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Abstract
Indexed Linear Temporal Logics (ILTL) are an extension of standard Linear Temporal Logics
(LTL) with quantifications over index variables which range over a set of process identifiers. ILTL
has been widely used in specifying and verifying properties of parameterised systems, e.g., in
parameterised model checking of concurrent processes. However there is still a lack of theoretical
investigations on properties of ILTL, compared to the well-studied LTL. In this paper, we start
to narrow this gap, focusing on the satisfiability problem, i.e., to decide whether a model exists
for a given formula. This problem is in general undecidable. Various fragments of ILTL have
been considered in the literature typically in parameterised model checking, e.g., ILTL formulae
in prenex normal form, or containing only non-nested quantifiers, or admitting limited temporal
operators. We carry out a thorough study on the decidability and complexity of the satisfiability
problem for these fragments. Namely, for each fragment, we either show that it is undecidable,
or otherwise provide tight complexity bounds.
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1 Introduction

Many concurrent systems are comprised of a finite number, but arbitrary many, of processes
running in parallel. They are often referred to as parameterised systems [5]. In this context,
the parameterised model checking problem, loosely speaking, is to decide whether a given
temporal property holds irrespective of the number of participating processes.

Parameterised systems and their verification require specifications of temporal properties.
For the verification of standard concurrent processes, temporal logics, typically Linear
Temporal Logic (LTL), Computation Tree Logic (CTL), or their combination CTL∗, have
become the de facto specification methods. Specifications of parameterised systems largely
follow this paradigm. In the setting, logics are usually extended with quantifiers over a set
of process identifiers, giving rise to various indexed versions of temporal logics. This dates
back to [22] which introduced an extension of LTL with spatial operators ranging over the
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processes of a parameterised system. It was shown that the satisfiability problem of this logic
is undecidable. After that, there has been a large body of work on indexed temporal logics.
To name just a few, indexed CTL∗/X, an extension of CTL∗ with quantifiers over process
identifiers but excluding the “next” operator X, was introduced by Browne et al. in [5].
They studied the relation between indexed CTL∗/X and bisimulation among parameterised
systems. Emerson et al. investigated the parameterised model checking problem of fragments
of indexed CTL∗/X in prenex normal form over rings [12]. They also studied symmetry
properties in model-checking systems against indexed LTL and indexed CTL∗ with non-nested
index quantifiers and only local atomic propositions [13]. German et al. showed that the
parameterised model-checking problem of indexed LTL without global atomic propositions
or nested quantifiers is undecidable [16]. Clarke et al. considered the parameterised model
checking problem of indexed LTL/X over token passing systems with respect to general
topologies [6]. Very recently, Aminof et al. studied the same problem for indexed CTL∗/X
[1] unifying and extending the results in [12, 6].

Since indexed temporal logics play a fundamental role in specification and verification of
parameterised systems, it is of great importance to investigate their basic (meta-)properties,
along the same line as LTL, CTL, or CTL∗. In this paper, we focus on one such property, i.e.,
the satisfiability problem of the indexed LTL (ILTL), which, given an ILTL formula, aims to
determine whether there exists a model satisfying the formula. In theory, satisfiability is
probably one of the first questions one intends to answer, especially when the computational
aspect of the logic is concerned. In practice, decision procedures for satisfiability have
potential applications in synthesis of concurrent programs from their logical specifications,
and play an important role in checking the consistency of specifications in an early stage of
system design [27, 28]. However, in spite of its importance, to the best of our knowledge, the
satisfiability problem of ILTL has not been studied systematically. The current work aims to
fill in such a gap.

One immediate result is that ILTL is undecidable in general (see Proposition 1 in Section 2).
We then consider the following two natural fragments of ILTL, i.e.,

ILTLpnf , the ILTL formulae in prenex normal form, and
NN-ILTL, the ILTL formulae where the quantifiers are non-nested.

We remark these two fragments are largely disjoint (module some trivial cases), and they
are two representative classes of properties which are indeed extensively used in the verification
of parameterised systems [12, 16]. Furthermore, in most of the work on parameterised model
checking, e.g., [1, 11, 12, 14], indexed temporal logics are considered excluding the global
atomic propositions, or with only a limited subset of temporal operators (for instance, the
“next” operator X is usually disallowed). From this practical point of view, it is of paramount
importance to consider these fragments, which are the main objects of the current paper.

In this paper, we mainly focus on the decidability and complexity of the satisfiability
problem of ILTLpnf and NN-ILTL. For each of these two fragments, we further study the
impact of global atomic propositions and temporal operators on the decidability/complexity.
These results implicitly depict that what kind of specifications can be automatically checked
for consistency at the early stage of parameterised system design, and how efficiently this
can be done.

Contribution. The results obtained in this paper are summarised in Figure 1 which is
organised hierarchically in term of syntax inclusion. In particular we show that

the satisfiability problem of formulae in prenex normal form starting with ∀∃ is undecidable
even with only “future” and “global” temporal operators (∀∃− (ILTL(F,G))pnf in Figure
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Figure 1 Summary of the results: Und. (Undecidable), T. (Theorem), C. (Corollary), Q ∈
{∃∀

∗
} ∪ {∃

∗
∀

k
∣ k ∈ N}, O1 is {X,F,G} or {U,R}, O2 is {X,F,G} or {U,R} or {F,G}.

1). This extends to formulae starting with ∃∀∃ with only local atomic propositions
(∃∀∃ − ILTLlocpnf in Figure 1),
the satisfiability problem of the formulae in prenex normal form starting with ∃∗∀∗ is
decidable with an exponential blow-up in complexity comparing to their counterparts
of LTL w.r.t. various combinations of temporal operators (∃∗∀∗ − ILTLpnf , ∃∗∀∗ −
(ILTL/X)pnf , and ∃∗∀∗ − (ILTL(F,G))pnf in Figure 1),
the satisfiability problem of the formulae in prenex normal form starting with ∃∀∗,∃∗∀k,
where k ≥ 0 is a fixed number, is decidable with the same complexity as their counterparts
of LTL w.r.t. various combinations of temporal operators (Q − (ILTL(O1))pnf and Q −
(ILTL(F,G))pnf in Figure 1),
the satisfiability problem of the formulae with non-nested quantifiers is EXPSPACE-
complete, and this even holds for formulae allowing the “future” and “global” temporal
operators only (NN − ILTL(O2) in Figure 1).

We outline some techniques we use to obtain the aforementioned results. The upper bound
of ILTLpnf with the quantifier prefixes ∃∗∀∗ is obtained by instantiating the universal quan-
tifiers with all the possible combinations of existentially quantified ones, thus, removing
the universal quantifiers (Theorem 6). For the upper bound of NN − ILTL, a concept of
potentially Eulerian directed graphs is introduced which plays an essential role in the decision
procedure (Theorem 21). Moreover, we exploit the index quantifiers and a property regarding
the expressiveness of “future” and “global” temporal operators (cf. Lemma 4) to obtain
undecidability and complexity lower bounds (Theorem 3 and Theorem 21).

Related work. We have already discussed various indexed extensions of standard temporal
logics and the related results [22, 5, 14, 16]. Since process identifiers can also be seen as a
sort of data values, ILTL is also related to temporal logics over data words or words over
infinite alphabets.

The most relevant work includes: LTL with freeze quantifiers (i.e. registers) over a singly
attributed data word [9, 15]; LTL with navigation mechanisms for a single (or a tuple of)
data attribute(s) over multi-attributed data words (i.e., data words where each position
carries multiple data values which can be referred to by a fixed set of attributes) [21, 8, 7];
LTL, CTL and CTL∗ with variable quantifications (called variable LTL/CTL/CTL∗), where
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the variables range over an infinite data domain [17, 18, 10, 25]. Decidability and complexity
issues of these logics and variants thereof were studied.

These logics are interpreted over data words where each position carries only a fixed
number of data values, whereas ILTL is interpreted over computation traces in parameterised
systems. While computation traces can also be seen as data words by treating process
identifiers as data values, these data words are significantly different than the traditional
ones studied before. Namely, each position of these data words carries an unbounded number
of data values, and all the data values occur in every position. To our best knowledge,
data words of this special structure and their logics have not been considered in the infinite
alphabet community.

Structure. The rest of the paper is organised as follows. Section 2 presents the preliminaries.
Section 3 is devoted to ILTL formulae in prenex normal form, and Section 4 is for ILTL formulae
with non-nested quantifiers. Due to space limitation, most of the proofs are omitted and will
appear in the journal version of this paper.

2 Preliminaries

For k ∈ N, let [k] = {0, . . . , k − 1}. For a sequence α = α0α1 . . . and j ∈ N, we use α[j] to
denote the element of α at position j.

Let I be an infinite set of process identifiers and X be a set of index variables which
range over I. Let AP be a finite set of global atomic propositions and AP ′ be a finite set of
local atomic propositions. We assume that AP ∩AP ′ = ∅. The intention of AP ′ is to specify
process-specific properties, so each occurrence of AP ′ in formulae is parameterised with an
index variable from X .

The formulae of indexed LTL (ILTL) are defined by the following BNF,

ϕ ∶∶= true ∣ false ∣ p ∣ ¬p ∣ p′(x) ∣ ¬p′(x) ∣ ϕ ∨ ϕ ∣ ϕ ∧ ϕ ∣Xϕ ∣ ϕ U ϕ ∣ ϕ R ϕ ∣ ∃x.ϕ ∣ ∀x.ϕ,

where p ∈ AP,p′ ∈ AP ′, x ∈ X .
Moreover, standard “future” (F ) and “global” (G) temporal operators can be introduced

as abbreviations: Fψ ≡ true U ψ, Gψ ≡ false R ψ.
Let free(ϕ) denote the set of free variables occurring in ϕ. An ILTL formula containing

no free variables is called a closed ILTL formula. In addition, the size of ϕ, denoted by
∣ϕ∣, is defined as the number of symbols occurring in ϕ. For an ILTL formula ϕ, let ¬ϕ
denote its complement (negation), and let ϕ denote the positive normal form of ¬ϕ, that is
obtained by pushing the negation inside of operators. For instance, if ϕ = ∃x. Fp′(x), then
ϕ = ∀x. G¬p′(x).

ILTL formulae are typically used to specify and verify parameterised systems. Naturally,
ILTL formulae are interpreted over computation traces of parameterised systems. In the
present paper, we adopt the definition of the computation traces from [16]. A computation
trace over AP ∪AP ′ is a tuple trc = (α, I, (βi)i∈I), where α ∈ (2AP )ω is an ω-sequence of
valuations over the global atomic propositions from AP , I ⊆ I is a finite set of process
identifiers, and for each i ∈ I, βi ∈ (2AP ′)ω is a local computation trace, i.e. an ω-sequence of
valuations over the local atomic propositions from AP ′.

Let ϕ be an ILTL formula, trc = (α, I, (βi)i∈I) be a computation trace, θ ∶ free(ϕ)→ I be
an assignment of the process identifiers (from I) to the free variables in ϕ, and n ∈ N. Then
(trc, θ, n) satisfies ϕ, denoted by (trc, θ, n) ⊧ ϕ, is defined as follows.

(trc, θ, n) ⊧ p (resp. ¬p) if p ∈ α[n] (resp. p ∉ α[n]),
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(trc, θ, n) ⊧ p′(x) (resp. ¬p′(x)) if p′ ∈ βθ(x)[n] (resp. p′ ∉ βθ(x)[n]),
(trc, θ, n) ⊧ ∃x.ϕ1 if there is i ∈ I such that (trc, θ[i/x], n) ⊧ ϕ1, where θ[i/x] is the same
as θ, except for assigning i to x,
(trc, θ, n) ⊧ ∀x.ϕ1 if for each i ∈ I, (trc, θ[i/x], n) ⊧ ϕ1,
(trc, θ, n) ⊧ ϕ1 ∨ ϕ2 if (trc, θ, n) ⊧ ϕ1 or (trc, θ, n) ⊧ ϕ2,
(trc, θ, n) ⊧ ϕ1 ∧ ϕ2 if (trc, θ, n) ⊧ ϕ1 and (trc, θ, n) ⊧ ϕ2,
(trc, θ, n) ⊧Xϕ if (trc, θ, n + 1) ⊧ ϕ,
(trc, θ, n) ⊧ ϕ1 U ϕ2 if there is k ≥ n s.t. (trc, θ, k) ⊧ ϕ2, and for all j ∶ n ≤ j < k,
(trc, θ, j) ⊧ ϕ1,
(trc, θ, n) ⊧ ϕ1 R ϕ2 if for all k ≥ n, (trc, θ, k) ⊧ ϕ2, or there is k ≥ n s.t. (trc, θ, k) ⊧ ϕ1,
and for all j ∶ n ≤ j ≤ k, (trc, θ, j) ⊧ ϕ2.

Note that if ϕ is a closed ILTL formula, then θ has an empty domain and thus is omitted.
Namely we simply write (trc, n) ⊧ ϕ. In addition, for a closed ILTL formula ϕ, we use
trc ⊧ ϕ to abbreviate (trc,0) ⊧ ϕ. For a closed ILTL formula ϕ, let L(ϕ) denote the set of
computation traces trc such that trc ⊧ ϕ. The satisfiability problem of ILTL is:

Given a closed ILTL formula ϕ, decide whether L(ϕ) is empty.

As a warm-up, we show that the satisfiability problem of ILTL is undecidable in general1,
which is obtained by a reduction from the PCP problem [29]. Recall that PCP problem is,
given an instance (uj , vj)1≤j≤n, where uj , vj are finite words over an alphabet Σ, to decide
whether there exists a sequence of indices j1 . . . jm such that uj1 . . . ujm = vj1 . . . vjm . The main
idea of the reduction is to encode a solution j1 . . . jm of the PCP problem as a computation
trace trc = (α, I, (βi)i∈I) such that α = wj1wj2 . . .wjmatom(#) wj1 . . .wjm(atom($))ω, where
wj1wj2 . . .wjm corresponds to uj1 . . . ujm , wj1 . . .wjm corresponds to vj1 . . . vjm , and a local
atomic proposition p′ is used in (βi)i∈I to guarantee the equality of uj1 . . . ujm and vj1 . . . vjm .

▸ Proposition 1. The satisfiability problem of ILTL is undecidable.

In this paper, we shall consider the following fragments of ILTL with abbreviations:

ILTLpnf denotes the fragment of ILTL where formulae are in prenex normal form, that
is {∀,∃} quantifications appear only at the beginning of the formula. In particular, let
Q ⊆ {∃,∀}∗. Then Q − ILTLpnf denotes the fragment of ILTLpnf where the quantifier
prefixes belong to Q.
NN − ILTL denotes the fragment of ILTL where the quantifiers are not nested, that is, for
each formula Q1x.ϕ1 such that Q2y.ϕ2 is a subformula of ϕ1, it holds that x is not a free
variable of ϕ2, where Q1,Q2 ∈ {∀,∃}.
ILTL(O) for O ⊆ {X,F,G,U,R} denotes the fragment of ILTL where only temporal
operators from O are used. Moreover, we use ILTL/X as an abbreviation of ILTL(U,R),
where the X operator is forbidden.
ILTLloc denotes the fragment of ILTL where there are no global atomic propositions, that
is, AP = ∅.

1 Proposition 1 is subsumed by Theorem 2 and Theorem 3 in the next section. We choose to present the
weaker and easier result first, instead of giving the strongest result (Theorem 3) directly. This might
hopefully illustrate the idea of the proof and facilitate readers’ understanding.
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These notations might be combined to define more (refined) fragments, e.g. (ILTL(F,G))pnf
denotes the fragment of ILTLpnf where only temporal operators F and G are used.

For establishing the complexity lower-bounds, we shall use the tiling problems, which have
various versions to capture different complexity classes [4]. Among others, the exponential-size
square tiling problem is specified by a tuple (n,∆,H,V, tS , tF ), where n ∈ N is encoded in
unary, ∆ is a finite set of tiles, H,V ⊆ ∆×∆ are called the horizontal and vertical constraints,
tS , tF ∈ ∆ are the initial tile and final tile respectively. The task is to decide whether there
is a tiling of the square [2n] × [2n], that is, a function f ∶ [2n] × [2n] → ∆, satisfying the
following conditions,

horizontal constraint: for every j1, j2 ∶ j1 ∈ [2n], 0 ≤ j2 < 2n−1, (f(j1, j2), f(j1, j2+1)) ∈H,
vertical constraint: for every j1, j2 ∶ 0 ≤ j1 < 2n − 1, j2 ∈ [2n], (f(j1, j2), f(j1 + 1, j2)) ∈ V ,
initial and final constraint: f(0,0) = tS , f(2n − 1,2n − 1) = tF .

This problem is known to be NEXPTIME-complete.
Likewise, the exponential-size corridor tiling problem is given by a tuple (n,∆,H,V, tS , tF ).

The task is to decide whether there is k ≥ 1 such that the integer plane of size k × 2n can be
tiled, that is, by a function f ∶ [k] × [2n]→∆, so that the following conditions hold,

horizontal constraint: for each j1 ∈ [k],0 ≤ j2 < 2n − 1, (f(j1, j2), f(j1, j2 + 1)) ∈H,
vertical constraint: for each 0 ≤ j1 < k − 1, j2 ∈ [2n], (f(j1, j2), f(j1 + 1, j2)) ∈ V ,
initial and final constraint: f(0,0) = tS , f(k − 1,2n − 1) = tF .

This problem is known to be EXPSPACE-complete.

3 Formulae in Prenex Normal Form

In this section, we focus on ILTLpnf formulae in prenex normal form, i.e., formulae of the
form Q1x1 . . .Qkxk.ψ, where Qj ∈ {∀,∃} for all 1 ≤ j ≤ k, and ψ is quantifier free.

3.1 Undecidability
Our first (negative) result states that even with one alternation of the existential and universal
quantifiers, the satisfiability problem of ILTLpnf is already undecidable.

▸ Theorem 2. The satisfiability problem of ∀∃ − ILTLpnf is undecidable.

The ILTL formulae used in the proof of Proposition 1 are not in ∀∃− ILTLpnf . In the proof
of Theorem 2, we adapt the reduction in Proposition 1 so that only formulae from ∀∃−ILTLpnf
are used in the reduction. We then investigate whether restricting certain temporal operators
leads to decidability. Unfortunately, this is not the case. Indeed, the undecidability stands
even when only the “future” and “global” temporal operators are present. Clearly, this
implies that the satisfiability of indexed temporal logics without “next” temporal operators,
which are prevailing in the study of parameterised model checking (e.g. ICTL∗/X in [1]), is
undecidable in general.

▸ Theorem 3. The satisfiability problem of ∀∃ − (ILTL(F,G))pnf is undecidable.

To prove this result, we first show the undecidability of ∀∃ − (ILTL/X)pnf , which is
obtained by adapting the proof of Theorem 2 and encoding the “next” operator with the
“until” operator. As the next step, we further encode the “until” operator with the “global”
and “future” operators, with the help of the index quantifiers and the following Lemma 4
[24]. Lemma 4 shows that F,G are sufficiently strong to express some properties that could
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only be defined by the “until” operator at the first sight, although in a more technical and
less intuitive way.

▸ Lemma 4 ([24]). Let Z ⊆ X be a finite set of variables and Σ = 2AP∪(AP
′
×Z). Suppose L =

A∗

1B1A
∗

2B2 . . .A
∗

kBkA
ω
k+1 such that A1,B1, . . . ,Ak,Bk,Ak+1 ⊆ Σ, and for each j ∶ 1 ≤ j ≤ k,

Bj ⊆ (Aj ∖Aj+1). Then L can be defined by an LTL(F,G) formula ϕ over the set of atomic
propositions AP ∪(AP ′×Z). Moreover, if for each j ∶ 1 ≤ j ≤ k+1, Aj is defined by a formula
ψj, and for each j ∶ 1 ≤ j ≤ k, Bj is defined by a formula ξj, then the LTL(F,G) formula ϕ
can be constructed from these formulae in linear time w.r.t. ∑

1≤j≤k+1
∣ψj ∣ + ∑

1≤j≤k
∣ξj ∣.

To give an idea how the languages L in Lemma 4 can be expressed in LTL(F,G), let us
look at the following example: Suppose Σ = 2{p

′

1(x),p
′

2(x)}, and L = A∗

1B1A
ω
2 , where A1 = B1 =

{{p′1(x)}}, and A2 = {{p′2(x)}}. Intuitively, L specifies that p′1(x)∧¬p′2(x) always holds until
¬p′1(x)∧p′2(x) holds, and the latter holds forever afterwards. If the “until” operator is allowed,
then L can be defined easily by p′1(x) ∧ ¬p′2(x) ∧ (p′1(x) ∧ ¬p′2(x)) U (G(¬p′1(x) ∧ p′2(x))).
On the other hand, without the “until” operator, L can be defined by

ϕ = p′1(x) ∧ ¬p′2(x) ∧G[(p′1(x) ∧ ¬p′2(x)) ∨G(¬p′1(x) ∧ p′2(x))] ∧ FG(¬p′1(x) ∧ p′2(x)).

As mentioned in the introduction, we are also interested in the influence of the global atomic
propositions (which are needed in the above reductions). What happens to Theorem 3 if
only local atomic propositions are allowed? We show that in this case the undecidability
stands at the cost of a higher level of alternations of quantifiers. Namely, we have

▸ Proposition 5. The satisfiability problem of ∃∀∃ − ILTLloc
pnf is undecidable.

The proof is obtained by encoding global atomic propositions with local atomic proposi-
tions, with the aid of the additional existential quantifier. Similar results also hold when the
set of temporal operators is restricted.

3.2 Decidability
From Theorem 2, we know that the satisfiability problem of ILTLpnf is undecidable, even
with the quantifier prefix ∀∃. In this section, we will show that the undecidability result of
Theorem 2 is tight in the sense that the satisfiability problem of ∃∗∀∗ − ILTLpnf is decidable
(more precisely, EXPSPACE-complete).

▸ Theorem 6. The satisfiability problem of ∃∗∀∗ − ILTLpnf is EXPSPACE-complete.

Proof sketch. The EXPSPACE upper bound is obtained by instantiating the universal
quantifiers with all the possible combinations of existentially quantified ones. Let ϕ =
∃x1 . . . xk∀y1 . . . yl. ψ be an ∃∗∀∗ − ILTLpnf formula, where ψ is quantifier-free. We construct
an ∃∗ − ILTLpnf formula ϕ′ as ∃x1 . . . xk. ⋀

f
ψf , where f ranges over all the functions from

{1, . . . , l} to {1, . . . , k}, and ψf is obtained from ψ by replacing each occurrence of p′(yj)
with p′(xf(j)), for every j ∶ 1 ≤ j ≤ l and p′ ∈ AP ′. Note that the size of ϕ′ is exponential in
∣ϕ∣. Moreover, it is not hard to see that the satisfiability of ∃∗ − ILTLpnf can be reduced in
linear time to that of LTL. Therefore, as the satisfiability of LTL is PSPACE-complete [23],
we get the EXPSPACE upper bound for ∃∗∀∗ − ILTLpnf .

For the lower bound, we reduce from the exponential-size corridor tiling problem. Let
(n,∆,H,V, tS , tF ) be an instance of the exponential-size corridor tiling problem. Suppose
m = ⌈log(∣∆∣)⌉. Let AP ′ = {p′, p′1, . . . , p′n, q′1, . . . , q′m} be the set of local atomic propositions,
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where p′1, . . . , p′n are used to encode the addresses of each row (that is, the elements of [2n])
of the tiling problem, q′1, . . . , q′m are used to encode the set of tiles in ∆, and p′ is used
as a marker. The reduction also uses two existential variables x1, x2 such that for each
j ∶ 1 ≤ j ≤ n, exactly one of p′j(x1) or p′j(x2) holds at each position. Intuitively, for each
address ` ∈ [2n], p′j(x1) (resp. p′j(x2)) holds iff the j-th bit of the binary encoding of ` is 0
(resp. 1). In addition, the universally quantified variables y1, . . . , yn are used to specify the
horizontal and universal constraints of the tiling problem. ◂

As before, we now examine whether restricting temporal operators is beneficial to reduce
the complexity. An easy observation is that since the lower bound proof of Theorem 6
only uses the operators X,F,G, the satisfiability problem of ∃∗∀∗ − (ILTL(X,F,G))pnf is
EXPSPACE-complete. For the other restrictions of temporal operators, we obtain the
following results.

▸ Theorem 7. The satisfiability problem is
EXPSPACE-complete for ∃∗∀∗ − (ILTL/X)pnf ,
NEXPTIME-complete for ∃∗∀∗ − (ILTL(F,G))pnf .

The upper-bounds are obtained by the similar argument of Theorem 6 and the complexity
of respective fragments of LTL [23]. The lower bounds are obtained by (refined) reductions
from the exponential-size corridor and exponential-size square tiling problems respectively.

Moreover, by a refined analysis of the proof of Theorem 6 and the complexity of various
fragments of LTL [23], we obtain the following result.

▸ Corollary 8. For each Q ∈ {∃∀∗} ∪ {∃∗∀k ∣ k ∈ N}, the satisfiability problem is
PSPACE-complete for Q − (ILTL(X,F,G))pnf and Q − (ILTL/X)pnf ,
NP-complete for Q − (ILTL(F,G))pnf .

4 Non-Nested Quantifiers

In this section, we focus on the satisfiability of NN − ILTL, i.e., the fragment of ILTL where
quantifiers are not nested. A “folklore” theorem, concerning NN − ILTLloc (i.e., NN − ILTL
with local atomic propositions solely), states that the satisfiability problem is EXPSPACE-
complete. In [16], the authors attributed this result to [19], where the temporal logics with
knowledge operators were studied. Among others, the complexity upper bound for the
satisfiability of LKT(m) (m ≥ 1) over synchronous unbounded memory models2 was given
by introducing a concept called k-trees and reducing to the nonemptiness of Büchi tree
automata (cf. Theorem 4.1 in [19]). As pointed out in [16], NN − ILTLloc corresponds to
LKT(1) in [19] (note in this case, only 1-trees are needed). Nevertheless, the EXPSPACE
result of NN − ILTLloc via [19] is unsatisfactory in that: (1) the construction of [19] is for
temporal logics with knowledge operators which have specific syntax and semantics, and
is rather technical and only sketched (referred to [26] indeed), hence it is fair to see the
result for NN − ILTLloc is not self-contained and difficult to access; (2) more importantly, the
correctness proof of the construction in [19] is not available, and based on our efforts in
discovering the proof and the results presented in the rest of this section, the correctness of
the construction in [19] is not clear, at least to us. We propose a self-contained proof for the
complexity results of NN − ILTL satisfiability (which also extends the result for NN − ILTLloc).

2 where m is the number of “knowers".
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Our construction for the EXPSPACE upper bound is different from that in [19]. Some
new concepts, e.g., the potential Eulerian directed graphs (Definition 14), are needed for
us. Moreover, we strengthen the EXPSPACE lower bound to NN − ILTL(F,G), that is, the
fragment of NN − ILTL where only “future” and “global” temporal operators are available.
This result, together with Theorem 3, shows that with index quantifiers, even very weak
temporal operators are powerful enough to exhibit undecidability or complexity lower bounds.

Throughout this section, we assume ϕ to be an NN − ILTL formula. In addition, we
assume that only one variable x occurs in ϕ (i.e., x is reused in distinct quantifiers). Without
loss of generality, we assume that AP (resp. AP ′) is the set of global (resp. local) atomic
propositions occurring in ϕ (otherwise, it is sufficient to consider the restriction of AP and
AP ′ to those occurring in ϕ). We first introduce some notations.

A directed multigraph G is a pair (V,E) where V is a set of vertices, E is a multiset of
ordered pairs (v, v′) ∈ V × V . The elements of E are called arcs. The distinct copies of the
same pair (v, v′) in E are called parallel arcs. For an arc e ∈ E which is a copy of (v, v′), v
and v′ are called the tail and the head of e respectively. An arc-labelled directed multigraph
is a tuple (V,E,L), where (V,E) is a directed multigraph and L ∶ E → A (where A is a
finite set) is an arc-labelling function. A (finite) path in a directed multigraph G = (V,E)
is a sequence v0e1v1 . . . vn−1envn (where n ≥ 1) such that for each j ∶ 1 ≤ j ≤ n, ej is an arc
with the tail vj−1 and the head vj . The length of a path is the number of arcs in the path.
A cycle in G is a path v0e1v1 . . . vn−1envn such that v0 = vn. A directed graph is a directed
multigraph (V,E) without parallel arcs, that is, E is a set of pairs (v, v′) ∈ V × V . For a
directed graph G = (V,E), since each arc is uniquely identified by its head and its tail, a path
can also be seen as a vertex sequence v0v1 . . . vn such that for each j ∶ 0 ≤ j < n, (vj , vj+1) ∈ E.
In addition, later on, sometimes we also write an arc-labelled directed graph G = (V,E,L)
as a pair (V,E′) such that E′ = {(v,L(v, v′), v′) ∣ (v, v′) ∈ E}. A directed multigraph G is
said to be acyclic if there are no cycles in G, and is said to be strongly connected if for every
pair of vertices v, v′, there is a path from v to v′ and vice versa. A directed multigraph G is
connected if the underlying undirected multigraph G, i.e. the multigraph obtained from G by
ignoring the directions of arcs, is connected.

We then introduce some definitions related to ϕ. Let cl(ϕ) denote the closure of formulae
including the set of subformulae in ϕ, their complements, as well asX(ψ1Uψ2) andX(ψ1Rψ2)
for ψ1Uψ2, ψ1Rψ2 ∈ cl(ϕ) respectively. It is not difficult to observe that the size of cl(ϕ)
(the number of formulae in cl(ϕ)), denoted by ∣cl(ϕ)∣, satisfies that ∣cl(ϕ)∣ = O(∣ϕ∣).

▸ Definition 9 (Atom). Ψ ⊆ cl(ϕ) is an atom over ϕ if the following conditions hold:
For each ψ ∈ cl(ϕ), ψ ∈ Ψ iff ψ /∈ Ψ.
For each ψ1 ∧ ψ2 ∈ cl(ϕ), ψ1 ∧ ψ2 ∈ Ψ iff ψ1 ∈ Ψ and ψ2 ∈ Ψ.
For each ψ1 ∨ ψ2 ∈ cl(ϕ), ψ1 ∨ ψ2 ∈ Ψ iff ψ1 ∈ Ψ or ψ2 ∈ Ψ.
For each ψ1Uψ2 ∈ cl(ϕ), ψ1Uψ2 ∈ Ψ iff ψ2 ∈ Ψ or ψ1,X(ψ1Uψ2) ∈ Ψ.
For each ψ1Rψ2 ∈ cl(ϕ), ψ1Rψ2 ∈ Ψ iff ψ2, ψ1 ∈ Ψ or ψ2,X(ψ1Rψ2) ∈ Ψ.
For each ∀x.ψ ∈ cl(ϕ), if ∀x.ψ ∈ Ψ, then ψ ∈ Ψ.
For each ∃x.ψ ∈ cl(ϕ), if ψ ∈ Ψ, then ∃x.ψ ∈ Ψ.

▸ Remark. For formulae of the form ∃x.ψ ∈ cl(ϕ), it is possible that ∃x.ψ ∈ Ψ, but ψ ∉ Ψ.
Let A denote the set of all atoms. It is not hard to see that ∣A∣ ≤ 2∣cl(ϕ)∣.

▸ Definition 10 (Macro state). A macro state S w.r.t. ϕ is a nonempty set of atoms satisfying
the following conditions:
1. for each p ∈ AP and Ψ,Ψ′ ∈ S, p ∈ Ψ iff p ∈ Ψ′,
2. for each Qx.ψ ∈ cl(ϕ) and Ψ,Ψ′ ∈ S, Qx.ψ ∈ Ψ iff Qx.ψ ∈ Ψ′, where Q ∈ {∃,∀},
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3. for each ∃x.ψ ∈ cl(ϕ) and Ψ ∈ S, ∃x.ψ ∈ Ψ iff ψ ∈ Ψ′ for some Ψ′ ∈ S.
▸ Remark. In the above definition, all atoms Ψ in S agree on the satisfaction of global atomic
propositions (item 1) and sentences, i.e., formulae containing no free variables (item 2).
Let S denote the set of all macro states w.r.t. ϕ.

▸ Definition 11 (Successor). We have the following definitions:
Assume two atoms Ψ,Ψ′ ⊆ cl(ϕ). Then Ψ′ is a successor of Ψ, denoted by Ψ→ Ψ′, if for
each Xψ ∈ cl(ϕ), Xψ ∈ Ψ iff ψ ∈ Ψ′.
Assume two macro states S and S′ w.r.t. ϕ. Then S′ is a successor of S if there is a total
and surjective relation η ⊆ S × S′ such that for each (Ψ,Ψ′) ∈ η, Ψ′ is a successor of Ψ.
[Recall that η ⊆ S × S′ is total (resp. surjective) iff for each Ψ ∈ S (resp. Ψ′ ∈ S′), there is
Ψ′ ∈ S′ (resp. Ψ ∈ S) such that (Ψ,Ψ′) ∈ η.]
For any two macro states S and S′, we write S η↣ S′ to highlight the relation η associated
with the transition.

The pairs (A,→) and (S,↣) constitute a directed graph and multigraph respectively.
Let’s first give some intuition of our decision procedure. One may easily observe: Let
trc = (α, I, (βi)i∈I) be a computation trace satisfying ϕ. For each j ∈ N and i ∈ I, define
Φj,i = {ψ ∈ cl(ϕ) ∣ (trc, [x → i], j) ⊧ ψ}. Then for each j ∈ N, the tuple of atoms (Φj,i)i∈I
can be abstracted into a macro state Sj (which is a set of atoms), and trc is accordingly
abstracted into an infinite path S0S1 . . . in (S,↣). From this observation, a natural idea to
decide the satisfiability of ϕ is to search for a path in (S,↣) which satisfies some constraints
(as obviously not all such paths give a valid computation trace). However, it seems nontrivial
to specify these constraints. We use the following example to illustrate the difficulties.

▸ Example 12. Suppose ϕ = G(∃x.(p(x)∧XG¬p(x))) (for simplicity, let ξ = p(x)∧XG¬p(x)).
It is not hard to see that ϕ is unsatisfiable (an obvious “model” of ϕ requires infinitely many
process identifiers). The closure of ϕ is

cl(ϕ) = {p(x),¬p(x),G¬p(x), Fp(x),XG¬p(x),XFp(x), ξ, ξ,
∃x. ξ, ∀x. ξ, G(∃x. ξ), F (∀x. ξ),XG(∃x. ξ),XF (∀x. ξ)}.

Let S = {Ψ1,Ψ2,Ψ3}, where

Ψ1 = {p(x), Fp(x),XG¬p(x), ξ, ∃x. ξ, G(∃x. ξ),XG(∃x. ξ)},
Ψ2 = {p(x), Fp(x),XFp(x), ξ, ∃x. ξ,G(∃x. ξ),XG(∃x. ξ)},
Ψ3 = {¬p(x),G¬p(x),XG¬p(x), ξ, ∃x. ξ,G(∃x. ξ),XG(∃x. ξ)}.

It is a routine to check that S satisfies all the constraints in Definition 10 and is thus a macro
state. In addition, let η = {(Ψ1,Ψ3), (Ψ2,Ψ1), (Ψ2,Ψ2), (Ψ3,Ψ3)}. It is easy to verify that
each pair of atoms in η satisfies the successor relation between atoms (item 1 of Definition 11),
moreover, η is total and surjective, and thus S η↣ S. Hence π = S η↣ S

η↣ S . . . is an infinite
path in (S,↣). Moreover, since both Fp(x) and p(x) occur in Ψ1 and Ψ2, and Fp(x) does
not occur in Ψ3, it is not hard to observe that over every path of atoms in π, that is, every
infinite path in Figure 2, all the occurrences of Fp(x) on the path are fulfilled. Therefore, to
decide the satisfiability it is far from enough to simply search for a lasso in (S,↣) where
over every path of atoms, all the occurrences of the “until” formulae are fulfilled, as that
would lead to the wrong conclusion that ϕ is satisfiable. ◂

The unsatisfiability of ϕ in Example 12 is due to the fact that the “satisfaction” of
ϕ requires infinitely many process identifiers (recall that as a model, we require the set
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Ψ1 Ψ2 Ψ3

Figure 2 The directed graph (S, η) in Example 12.

of process identifier to be finite). To rule out such cases, we introduce a concept called
potentially Eulerian.

Suppose G = (V,E) is a directed multigraph. An Eulerian cycle in G is a cycle in G

that traverses each arc in E exactly once. A directed multigraph G is Eulerian if it has
an Eulerian cycle. For v ∈ V , let indeg(v) and outdeg(v) denote respectively the number of
incoming arcs of v (i.e. the arcs with v as the head) and the number of outgoing arcs of v
(i.e. the arcs with v as the tail) in G.

▸ Proposition 13 ([3]). Let G = (V,E) be a directed multigraph. Then G is Eulerian iff G is
connected and for each vertex v ∈ V , indeg(v) = outdeg(v).

▸ Definition 14 (Potentially Eulerian). A directed multigraph G = (V,E) is said to be
potentially Eulerian if G can become Eulerian by adding parallel arcs.

Note that in the above definition, only parallel arcs can be added. For instance, let G =
({v1, v2, v3},{(v1, v2), (v2, v1), (v2, v3), (v3, v1)}), then G is not Eulerian, but G is potentially
Eulerian since adding a parallel arc (v1, v2) makes G Eulerian.

▸ Proposition 15. Let G = (V,E) be a directed multigraph. Then G is potentially Eulerian
iff G is strongly connected.

▸ Example 16 (Example 12 continued). Let G be the directed graph (S, η) in Example 12,
that is, vertices are the atoms in S, and the arc relation is given by η (see Figure 2). Then it
is easy to check that G is connected but not strongly connected, that is, G is not potentially
Eulerian. ◂

Example 16 illustrates that the concept of “potentially Eulerian” may be used to deal
with the situation that the satisfaction of ϕ requires infinitely many process identifiers, which
is indeed the case in our construction, as we shall see.

Another difficulty is to formulate a proper constraint to guarantee all occurrences of
“until” formulae are fulfilled somehow (which would be much easier for LTL). One natural
candidate might be to require that over each path of atoms in the desired lasso of (S,↣),
each “until” formula occurring in the path is fulfilled at least once. However, it turns out
this would be too restrictive (see Example 19), and indeed we introduce a mechanism to
relax this constraint; cf. L(⋅) function in Definition 17 and Definition 18, item 4.

In the following, we construct an arc-labelled directed graph Gϕ from (S,↣) so that
searching for a desired lasso in (S,↣) (for the satisfiability of ϕ) can be reduced to a
reachability problem in Gϕ.

▸Definition 17 (The graph Gϕ). The arc-labelled directed graphGϕ = (Vϕ,Eϕ) is constructed
from (S,↣) as follows:

Vϕ is the union of S and the set of tuples (S,S′,G) such that S,S′ ∈ S, and G =
(S ∪ S′,E,L) is an arc-labelled directed graph such that E ⊆ S × S′ and L ∶ E → 2A×A.
Eϕ is the union of



12 Satisfiability of Indexed LTL

the set of tuples (S, η,S′) such that S η↣ S′,
the set of tuples (S, η, (S,S′,G)) such that S η↣ S′, and G = (S ∪ S′, η,L), where for
each (Ψ,Ψ′) ∈ η, L((Ψ,Ψ′)) = {(Ψ,Ψ′)},
the set of tuples ((S,S′,G), η, (S,S′′,G′)) with
∗ S′

η↣ S′′,
∗ let G = (S ∪ S′,E,L), then G′ = (S ∪ S′′,E ⋅ η,L′), where for each (Ψ,Ψ′′) ∈ E ⋅ η
(note that this implies that there exists some Ψ′ ∈ S′ such that (Ψ,Ψ′) ∈ E and
(Ψ′,Ψ′′) ∈ η)

L′((Ψ,Ψ′′)) = ⋃
Ψ′∈S′,(Ψ,Ψ′)∈E,(Ψ′,Ψ′′)∈η

L((Ψ,Ψ′)) ∪ {(Ψ′,Ψ′′)}.

We explain the intuition of the arc labeling function L(⋅) in G as follows: Suppose π is a
path from S to S′ in (S,↣), and accordingly the vertex (S,S′,G) with G = (S ∪ S′,E,L) is
reached from S in Gϕ when going along π, then for each arc (Ψ,Ψ′) ∈ E, L((Ψ,Ψ′)) is the
set of all the possible arcs (Ψ′′,Ψ′′′) on the paths from Ψ to Ψ′ in the subgraph over the set
of atoms induced by π.

Our goal is to reduce the satisfiability problem of ϕ to a reachability problem in Gϕ,
more specifically, to decide whether a vertex (S,S′,G) satisfying some proper constraints in
Gϕ can be reached from a vertex S0 that contains ϕ. In order to specify these constraints,
we need another notation.

Given G = (S ∪ S′,E,L) where E ⊆ S × S′ and L ∶ E → 2A×A, and (Ψ,Ψ′) ∈ E, the
directed graph GL((Ψ,Ψ′)) is defined by taking the set of atoms appearing in L((Ψ,Ψ′)) as
the set of vertices and L((Ψ,Ψ′)) as the set of arcs (To put in a different way, GL((Ψ,Ψ′))

is the graph corresponding to the relation given by L((Ψ,Ψ′)) ⊆ S × S). In addition, for a
connected component C of G, a directed graph GC,L is defined as the union of the directed
graphs GL((Ψ,Ψ′)), where (Ψ,Ψ′) is an arc in C.

▸ Definition 18 (ϕ-witnessing path). A path in Gϕ is ϕ-witnessing if it is of the form

S0
η1↣ S1⋯

ηm−1↣ Sm−1
ηm↣ Sm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
π1

η′1↣ (Sm, S′1,G1)
η′2↣ ⋯

η′n−1↣ (Sm, S′n−1,Gn−1)
η′n↣ (Sm, S′n,Gn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
π2

and satisfies the following conditions. Let Gn = (Sm,En, Ln).
1. There exists some Ψ ∈ S0 such that ϕ ∈ Ψ,
2. Sm = S′n,
3. each connected component C of Gn is potentially Eulerian (i.e. strongly connected),
4. each connected component C of Gn satisfies that for each ψ1Uψ2 ∈ cl(ϕ), if ψ1Uψ2 occurs

in some atom in GC,Ln , then ψ2 occurs in some atom in GC,Ln as well.

We use the following example to illustrate the concept of ϕ-witnessing paths.

▸ Example 19. Consider the formula ϕ = G(∃x.(p′(x) ∧XF¬p′(x))) (For convenience, let
ξ = p′(x) ∧XF¬p′(x)).

cl(ϕ) = {p′(x),¬p′(x), F¬p′(x),Gp′(x),XF¬p′(x),XGp′(x), ξ, ξ, ∃x.ξ,∀x.ξ,
G(∃x. ξ), F (∀x. ξ),XG(∃x. ξ),XF (∀x. ξ)}.

Let

Ψ1 = {p′(x), F¬p′(x),XF¬p′(x), ξ,∃x.ξ,G(∃x. ξ),XG(∃x.ξ)},
Ψ2 = {¬p′(x), F¬p′(x),XF¬p′(x), ξ,∃x.ξ,G(∃x. ξ),XG(∃x.ξ)},
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and S1 = {Ψ1,Ψ2}, S2 = {Ψ1}, η1 = {(Ψ1,Ψ1), (Ψ2,Ψ1)}, η2 = {(Ψ1,Ψ1), (Ψ1,Ψ2)}. Suppose
π = S1

η1↣ (S1, S2,G1)
η2↣ (S1, S1,G2), where G1 = ({Ψ1,Ψ2}, η1, L1), G2 = ({Ψ1,Ψ2}, η1 ⋅

η2, L2),
L1((Ψ1,Ψ1)) = {(Ψ1,Ψ1)} and L1((Ψ2,Ψ1)) = {(Ψ2,Ψ1)},
L2((Ψ1,Ψ1)) = {(Ψ1,Ψ1)}, L2((Ψ2,Ψ2)) = {(Ψ2,Ψ1), (Ψ1,Ψ2)}, moreover, L2(e) =
{(Ψ1,Ψ1), e} for e = (Ψ1,Ψ2), (Ψ2,Ψ1).

Then π is a path in Gϕ. Moreover, we notice that G2 satisfies the following conditions: 1)
G2 is strongly connected; 2) let C be the unique connected component of G2 (that is, G2
itself), then F¬p′(x) occurs in GC,L2 , and ¬p′(x) occurs in GC,L2 as well. Therefore, π is a
ϕ-witnessing path in Gϕ.

On the other hand, π does not satisfy the constraint that over every path of atoms
in π, F¬p′(x) is fulfilled at least once: Ψ1Ψ1Ψ1 is a path of atoms in π, F¬p′(x) occurs
everywhere on the path, but ¬p′(x) never appears. This justifies to some extent the use of
the labelling function L in our construction, which facilitates a less restrictive constraint
than requiring that over every path of atoms, each “until” formula occurring in the path is
fulfilled at least once. ◂

The following lemma paves the way to the complexity upper bound and is crucial.

▸ Lemma 20. ϕ is satisfiable iff there is a ϕ-witnessing path in Gϕ.

▸ Theorem 21. The satisfiability problem of NN − ILTL, NN − ILTL(X,F,G), NN − ILTL/X,
and NN − ILTL(F,G) is EXPSPACE-complete.

By Lemma 20, the satisfiability of NN − ILTL can be reduced to the reachability problem
in Gϕ. Then the EXPSPACE upper bound in Theorem 21 follows from the fact that Gϕ
is a directed graph of doubly exponential size in ∣ϕ∣ and the Savitch’s theorem [2]. For the
lower bound, we strengthen the lower bound in [16, 20] by providing a reduction from the
exponential size corridor tiling problem to the satisfiability problem of NN− ILTL(F,G), with
the help of Lemma 4.

5 Conclusion

In this paper, we have drawn a relatively complete picture on the decidability and complexity
of the satisfiability of various fragments of ILTL. To the best of our knowledge, this is the
first systematic work on the satisfiability of indexed temporal logics. We believe that these
results will deepen the understanding of the meta-properties of this class of logics, and will
be instrumental for, e.g., parameterised model checking.

Future work includes investigating satisfiability for indexed branching-time temporal
logics like indexed CTL and CTL∗, and other meta-property including expressive power. It is
also interesting to see whether some techniques can be applied to the extensions of temporal
logics with data variable quantifications.
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