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Abstract

Pushdown multi-agent systems, modeled by pushdown
game structures (PGSs), are an important paradigm
of infinite-state multi-agent systems. Alternating-
time temporal logics are well-known specification for-
malisms for multi-agent systems, where the selective
path quantifier is introduced to reason about strategies
of agents. In this paper, we investigate model check-
ing algorithms for variants of alternating-time tempo-
ral logics over PGSs, initiated by Murano and Perelli
at IJCAI’15. We first give a triply exponential-time
model checking algorithm for ATL∗ over PGSs. The
algorithm is based on the saturation method, and is the
first global model checking algorithm with a matching
lower bound. Next, we study the model checking prob-
lem for the alternating-time µ-calculus. We propose
an exponential-time global model checking algorithm
which extends similar algorithms for pushdown systems
and modal µ-calculus. The algorithm admits a matching
lower bound, which holds even for the alternation-free
fragment and ATL.

1 Introduction
Over the last two decades, model checking has become
an attractive approach for verifying correctness of systems.
Given a model of a system, model checking exhaustively
and automatically checks whether this model meets a given
specification. It is widely used to verify protocol, hardware
design and software (Baier and Katoen 2008). Classical
model checking usually focuses on (finite) Kripke structures
against properties specified in logical formulae such as Lin-
ear Temporal Logic (LTL) (Pnueli 1977) and Computational
Tree Logic (CTL) (Clarke and Emerson 1981).

Model checking has been extended to multi-agent sys-
tems which have been successfully employed as a model-
ing paradigm in a number of scenarios such as autonomous
spacecraft control (Muscettola et al. 1998). A multi-agent
system is a complex decentralized computing system com-
posed of multiple interacting intelligent agents within an
environment, in which the behavior of each agent is deter-
mined by its observed information of the system. To spec-
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ify the behavior of multi-agent systems, a well-known log-
ical formalism is Alternating-Time Temporal Logics (Alur,
Henzinger, and Kupferman 2002) for which a model check-
ing algorithm for finite-state concurrent game structures is
also given therein. Model checking algorithms for vari-
ous other temporal logics on finite multi-agent systems have
been proposed in several works, e.g. (Bourahla and Ben-
mohamed 2005; Bulling and Jamroga 2011; Jamroga and
Murano 2015).

More recently, on a different dimension, model check-
ing for ATL∗ on a class of infinite-state multi-agent sys-
tems, i.e., pushdown multi-agent systems, was also studied
in (Murano and Perelli 2015). The authors introduced push-
down game structures (PGSs) as the model, showed that
the model checking problem is 2EXPSPACE-hard, and pro-
posed a model checking algorithm in 3EXPTIME. Our work
follows the direction of (Murano and Perelli 2015).

We note that in the literature there is a distinction between
local and global model checking. In the former setting one is
given a specific state of the system and determines whether
it satisfies a given property. In the latter setting one com-
putes (a finite representation of) the set of states that satisfy
a given property. The importance of global model check-
ing has been discussed in (Piterman and Vardi 2004). In a
nutshell, it is crucial when repeated checks are required, or
where the model checking is only a component of the veri-
fication process. As a matter of fact, for many years global
model checking algorithms were the standard. Moreover,
obviously one can reduce local model checking to the global
counterpart, but not vice versa when an infinite state space
is concerned, as in the current setting.

The algorithm of (Murano and Perelli 2015), which is
based on (a variant of) tree automata, is local. (Technically
the algorithm works on the product of PGSs and tree au-
tomata in a top-down fashion, and it is open whether this can
be done in a bottom-up way, as mentioned by the authors.)
In contrast, we investigate the global model checking prob-
lem for alternating-time temporal logics on PGSs. Namely
we aim to compute the set of all of the configurations satis-
fying the formula in some alternating-time temporal logics.
In this work, we consider two variants of alternating-time
temporal logics: ATL∗ and alternating-time µ-calculus.

Concerning the global model checking for ATL∗ on
PGSs, as one of the main contributions, we present a re-



duction from the problem to checking non-emptiness of al-
ternating parity pushdown systems which can be solved us-
ing approaches given in (Hague and Ong 2009). Our global
model checking approach has the same complexity upper
bound as the local model checking algorithm proposed in
(Murano and Perelli 2015). We also show that the model
checking problem for ATL∗ is 3EXPTIME-complete which
improves the 2EXPSPACE lower bound of (Murano and
Perelli 2015). One of the features of our algorithm is that
it can deal with regular valuations rather than simple val-
uations of atomic propositions. By regular valuations one
atomic proposition can denote an infinite (but regular) set of
configurations. This turns out be a very handy specification
approach (see examples in (Esparza, Kucera, and Schwoon
2003)). As we use alternating multi-automata as the “data
structure” for configurations of PGSs, this comes almost for
free, while it is unclear to us how the algorithm of (Murano
and Perelli 2015) can support this in an immediate way.

In verification, modal µ-calculus is generally considered
to be the “assembly language” of various specifications in
the sense that most temporal logics can be translated into
µ-calculus to obtain a uniform model checking algorithm.
In the multi-agent system setting, an alternating-time exten-
sion of µ-calculus has been considered in the original pa-
per (Alur, Henzinger, and Kupferman 2002) already. As an-
other contribution, we study model checking algorithms for
alternating-time µ-calculus (AMC) over PGSs. We extend
the saturation method of (Hague and Ong 2011) for modal
µ-calculus over pushdown systems to the multi-agent system
setting, obtaining an EXPTIME-time algorithm. Thanks to
the alternating multi-automata as the data structure again, we
can cope with the selective path quantifier of the alternating-
time logic directly while keeping constructions for other µ-
calculus operators untouched. The algorithm inherits the ad-
vantages of its counterpart in (Hague and Ong 2011), i.e.,
simple, amenable to implementation (in practice it is the
implementation technique for pushdown model checkers),
and efficient. For the lower bound, we show that the global
model checking problem for alternation-free AMC on PGSs
is already EXPTIME-hard. In fact, we prove that a simple
formula 〈〈A〉〉Fq (which is equivalent to µZ. 〈〈A〉〉XZ ∨ q)
is sufficient to obtain the EXPTIME hardness. From this,
we also deduce that model checking of ATL (the alternating-
time counterpart of CTL) on PGSs is EXPTIME-complete.
To the best of our knowledge, this result is also new.

We remark that it is known that AMC is more expressive
than ATL∗ (Alur, Henzinger, and Kupferman 2002). How-
ever, this does not contradict the complexity bounds we ob-
tained here, as translating an ATL∗ formula into an equiv-
alent AMC formula involves a doubly exponential blow-up
in the size of the formula (de Alfaro, Henzinger, and Ma-
jumdar 2001; Alur, Henzinger, and Kupferman 2002), and
model checking AMC over PGSs is exponential with respect
to sizes of formulae.

2 Preliminaries
We fix the following notations. Let AP be a finite set of
atomic propositions, Ag be a finite set of agents, Ac be a
finite set of actions that can be made by agents, Dc = AcAg

be the set of decisions of the agents in Ag. For each agent
a ∈ Ag and decision d ∈ Dc, let d(a) denote the action
made by the agent a in d.

Given a set X , an X-labeled tree is a pair (Tr, r), where
Tr is a prefix closed subset of N∗, and r : Tr → X is a
labeling function that assigns to each node an element from
X . The root of a tree is ε, and for each node t ∈ Tr, if there
is i ∈ N s.t. ti ∈ Tr, then ti is called a child of t, otherwise,
t is called a leaf. A path π of (Tr, r) is a least subset of Tr
such that ε ∈ π, and for every t ∈ π, either t is a leaf in
(Tr, r) or there is exactly one i ∈ N s.t. ti ∈ π. Given a
path π, let r(π) = x0x1... denote the sequence of labeled
elements of the path π (in the order of the lengths |t| of the
nodes t ∈ π).

Pushdown Game Structures
Definition 1. (Murano and Perelli 2015) A Pushdown Game
Structure (PGS) is a tuple P = (P,Γ,∆, λ), where P is a
finite set of control states, Γ is a finite stack alphabet, ∆ :
P×Γ×Dc→ P×Γ∗ is a transition function, λ : P×Γ∗ →
2AP is a labeling function that assigns to each 〈p, ω〉 ∈ P ×
Γ∗ a set of atomic propositions. W.l.o.g., we assume that
⊥ ∈ Γ is a special bottom stack symbol never popped up
from the stack.

A configuration of the PGS P is a pair 〈p, ω〉, where p ∈
P is the control state, ω ∈ Γ∗ is the stack content. Let CP
denote the set P ×Γ∗ of all the configurations of the PGS P .
For every (p, γ, d) ∈ P × Γ ×Dc such that ∆(〈p, γ〉, d) =

(p′, ω), we sometimes write 〈p, γ〉 d
↪→P 〈p′, ω〉 instead.

The transition relation =⇒P : CP × Dc × CP of the
PGS P is defined as follows: for every ω′ ∈ Γ∗, if

〈p, γ〉 d
↪→P 〈p′, ω〉, then 〈p, γω′〉 d

=⇒P 〈p′, ωω′〉. Given
a pair 〈p, γ〉 ∈ P × Γ and a function f : A → Ac
such that A ⊆ Ag, let succf (p, γ) denote the set of tuples

{〈p′, ω〉 | 〈p, γ〉 d
↪→P 〈p′, ω〉 ∈ ∆ and ∀a ∈ A : d(a) =

f(a)}, and succf (p, γω′) denote the set of configurations
{〈p′, ωω′〉 | 〈p′, ω〉 ∈ succf (p, γ)} for every ω′ ∈ Γ∗ which
is the set of all the possible successors of 〈p, γω′〉 on the ac-
tions f(a) for a ∈ A (agents Ag \A can make any action).

A track in a PGSP is a finite sequence π of configurations
c0...cn such that for every i : 0 ≤ i < n, ci

d
=⇒P ci+1. A

path in a PGS P is an infinite sequence π of configurations
c0c1... such that for every i ≥ 0, ci

d
=⇒P ci+1. Given a

track π = c0...cn (resp. path π = c0c1...), for every i :
0 ≤ i ≤ n (resp. i ≥ 0), let πi denote the configuration
ci, π≥i denote the suffix sequence ci...cn (resp. cici+1...)
of π, π<i denote the prefix sequence c0...ci−1 of π. Let
TP ⊆ C+

P denote the set of all the tracks in P ,
∏
P ⊆ CωP

denote the set of all the paths in P . Given a configuration
c, let TP(c) = {π ∈ TP | π0 = c} denote the set of all
the tracks starting from c,

∏
P(c) = {π ∈

∏
P | π0 = c}

denote the set of all the paths starting from c.
A strategy for an agent in a PGS P is a function θ : TP →

Ac that contains all the possible choices of actions depend-
ing upon the tracks (i.e., the history the agent saw so far). Let
Θ denote the set of all the possible strategies. Given a set of



agents A ⊆ Ag, an assignment over A is a function υA :
A → Θ that assigns to each agent a strategy. Let V denote
the set of all the possible assignments. A path π is compati-
ble with an assignment υA over the setA of agents, if for ev-
ery i ≥ 0, there is a decision d ∈ Dc such that πi

d
=⇒P πi+1

and d(a) = υA(a)(π<i) for all a ∈ A. Given a configura-
tion c ∈ CP and an assignment υA over the set A of agents,
let
∏
P(c, υA) denote the set of paths starting from c that

are compatible with respect to the assignment υA. Formally,∏
P(c, υA) = {π | π ∈

∏
P(c) ∧ π is compatible with υA}.

Alternating-Time Temporal Logics
In this subsection, we recall the definitions of two
alternating-time temporal logics: ATL∗ and alternating-time
µ-calculus (AMC). ATL∗ and AMC were proposed by Alur
et al. in (Alur, Henzinger, and Kupferman 2002) as exten-
sions of CTL∗ and modal µ-calculus (Kozen 1983), where
the universal and existential path quantifiers are replaced
by more general quantifiers, called path selective quanti-
fiers, each of which is parameterized by a set of agents.
Alternating-time temporal logics are defined with respect to
a set of atomic propositions AP and a set of agents Ag.

Definition 2. ATL∗ formulae are defined by the following
grammar:

φ ::= q | ¬φ | φ ∧ φ | Xφ | φUφ | 〈〈A〉〉φ

where q ∈ AP , A ⊆ Ag.

We let φ1 ∨ φ2
4
= ¬(¬φ1 ∧ ¬φ2), Fφ 4

= true U φ,

Gφ 4= ¬F¬φ, and [[A]]φ
4
= ¬〈〈A〉〉¬φ. Given an ATL∗

formula φ and an atomic proposition q which is not used in
φ, let φ[q/ϕ] denote the ATL∗ obtained by replacing every
occurrence of the subformula ϕ in φ by q.

Let cl(φ) be the set of all subformulae of the ATL∗ for-
mulae φ. Formally,

• φ ∈ cl(φ);

• if ¬ψ ∈ cl(φ) or Xψ ∈ cl(φ) or 〈〈A〉〉ψ ∈ cl(φ), then
ψ ∈ cl(φ)

• if ψ1Uψ2 ∈ cl(φ), then ψ1, ψ2,X(ψ1Uψ2) ∈ cl(φ).

The size |φ| of φ is defined as the size of the set cl(φ). In
this paper, the semantics of ATL∗ is defined over PGSs. Let
P = (P,Γ,∆, λ) be a PGS, ψ be an ATL∗ formula, π be
a path of P , the satisfiability relation P, π |= ψ is defined
inductively as follows:

• P, π |= q iff q ∈ λ(π0);

• P, π |= ¬φ iff P, π 6|= φ

• P, π |= φ1 ∧ φ2 iff P, π |= φ1 and P, π |= φ2;

• P, π |= Xφ iff P, π≥1 |= φ;

• P, π |= φ1Uφ2 iff there exists i ≥ 0 such that P, π≥i |=
φ2 and for every j : 0 ≤ j < i, P, π≥j |= φ1;

• P, π |= 〈〈A〉〉φ iff there is an assignment υA ∈ V over
the set A of agents such that for every π′ ∈

∏
P(π0, υA),

P, π′ |= φ.

Given a PGS P , a configuration c ∈ CP and an ATL∗
formula φ, c satisfies φ, denoted by P, c |= φ, iff there exists
a path π ∈

∏
P(c) such that P, π |= φ.

ATL is a sub-logic of ATL∗ such that each occurrence of
〈〈A〉〉 is followed immediately by an occurrence of X, or
U, or G. More precisely, ATL formulae are defined by the
following grammar,

φ ::= q | ¬φ | φ∧φ | 〈〈A〉〉Xφ | 〈〈A〉〉φUφ | 〈〈A〉〉Gφ

where q ∈ AP and A ⊆ Ag.
On the other hand, Linear Temporal Logic (LTL) is a sub-

logic of ATL∗ such that the selective path quantifiers 〈〈A〉〉
for A ⊆ Ag are disallowed. Formally, LTL formulae are
defined by the following grammar,

φ ::= q | ¬φ | φ ∧ φ | Xφ | φUφ

where q ∈ AP .

Definition 3. A parity automaton PA is a tuple
(G,Σ, θ, g0, F ) where G is a finite set of states, Σ is the
input alphabet, θ : G × Σ → 2G is a transition function,
g0 ∈ G is the initial state and F : G → {0, ..., k} is a rank
function assigning each state g ∈ G a priority F (g), where
k is some natural number called index.

A run of PA over an ω-word α0α1... from Σω is a se-
quence of states π = g0g1... such that g0 = g0, and for every
i ≥ 0, gi+1 ∈ θ(gi, αi). Let inf(π) be the set of states vis-
ited infinitely often in π. A run π is accepting iff the small-
est number of {F (g) | g ∈ inf(π)} is even. PA is called
deterministic if for every (g, α) ∈ G × Σ, |θ(g, α)| ≤ 1.
The transition function θ in a deterministic parity automa-
ton (DPA) is written as θ : G× Σ→ G.

Theorem 1. (Kupferman and Vardi 2001; Piterman 2007)
For every LTL formula φ, we can construct a DPA with
22O(|φ|)

states and 2O(|φ|) indices such that the DPA rec-
ognizes all of the ω-words satisfying φ.

According to the definition of ATL∗, it is easy to see the
following proposition.

Proposition 1. Given a PGS P and an ATL∗ formula φ, for
every subformula 〈〈A〉〉ψ such that ψ is an LTL formula, if
C ⊆ CP is the set of configurations that satisfy 〈〈A〉〉ψ and
λ is extended as q ∈ λ(c) for every c ∈ C where q is a fresh
atomic proposition, then for every configuration c′ ∈ CP ,
P, c′ |= φ iff P, c′ |= φ[q/〈〈A〉〉ψ].

The syntax of AMC is given as follows.

Definition 4. Given a setZ of propositional variables, AMC
formulae are given by the following grammar:

φ ::= q | ¬q | Z | φ ∧ φ | φ ∨ φ | 〈〈A〉〉Xφ |
[[A]]Xφ | µZ.φ | νZ.φ

where q ∈ AP , Z ∈ Z , A ⊆ Ag.

Fix a PGS P = (P,Γ,∆, λ), a propositional valuation is
a function Ω : Z → 2CP . The semantics of AMC is given by
the denotation function ‖◦‖PΩ that maps an AMC formula to
a set of configurations of P . Due to space restriction, its de-
tailed definition is omitted here and we refer to, e.g., (Alur,



Henzinger, and Kupferman 2002). An AMC formula φ is
alternation-free if for every subformula µZ.ψ (resp. νZ.ψ)
of φ, there is no subformula νZ ′.ϕ (resp. µZ ′.ϕ) in ψ such
that Z is a free variable of ϕ.
Definition 5 (Global Model Checking on PGSs). Given a
PGS P and an ATL∗ or AMC formula φ, the global model
checking problem is to compute the set of all the configu-
rations C ⊆ CP such that for every c′ ∈ CP , c′ ∈ C iff
P, c′ |= φ.

In this work, we consider the model checking problem
with the labeling function l : AP → 2CP such that for every
q ∈ AP , l(q) is a regular set (technically, it is represented
by an alternating multi-automaton; see below for definition).
This is usually referred to as a regular valuation (Esparza,
Kucera, and Schwoon 2003). l can be lifted to the function
λl : P × Γ∗ → 2AP : for every c ∈ CP , λl(c) = {q ∈ AP |
c ∈ l(q)}.
Remark 1. (Murano and Perelli 2015) already presented
an example which is modeled as a PGS, as well as some
properties that can be expressed in ATL∗. We will not give
examples here for the sake of space.

Below we introduce some machinery which will be used
in our model checking algorithms. In particular, model
checking ATL∗ will be reduced to checking non-emptiness
of alternating parity pushdown systems. Moreover, to
finitely represent generally infinite sets of configurations of
(alternating) pushdown systems, we use alternating multi-
automata which are the “data structure” of the algorithm and
play an essential role in algorithms for both ATL∗ and AMC.

Given a set X , let B+(X) be the set of positive Boolean
formulae over X . For a set Y ⊆ X and a formula ψ ∈
B+(X), Y satisfies ψ if assigning true to elements of Y and
assigning false to elements of X \ Y make ψ true.

Alternating Pushdown Systems
Definition 6. An Alternating Pushdown System (APDS) is a
tuple P = (P,Γ,∆), where P is a finite set of control states,
Γ is a finite stack alphabet, and ∆ : P × Γ→ B+(P × Γ∗)
is a transition function that assigns to each element of P ×Γ
a positive Boolean formula over P × Γ∗.

For every set {〈p1, ω1〉, ..., 〈pn, ωn〉} ⊆ P × Γ∗ and ev-
ery pair 〈p, γ〉 ∈ P × Γ, if {〈p1, ω1〉, ..., 〈pn, ωn〉} sat-
isfies the positive Boolean formula ∆(〈p, γ〉), we some-
times write 〈p, γ〉 −→P {〈p1, ω1〉, ..., 〈pn, ωn〉}. If
〈p, γ〉 −→P {〈p1, ω1〉, ..., 〈pn, ωn〉}, then 〈p, γω〉 =⇒P
{〈p1, ω1ω〉, ..., 〈pn, ωnω〉} for every ω ∈ Γ∗. For ev-
ery pair 〈p, γ〉 ∈ P × Γ, we suppose in this work that
the Boolean formula ∆(〈p, γ〉) is in the disjunctive normal
form. The size |∆| of ∆ is defined as

∑
(p,γ)∈P×Γ |∆(p, γ)|,

where |∆(p, γ)| denotes the number of satisfying sets of the
Boolean formula ∆(p, γ).

A run ρ of the APDS P from a configuration 〈p, ω〉 is a
CP -labeled tree (Tr, r) such that r(ε) = 〈p, ω〉, and for every
node t ∈ Tr with r(t) = 〈p′, ω′〉 and its children t0, ..., tn, it
must be the case that 〈p′, ω′〉 =⇒P {〈p′0, ω′0〉, ..., 〈p′n, ω′n〉}
where r(ti) = 〈p′i, ω′i〉 for every i : 0 ≤ i ≤ n. W.l.o.g.,
we assume that all of the runs of APDSs are infinite. Given

a path π of the run ρ, let inf(π) denote the set of control
states appearing infinitely often in r(π).

Alternating Multi-Automata
Definition 7. (Bouajjani, Esparza, and Maler 1997) Let
P = (P,Γ,∆, F ) be an APDS. An Alternating Multi-
Automaton (AMA) is a tuple M = (S,Γ, δ, I, Sf ), where
S is a finite set of states with S ⊇ P , Γ is the input alpha-
bet, δ : (S × Γ) → B+(S) is a transition function, I ⊆ P
is a finite set of initial states, Sf ⊆ S is a finite set of final
states.

As before, for a set of states {s1, ..., sn} ⊆ S, if
{s1, ..., sn} satisfies δ(s, γ), we will sometimes write s

γ−→
{s1, ..., sn} instead. We define the relation−→δ⊆ S×Γ∗×
2S as the least relation such that the following conditions
hold:
• s ε−→δ {s} for every s ∈ S;

• s γω−→δ

⋃n
i=1 Si if s

γ−→ {s1, ..., sn} and si
ω−→δ Si for

every i : 1 ≤ i ≤ n.
The AMAM accepts a configuration 〈p, ω〉 if there exists

S′ ⊆ Sf such that p ω−→δ S
′ and p ∈ I . Let L(M) denote

the set of all the configurations accepted byM.
Proposition 2. (Cachat 2002) LetM = (S,Γ, δ, I, Sf ) be
an AMA. Deciding whether a configuration 〈p, ω〉 with p ∈
S and ω ∈ Γ∗ is accepted by M or not can be done in
O(|S| · |δ| · |ω|) time and O(|S|) space.

3 ATL∗ Model Checking on PGSs
In this section, we propose an automata-theoretic approach
to the global model checking of ATL∗ on PGSs with regular
valuations. For this purpose, we need alternating pushdown
systems with parity acceptance conditions.

An Alternating Parity Pushdown System (APPDS) PP =
(P,Γ,∆, F ) is an APDS (P,Γ,∆) with the parity accep-
tance condition given by F : P → {0, ..., k}. A path π in
a run ρ of the APPDS PP is accepting if and only if the
smallest number in {F (p) | p ∈ inf(π)} is even. A run ρ in
the APPDS PP is accepting if and only if all paths of ρ are
accepting. Let L(PP) denote the set of all configurations
from which the APPDS PP has an accepting run.
Theorem 2. (Hague and Ong 2009) For an APPDS PP =
(P,Γ,∆, F ), an AMA M with O(|P |) states and O(|P | ·
|Γ| · 2|P |) transition rules can be computed in 2O(k|P |) time
and space such that L(M) = L(PP), where k is the index
of PP .

Note that the nonemptiness problem for the (general) al-
ternating parity pushdown tree automata (APPTA), of which
APPDS can be considered as a special case, is undecidable.
However, the APPDS considered here has always the same
stack content over the same direction of the trees, which is
essential for the decidability results. See also (Aminof et al.
2013) for further discussions on this point.

Throughout this section, let P = (P,Γ,∆, λl) be a PGS
and φ be an ATL∗ formula. Without loss of generality, we
assume that φ is a Boolean combination of formulae of the



form 〈〈A〉〉ψ, where ψ is an ATL∗ formula. Therefore,
an AMA Mφ can be computed via Boolean operations on
AMAs. In the following, we will demonstrate how to com-
pute, for each subformula 〈〈A〉〉ψ of φ, an AMAM〈〈A〉〉ψ in
a bottom-up approach to recognize the set of configurations
of P satisfying 〈〈A〉〉ψ.

Assume that for each proper subformula 〈〈A′〉〉ψ′ of ψ,
an AMAM〈〈A′〉〉ψ′

=

(S〈〈A
′〉〉ψ′

,Γ〈〈A
′〉〉ψ′

, δ〈〈A
′〉〉ψ′

, I〈〈A
′〉〉ψ′

, S
〈〈A′〉〉ψ′

f )

has been computed so that L(M〈〈A′〉〉ψ′
) = {c ∈ CP |

P, c |= 〈〈A′〉〉ψ′}. Moreover, since AMAs are closed un-
der complementation, we assume thatM¬〈〈A′〉〉ψ′

has also
been computed to recognize CP \ L(M〈〈A′〉〉ψ′

). Then let
〈〈A〉〉ψ1 be the ATL∗ formula obtained from 〈〈A〉〉ψ as fol-
lows: For each proper subformulae 〈〈A′〉〉ψ′ of ψ, replace
each occurrence of 〈〈A′〉〉ψ′ with a fresh atomic proposi-
tion q〈〈A′〉〉ψ′ . Let AP ′ denote the union of AP and these
fresh atomic propositions. Clearly ψ1 is an LTL formula
over AP ′. Therefore, by Proposition 1 the global model
checking of 〈〈A〉〉ψ over P with the regular valuation l can
be reduced to the global model checking of 〈〈A〉〉ψ1 over
P ′ = (P,Γ,∆, λl′), where l′ is the regular valuation ex-
tended from l by assigningL(M〈〈A′〉〉ψ′

) to the fresh atomic
propositions q〈〈A′〉〉ψ′ .

In the following, we will construct an APPDS PP〈〈A〉〉ψ1

from P ′ and 〈〈A〉〉ψ1 so that L(PP〈〈A〉〉ψ1) = {c ∈ CP′ |
P ′, c |= 〈〈A〉〉ψ1}. From Theorem 2, it follows that the
desired AMAM〈〈A〉〉ψ can be constructed fromPP〈〈A〉〉ψ1 .

It remains to construct PP〈〈A〉〉ψ1 . To do this, we first
construct a DPA PAψ1 = (G,Σ, θ, g0, F ) that recognizes
all the ω-words satisfying ψ1 (cf. Theorem 1), where Σ =

2AP
′
. As the next step, intuitively the existential selection of

strategies of the agents from A for model checking 〈〈A〉〉ψ1

on P ′ is represented by the disjunctions in the transition
rules of PP〈〈A〉〉ψ1 . On the other hand, once the strategies
of the agents from A are fixed, all the paths resulting from
the selection of strategies of the agents outside A, should
satisfy ψ1. This universal constraint is specified by the con-
junctions in the transition rules of PP〈〈A〉〉ψ1 . The runs of
PAψ1

on these paths are mimicked via the runs of the AP-
PDS PP〈〈A〉〉ψ1 , where the satisfaction (resp. dissatisfac-
tion) of an atomic proposition q′ ∈ AP ′ on a configuration
is verified by a new thread which keeps popping the stack
and simulates the run of the AMAMq′ (resp. M¬q′ ) over
the configuration.

Suppose the DPA PAψ1 = (G,Σ, θ, g0, F ) constructed
from ψ1 has index k. Moreover, for every q′ ∈ AP ′, we
assume that the AMAMq′ = (Sq

′
,Γ, δq

′
, Iq

′
, Sq

′

f ) and its

complementM¬q′ = (S¬q
′
,Γ, δ¬q

′
, I¬q

′
, S¬q

′

f ) have been
computed. Although the states from P may occur in differ-
ent AMAs, for our purpose, we assume that each occurrence
of p ∈ P in differentMq′ orM¬q′ carries a unique name,
for instance, it is decorated by q′ (resp. ¬q′), denoted by pq

′

(resp. p¬q
′
).

We construct PP〈〈A〉〉ψ1 = (P ′,Γ,∆′, F ′) as follows.

• P ′ = (P ×G) ∪
⋃

q′∈AP ′
Sq

′ ∪ S¬q′ ;

• F ′ : P ′ → {0, ..., k} such that for every p′ ∈ P ′,

F ′(p′) =

{
F (g), if p′ = [p, g] ∈ P ×G,
0, otherwise;

• ∆′ is the smallest transition function satisfying the fol-
lowing conditions:
i. for each pair (p, γ) ∈ P × Γ, g ∈ G,α ⊆ AP ′,

∆′(〈[p, g], γ〉) =
∧
q′∈α
〈pq′ , γ〉 ∧

∧
q′∈AP ′\α

〈p¬q′ , γ〉 ∧∨
f :A→Ac

( ∧
〈p′,ω〉∈succf (p,γ)

〈[p′, θ(g, α)], ω〉
)
;

ii. for every s
γ−→ {s1, ..., sn} ∈

⋃
q′∈AP ′

δq
′ ∪ δ¬q′ ,

∆′(〈s, γ〉) =
∧

1≤i≤n
〈si, ε〉;

iii. for every s ∈
⋃

q′∈AP ′
Sq

′

f ∪ S
¬q′
f , ∆′(〈s,⊥〉) = 〈s,⊥〉.

Theorem 3. Let PP〈〈A〉〉ψ1 = (P ′,Γ,∆′, F ′) be con-
structed as above. Then for every configuration 〈p, ω〉 ∈
CP′ , P ′, 〈p, ω〉 |= 〈〈A〉〉ψ1 iff 〈[p, g0], ω〉 ∈ L(PP〈〈A〉〉ψ1).
Moreover, |P ′| and |∆′| are doubly exponential of |ψ1|,
and polynomial of the size of P ′ and the size of Mq′ for
q′ ∈ AP ′. In addition, the index k is exponential of |ψ1|.

We deduce from Theorem 3 and Theorem 2 that the size
ofMφ is triply exponential in |φ| and polynomial in the size
of P . From Proposition 2, we obtain the main result of this
section.
Theorem 4. The model checking problem for ATL∗ over
PGSs is 3EXPTIME-complete.

The lower bound follows from a reduction from two-
player pushdown games with winning conditions specified
by LTL formulae, which was shown to be 3EXPTIME-
complete in (Löding, Madhusudan, and Serre 2004) 1.

An instance G of two-player pushdown games with
winning conditions specified by LTL formulae is a tuple
(P, λl, P0, P1, φ), where
• P = (P,Γ,∆) is a pushdown system,
• λ : P × Γ → 2AP is a function that assigns each pair
〈p, γ〉 a subset of AP ,
• (P0, P1) forms a partition of P , called respectively the set

of states for player 0 and player 1,
• and φ is an LTL formula over AP , called the winning

condition for player 0.
Plays of G are defined as usual. A play of G, say
(p0, γ0ω0)(p1, γ1ω1) . . . , is winning for player 0 if the ω-
word λ(〈p0, γ0〉)λ(〈p1, γ1〉) . . . satisfies φ. Winning strate-
gies and winning regions are then defined as usual.

1We could also prove the lower bound by a more involved re-
duction from the membership problem of 2EXPSPACE alternating
Turing machines.



In the following, we construct in polynomial time a PGS
P ′ = (P ∪ {p⊥},Γ,∆′, λ′) and an ATL∗ formula φ′ such
that for each configuration c of P , P, c |= φ iff P ′, c |= φ′.
• Ag = {ag0, ag1} where ag0, ag1 correspond to player 0

and 1 of P respectively.
• Ac = {1, . . . ,K}, where K is the maximum number k

such that ∆(〈p, γ〉) = {〈p1, ω1〉, . . . , 〈pk, ωk〉} for some
p ∈ P and γ ∈ Γ.

• For each 〈p, γ〉 ∈ P0 × Γ such that ∆(〈p, γ〉) =
{〈p1, ω1〉, . . . , 〈pk, ωk〉}, and each d ∈ Dc, if d(ag0) =
i ∈ {1, . . . , k}, then ∆′(〈p, γ〉, d) = 〈pi, ωi〉, otherwise,
∆′(〈p, γ〉, d) = 〈p⊥, γ〉. Note that here the transitions
of ∆′ are determined by the actions of the agent ag0, no
matter what actions taken by the agent ag1.

• For each 〈p, γ〉 ∈ P1 × Γ such that ∆(〈p, γ〉) =
{〈p1, ω1〉, . . . , 〈pk, ωk〉}, and each d ∈ Dc, if d(ag1) =
i ∈ {1, . . . , k}, then ∆′(〈p, γ〉, d) = 〈pi, ωi〉, otherwise,
∆′(〈p, γ〉, d) = 〈p⊥, γ〉. Note that here the transitions
of ∆′ are determined by the actions of the agent ag1, no
matter what actions taken by the agent ag0.

• For each configuration 〈p, γω〉 of P ′ such that p ∈ P ,
λ′(〈p, γω〉) = λ(〈p, γ〉). For each configuration 〈p⊥, γω〉
of P ′, λ′(〈p⊥, γω〉) = q⊥.

• The LTL formula φ′ = 〈〈{ag0}〉〉(G¬q⊥ ∧ φ).

4 Alternating-time µ-Calculus
In this section, we propose a global model checking algo-
rithm for the alternating-time µ-calculus on PGSs.

Given a PGS P = (P,Γ,∆, λl′), an AMC formula φ and
a propositional valuation Ω for the free variables in φ. The
algorithm constructs an AMA representing the denotation of
φ with respect to P , i.e., ‖φ‖PΩ .

The algorithm follows closely the saturation method for
the modal µ-calculus over pushdown systems (Hague and
Ong 2011). In particular, for the least and greatest fixpoints,
we shall apply the projection function to ensure termination.
Because of the similarity of syntax, most procedures, as well
as the correctness proof, are (almost) identical to those in
(Hague and Ong 2011). However, to handle the path se-
lective quantifier, we need to adapt those procedures for the
box and diamond modalities of the modal µ-calculus, i.e.,
for ψ = 〈〈A〉〉Xφ and ψ′ = [[A]]Xφ′.

Suppose we have generated an AMA (S1,Γ, δ1, I1, S
1
f )

for φ (resp. φ′), our task now is to generate a new AMA for
ψ (resp. ψ′). This can be defined as

(S1 ∪ I,Γ, δ1 ∪ δ′, I, S1
f ),

where I = {[p, ψ] | p ∈ P} (resp. I = {[p, ψ′] | p ∈ P}),
and

δ′([p, ψ], γ) =
∨

f :A→Ac

∧
〈p′,ω〉∈succf (p,γ)

∧
s∈Qp′ω

s

(resp.

δ′([p, ψ′], γ) =
∧

f :A→Ac

∨
〈p′,ω〉∈succf (p,γ)

∧
s∈Qp′ω

s )

where p′ ω−→δ1 Qp′ω .
The constructions for the other operators of the AMC fol-

low those in (Hague and Ong 2011) accordingly.

Theorem 5. The model checking problem for AMC on PGSs
is EXPTIME-complete.

The hardness follows from the hardness of model check-
ing problems for the alternation-free modal µ-calculus
over pushdown systems, which is EXPTIME-complete
(Walukiewicz 2001), and the obvious observations that
alternation-free µ-calculus is a fragment of (alternation-free)
AMC, and pushdown systems are a special class of PGSs
(i.e., when |Ag| = |Ac| = 1).

Indeed we even have:

Corollary 1. The model checking problem for the
alternation-free AMC on PGSs is EXPTIME-complete.

Since each ATL formula can be translated into an equiva-
lent alternation-free AMC formula in linear time, we obtain
the following result.

Corollary 2. The model checking problem for ATL on PGSs
is EXPTIME-complete.

The lower bound follows from the fact that the control
state reachability problem of APDSs is EXPTIME-complete
(Suwimonteerabuth, Schwoon, and Esparza 2006)2: We can
reduce this problem to the model checking problem for a
simple ATL formula 〈〈A〉〉Fq on PGSs.

5 Related Work
Model checking for LTL/CTL on pushdown systems were
well studied in the literature and were used to verify infinite-
state closed systems such as sequential programs with re-
cursion, see (Carayol and Hague 2014) for a survey. To
verify infinite-state open systems, solving two-player games
or module checking on pushdown systems were studied in
several works (Walukiewicz 2001; Hague and Ong 2009;
Löding, Madhusudan, and Serre 2004; Serre 2003; Aminof
et al. 2013; Bozzelli, Murano, and Peron 2010). How-
ever, they are incomparable to multi-agent pushdown sys-
tems, as discussed in (Murano and Perelli 2015). Model
checking techniques were extended to verify finite-state
multi-agent systems (Bourahla and Benmohamed 2005;
Bulling and Jamroga 2011; Jamroga and Murano 2015;
Cermák, Lomuscio, and Murano 2015). Moreover, vari-
ous extensions of alternating time temporal logics have been
considered, for instance, ATL with strategy contexts (Lopes,
Laroussinie, and Markey 2010), ATL with strategy inter-
actions (Wang, Schewe, and Huang 2015), strategy logic
(Chatterjee, Henzinger, and Piterman 2010), ATL with prob-
abilistic extensions (Chen et al. 2013). Again, these works
are restricted to finite-state multi-agent systems.

The most closely related work is (Murano and Perelli
2015) which proposes an automata-theoretic approach to
model checking for ATL∗ on PGSs which are infinite-state

2Although the result in (Suwimonteerabuth, Schwoon, and Es-
parza 2006) is for the backward reachability problem, it is not hard
to see that the proof therein can be slightly adapted to show that the
control state reachability problem is EXPTIME-complete.



multi-agent systems. The main differences between (Mu-
rano and Perelli 2015) and our work have been discussed
extensively in the introduction.

6 Conclusion
In this paper, we proposed a novel top-down approach for
the global model checking of ATL∗ and AMC on PGSs
with regular valuations. We show that they are 3EXPTIME-
complete and EXPTIME-complete respectively; the latter
complexity bound holds for the alternation-free fragment
of AMC and ATL. These algorithms are saturation-based
which we believe are crucial for efficient implementation.

Future work includes, apart from providing tool support
and case studies, investigations of other logics (as listed par-
tially in the related work) over PGSs, in particular their effi-
cient model checking algorithms and complexity.
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