v′(z) is used to denote
(Proj(z), q, q′).
There are at most |Q|2 yellow classes in uv, with each of them containing at most(
(2p0)|Γ| + |Q|2(2p0)2|Γ|) “fin”-zones and at most |Γ| “inf”-zones.
For each blue zone z, there is a yellow “fin”-zone z′ such that a-Proju′v′(z) = a-Proju′v′(z′).

The proof of the theorem is reduced to proving the following three claims.
Claim 1 If there is a witness for (A , ϕ) then L((A , ϕ)) 6= ∅.
Claim 2 If L((A , ϕ)) 6= ∅, then there is a witness for (A , ϕ).
Claim 3 There is a nondeterministic exponential time algorithm such the over the input

(A , ϕ),
in each run of the algorithm, a CDA (B, ψ) which accepts only witnesses for (A , ϕ) is
constructed,
for each witness uv of (A , ϕ), there is a run of the algorithm which constructs a CDA
(B, ψ) that accepts uv.

The proofs of the three claims will be put in the next three subsections. Then in the
last subsection, the complexity of the nondeterministic algorithm will be analysed and the
discussion of the general case that ϕ is not in the normal form will be presented. J

D.1 Proof of Claim 1
We distinguish between singular and non-singular witnesses.

Let uv be a witness for (A , ϕ).
The situation that uv is a singular witness for (A , ϕ).

Let u′ (resp. v′) denote the data word over Γ obtained from u (resp. v) by replacing each
letter (γ, 0) (resp. (γ, 1)) with γ. In the following, we will show that u′(v′)ω is accepted by
(A , ϕ).

At first, it is easy to see that the run ρuρωv is an accepting run of A over Profile(u′(v′)ω).
For every class X in u′(v′)ω, we will show that

Proj((u′(v′)ω)|X) |= ϕ[Parikh(Proj((u′(v′)ω)|X))].

From this, we conclude that u′(v′)ω |=c ϕ and u′(v′)ω is accepted by (A , ϕ).
Let X be a class in u′(v′)ω and Y be the class of uv with the same data value as X.
Since uv |=c ϕ

′, it follows that there is i : 1 ≤ i ≤ m such that

Proj((uv)|Y ) |=
( ∧
γ∈Γ

ϕ′i,γ
)[

Parikh(Proj((uv)|Y ))
]
.

We will show that Proj((u′(v′)ω)|X) |=
( ∧
γ∈Γ

ϕi,γ
)[

Parikh(Proj((u′(v′)ω)|X))
]
.

Let γ ∈ Γ.
If ϕi,γ := xγ = ci,γ , then ϕ′i,γ := x(γ,0) = ci,γ ∧ x(γ,1) = 0 and Proj((uv)|Y ) |= ϕ′i,γ . This
implies that the letter (γ, 1) does not occur in v|Y , and the number of (γ, 0)-positions in
u|Y is exactly ci,γ . Thus the letter γ does not occur in v′|Y and the number of γ-positions
in u′|Y is exactly ci,γ . It follows that the number of γ-positions in (u′(v′)ω) |X is exactly
ci,γ . So Proj((u′(v′)ω)|X) |= ϕi,γ [#Proj((u′(v′)ω)|X)(γ)].
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The discussion for the situation that ϕi,γ := xi,γ ≥ p0 ∧ xi,γ ≡ ri,γ mod p0 is similar.
If ϕi,γ := xγ = ω, then ϕ′i,γ := x(γ,1) ≥ 1 and Proj((uv)|Y ) |= ϕ′i,γ . This implies that
the letter γ occurs at least once in v′|Y , therefore, it occurs infinitely many times in
(u′(v′)ω)|X . It follows that Proj((u′(v′)ω)|X) |= ϕi,γ [#Proj((u′(v′)ω)|X)(γ)].

Consequently, Proj((u′(v′)ω)|X) |=
( ∧
γ∈Γ

ϕi,γ
)[

Parikh(Proj((u′(v′)ω)|X))
]
.

The situation that uv is a non-singular witness for (A , ϕ).
Let u′ (resp. v′) denote the data word over Γ obtained from u (resp. v) by replacing each

letter (γ, . . . ) ∈ Λ with γ.
Consider the data ω-word u′(v′)ω.
At first, we show that all the black and white classes of u′(v′)ω satisfies ϕ.
Because uv |=c ϕ

′, so uv |=c η and uv |=c ψ. This implies that each class of uv has exactly
one color, and for each class X, there is i : 1 ≤ i ≤ m such that Proj((uv)|X) |=

∧
γ∈Γ

ϕ′i,γ .

Let X be a black or white class of u′(v′)ω, Y be the corresponding black or white class of
uv, and i : 1 ≤ i ≤ m such that Proj((uv)|Y ) |=

∧
γ∈Γ

ϕ′i,γ . We show that (u′(v′)ω)|X satisfies∧
γ∈Γ

ϕi,γ , thus satisfies ϕ.

For any γ ∈ Γ, if ϕi,γ := xi,γ = ci,γ or ϕi,γ := xi,γ ≥ p0 ∧ xi,γ ≡ ri,γ mod p0, then the
class condition ϕ′i,γ guarantees that there are no γ-positions in v′|Y and the number of
γ-positions in u′|Y is either ci,γ or no less than p0 and equal to ri,γ modulo p0. Therefore,
(u′(v′)ω)|X satisfies ϕi,γ .
For any γ ∈ Γ, if ϕi,γ := xi,γ = ω, then the class condition ϕ′i,γ guarantees that there is
at least one γ-position in v′|Y . Therefore, there are infinitely many γ-positions in u′(v′)ω.
So (u′(v′)ω)|X satisfies ϕi,γ .

The yellow and blue classes in u′(v′)ω may not satisfy ϕ. In the following, we will reassign
the data values to the yellow and blue zones of u′(v′)ω so that all the classes of the resulting
data ω-word satisfy ϕ.

Let Xyellow,1, . . . , Xyellow,k (where k ≤ |Q|2) be a list of all yellow classes in uv (as a matter
of fact, all these classes belong to v). Let Zonesfin(Xyellow,i) (resp. Zonesinf(Xyellow,i)) denote
the set of “fin”-zones (resp. “inf”-zones) of the class Xyellow,i in uv. In addition, for each
i : 1 ≤ i ≤ k, let Yyellow,i be the yellow class of u′v′ with the same data value as Xyellow,i,
and Zonesfin(Yyellow,i) (resp. Zonesinf(Yyellow,i)) be the set of zones in u′v′ corresponding to
Zonesfin(Xyellow,i) (resp. Zonesinf(Xyellow,i)) in uv.

Suppose Zonesfin(Yyellow,i) = {z1
fin,i, . . . , z

si
fin,i} and Zonesinf(Yyellow,i) = {z1

inf,i, . . . , z
ti
inf,i} for

each i : 1 ≤ i ≤ k.
For any zone zjinf,i (where 1 ≤ j ≤ ti), there are infinitely many copies of zjinf,i in u′(v′)ω.

We order these copies from left to right and call them the first, second, . . . , copy of zjinf,i in
u′(v′)ω.

Let d0, d1, . . . be the data values not occurring in the black or white classes of u′(v′)ω.
Let f be a function from N to 2N satisfying the following two conditions1.
The images of f form a partition of N, namely, N =

⋃
n∈N

f(n), and for any n1, n2 ∈ N

such that n1 6= n2, f(n1) ∩ f(n2) = ∅.

1 Such a function exists. For instance, let g : N× N→ N defined by g(i, j) = (i+j)(i+j+1)
2 + j, then the

function f defined by f(n) = {g(n,m) | m ∈ N} satisfies the two conditions
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For any n ∈ N, f(n) is an infinite subset of N that are pairwise non-adjacent, i.e. for any
m1,m2 ∈ f(n), it holds that m1 6= m2 + 1 and m2 6= m1 + 1.

In the following, we first remove all the data values in the yellow and blue classes of
u′(v′)ω, so the blue and yellow classes are assumed to have no data values. Then we reassign
the data values to the yellow and blue zones from left to right by repeating the following
procedure.

In the n-th application, we obtain a new class by assigning the data value dn to a
set of zones Z such that there is a yellow class X in v satisfying that the zones in Z
correspond to the “fin”-zones of X and infinitely many copies of the “inf”-zones of X
which are determined by f(n). More specifically, the procedure goes as follows.
Let z be the first yellow or blue zone (from left to right) in the current data ω-word
that does not yet have a data value. We choose a class Yyellow,i of u′v′ that contains a
zone zjfin,i (where 1 ≤ j ≤ si) such that a-Proju′v′(z) = a-Proju′v′(z

j
fin,i).

Let z1, . . . , zj−1, zj+1, . . . , zsi be a list of zones in in the current data ω-word that
do not yet have a data value such that a-Proju′v′(zj′) = a-Proju′v′(z

j′

fin,i) for every
j′ : 1 ≤ j′ ≤ si, j

′ 6= j. In addition, we require that z1, . . . , zj−1, zj+1, . . . , zsi are
pairwise non-adjacent. Such a set of zones z1, . . . , zj−1, zj+1, . . . , zsi exists since all
the zones in Zonesfin(Yyellow,i) of v′ repeat infinitely often in u′(v′)ω. Assign the
data value dn to the zones z1, . . . , zj−1, z, zj+1, . . . , zsi . Moreover, for every zone
zj
′′

inf,i ∈ Zonesinf(Xyellow,i) and every m ∈ f(n), assign the data value dn to the m-th
copy of the zone zj

′′

inf,i in u′(v′)ω.
The new class satisfies ϕ as the yellow class Xyellow,i of uv satisfies ϕ′: Suppose Xyellow,i
of uv satisfies

∧
γ∈Γ

ϕ′i1,γ for some i1 : 1 ≤ i1 ≤ m, then it can be deduced that the new

class satisfies ϕi1,γ for every γ ∈ Γ. For instance, if ϕi1,γ := xγ = ω, then

ϕ′i1,γ :=

 ∨
color∈{black,white}

x(γ,1,color) ≥ 1

∨x(γ,1,yellow,inf) ≥ 1.

From the fact that Xyellow,i of uv satisfies ϕ′i1,γ , it follows that Xyellow,i of uv satisfies
x(γ,1,yellow,inf) ≥ 1. This implies that the letter γ occurs in some zone belonging to
Zonesinf(Yyellow,i) of u′v′. Because the new class contains infinitely many copies for
each zone in Zonesinf(Yyellow,i), it follows that the letter γ occurs infinitely many times
in the new class, therefore, the new class satisfies that ϕi1,γ := xγ = ω.

Because the union of the images of f is equal to N and for each class Yyellow,i of u′v′
and each zone zjfin,i in Zonesfin(Yyellow,i), there are infinitely many copies of zjfin,i in u′(v′)ω,
it follows that for each class Yyellow,i of u′v′ and each zone zj

′

inf,i in Zonesinf(Yyellow,i), all
the (infinite) copies of zj

′

inf,i in u′(v′)ω will be assigned data values by repeating the above
procedure.

Let w denote the resulting data word.
The run ρuρ

ω
v is an accepting run of A over Profile(w). In addition, from the above

discussion, we know that w |=c ϕ. Therefore, w is accepted by (A , ϕ).
The proof of Claim 1 is complete.

D.2 Proof of Claim 2
Suppose there is a data ω-word w accepted by (A , ϕ). In the following, we will construct a
witness uv from w.
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Let ρ be an accepting run of A over the profile of w. The sub-sequence of states that a
run ρ takes at the zone borders is called the zone sub-run of ρ.

For every zone z in w, adorn z with the a state pair (q, q′) such that q, q′ are the two
states of ρ before and after reading z respectively.

If there are only finitely many classes in w, then it is easy to see that there is a singular
witness uv over the alphabet Γ× {0, 1} for (A , ϕ).

So in the following, it is assumed that there are infinitely many classes in w. Then it is
easy to see that there are no zones of infinite length in w.

We first introduce some notations.
For any interval [i, j] of a data (finite or ω) word w, let S([i, j]) denote the summary of

the data sub-word w[i, j]. Let Θ denote the set of all possible summaries, i.e. Θ = ({≥, <
}× {0, . . . , p0 − 1})Γ. For any θ ∈ Θ and γ ∈ Γ, let π1(θ(γ)) (resp. π2(θ(γ))) denote the first
(resp. second) component of θ(γ). For θ1, θ2 ∈ Θ, we can define θ1 + θ2 as follows: For each
γ ∈ Γ, if π1(θ1(γ)) = ≥ or π1(θ2(γ)) = ≥ or π2(θ1(γ)) + π2(θ2(γ)) ≥ p0, then (θ1 + θ2)(γ) =
(≥, (π2(θ1(γ)) + π2(θ2(γ))) mod p0), otherwise, (θ1 + θ2)(γ) = (<, π2(θ1(γ)) + π2(θ2(γ))).

Let X be a class of a data ω-word w. Define ΓF (X) as the set of letters γ ∈ Γ that
occur only finitely many times in X. Similarly, define ΓI(X) as the set of letters γ ∈ Γ
that occur infinitely many times in X. Define ZonesF (X) as the set of zones z of X such
that z contains at least one γ-position with γ ∈ ΓF (X), and define ZonesI(X) as the set
of all the other zones of X. Note that there are only finitely many zones in ZonesF (X),
and if z ∈ ZonesI(X), then every γ-position in z satisfy that γ ∈ ΓI(X). We call the
zones in ZonesF (X) as the ‘fin”-zones of X, and zones in ZonesI(X) as the ‘inf”-zones of
X. In addition, define the finitary summary of X, denoted by SF (w|X), as the function
θ : ΓF (X)→ {≥, <} × {0, . . . , p0 − 1} defined as follows,

if #Proj(w|X)(γ) < p0, then θ(γ) = (<,#Proj(w|X)(γ)),
if #Proj(w|X)(γ) ≥ p0, then θ(γ) = (≥,#Proj(w|X)(γ) mod p0).

The construction is divided into three transformation steps.

Step 1.

At first, we transform w to a data ω-word in which every zone is of length at most
|Q|(2p0)|Γ|.
If a zone z with adorned state pair (q, q′) is of length l ≥ |Q|(2p0)|Γ|+ 1, let q1 . . . ql+1
be the state sequence of ρ restricted to z such that q1 = q and ql+1 = q′. In addition,
for each i : 1 ≤ i ≤ l + 1, let θi denote the summary of the interval [1, i − 1] of z
(if i = 1, then z[1, i− 1] = ε). Because l ≥ |Q|(2p0)|Γ| + 1, it follows that there are
i, j : 2 ≤ i < j ≤ l + 1 such that (qi, θi) = (qj , θj). Therefore, the summary θ of the
interval [i, j − 1] in z satisfies that for every γ ∈ Γ, θ(γ) = (s, 0) for some s ∈ {≥, <}.
Then the data subword z[i, j − 1] can be removed from z without affecting the zone
sub-run of ρ and the summary of z. This procedure can be repeated, until we get a
zone of length at most |Q|(2p0)|Γ|.
Let w1 denote the resulting data ω-word.
For each class X of w1, select a set of at most (2p0)|Γ| zones in ZonesF (X), denoted
by Z, such that SF (w1|X) =

∑
z∈Z

(
S(z)|ΓF (X)

)
, where S(z)|ΓF (X) is the restriction of

the summary S(z) to ΓF (X). Call these zones as the core “fin”-zones of X, and all
the other zones in ZonesF (X) as the redundant “fin”-zones of X.

For each class X of w1, the set of zones Z, satisfying the above condition, exists: If there
are at most (2p0)|Γ| zones in ZonesF (X), then let Z := ZonesF (X). Otherwise, there are at
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least
(
(2p0)|Γ| + 1

)
zones in ZonesF (X). Consider any

(
(2p0)|Γ| + 1

)
pairwise-distinct zones

z1, . . . , z(2p0)|Γ|+1 ∈ ZonesF (X). By the pigeon hole principle, there must be 1 ≤ i < j ≤
(2p0)|Γ|+ 1 such that S(z1) + · · ·+S(zi) = S(z1) + · · ·+S(zj). Let θ = S(zi+1) + · · ·+S(zj),
then π2(θ(γ)) = 0 for every γ ∈ Γ. It follows that Z = ZonesF (X)\{zi+1, . . . , zj} is a proper
subset of ZonesF (X) satisfying that SF (w1|X) =

∑
z∈Z

(S(z)|ΓF (X)). Continue like this, we

finally get a desired Z containing at most
(
(2p0)|Γ|

)
zones.

In the following, we first give an overview of the two remaining transformation steps,
then present them in detail.

For each tuple (θ, q, q′) such that there is a “fin” (resp. “inf”) zone in w1 with the
summary θ and the adornment (q, q′), select a bounded number of classes in w1 which
contain such a zone. These classes are assigned the black color. For the non-black
classes, we distinguish between the state pairs (q, q′) that occur as the adornment
of only a finite number of non-black zones and those that occur as the adornment
of infinitely many non-black zones. The former are called as infrequent adornments
and the latter as frequent adornments. Those classes which contain a zone with
some infrequent adornment (q, q′) are assigned the white color. Then a position p1
is selected such that all the “fin”-zones in the black and white classes are before p1.
For each state pair (q, q′) such that there is a non-black and non-white “fin”-zone
with the (frequent) adornment (q, q′), select one class located after p1 that contains
such a zone. These classes are assigned the yellow color. All the remaining classes are
assigned the blue color. In addition, each white or yellow or blue class is trimmed by
applying some replacements to the “inf”-zones in the class. Finally a position p2 after
p1 is selected and a non-singular witness is obtained.

Now we present the remaining transformation steps in detail.

Step 2.

For every summary θ ∈ ({≥, <} × {0, . . . , p0})|Γ| and state pair (q, q′),
if there are redundant “fin”-zones in w1 with the summary θ and the adornment
(q, q′), choose (up to)

(
2(2p0)|Γ| + 1

)
classes containing such redundant “fin”-zones;

if there are “inf”-zones in w1 with the summary θ and the adornment (q, q′), choose
(up to) three classes containing such “inf”-zones.

Assign the black color to these classes.
For each non-black class X, if there are at least

(
|Q|2(2p0)2|Γ| + 1

)
redundant “fin”-

zones in X, then we choose k ≤ (2p0)|Γ| redundant “fin”-zones in X, say z1, . . . , zk,
such that all zi’s have the same summary (say θ) and the same adornment (say (q, q′)),
and for each γ ∈ Γ, kπ2(θ(γ)) ≡ 0 mod p0. Let D be the set of data values occurring
in the zones that are adjacent to at least one of z1, . . . , zk. Select a black “fin”-zone
z with the summary θ and the adornment (q, q′) such that the data value occurring
in z is different from the data values in D. Replace every zone zi (1 ≤ i ≤ k) by z.
Note that these replacements do not change the zone sub-run as well as the finitary
summaries of classes.
After these replacements, for every non-black class X, ZonesF (X) contains only at
most (2p0)|Γ| core “fin”-zones and at most |Q|2(2p0)2|Γ| redundant “fin”-zones.

Let w2 be the resulting data ω-word.
For each class X containing at least

(
|Q|2(2p0)2|Γ| + 1

)
redundant “fin”-zones, the zones

z1, . . . , zk satisfying the above conditions exist. The argument goes as follows: From the
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pigeon hole principle, there are θ ∈ Θ and (q, q′) ∈ Q2 such that at least
(
(2p0)|Γ| + 1

)
redundant “fin”-zones in X have the summary θ and the adornment (q, q′). Let z1, . . . , zn
(where n ≥ (2p0)|Γ| + 1) be a list of all these redundant “fin”-zones with the summary θ and
the adornment (q, q′). Then by the pigeon hole principle again, there are k ≤ (2p0)|Γ| such
that for each γ ∈ Γ, kπ2(θ(γ)) ≡ 0 mod p0. Then z1, . . . , zk are the desired zones.

In addition, for zones z1, . . . , zk with the summary θ and adornment (q, q′), because
|D| ≤ 2(2p0)|Γ| and there are at least (2(2p0)|Γ| + 1) black “fin”-zones with the summary
θ and the adornment (q, q′), it follows that a desired black “fin”-zone z with a data value
different from those in D can be selected to replace all of z1, . . . , zk.

For any state pair (q, q′), if there are infinitely many non-black (core or redundant)
“fin”-zones with the adornment (q, q′), then call (q, q′) a frequent adornment, otherwise an
infrequent adornment. There are only finitely many non-black classes containing “fin”-zones
with infrequent adornments. Assign the white color to these classes.

Since it is assumed that there are infinitely many classes in w, there must be (infinitely
many) classes which are neither black nor white. For any non-black and non-white “fin”-zone,
its adornment (q, q′) must be frequent.

Similar to the proof for weak data automata in [11], without loss of generality, we assume
that

if in the run ρ, an accepting state is reached when reading a position in the middle of
a zone z (of finite length), then an accepting state is also reached after reading the
last position of z.

Let q̂ be a state in F occurring infinitely often in the zone sub-run. Let p1 be the minimal
position satisfying the following conditions,

p1 is the last position of a zone,
the zone sub-run assumes q̂ in the beginning of the position p1 + 1,
and for each black or white class X, all the zones in ZonesF (X) occur before p1.

Step 3.

For each frequent adornment (q, q′), select a non-black and non-white class Xq,q′ such
that Xq,q′ contains a “fin”-zone with the adornment (q, q′) and all the positions in
Xq,q′ are after p1. Such a class exists since there are infinitely many non-black and
non-white “fin”-zones with the adornment (q, q′). Assign the yellow color to these
classes Xq,q′ .
Assign the blue color to all the classes that have not been assigned a color.
For each white or yellow class X, select at most |Γ|-zones in ZonesI(X) such that all
these zones are after p1 and each letter in ΓI(X) occurs at least once in these zones.
Call these zones as the core “inf”-zones of X and all the other zones in ZonesI(X) as
the redundant “inf”-zones of X.
For every white or yellow class X and every redundant “inf”-zone z in X, let z′ be a
black “inf”-zone such that z′ has the same summary and the same adornment as z
and has a data value different from the data values of the two zones adjacent to z.
Replace z by z′.
After these replacements, there are no redundant “inf”-zones in each white or yellow
class.
For each blue class X and each “inf”-zone z in X, let z′ be a black “inf”-zone such
that z′ has the same summary and the same adornment as z and has a data value
different from the data values of the two zones adjacent to z. Replace z by z′.
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After these replacements, there are no “inf”-zones in each blue class.
For each black class X, select at most |Γ| “inf”-zones such that all these zones are
after p1 and each letter in ΓI(X) occurs at least once in these zones. Call these zones
as the core “inf”-zones of X and all the other “inf”-zones as the redundant “inf”-zones
of X.
For each blue “fin”-zone z with adornment (q, q′), let z′ be a yellow “fin”-zone with
the same adornment as z. Keep the data value of z and replace the string projection
of z by that of z′.

Let w3 be the resulting data ω-word.
Let p2 be the minimal position after p1 in w3 such that
p2 is the last position of a non-black and non-white zone in w3,
the zone sub-run assumes the state q̂ in the beginning of the position p2 + 1,
for each black or white class X, all the core “inf”-zones of X occur before p2,
for each yellow class X, all the “fin”-zones of X and all the core “inf”-zones of X occur
before p2.

Such a position p2 exists since there are infinitely many non-black and non-white classes
in w3 and q̂ occurs infinitely often in the zone-sub run.

Let u′ be the prefix of w3 until the position p1 and v′ be the sub-string of w3 from the
position p1 + 1 to the position p2.

Let u be the data word obtained from u′ by replacing every letter (γ, color) with (γ, 0, color)
and v be the data word obtained from v′ by applying the following replacements,

for every color ∈ {black,white, blue}, replace every letter (γ, color) with (γ, 1, color),
replace every letter (γ, yellow) occurring in the “fin”-zones of w3 by (γ, 1, yellow, fin) and
every letter (γ, yellow) occurring in the “inf”-zones of w3 by (γ, 1, yellow, inf).

From the construction, it is not hard to see that uv |=c ϕ
′. Thus, uv is a non-singular witness

for (A , ϕ).
The proof of Claim 2 is complete.

D.3 Proof of Claim 3
We only illustrate the proof by presenting a nondeterministic algorithm to construct from
(A , ϕ) a CDA (B, ψ) which accepts non-singular witnesses. The construction of a CDA to
accept singular witnesses is simpler and similar.

At first, the nondeterministic algorithm guesses an accepting state q̂, a number ` ≤ |Q|2,
and a sequence of adorned projections of the “fin”-zones in the ` yellow classes (from left to
right), which is of the length

`
(

(2p0)|Γ| + |Q|2(2p0)2|Γ|
)
|Q|(2p0)|Γ|.

The size of the sequence follows from the fact that there are ` yellow classes, each yellow
class contains at most

(
(2p0)|Γ|

)
core “fin”-zones and at most

(
|Q|2(2p0)2|Γ|) redundant

“fin”-zones, and each yellow “fin”-zone is of the size at most |Q|(2p0)|Γ|.
In addition, the algorithm guesses for each yellow “fin”-zone, an index i : 1 ≤ i ≤ `, with

the intention that the set of yellow “fin”-zones with the index i is the set of “fin”-zones in
the i-th yellow class.

Then it constructs B over the alphabet

Γ× {0, 1} × {black,white, blue}
⋃

Γ× {1} × {yellow} × {fin} × {1, 2, . . . , `}
⋃

Γ× {1} × {yellow} × {inf}
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as follows.
Roughly speaking, B checks all the conditions in the definition of non-singular witnesses
except the condition that uv |=c ϕ

′ and the condition that the set of yellow “fin”-zones
with the same index are indeed in the same class.

At first, B simulates A over Profile(u′v′) and verifies that the two states of A after
reading Profile(u′) and after reading Profile(u′v′) are both q̂, where u′v′ is obtained
from uv by replacing each letter (γ, . . . ) ∈ Λ with γ.
It remembers the guessed adorned projections of the yellow zones, and checks whether
the adorned projections of the yellow zones in uv are those that have been guessed; in
addition, it checks whether for each blue zone, there is a yellow zone with the same
adorned projection.
· · ·

ψ is a conjunction of the following two formulas,
the formula ϕ′′ obtained from ϕ′ (in the definition of non-singular witnesses) by
replacing each variable x(γ,b,yellow,fin) with

∑
1≤i≤`

x(γ,b,yellow,fin,i),

the formula η which asserts that the guessed yellow “fin”-zones with the same index
are indeed in the same class: Let Λ′yellow,i = Γ× {1} × {yellow} × {fin} × {i} for each
i : 1 ≤ i ≤ `, and Λ′yellow =

⋃
1≤i≤`

Λ′yellow,i, then

η :=
∧

1≤i≤`

 ∨
λ′∈Λ′yellow,i

xλ′ ≥ 1

→ ∧
j 6=i

 ∧
λ′∈Λ′yellow,j

xλ′ = 0

 .

D.4 Complexity analysis and the general case that ϕ is not in the
normal form

From the proof of Claim 3, the nondeterministic algorithm first guesses a sequence of adorned
projections of the yellow zones of the length O(|Q|2

(
(2p0)|Γ| + |Q|2(2p0)2|Γ|) |Q|(2p0)|Γ|),

then constructs a CDA (B, ψ) that accepts the witnesses for (A , ϕ).
Since B need remember the guessed sequences, the number of states of B is

O
(
|Q|2

(
(2p0)|Γ| + |Q|2(2p0)2|Γ|

)
|Q|(2p0)|Γ|

)
.

In addition, the size of ψ is O
(
|ϕ′′|+ 2|Γ||Q|4

)
= O

(
|Q|2|ϕ′| log |Q|+ 2|Γ||Q|4

)
.

Because p0 ≤ 2|ϕ| and the size of ϕ′ isO(|ϕ|), it follows that the size of B isO(|Q|5)2O(|ϕ||Γ|)

and the size of ψ is O(|Q|2(|ϕ| log |Q|+ 2|Γ||Q|2)).
Therefore, the nondeterministic algorithm to construct a CDA (B, ψ) that accepts the

witnesses for (A , ϕ) runs in exponential time.
Finally, we consider the general case that ϕ is not in the normal form.
From Proposition 13, we know that a normal form of ϕ of size 2O(|Γ||ϕ|) can be obtained

from ϕ in exponential time; in addition, p0, the normalization number of ϕ, is at most 2|ϕ|.
Then from the above analysis, we know that if the formula ϕ is not in the normal form,

then the nondeterministic algorithm to construct a CDA (B, ψ) still runs in exponential
time.

Thus, there is a NEXPTIME-reduction from the nonemptiness problem of CBDA to the
nonemptiness problem of CDA. On the other hand, from Theorem 7, the nonemptiness of
CDA can be solved in 3-NEXPTIME.

We conclude that the nonemptiness of CBDA can be solved in 4-NEXPTIME.
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