
A complete decision procedure for
linearly compositional separation logic

with data constraints‹

Xincai Gu1,2, Taolue Chen3, Zhilin Wu1

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China
3 Department of Computer Science,

Middlesex University, London, United Kingdom

Abstract. Separation logic is a widely adopted formalism to verify pro-
grams manipulating dynamic data structures. Entailment checking of
separation logic constitutes a crucial step for the verification of such
programs. In general this problem is undecidable, hence only incomplete
decision procedures are provided in most state-of-the-art tools. In this
paper, we define a linearly compositional fragment of separation logic
with inductive definitions, where traditional shape properties for linear
data structures, as well as data constraints, e.g., the sortedness prop-
erty and size constraints, can be specified in a unified framework. We
provide complete decision procedures for both the satisfiability and the
entailment problem, which are in NP and ΠP

3 respectively.

1 Introduction

Program verification requires reasoning about complex, unbounded size data
structures that may carry data ranging over infinite domains. Examples of such
data structures are multi-linked lists, nested lists, trees, etc. Programs manipu-
lating these data structures may modify their shape (due to dynamic creation
and destructive updates) as well as the data attached to their elements.

Separation Logic (SL) is a well-established approach for deductive verifica-
tion of programs that manipulate dynamic data structures [18,24]. Typically,
SL is used in combination with inductive definitions, which provide a natural
description of the data structures manipulated by a program.

In program verification, SL is normally used to express assertions about pro-
gram configurations, for example in the style of Hoare logic. Checking the validity
of these assertions is naturally reduced to the entailment problem of the logic,
i.e., given two SL formulae ϕ and ψ, to check whether ϕ |ù ψ holds.

Because of its importance, entailment checking has been explored exten-
sively (see, e.g., [9,16,1]). In general, it is an undecidable problem, hence only

‹ Taolue Chen is partially supported by the ARC Discovery Project (DP160101652),
the Singapore Ministry of Education AcRF Tier 2 grant (MOE2015-T2-1-137), and
an oversea grant from the State Key Laboratory of Novel Software Technology, Nan-
jing Unviersity. Zhilin Wu is partially supported by the NSFC grants (No. 61100062,
61272135, 61472474, and 61572478).

incomplete decision procedures can be expected. This is especially the case when
both shape properties and data (size) constraints are taken into consideration.
Indeed, various separation logic based tools, e.g., INFER[8], SLEEK/HIP[9],
DRYAD[23,19], and SPEN[13], only provide incomplete decision procedures.

Undoubtedly complete decision procedures are highly desirable: besides be-
ing theoretically appealing, they also have practical importance, for instance in
tasks such as debugging of specification, counterexample generation, etc. The
challenge is thus to find fragments of SL which are sufficiently expressive for
writing program assertions while still feature a complete decision procedure for
the entailment checking. This would enable efficient automated validation of the
verification conditions.

Contributions. In this paper, we define a linearly compositional fragment of SL
with inductive definitions (abbreviated as SLIDLC), where both shape proper-
ties, e.g., singly and doubly linked lists, linked lists with tail pointers, and data
constraints, e.g., sortedness property and size constraints, can be expressed. The
basic idea of SLIDLC is to focus on the compositional predicates introduced in
[14], while restricting to linear shapes (e.g., singly and doubly linked lists, or
linked lists with tail pointers), and data constraints in the form of difference
bound relations (which are sufficient to express sortedness properties and size
constraints). Our main contribution is to provide complete decision procedures
for the satisfiability and entailment problem of SLIDLC.

For the satisfiability problem, from each SLIDLC formula ϕ we define an ab-
straction of ϕ, i.e., Abspϕq, where Boolean variables are introduced to encode the
spatial part of ϕ, together with quantifier free Presburger formulae to represent
the transitive closure of the data constraint in the inductive definitions. The sat-
isfiability of ϕ is then reduced to the satisfiability of Abspϕq, which can be solved
by the start-of-the-art SMT solvers (e.g., Z3 [25]), with an NP upper-bound.

For the entailment problem, from each SLIDLC formula ϕ we first construct
a graph representation Gϕ. We then demonstrate some nice properties of Gϕ,
which enable us to extend and adapt the concept of homomorphisms introduced
in [11], to obtain a decision procedure to perform entailment checking with a
ΠP

3 upper-bound. Compared to the logic in [11], the logic SLIDLC is different in
the following sense: 1) we adopt the classical semantics whereas [11] adopted
the intuitionistic semantics, which can be considered as a special case, and is
arguably less meaningful for program verification. 2) the logic in [11] only ad-
dresses singly linked list segments, the logic SLIDLC is much more expressive:
SLIDLC allows specifying data constraints, as well as defining more shapes, e.g.,
doubly linked lists, linked lists with tail pointers; in addition, we allow different
predicates to occur in ϕ and ψ for the entailment problem ϕ |ù ψ. Because of
these differences, we are not able to repeat the approach in [11] to transform
the graphs into normal forms and then check graph homomorphism between the
normal forms. Instead our decision procedure introduces some new concepts e.g.
allocating plans for ϕ and is considerably more involved than that in [11].

Related work. We first discuss work on separation logic with inductive definitions
where both shape properties and data constraints can be expressed. Various frag-

2

ments have been explored and we focus on decision procedures for the entailment
problem.

The most relevant work is [3], where data constraints, specified by universal
quantifiers over index variables, were added to a fragment of separation logic
with the lseg predicate (where lseg denotes list segments). Compared with the
work in [3]: For the shape constraints, the logic there focused on singly linked
lists, while in SLIDLC, various linear data structures can be specified. For the
data constraints, the logic there can specify set and multiset constraints, while
SLIDLC does not. On the other hand, when restricted to arithmetic constraints
over integer variables, the decision procedure in [3] is incomplete for fragments
that can express list segments where the data values are consecutive, which can
be easily expressed in SLIDLC (cf. plseg predicate in Example 1).

The tool SLEEK/HIP [9] provides a decision procedure which is incomplete in
general and relies on the invariants of the inductive definitions. These invariants
are essentially the transitive closures of the data constraints in the inductive
definitions, and are supposed to be provided by the user. In comparison, we focus
on a less expressive logic SLIDLC, and our decision procedure can automatically
compute the precise invariants of the inductive definitions.

The tool GRASSHOPPER [20,21,22] encoded separation logic with induc-
tive definitions into a fragment of first-order logic with reachability predicates,
whose satisfiability problem was shown in NP. The logic considered there in-
cludes both shape and data constraints and the decision procedure is complete.
However the logic is unable to encode the size or multiset constraints. In contrast,
our approach can fully handle the size constraints, and the multiset constraints
on condition that their transitive closure can be computed (or provided as an
oracle).

The tool DRYAD [23,19] reduces to the satisfiability problem in the theory of
uninterpreted functions, which is sound, but incomplete. In addition, the decision
procedure is not fully automatic since it relies on the users to provide lemmas,
e.g., lsegpE1;E2q ˚ lsegpE2;E3q (lsegpE1;E3q.

Other work includes the cyclic-proof approach [6,10] which is based on in-
duction on the paths of proof trees. The approach can deal with data constraints
but the decision procedures there are incomplete. The work [14] considered the
automated lemma generation, where the concept of compositional predicates was
introduced. However, the decision procedure provided there is incomplete.

There have also been much work on the decision procedures for the fragments
of SL with inductive definitions that contain no data constraints. To cite a few,
the work [2,15] focused on the symbolic heap fragments where the shape con-
straints for list segments and binary trees can be specified and complete proof
systems were given, the tool SLIDE [16,17] considered separation logic with gen-
eral inductive definitions and reduced the entailment problem to the language
inclusion problem of tree automata, tool SPEN [13] provided an incomplete de-
cision procedure for a compositional fragment of separation logic with inductive
definitions, and the paper [7] designed a complete decision procedure for the
satisfiability problem of separation logic with general inductive definitions.

3

There are also other works on separation logic. The work [4] considered first-
order separation logic over linked lists extended with length constraints where
the decidability frontier was identified. However, neither data structures other
than singly linked lists nor other forms of data constraints (e.g. sortedness)
were addressed. The work [5,12] considered the fragments of first-order separa-
tion logic (without inductive definitions). The authors identified the decidability
frontier and resolved some long-standing expressibility issues.

2 Linearly Compositional Separation Logic with
Inductive Definitions

In this section, we introduce the linearly compositional fragment of separation
logic with inductive definitions, denoted by SLIDLCrPs, where P is a finite set
of inductive predicates. In SLIDLCrPs, both shape properties (e.g. doubly linked
lists) and data constraints (e.g. sortedness and size constraints) can be specified.

We consider two data types, i.e., the location type L and the integer type Z.
As a convention, l, l1, ¨ ¨ ¨ P L denote locations and n, n1, ¨ ¨ ¨ P Z denote integers.
Accordingly, variables in SLIDLCrPs comprise location variables of the location
type and data variables of the integer type. Namely, we assume a set of location
variables LVars ranged over by uppercase letters E,F,X, Y, ¨ ¨ ¨ and a set of data
variables DVars ranged over by lowercase letters x, y, ¨ ¨ ¨ . Note that in literature
sometimes locations are treated simply as a subset of integers, which is not
adopted here for the sake of clarity. We consider two kinds of fields, i.e., location
fields from F and data fields from D. Each field f P F (resp. d P D) is associated
with L (resp. Z).

SLIDLCrPs formulae may contain inductive predicates, each of which is of the
form P pE,α;F,β; ξq and has an associated inductive definition. The parameters
of an inductive predicate are classified into three groups: source parameters α,
destination parameters β, and static parameters ξ. We require that the source
parameters α and the destination parameters β are matched in type, namely,
the two tuples have the same length ` ą 0 and for each i : 1 ď i ď `, αi and
βi have the same data type. Without loss of generality, it is assumed that the
first components of α and β are a location variable. In the sequel, for clarity, we
explicitly identify the first parameters of α and β, and write E,α and F,β.

SLIDLCrPs formulae comprise three types of formulae: pure formulae Π, data
formulae ∆, and spatial formulae Σ, which are defined by the following rules,

Π ::“ E “ F | E ‰ F | Π ^Π (pure formulae)
∆ ::“ true | x o c | x o y ` c | ∆^∆ (data formulae)
Σ ::“ emp | E ÞÑ ρ | P pE,α;F,β; ξq | Σ ˚Σ (spatial formulae)
ρ ::“ pf,Xq | pd, xq | ρ, ρ

where o P t“,ď,ěu, c is an integer constant, P P P, f P F , and d P D. For spatial
formulae Σ, formulae of the form emp, E ÞÑ ρ, or P pE,α;F,β; ξq are called
spatial atoms. In particular, formulae of the form E ÞÑ ρ and P pE,α;F,β; ξq
are called points-to atoms and predicate atoms respectively. Moreover, we call E
as the root of these points-to or predicate atoms.

4

We are now in a position to introduce the linearly compositional predicates,
which are the main focus of the current paper. A predicate P P P is linearly
compositional if the inductive definition of P is given by the following two rules,

– base rule R0 : P pE,α;F,β; ξq ::“ E “ F ^α “ β ^ emp,
– inductive rule R1 : P pE,α;F,β; ξq ::“ DXDx. ∆^E ÞÑ ρ ˚ P pY,γ;F,β; ξq.

The left-hand (resp. right-hand) side of a rule is called the head (resp. body) of
the rule. We note that the body of R1 does not contain pure formulae.

In the sequel, we specify some constraints on the inductive rule R1 which
enable us to obtain complete decision procedures for the satisfiability and entail-
ment problem later.

The first constraint (C1) is from [14] which guarantees that P pE,α;F,β; ξq
enjoys the composition lemma (cf. Proposition 1). This lemma is the basis of
our decision procedure for the entailment problem (cf. Section 4.2).

C1. None of the variables from F,β occur elsewhere in the body of R1, that is,
in ∆, or E ÞÑ ρ.

The second (C2) and third (C3) constraint address the data constraint ∆
in the body of R1. Intuitively, the two constraints require that different data
parameters of P pE,α;F,β; ξq do not interfere with each other and the value of
each data source parameter αi is determined either by ρ, or γi.

C2. Each conjunct of ∆ is of the form αi o c, αi o ξj ` c, or αi o γi ` c for
o P t“,ď,ěu, 1 ď i ď |α| “ |γ|, 1 ď j ď |ξ|, and c P Z.

C3. For each 1 ď i ď |α| such that αi is a data variable, either αi occurs in ρ,
or ∆ contains αi “ γi ` c for some c P Z.

Furthermore, we have C4-C6, which are self-explained.

C4. Each variable occurs in P pY,γ;F,β; ξq (resp. ρ) at most once.

C5. All location variables from αY ξ YX occur in ρ.

C6. Y PX and γ Ď tEu YX Y x.

Note that according to the constraint C6, none of the variables from αY ξ
occur in γ. Moreover, from the constraint C5 and C6, we know that Y occurs
in ρ. By the semantics defined later, this would guarantee that in each model of
P pE,α;F,β; ξq, the sub-heap represented by P pE,α;F,β; ξq, seen as a directed
graph, is connected.

We remark that these constraints are technical, and we leave as future work
to make them as general as possible. However, in practice, inductive predicates
satisfying these constraints are sufficient to model linear data structures with
data and size constraints, cf. Example 1.

For a linearly compositional predicate P P P, let FldspP q (resp. LFldspP q)
denote the set of fields (resp. location fields) occurring in the inductive rules
of P . Moreover, define the principal location field of P , denoted by PLFldpP q,
as the location field f P LFldspP q such that pf, Y q occurs in ρ. Note that the
principal location field is unique. For a spatial atom a, let Fldspaq denote the set
of fields that a refers to: if a “ E ÞÑ ρ, then Fldspaq is the set of fields occurring
in ρ; if a “ P p´q, then Fldspaq :“ FldspP q.

5

We write SLIDLCrPs for the collection of separation logic formulae ϕ “ Π ^

∆^Σ satisfying the following constraints,

– linearly compositional predicates: all predicates from P are linearly
compositional,

– domination of principal location field: for each pair of predicates P1, P2 P

P, if FldspP1q “ FldspP2q, then PLFldpP1q “ PLFldpP2q,
– uniqueness of predicates: there is P P P such that each predicate atom

of Σ is of the form P p´q, and for each points-to atom occurring in Σ, the
set of fields of this atom is FldspP q.

For an SLIDLCrPs formula ϕ, let Varspϕq (resp. LVarspϕq, resp. DVarspϕq)
denote the set of (resp. location, resp. data) variables occurring in ϕ. Moreover,
we use ϕrµ{αs to denote the simultaneous replacement of the variables αj by
µj in ϕ.

For the semantics of SLIDLCrPs, each formula is interpreted on the states.
Formally, a state is a pair ps, hq, where

– s is an assignment function which is a partial function from LVars Y DVars
to LY Z such that dompsq is finite and s respects the data type,

– h is a heap which is a partial function from Lˆ pF YDq to LYD such that

‚ h respects the data type of fields, that is, for each l P L and f P F (resp.
l P L and d P D), if hpl, fq (resp. hpl, dq) is defined, then hpl, fq P L
(resp. hpl, dq P Z); and

‚ h is field-consistent, i.e. every location in h possess the same set of fields.

For a heap h, we use ldomphq to denote the set of locations l P L such that
hpl, fq or hpl, dq is defined for some f P F and d P D. Moreover, we use Fldsphq
to denote the set of fields f P F or d P D such that hpl, fq or hpl, dq is defined
for some l P L.

Two heaps h1 and h2 are said to be field-compatible if Fldsph1q “ Fldsph2q.
We write h1#h2 if ldomph1qX ldomph2q “ H. Moreover, we write h1Zh2 for the
disjoint union of two field-compatible fields h1 and h2 (this implies that h1#h2).

Let ps, hq be a state and ϕ be an SLIDLCrPs formula. The semantics of
SLIDLCrPs formulae is defined as follows,

– ps, hq (E “ F (resp. ps, hq (E ‰ F) if spEq “ spF q (resp. spEq ‰ spF q),
– ps, hq (Π1 ^Π2 if ps, hq (Π1 and ps, hq (Π2,
– ps, hq (x o c (resp. ps, hq (x o y ` c) if spxq o c (resp. spxq o spyq ` c),
– ps, hq (∆1 ^∆2 if ps, hq (∆1 and ps, hq (∆2,
– ps, hq (emp if ldomphq “ H,
– ps, hq (E ÞÑ ρ if ldomphq “ spEq, and for each pf,Xq P ρ (resp. pd, xq P ρ),
hpspEq, fq “ spXq (resp. hpspEq, dq “ spxq),

– ps, hq (P pE,α;F,β; ξq if ps, hq P vP pE,α;F,β; ξqw,
– ps, hq (Σ1 ˚Σ2 if there are h1, h2 such that h “ h1 Z h2, ps, h1q (Σ1 and
ps, h2q (Σ2.

where the semantics of predicates vP pE,α;F,β; ξqw is given by the least fixed
point of a monotone operator constructed from the body of rules for P in a
standard way as in [7].

6

Example 1. Below are a few examples of the data structures definable in SLIDLCrPs:
slseg for sorted list segments, dllseg for doubly linked list segments, tlseg for list
segments with tail pointers, plseg for list segments where the data values are
consecutive, and ldllseg for doubly list segments with lengths.

slsegpE, x;F, x1q ::“ E “ F ^ x “ x1 ^ emp,
slsegpE, x;F, x1q ::“ DX,x2. x ď x2^

E ÞÑ ppnext, Xq, pdata, xqq ˚ slsegpX,x2;F, x1q.

dllsegpE,P ;F,Lq ::“ E “ F ^ P “ L^ emp,
dllsegpE,P ;F,Lq ::“ DX. E ÞÑ ppnext, Xq, pprev, P qq ˚ dllsegpX,E;F,Lq.

tlsegpE;F ;Bq ::“ E “ F ^ emp,
tlsegpE;F ;Bq ::“ DX. E ÞÑ ppnext, Xq, ptail, Bqq ˚ tlsegpX;F ;Bq.

plsegpE, x;F, x1q ::“ E “ F ^ x “ x1 ^ emp,
plsegpE, x;F, x1q ::“ DX,x2. x2 “ x` 1^

E ÞÑ ppnext, Xq, pdata, xqq ˚ plsegpX,x2;F, x1q.

ldllsegpE,P, x;F,L, x1q ::“ E “ F ^ P “ L^ x “ x1 ^ emp,
ldllsegpE,P, x;F,L, x1q ::“ DX,x2. x “ x2 ` 1^ E ÞÑ ppnext, Xq, pprev, P qq

˚ ldllsegpX,E, x2;F,L, x1q.

On the other hand, the predicate tlseg2 defined below is not linearly compo-
sitional, since F occurs twice in the body of the inductive rule.

tlseg2pE;F q ::“ E “ F ^ emp,
tlseg2pE;F q ::“ DX. E ÞÑ ppnext, Xq, ptail, F qq ˚ tlseg2pX;F q.

For a formula ϕ, let vϕw denote the set of states ps, hq such that ps, hq (ϕ.
Let ϕ,ψ be SLIDLCrPs formulae, then define ϕ (ψ as vϕw Ď vψw.

Proposition 1 ([14]). For each linearly compositional predicate P P P, it holds
that P pE,α;F,β; ξq ˚ P pF,β;G,γ; ξq (P pE,α;G,γ; ξq.

We focus on the following two decision problems.

– Satisfiability: Given an SLIDLCrPs formula ϕ, decide whether vϕw is empty.
– Entailment: Given two SLIDLCrPs formulae ϕ,ψ such that Varspψq Ď Varspϕq,

decide whether ϕ (ψ holds.

The rest of this paper is devoted to sound and complete decision procedures
for the satisfiability and entailment problem of SLIDLCrPs.

3 Satisfiability

To decide the satisfiability of a separation logic formula ϕ, in [13], a Boolean ab-
straction BoolAbspϕq of ϕ was constructed such that ϕ is satisfiable iff BoolAbspϕq
is satisfiable. Our decision procedure for SLIDLCrPs follows this general approach.
However, SLIDLCrPs admits data constrains (viz. difference bound constraints
specified in the data formulae) which are considerably more involved. The fol-
lowing example shows these data constraints are somehow intertwined with the
“shape” part of the logic and they should be taken into account simultaneously
when the satisfiability is concerned.

7

Example 2. Suppose ϕ “ E1 “ E4^x1 ą x2`1^ ldllsegpE1, E3, x1;E2, E4, x2q.
From the inductive definition of ldllseg and x1 ą x2 ` 1, we know that if ϕ is
satisfiable, then for any state ps, hq such that ps, hq (ϕ, it holds that |ldomphq| ě
2. On the other hand, in any heap ps, hq such that ps, hq (ldllsegpE1, E3, x1;
E2, E4, x2q and |ldomphq| ě 2, we know that both spE1q and spE4q are allocated
and spE1q ‰ spE4q. This contradicts to the fact that E1 “ E4 is a conjunct in
ϕ. Therefore, ϕ is unsatisfiable.

In the rest of this section, we will show how to extend the abstraction of
formulae in [13] to obtain an abstraction in the presence of data constraints.
In this case, the abstraction is not a Boolean formula, but a formula involving
Boolean variables, (in)equality constraints over location variables, and difference
bounded constraints over data variables. The satisfiability of these formulae can
be decided by off-the-shelf SMT solvers. We also remark that, compared to
the logic in [13], predicates in SLIDLCrPs may have more than one source or
destination parameter which gives rises to further technical difficulties.

Let ϕ “ Π ^ ∆ ^ Σ be an SLIDLCrPs formula. Suppose Σ “ a1 ˚ ¨ ¨ ¨ ˚ an,
where each ai is either a points-to atom or a predicate atom.

Assume ai “ P pZ1,µ;Z2,ν;χq where the inductive rule for P is

R1 : P pE,α;F,β; ξq ::“ DXDx. ∆1 ^ E ÞÑ ρ ˚ P pY,γ;F,β; ξq.

We extract the data constraint ∆P pα
1,β1q out of R1. Formally, ∆P pα

1,β1q :“
∆1rβ1{γ1s, where α1 (resp. γ1, β1) is the projection of α (resp. γ, β) to data
variables. For instance, ∆ldllsegpx, x

1q :“ px “ x2 ` 1qrx1{x2s “ px “ x1 ` 1q.
Note that ∆P pα

1,β1q may contain data variables from ξ.
Furthermore, by Proposition 2, a Presburger formula ψP pk,α

1,β1q where k
occurs as a free variable, can be constructed to describe the composition of
the relation corresponding to ∆P pα

1,β1q for k times. In the running example,
ψldllsegpk, x, x

1q :“ x “ x1 ` k.

Proposition 2. Suppose P pE,α;F,β; ξq P P. Then a quantifier free Presburger
formula ψP pk,α

1,β1q where k occurs as a free variable, can be constructed in lin-
ear time to define, for each k ě 1, the composition of the relation corresponding
to ∆P pα

1,β1q for k times.

As the next step, we define two formulae Ufld1paiq and Ufldě2paiq obtained
by unfolding the rule R1 once and at least twice respectively. For each ai, we
introduce a fresh integer variable ki. Before the definition of the two formulae,
we introduce a notation first.

Definition 1 (idxpP,γ,Eq). Let P P P and R1 be the inductive rule in the defini-
tion of P . If in the body of R1, E occurs in γ, then we use idxpP,γ,Eq to denote
the unique index j such that γj “ E (The uniqueness follows from C4).

We define Ufld1paiq and Ufldě2paiq by distinguishing the following two cases.

– If in the body of R1, E occurs in γ, then let

Ufld1paiq :“
pE “ βidxpP,γ,Eq

^ ki “ 1^ ψP pki,α
1,β1qqrZ1{E,µ{α, Z2{F,ν{β,χ{ξs,

and

8

Ufldě2paiq :“
pE ‰ βidxpP,γ,Eq

^ ki ě 2^ ψP pki,α
1,β1qqrZ1{E,µ{α, Z2{F,ν{β,χ{ξs.

– Otherwise, let

Ufld1paiq :“ pki “ 1^ ψP pki,α
1,β1qqrZ1{E,µ{α, Z2{F,ν{β,χ{ξs,

and

Ufldě2paiq :“ pki ě 2^ ψP pki,α
1,β1qqrZ1{E,µ{α, Z2{F,ν{β,χ{ξs.

Example 3. Let ϕ be the formula in Example 2 and a1 be the (unique) spatial
atom in ϕ. Since the atom P pX,E, x2;F,L, x1q occurs in body of the inductive
rule of ldllseg (where we have E “ γ1), we deduce that Ufld1pa1q :“ E1 “

E4^ k1 “ 1^ x1 “ x2` k1 and Ufldě2pa1q :“ E1 ‰ E4^ k1 ě 2^ x1 “ x2` k1.

For each atom ai “ P pZ1,µ;Z2,ν;χq in Σ, we introduce a Boolean variable
rZ1, is. Moreover, if in the body of the inductive rule of P , E occurs in γ,
then introduce a Boolean variable rνidxpP,γ,Eq

, is. Let BVarspϕq denote the set of
introduced Boolean variables. We define the abstraction of ϕ to be Abspϕq ::“
Π ^∆^ φΣ ^ φ˚ over BVarspϕq Y tki | 1 ď i ď nu Y Varspϕq, where φΣ and φ˚
are defined as follows.

– φΣ “
Ź

1ďiďn

Abspaiq is an abstraction of Σ where

‚ if ai “ E ÞÑ ρ, then Abspaiq “ rE, is,
‚ if ai “ P pZ1,µ;Z2,ν;χq and in the body of the inductive rule of P , E

occurs in γ, then

Abspaiq “ p rZ1, is ^ rνidxpP,γ,Eq
, is ^ Z1 “ Z2 ^ µ “ ν ^ ki “ 0q_

prZ1, is ^ rνidxpP,γ,Eq
, is ^ Ufld1pP pZ1,µ;Z2,ν;χqqq_

prZ1, is ^ rνidxpP,γ,Eq
, is ^ Ufldě2pP pZ1,µ;Z2,ν;χqqq,

‚ if ai “ P pZ1,µ;Z2,ν;χq and in the body of the inductive rule of P , E
does not occur in γ, then

Abspaiq “ p rZ1, is ^ Z1 “ Z2 ^ µ “ ν ^ ki “ 0q_
prZ1, is ^ Ufld1pP pZ1,µ;Z2,ν;χqqq_
prZ1, is ^ Ufldě2pP pZ1,µ;Z2,ν;χqqq,

– φ˚ states the separation constraint of spatial atoms,

φ˚ “
Ź

rZ1,is,rZ1
1,jsPBVarspϕq,i‰j

pZ1 “ Z 11 ^ rZ1, isq Ñ rZ 11, js.

Example 4. Suppose ϕ is the formula in Example 3. Then

Abspϕq “ E1 “ E4 ^ x1 ą x2 ` 1 ^
pp rE1, 1s ^ rE4, 1s ^ E1 “ E2 ^ E3 “ E4 ^ x1 “ x2 ^ k1 “ 0q
_prE1, 1s ^ rE4, 1s ^ E1 “ E4 ^ k1 “ 1^ x1 “ x2 ` k1q

_prE1, 1s ^ rE4, 1s ^ E1 ‰ E4 ^ k1 ě 2^ x1 “ x2 ` k1qq.

It is easy to see that Abspϕq is unsatisfiable.

Proposition 3. For each SLIDLCrPs formula ϕ, ϕ is satisfiable iff Abspϕq is
satisfiable.

9

The satisfiability of Abspϕq can be discharged by the state-of-the-art SMT
solvers, e.g., Z3. It is well known that the satisfiability of the quantifier-free
presburger arithmetic formulae can be decided in NP. Hence we have:

Theorem 1. The satisfiability problem of SLIDLCrPs is in NP.

Note that the problem whether the satisfiability problem of SLIDLCrPs is
NP-hard is open.

4 Entailment

In this section, we present a complete decision procedure for the entailment
problem ϕ (ψ, where ϕ,ψ are two SLIDLCrPs formulae. We assume, without
loss of generality, that Varspψq Ď Varspϕq, both ϕ and ψ are satisfiable, and
Fldspϕq “ Fldspψq.

On a high level, the decision procedure is similar to that in [11]. Loosely
speaking, we construct graph representations Gϕ and Gψ of ϕ and ψ respectively
and reduce the entailment problem to (a variant of) the graph homomorphism
problem from Gψ to Gϕ. However, our decision procedure is considerably more
involved due to the additional expressibility of the logic and the non-intuitionistic
semantics.

Recall that, in the previous section, from an SLIDLCrPs formula ϕ one can
construct an abstraction Abspϕq. Let „ϕ denote the equivalence relation defined
over LVarspϕq as follows: For X,Y P LVarspϕq, X „ϕ Y iff Abspϕq (X “ Y . For
X P LVarspϕq, let rXsϕ denote the equivalence class of X under „ϕ.

4.1 Graph representations of SLIDLCrPs formulae

For a satisfiable SLIDLCrPs formula ϕ, we will construct a graph Gϕ from ϕ.
Without loss of generality, we assume that ϕ contains at least one points-to
atom or predicate atom.

Assume ϕ “ Π ^∆^Σ with Σ “ a1 ˚ . . . ˚ an (n ě 1), and f0 denotes the
principal location field of ϕ. (Recall the “uniqueness of predicates” assumption
for SLIDLCrPs formulae in Section 2.)

We construct a directed multigraph (i.e., a directed graph with parallel arcs)
Gϕ “ pVϕ,Rϕ,Lϕq:
– Vϕ “ trEs | E P LVarspϕqu, where we use rEs as an abbreviation of rEsϕ,

that is, the equivalence class of „ϕ containing E.
– Rϕ is the set of arcs and Lϕ is the arc-labeling function, defined as follows:

‚ for each pair of location variables pE,F q such that Σ contains a points-to
atom ai “ E ÞÑ ρ and pf0, F q occurs in ρ for f0 P L, there is an arc from
rEs to rF s labeled by f0rρ

1s, where ρ1 is obtained by removing pf0, F q
from ρ — this arc e is said to be field-labeled and we write Lϕpeq “ f0rρ

1s;
‚ for each pair of location variables pE,F q such that Σ contains a predicate

atom ai “ P pE,α;F,β; ξq and Abspϕq * rE, is, there is an arc from
rEs to rF s labeled by P pα;β; ξq — this arc e is said to be predicate-
labeled and we write Lϕpeq “ P pα;β; ξq.

10

From the construction, each field-labeled or predicate-labeled arc e corre-
sponds to an unique atom ai in Σ. Let ipeq denote the index i of the atom.

Example 5. Let
ϕ “ ldllsegpE1, E

1
1, x1;E3, E

1
3, x3q

looooooooooooooooooomooooooooooooooooooon

a1

˚ ldllsegpE2, E
1
2, x2;E4, E

1
4, x4q

looooooooooooooooooomooooooooooooooooooon

a2

˚

ldllsegpE3, E
1
3, x3;E4, E

1
4, x4q

looooooooooooooooooomooooooooooooooooooon

a3

˚ ldllsegpE4, E
1
4, x

1
4;E3, E

1
3, x

1
3q

looooooooooooooooooomooooooooooooooooooon

a4

˚

ldllsegpE3, E
1
3, x3;E5, E

1
5, x5q

looooooooooooooooooomooooooooooooooooooon

a5

˚ ldllsegpE5, E
1
5, x

1
5;E3, E

1
3, x

1
3q

looooooooooooooooooomooooooooooooooooooon

a6

˚

ldllsegpE4, E
1
4, x5;E6, E

1
6, x6q

looooooooooooooooooomooooooooooooooooooon

a7

.

The graph Gϕ is as illustrated in Fig. 1, where each equivalence class of „ϕ is a
singleton and Vϕ “ trE1s, . . . , rE6s, rE

1
1s, . . . , rE

1
6su. Note that there are no arcs between

the nodes rE11s, . . . , rE
1
6s.

E1 E2

ldllseg(E′
1, x1;E

′
3, x3)

ldllseg(E′
3, x3;E

′
5, x5)

ldllseg(E′
5, x

′
5;E

′
3, x

′
3)

ldllseg(E′
2, x2;E

′
4, x4)

ldllseg(E′
4, x5;E

′
6, x6)

ldllseg(E′
4, x

′
4;E

′
3, x

′
3)

ldllseg(E′
3, x3;E

′
4, x4)

E3 E4 E6E5 C2 C1

Fig. 1. The graph Gϕ

We use standard graph-theoretic notions, for instance, paths, connected com-
ponents (CCs) and strongly connected components (SCCs). In particular, a path
in Gϕ is a (possibly empty) sequence of consecutive arcs in Gϕ. If there is a path
from rEs to rF s, then rF s is said to be reachable from rEs and rEs is said to be
an ancestor of rF s. For a node rEs and an arc e with source node rE1s, e is said
to be reachable from rEs if rE1s is reachable from rEs. A CC or SCC C of Gϕ is
said to be nontrivial if C contains at least one arc.

We shall reveal some structural properties of the graph Gϕ.

Proposition 4. The graph Gϕ satisfies the following properties:

1. If there is a field-labeled arc out of rEs, then there are no predicate-labeled
arcs out of rEs.

2. For each pair of distinct nodes rEs and rF s in Gϕ, there is at most one simple
path from rEs to rF s in Gϕ.

Proposition 5. Each nontrivial SCC S satisfies the following constraints.

– Each pair of different simple cycles in S share at most one node — The set
of shared nodes is called the set of cut nodes of S, denoted by CutpSq. Here by
“different”, we mean that the two sets of arcs in the two cycles are different.

– The collection of simple cycles in S is organised into a tree. More pre-
cisely, let tC1, . . . , Cnu be the set of all the simple cycles in S and TS “
ptC1, . . . , Cnu,CutpSq,Rq be the undirected bipartite graph such that for each
i : 1 ď i ď n, tCi, rEsu P R iff rEs P CutpSq X Ci. Then TS is a tree.

11

Example 6. The graph Gϕ in Fig. 1 has just one nontrivial SCC S comprising the
nodes rE3s, rE4s, rE5s. The graph TS “ ptC1, C2u, trE3su, ttC1, rE3su, tC2, rE3suuq

is a tree.

4.2 Entailment checking by graph homomorphisms

As a starting point, we illustrate how a path in Gϕ is matchable to an arc in Gψ,
which is the basis of our decision procedure.

Definition 2. Given an arc e from rEsψ to rF sψ with label P 1pα1;β1; ξ1q in Gψ,
a (possibly empty) path π “ rE0sϕrE1sϕ . . . rEnsϕ from rEsϕ to rF sϕ in Gϕ is
said to be matchable to e wrt. Abspϕq if (1) either π is empty and Abspϕq |ù
E “ F ^α1 “ β1, (2) or π is nonempty and there are α10,α

1
1, . . . ,α

1
n such that

α10 “ α
1, α1n “ β

1, and for each i : 1 ď i ď n, the arc from rEi´1sϕ to rEisϕ in
π is

– either a field-labeled arc with the label f0rρ
1s such that Abspϕq^Ei´1 ÞÑ ρ (

P 1pEi´1,α
1
i´1;Ei,α

1
i; ξ

1q, where ρ is obtained from ρ1 by adding pf0, Eiq;
– or a predicate-labeled arc with the label P pα;β; ξq such that

Abspϕq ^ P pEi´1,α;Ei,β; ξq (P 1pEi´1,α
1
i´1;Ei,α

1
i; ξ

1q.

Note that in the above definition, we abuse the notation slightly, since Abspϕq
may contain Boolean variables rE1, js, the integer variables kj , and disjunctions,
thus strictly speaking, Abspϕq^Ei´1 ÞÑ ρ and Abspϕq^P pEi´1,α;Ei,β; ξq are
not SLIDLCrPs formulae.

Example 7. Let ϕ be the formula in Example 5 and ψ “ dllsegpE1, E
1
1;E6, E

1
6q ˚

dllsegpE2, E
1
2;E4, E

1
4q. Then the path rE1sϕrE3sϕrE4sϕrE6sϕ in Gϕ is matchable

to the arc e from rE1sψ to rE6sψ with the label dllsegpE11;E16q in Gψ. More
specifically, there are α10 “ E11, α11 “ E13, α12 “ E14, and α13 “ E16 such that

Abspϕq ^ ldllsegpE1, E
1
1, x1;E3, E

1
3, x3q |ù dllsegpE1, E

1
1;E3, E

1
3q,

Abspϕq ^ ldllsegpE3, E
1
3, x3;E4, E

1
4, x4q |ù dllsegpE3, E

1
3;E4, E

1
4q,

Abspϕq ^ ldllsegpE4, E
1
4, x5;E6, E

1
6, x6q |ù dllsegpE4, E

1
4;E6, E

1
6q.

Proposition 6. Suppose ϕ is an SLIDLCrPs formula, a “ E ÞÑ ρ or a “
P pE,α;F,β; ξq is a spatial atom in ϕ, and P 1pE,α1;F,β1; ξ1q is a predicate
atom (not necessarily in ϕ) such that VarspP 1pE,α1;F,β1; ξ1qq Ď Varspϕq. Then
(1) the entailment problem Abspϕq ^ a (P 1pE,α1;F,β1; ξ1q is in ∆p

2; and (2) if
there exist α1,α2 such that Abspϕq ^ a (P 1pE,α1;F,β1; ξ1q and Abspϕq ^ a (
P 1pE,α2;F,β1; ξ1q, then Abspϕq |ù α1 “ α2. Such an unique α1 can be com-
puted effectively from Abspϕq, the atom a, P 1pE,´;F,β1; ξ1q, and the inductive
definition of P and P 1.

The complexity upper bound ∆p
2 in Proposition 6 follows from the fact that, to

solve Abspϕq ^ a (P 1pE,α1;F,β1; ξ1q, it is necessary to use an oracle to decide
the satisfiability of quantifier-free Presburger formulae, which is in NP . The
uniqueness of α1 in Proposition 6 is guaranteed by the constraints C2, C3, and
C5 in the inductive definition of predicates.

Proposition 6 shows that Definition 2 is effective, namely,

12

Proposition 7. Check whether a path π in Gϕ is matchable to a predicate-labeled
arc e in Gψ can be done in ∆p

2.

We are ready to present the decision procedure. We will introduce a concept
of allocating plansAP (cf. Definition 5), which are the pairs pAbsAP rϕs,GAP rϕsq,
where AbsAP rϕs is a formula obtained from Abspϕq, and GAP rϕs is a simplifi-
cation of Gϕ. The entailment problem is reduced to checking the existence of
a homomorphism from pAbspψq,Gψq to pAbsAP rϕs,GAP rϕsq, for each allocating
plan AP. For each CC C of Gϕ, CycC denotes the set of simple cycles in C and
NSccC denotes the set of nontrivial SCCs in C. For i P N, let ris “ t1, . . . , iu.

Definition 3 (Allocating pseudo-plans). Let C1, . . . , Ck be an enumeration
of the nontrivial CCs of Gϕ, and for each i P rks, CycCi “ tCi,1, . . . , Ci,liu
(where li ě 0). Then an allocating pseudo-plan Ω for Gϕ is a function such that
Ωpiq P t0u Y rlis for each i P rks.

Intuitively, Ωpiq P rlis means that some arc in the simple cycle Ci,Ωpiq is
assigned to be an nonempty heap, and accordingly, Ωpiq “ 0 means that all arcs
in nontrivial SCCs of Ci are assigned to be empty heaps (cf. Definition 4).

For each arc e with aipeq “ P pE,α;F,β; ξq, we use φe to denote rE, ipeqs.

Definition 4 (ΩrAbspϕqs and feasible allocating pseudo-plans). Let Ω be
an allocating pseudo-plan of Gϕ. We define ΩrAbspϕqs :“ Abspϕq ^

Ź

iPrks ζi,

where for each i P rks, ζi :“
Ž

ePCi,Ωpiq

φe if Ωpiq ‰ 0; and ζi :“
Ź

SPNSccCi

Ź

ePS
 φe if

Ωpiq “ 0. An allocating pseudo-plan Ω is feasible if ΩrAbspϕqs is satisfiable.

For an allocating pseudo-plan Ω of Gϕ, we construct a graph ΩrGϕs “
pVΩ ,RΩ ,LΩq from ϕ, similarly to Gϕ, with „ϕ replaced by „Ω (on LVarspϕq)
defined as follows: E „Ω F iff ΩrAbspϕqs |ù E “ F .

A directed graph G is said to be DAG-like (DAG: directed acyclic graph) if
for each CC C of G, either C is a DAG, or C contains exactly one simple cycle C
which is reachable from every node in CzC.

Definition 5 (Allocating plans AP). Given a formula ϕ, an allocating plan
AP “ pAbsAP rϕs,GAP rϕsq of ϕ is obtained from Gϕ by a sequence of allocating
pseudo-plans Ω1, . . . , Ωn (n ě 0) such that: (1) φ0 “ Abspϕq, G0 “ Gϕ; for each
i : 1 ď i ď n, (2) Ωi is a feasible allocating pseudo-plan of Gi´1, φi “ Ωirφi´1s,
Gi “ ΩirGi´1s; (3) AbsAP rϕs “ φn, GAP rϕs “ Gn, and GAP rϕs is DAG-like.

For an allocating plan AP of ϕ, we use ΣAP rϕs to denote the spatial formula
corresponding to GAP rϕs. In addition, let ϕAP “ AbsAP rϕs ^ΣAP rϕs.

Example 8. Let ϕ be the formula in Example 5. The graph Gϕ contains exactly
one nontrivial connected component C1 (cf. Fig. 1). In addition, suppose Ω1 and
Ω2 are the allocating pseudo-plans such that Ω1p1q “ 1 and Ω2p1q “ 0. Then
pΩ1rAbspϕqs, Ω1rGϕsq and pΩ2rAbspϕqs, Ω2rGϕsq are illustrated in Fig. 2. Since
both Ω1rGϕs and Ω2rGϕs are DAG-like, we know that pΩ1rAbspϕqs, Ω1rGϕsq and
pΩ2rAbspϕqs, Ω2rGϕsq are both allocating plans.

13

E1 E2

ldllseg(E′
1, x1;E

′
3, x3) ldllseg(E′

2, x2;E
′
4, x4)

ldllseg(E′
4, x

′
4;E

′
3, x

′
3)

ldllseg(E′
3, x3;E

′
4, x4)

E3, E5 E4, E6

E1 E2

ldllseg(E′
1, x1;E

′
3, x3)

ldllseg(E′
2, x2;E

′
4, x4)

ldllseg(E′
4, x5;E

′
6, x6)

E3, E4, E5 E6

C1

Ω1[Abs(ϕ)] = Abs(ϕ) ∧ ([E3, 3] ∨ [E4, 4])

Ω1[Gϕ] Ω2[Gϕ]

Ω2[Abs(ϕ)] = Abs(ϕ) ∧ ¬[E3, 3] ∧ ¬[E4, 4] ∧ ¬[E3, 5] ∧ ¬[E5, 6]

Fig. 2. pΩ1rAbspϕqs, Ω1rGϕsq and pΩ2rAbspϕqs, Ω2rGϕsq

Lemma 1. Let ϕ,ψ be two SLIDLCrPs formulae such that Varspψq Ď Varspϕq.
Then ϕ |ù ψ iff the following two conditions hold.

– Abspϕq (DZ.Abspψq, where Z “ VarspAbspψqqzVarpψq, i.e., the set of addi-
tional variables introduced when constructing Abspψq from ψ.

– For each allocating plan AP of ϕ, ϕAP |ù ψ.

By Lemma 1, the entailment problem ϕ |ù ψ can be reduced to checking
ϕAP |ù ψ for each allocating plan AP, which we now show that can be further
reduced to checking the existence of a (graph) homomorphism from pAbspψq,Gψq
to pAbsAP rϕs,GAP rϕsq.

Definition 6 (Homomorphisms). Let AP be an allocating plan of ϕ, GAP rϕs
“ pVAP ,RAP ,LAPq, and Gψ “ pVψ,Rψ,Lψq. Then a homomorphism from
pAbspψq,Gψq to pAbsAP rϕs,GAP rϕsq is a pair of functions pθ, ηq where θ is from
Vψ to VAP and η is from Rψ to the set of paths in GAP rϕs satisfying the following
constraints.

– Variable subsumption: For each node rEs P Vψ, rEs Ď θprEsq.
– Field-labeled arcs: For each field-labeled arc e from rEs to rF s in Gψ, ηpeq

is a field-labeled arc from θprEsq to θprF sq in GAP rϕs.
– Predicate-labeled arcs: For each predicate-labeled arc e from rEs to rF s

in Gψ, both θprEsq and θprF sq must be in some CC C, and the following
conditions are satisfied.

‚ If C is a DAG, then
∗ if θprEsq ‰ θprF sq, then ηpeq is the unique simple path from θprEsq

to θprF sq in GAP rϕs,
∗ otherwise, ηpeq is the empty path from θprEsq to θprF sq.

‚ Otherwise, let C be the unique simple cycle in C.
∗ If θprEsq ‰ θprF sq, moreover, the unique simple path from θprEsq to
θprF sq in C is either node-disjoint from C, or contains at least two
nodes in C, then ηpeq is the unique simple path from θprEsq to θprF sq
in C.
∗ If θprEsq ‰ θprF sq, moreover, the unique simple path from θprEsq

to θprF sq in C contains exactly one node in C (i.e. θprF sq), then
ηpeq is either the unique simple path from θprEsq to θprF sq or the
composition of the unique simple path from θprEsq to θprF sq and the
cycle C.

14

∗ If θprEsq “ θprF sq and θprF sq belongs to C, then ηpeq is either the
empty path or the simple cycle C from θprEsq to θprF sq.

∗ If θprEsq “ θprF sq and θprF sq does not belong to C, then ηpeq is the
empty path.

– Matching of paths to arcs: For each arc e in Gψ, ηpeq is matchable to e
wrt. AbsAP rϕs.

– Separation constraint: For each pair of distinct arcs e1, e2 in Gψ, ηpe1q

and ηpe2q are arc-disjoint.
– Coverage of all arcs in GAP rϕs: Each arc of GAP rϕs occurs in ηpeq for

some arc e in Gψ.

Lemma 2. Let ϕ,ψ be two formulae satisfying the premise of Lemma 1. Then
for each allocating plan AP of Gϕ, ϕAP |ù ψ iff there is a homomorphism from
pAbspψq,Gψq to pAbsAP rϕs,GAP rϕsq.

Theorem 2. The entailment problem of SLIDLCrPs formulae is in ΠP
3 .

Complexity analysis: Deciding whether there exists a homomorphism from
pAbspψq,Gψq to pAbsAP rϕs,GAP rϕsq can be done in ΣP

2 , by Proposition 7 and
guessing a homomorphism pθ, ηq in Definition 6. Furthermore, by Lemma 2, ϕ *
ψ iff either Abspϕq ‰ DZ.Abspψq (cf. Lemma 1), or there is an allocating plan AP
such that there is no homomorphism from pAbspψq,Gψq to pAbsAP rϕs,GAP rϕsq.

Hence, deciding ϕ * ψ is in NPΠP
2 “ ΣP

3 . We conclude that the entailment
problem is in ΠP

3 .

5 Conclusion

In this paper, we have defined SLIDLCrPs, a linearly compositional fragment of
separation logic with inductive definitions, where both linear shapes, e.g., singly
or doubly linked lists, lists with tail pointers, and data constraints, e.g., sorted-
ness and size constraints, are expressible. We have provided complete decision
procedures for both the satisfiability and the entailment problem, with com-
plexity upper-bounds NP and ΠP

3 respectively. For the satisfiability problem, it
turned out that computing the transitive closure of data constraints is critical
to the completeness of the decision procedure. For the entailment checking, a
novel concept of allocating plans was introduced. Note that we made no efforts
to tighten the NP/ΠP

3 upper-bound or to provide lower-bounds, which might be
interesting subjects of further research. More importantly, we believe that the
approach introduced in this paper is amenable to implementations and can be
extended to handle non-linear shapes (e.g., nested lists, binary search trees) as
well as other kinds of data constraints (e.g., set or multiset constraints). These
are left as future work.

References

1. T. Antonopoulos, N. Gorogiannis, C. Haase, M. I. Kanovich, and J. Ouaknine.
Foundations for decision problems in separation logic with general inductive pred-
icates. In FoSSaCS, pages 411–425, 2014.

15

2. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation
logic. In APLAS, pages 52–68, 2005.

3. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In ATVA, pages
167–182, 2012.

4. M. Bozga, R. Iosif, and S. Perarnau. Quantitative separation logic and programs
with lists. J. Autom. Reasoning, 45(2):131–156, 2010.

5. R. Brochenin, S. Demri, and É. Lozes. On the almighty wand. Inf. Comput.,
211:106–137, 2012.

6. J. Brotherston, D. Distefano, and R. L. Petersen. Automated cyclic entailment
proofs in separation logic. In CADE, pages 131–146, 2011.

7. J. Brotherston, C. Fuhs, J. A. N. Perez, and N. Gorogiannis. A decision procedure
for satisfiability in separation logic with inductive predicates. In LICS, 2014.

8. C. Calcagno and D. Distefano. Infer: An automatic program verifier for memory
safety of C programs. In NFM, pages 459–465, 2011.

9. W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program., 77(9):1006–1036, 2012.

10. D. Chu, J. Jaffar, and M. Trinh. Automating proofs of data-structure properties
in imperative programs. CoRR, abs/1407.6124, 2014.

11. B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. Tractable reasoning
in a fragment of separation logic. In CONCUR, pages 235–249, 2011.

12. S. Demri and M. Deters. Expressive completeness of separation logic with two
variables and no separating conjunction. In CSL-LICS, page 37, 2014.

13. C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. Compositional entailment
checking for a fragment of separation logic. In APLAS, pages 314–333, 2014.

14. C. Enea, M. Sighireanu, and Z. Wu. On automated lemma generation for separation
logic with inductive definitions. In ATVA, pages 80–96, 2015.

15. Z. Hou, R. Goré, and A. Tiu. Automated theorem proving for assertions in sepa-
ration logic with all connectives. In CADE 2015, pages 501–516, 2015.

16. R. Iosif, A. Rogalewicz, and J. Simacek. The tree width of separation logic with
recursive definitions. In CADE, pages 21–38, 2013.

17. R. Iosif, A. Rogalewicz, and T. Vojnar. Deciding entailments in inductive separa-
tion logic with tree automata. In ATVA, pages 201–218, 2014.

18. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In CSL, pages 1–19, 2001.

19. E. Pek, X. Qiu, and P. Madhusudan. Natural proofs for data structure manipula-
tion in C using separation logic. In PLDI, pages 440–451, 2014.

20. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using SMT. In
CAV, pages 773–789, 2013.

21. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic with trees and
data. In CAV, pages 711–728, 2014.

22. R. Piskac, T. Wies, and D. Zufferey. GRASShopper - complete heap verification
with mixed specifications. In TACAS, pages 124–139, 2014.

23. X. Qiu, P. Garg, A. Stefănescu, and P. Madhusudan. Natural proofs for structure,
data, and separation. In PLDI, pages 231–242, 2013.

24. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74, 2002.

25. Z3. http://rise4fun.com/z3.

16

http://rise4fun.com/z3

	A complete decision procedure for linearly compositional separation logic with data constraints

