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Abstract. We identify difference-bound set constraints (DBS), an anal-
ogy of difference-bound arithmetic constraints for sets. DBS can express
not only set constraints but also arithmetic constraints over set elements.
We integrate DBS into separation logic with linearly compositional in-
ductive predicates, obtaining a logic thereof where set data constraints
of linear data structures can be specified. We show that the satisfiability
of this logic is decidable. A crucial step of the decision procedure is to
compute the transitive closure of DBS-definable set relations, to capture
which we propose an extension of quantified set constraints with Pres-
burger Arithmetic (RQSPA). The satisfiability of RQSPA is then shown
to be decidable by harnessing advanced automata-theoretic techniques.

1 Introduction

Separation Logic (SL) is a well-established approach for deductive verification
of programs that manipulate dynamic data structures [25,28]. Typically, SL is
used in combination with inductive definitions (SLID), which provides a natural
and convenient means to specify dynamic data structures. To reason about the
property (e.g. sortedness) of data values stored in data structures, it is also
necessary to incorporate data constraints into the inductive definitions.

One of the most fundamental questions for a logical theory is whether its sat-
isfiability is decidable. SLID with data constraints is no exception. This problem
becomes more challenging than one would probably expect, partially due to the
inherent intricacy brought up by inductive definitions and data constraints. It
is somewhat surprising that only disproportional research has addressed this
question (cf. Related work). In practice, most available tools based on SLID only
support heuristics without giving completeness guarantees, especially when data
constraints are involved. Complete decision procedures for satisfiability, however,
have been found important in software engineering tasks such as symbolic ex-
ecution, specification debugging, counterexample generation, etc., let along the
theoretical insights they usually shed on the logic system.
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EPSRC grant (EP/P00430X/1), and the INRIA-CAS joint research project VIP.



The dearth of complete decision procedures for SLID with data constraints
has prompted us to launch a research program as of 2015, aiming to identify de-
cidable and sufficiently expressive instances. We have made encouraging progress
insofar. In [15], we set up a general framework, but could only tackle linear data
structures with data constraints in difference-bound arithmetic. In [34], we were
able to tackle tree data structures by exploiting machineries such as order graphs
and counter machines, though the data constraints therein remained to be in
difference-bound arithmetic.

An important class of data constraints that is currently elusive in our in-
vestigations is set constraints. They are mandatory for reasoning about, e.g.,
invariants of data collections stored in data structures. For instance, when spec-
ifying the correctness of a sorting algorithm on input lists, whilst the sortedness
of the list can be described by difference-bound arithmetic constraints, the prop-
erty that the sorting algorithm does not change the set of data values on the list
requires inductive definitions with set data constraints. Indeed, reviewers of the
papers [15,34] constantly raised the challenge of set constraints, which compelled
us to write the current paper.

Main contributions. Our first contribution is to carefully design the difference-
bound set constraints (DBS), and to integrate them into the linearly composi-
tional inductive predicates introduced in [15], yielding SLIDS

LC: SL with linearly
compositional inductive predicates and set data constraints. The rationale of DBS
is two-fold: (1) it must be sufficiently expressive to represent common set data
constraints as well as arithmetic constraints over set elements one usually needs
when specifying linear data structures, (2) because of the inductive predicates, it
must be sufficiently “simple” to be able to capture the transitive closure of DBS-
definable set relations4 in an effective means, in order to render the satisfiability
of SLIDS

LC decidable. As the second contribution, we show that the transitive
closure of DBS can indeed be captured in the restricted extension of quantified
set constraints with Presburger arithmetic (RQSPA) introduced in this paper.
Finally, our third contribution is to show that the satisfiability of RQSPA is
decidable by establishing a connection of RQSPA with Presburger automata
[29]. This extends the well-known connection of Monadic Second-Order logic on
words (MSOW) and finite-state automata a la Büchi and Elgot [5,11]. These
contributions, together with a procedure which constructs an abstraction (as an
RQSPA formula) from a given SLIDS

LC formula and which we adapt from our
previous work [15], show the satisfiability of SLIDS

LC is decidable.
We remark that sets are conceptually related to second—rather than first—

order logics. While the transitive closure of logic formulae with first-order vari-
ables is somehow well-studied (especially for simple arithmetic; cf. Related Work),
the transitive closure of logic formulae with second-order variables is rarely ad-
dressed in literature. (They easily lead to undecidability.) To our best knowledge,
the computation of transitive closures of DBS here represents one of the first
practically relevant examples of the computation of this type for a class of logic
formulae with second-order variables, which may be of independent interests.

4 This shall be usually referred to as “transitive closure of DBS” to avoid clumsiness.
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Related work. We first review the work on SLID with data constraints. (Due
to space limit, the work on SLID without data constraints will be skipped.) In
[7,8,23], SLID with set/multiset/size data constraints were considered, but only
(incomplete) heuristics were provided. To reason about invariants of data values
stored in lists, SL with list segment predicates and data constraints in universally
quantified Presburger arithmetic was considered [1]. The work [26,27] provided
decision procedures for SLID with data constraints by translating into many-
sorted first-order logic with reachability predicates. In particular, in [27, Section
6], extensions of basic logic GRIT are given to cover set data constraints as well
as order constraints over set elements. However, it seems that this approach does
not address arithmetic constraints over set elements (cf. the “Limitations” para-
graph in the end of Section 6 in [27]). For instance, a list where the data values
in adjacent positions are consecutive can be captured in SLIDS

LC (see the predi-
cate plseg in Section 3), but appears to go beyond the work [26,27]. Moreover,
there is no precise characterisation of the limit of extensions under which the
decidability retains. The work [13] introduced the concept of compositional in-
ductive predicates, which may alleviate the difficulties of the entailment problem
for SLID. Nevertheless, [13] only provided sound heuristics rather than decision
procedures. More recently, the work [21,31] investigated SLID with Presburger
arithmetic data constraints.

Furthermore, several logics other than separation logic have been considered
to reason about both shape properties and data constraints of data structures.
The work [30] proposed a generic decision procedure for recursive algebraic data
types with abstraction functions encompassing lengths (sizes) of data structures,
sets or multisets of data values as special cases. Nevertheless, the work [30] fo-
cused on functional programs while this work aims to verify imperative programs,
which requires to reason about partial data structures such as list segments
(rather than complete data structures such as lists). It is unclear how the deci-
sion procedure in [30] can be generalised to partial data structures. The work
[22] introduced STRAND, a fragment of monadic second-order logic, to reason
about tree structures. Being undecidable in general, several decidable fragments
were identified. STRAND does not provide an explicit means to describe sets of
data values, although it allows using set variables to represent sets of locations.

Our work is also related to classical logics with set constraints, for which we
can only give a brief (but by no means comprehensive) summary. Presburger
arithmetic extended with sets was studied dating back to 80’s, with highly un-
decidability results [6,16]. However, decidable fragments do exist: [33] studied
the non-disjoint combination of theories that share set variables and set opera-
tions. [20] considered QFBAPAă8, a quantifier-free logic of sets of real numbers
supporting integer sets and variables, linear arithmetic, the cardinality opera-
tor, infimum and supremum. [32,17] investigated two extensions of the Bernays-
Schönfinkel-Ramsey fragment of first-order predicate logic (BSR) with simple
linear arithmetic over integers and difference-bound constraints over reals (but
crucially, the ranges of the universally quantified variables must be bounded).
Since the unary predicate symbols in BSR are uninterpreted and represent sets
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over integers or reals, the two extensions of BSR can also be used to specify
the set constraints on integers or reals. [10] presented a decision procedure for
quantifier-free constraints on restricted intensional sets (i.e., sets given by a prop-
erty rather than by enumerating their elements). None of these logics are able
to capture the transitive closure of DBS as RQSPA does. MSOW extended
with linear cardinality constraints was investigated in [18]. Roughly speaking,
RQSPA can be considered as an extension of MSOW with linear arithmetic
expressions on the maximum or minimum value of free set variables. Therefore,
the two extensions in [18] and this paper are largely incomparable.

In contrast to set constraints, the computation of transitive closures of rela-
tions definable in first-order logic (in particular, difference-bound and octagonal
arithmetic constraints) has been considered in for instance, [9,4,2,3,19].

2 Logics for sets

We write Z, N for the set of integers and natural numbers; SZ and SN for finite
subsets of Z and N. For n P N, rns stands for t1, ¨ ¨ ¨ , nu. We shall work exclusively
on finite subsets of Z or N unless otherwise stated. For any finite A ‰ H, we
write minpAq and maxpAq for the minimum and maximum element of A. These
functions, however, are not defined over empty sets.

In the sequel, we introduce a handful of logics for sets which will be used
later in this paper. We mainly consider two data types, i.e., integer type Z and
(finite) set type SZ. Typically, c, c1, ¨ ¨ ¨ P Z and A,A1, ¨ ¨ ¨ P SZ. Accordingly,
two types of variables occur: integer variables (ranged over by x, y, ¨ ¨ ¨ ) and set
variables (ranged over by S, S1, ¨ ¨ ¨ ). Furthermore, we reserve ’ P t“,ď,ěu for
comparison operators between integers,5 and — P t“,Ď,Ě,Ă,Ąu for comparison
operators between sets. We start with difference-bound set constraints (DBS).

Definition 1 (Difference-bound set constraints). Formulae of DBS are
defined by the rules:

ϕ ::“ S “ S1 Y Ts | Ti ’ Ti ` c | ϕ^ ϕ
Ts ::“ H | tminpSqu | tmaxpSqu | Ts Y Ts pset termsq
Ti ::“ minpSq | maxpSq pinteger termsq

Remark. DBS is a rather limited logic, but it has been carefully devised to
serve the data formulae in inductive predicates of SLIDS

LCrP s (cf. Section 3).
In particular, we remark that only conjunction, but not disjunction, of atomic
constraints is allowed. The main reason is, once the disjunction is introduced, the
computation of transitive closures becomes infeasible simply because one would
be able to encode the computation of Minsky’s two-counter machines. [\

To capture the transitive closure of DBS, we introduce Restricted extension of
Quantified Set constraints with Presburger Arithmetic6 (RQSPA). Intuitively,

5 The operators ă and ą can be seen as abbreviations, for instance, x ă y is equivalent
to x ď y ´ 1, which will be used later on as well.

6 An unrestricted extension of quantified set constraints with Presburger Arithmetic
is undecidable, as shown in [6].

4



an RQSPA formula is a quantified set constraint extended with Presburger
Arithmetic satisfying the following restriction: each atomic formula containing
quantified variables must be a difference-bound arithmetic constraint.

Definition 2 (Restricted extension of Quantified Set constraints with
Presburger Arithmetic). Formulae of RQSPA are defined by the rules:

Φ ::“ Ts — Ts | Ti ’ Ti ` c | Tm ’ 0 | Φ^ Φ |  Φ | @x. Φ | @S. Φ,

Ts ::“ H | S | tTiu | Ts Y Ts | Ts X Ts | TszTs,

Ti ::“ c | x | minpTsq | maxpTsq,

Tm ::“ c | x | maxpTsq | minpTsq | Tm ` Tm | Tm ´ Tm.

Here, Ts (resp. Ti) represents set (resp. integer) terms which are more general
than those in DBS, and Tm terms are Presburger arithmetic expressions. Let
VarspΦq (resp. freepΦq) denote the set of variables (resp. free variables) occurring
in Φ. We require that all set variables in atomic formulae Tm ’ 0 are
free. To make the free variables explicit, we usually write Φpx,Sq for a RQSPA
formula Φ. Free variable names are assumed not to clash with the quantified ones.

Example 1. maxpS1 Y S2q ´ minpS1q ´ maxpS2q ă 0 and @S1@S2.pS2 ‰ H Ñ

maxpS2q ď maxpS1 Y S2qq are RQSPA formulae, while @S2. maxpS1 Y S2q ´

minpS1q ´maxpS2q ă 0 is not. [\

The work [6], among others, studied Presburger arithmetic extended with Sets
(PS), which is quantifier-free RQSPA formulae. In this paper, PS will serve
the data formula part of SLIDS

LCrP s, and we reserve ∆,∆1, . . . to denote formulae
from PS (see Section 3).

Semantics. All of these logics (DBS, RQSPA, PS) can be considered as in-
stances of weak monadic second-order logic, and thus their semantics are largely
self-explanatory. In particular, set variables are interpreted as finite subsets of
Z and integer variables are interpreted as integers. We emphasize that, if a set
term Ts is interpreted as H, minpTsq and maxpTsq are undefined. As a result,
we stipulate that any atomic formula containing an undefined term is
interpreted as false.

For an RQSPA formula Φpx,Sq with x “ px1, ¨ ¨ ¨ , xkq and S “ pS1, ¨ ¨ ¨ , Slq,
LpΦpx,Sqq denotes

tpn1, ¨ ¨ ¨ , nk, A1, ¨ ¨ ¨ , Alq P Zk ˆ SlZ | Φpn1, ¨ ¨ ¨ , nk, A1, ¨ ¨ ¨ , Alqu.

As expected, typically we use DBS formulae to define relations between (tuples
of) sets from SkZ. We say a relation R Ď SkZ ˆ SkZ a difference-bound set relation
if there is a DBS formula ϕpS,S1q over set variables S and S1 such that R “
tpA,A1q P SkZ ˆ SkZ | ϕpA,A1qu. The transitive closure of R is defined in a
standard way, viz.,

Ť

iě0

Ri, where R0 “ tpA,Aq | A P SkZu and Ri`1 “ Ri ¨R.

3 Linearly compositional SLID with set data constraints

In this section, we introduce separation logic with linearly compositional induc-
tive predicates and set data constraints, denoted by SLIDS

LCrP s, where P is an
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inductive predicate. In addition to the integer and set data types introduced in
Section 2, we also consider the location data type L. As a convention, l, l1, ¨ ¨ ¨ P L
denote locations and E,F,X, Y, ¨ ¨ ¨ range over location variables. We consider
location fields associated with L and data fields associated with Z.

SLIDS
LCrP s formulae may contain inductive predicates, each of which is of

the form P pα;β; ξq and has an associated inductive definition. The parameters
are classified into three groups: source parameters α, destination parameters
β, and static parameters ξ. We require that the source parameters α and the
destination parameters β are matched in type, namely, the two tuples have the
same length ` ą 0 and for each i P r`s, αi and βi have the same data type.
Static parameters are typically used to store some static (global) information of
dynamic data structures, e.g., the target location of tail pointers. Moreover, we
assume that for each i P r`s, αi is of either the location type, or the set type.
(There are no parameters of the integer type.) Without loss of generality, it is
assumed that the first components of α and β are location variables; we usually
explicitly write E,α and F,β.

SLIDS
LCrP s formulae comprise three types of formulae: pure formulae Π, data

formulae ∆, and spatial formulae Σ. The data formulae are simply PS intro-
duced in Section 2, while Π and Σ are defined by the following rules,

Π ::“ E “ F | E ‰ F | Π ^Π (pure formulae)
Σ ::“ emp | E ÞÑ pρq | P pE,α;F,β; ξq | Σ ˚Σ (spatial formulae)
ρ ::“ pf,Xq | pd, Tiq | ρ, ρ (fields)

where Ti is an integer term as in Definition 2, and f (resp. d) is a location
(resp. data) field. For spatial formulae Σ, formulae of the form emp, E ÞÑ pρq, or
P pE,α;F,β; ξq are called spatial atoms. In particular, formulae of the form E ÞÑ
pρq and P pE,α;F,β; ξq are called points-to and predicate atoms respectively.
Moreover, E is the root of these points-to or predicate atoms.

Linearly compositional inductive predicates. An inductive predicate P is linearly
compositional if the inductive definition of P is given by the following two rules,

– base rule R0 : P pE,α;F,β; ξq ::“ E “ F ^α “ β ^ emp,
– inductive rule R1 : P pE,α;F,β; ξq ::“ DXDS. ϕ^E ÞÑ pρq˚P pY,γ;F,β; ξq.

The left-hand (resp. right-hand) side of a rule is called the head (resp. body) of
the rule.

In the sequel, we specify some constraints on the inductive rule R1 which are
vital to obtain complete decision procedures for the satisfiability problem.

C1 None of the variables from F,β occur elsewhere in the right-hand side of
R1, that is, in ϕ, E ÞÑ pρq.

C2 The data constraint ϕ in the body of R1 is a DBS formula.
C3 For each atomic formula in ϕ, there is i such that all the variables in the

atomic formula are from tαi, γiu.
C4 Each variable occurs in each of P pY,γ;F,β; ξq and ρ at most once.
C5 ξ contains only location variables and all location variables from αY ξYX

occur in ρ.
C6 Y PX and γ Ď tEu YX Y S.
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Note that, by C6, none of the variables from αYξ occur in γ. Moreover, from C5
and C6, Y occurs in ρ, which guarantees that in each model of P pE,α;F,β; ξq,
the sub-heap represented by P pE,α;F,β; ξq, seen as a directed graph, is con-
nected. We also note that the body of R1 does not contain pure formulae. We
remark that these constraints are undeniably technical. However, in practice the
inductive predicates satisfying these constraints are usually sufficient to define
linear data structures with set data constraints, cf. Example 2.

For an inductive predicate P , let FldspP q denote the set of all fields occurring
in the inductive rules of P . For a spatial atom a, let Fldspaq denote the set of
fields that a refers to: if a “ E ÞÑ pρq, then Fldspaq is the set of fields occurring
in ρ; if a “ P p´q, then Fldspaq “ FldspP q.

We write SLIDS
LCrP s for the collection of separation logic formulae φ “ Π ^

∆ ^ Σ satisfying the following constraints: (1) P is a linearly compositional
inductive predicate, and (2) each predicate atom of Σ is of the form P p´q, and
for each points-to atom occurring in Σ, the set of fields of this atom is FldspP q.

For an SLIDS
LCrP s formula φ, let Varspφq (resp. LVarspφq, resp. DVarspφq, resp.

SVarspφq) denote the set of (resp. location, resp. integer, resp. set) variables
occurring in φ. Moreover, we use φrµ{αs to denote the simultaneous replacement
of the variables αj by µj in φ. We adopt the standard classic, precise semantics
of SLIDS

LCrP s in terms of states. In particular, a state is a pair ps, hq, where s is
an assignment and h is a heap. The details can be found in [14].

Example 2. We collect a few examples of linear data structures with set data
constraints definable in SLIDS

LCrP s:

sdllseg for sorted doubly linked list segments,
sdllsegpE,P, S;F,L, S1q ::“ E “ F ^ P “ L^ S “ S1 ^ emp,
sdllsegpE,P, S;F,L, S1q ::“ DX,S2. S “ S2 Y tminpSqu ^

E ÞÑ ppnext, Xq, pprev, P q, pdata,minpSqqq ˚ sdllsegpX,E, S2;F,L, S1q.

plseg for list segments where the data values are consecutive,
plsegpE,S;F, S1q ::“ E “ F ^ S “ S1 ^ emp,
plsegpE,S;F, S1q ::“ DX,S2. S “ S2 Y tminpSqu ^minpS2q “ minpSq ` 1 ^

E ÞÑ ppnext, Xq, pdata,minpSqqq ˚ plsegpX,S2;F, S1q.

ldllseg for doubly list segments, to mimic lengths with sets,
ldllsegpE,P, S;F,L, S1q ::“ E “ F ^ P “ L^ S “ S1 ^ emp,
ldllsegpE,P, S;F,L, S1q ::“ DX,S2. S “ S2 Y tmaxpSqu ^maxpS2q “ maxpSq ´ 1 ^

E ÞÑ ppnext, Xq, pprev, P qq ˚ ldllsegpX,E, S2;F,L, S1q.

4 Satisfiability of SLIDS
LCrP s

The satisfiability problem is to decide whether there is a state (an assignment-
heap pair) satisfying φ for a given SLIDS

LCrP s formula φ. We shall follow the
approach adopted in [12,15], i.e., to construct Abspφq, an abstraction of φ that
is equisatisfiable to φ. The key ingredient of the construction is to compute the
transitive closure of the data constraints extracted from the inductive rule of P .

Let φ “ Π ^ ∆ ^ Σ be an SLIDS
LCrP s formula. Suppose Σ “ a1 ˚ ¨ ¨ ¨ ˚ an,

where each ai is either a points-to atom or a predicate atom. For predicate atom
ai “ P pZ1,µ;Z2,ν;χq we assume that the inductive rule for P is
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R1 : P pE,α;F,β; ξq ::“ DXDS. ϕ^ E ÞÑ pρq ˚ P pY,γ;F,β; ξq. p˚q

We extract the data constraint ϕP pdtpαq, dtpβqq out of R1. Formally, we
define ϕP pdtpαq, dtpβqq as ϕrdtpβq{dtpγqs, where dtpαq (resp. dtpγq, dtpβq) is
the projection of α (resp. γ, β) to data variables. For instance, ϕldllsegpS, S

1q :“
pS “ S2 Y tmaxpSqu ^maxpS2q “ maxpSq ´ 1q rS1{S2s “ S “ S1 Y tmaxpSqu ^
maxpS1q “ maxpSq ´ 1.

We can construct Abspφq with necessary adaptations from [15]. For each spa-
tial atom ai, Abspφq introduces a Boolean variable to denote whether ai corre-
sponds to a nonempty heap or not. With these Boolean variables, the semantics
of separating conjunction are encoded in Abspφq. Moreover, for each predicate
atom ai, Abspφq contains an abstraction of ai, where the formulae Ufld1paiq and
Ufldě2paiq are used. Intuitively, Ufld1paiq and Ufldě2paiq correspond to the sep-
aration logic formulae obtained by unfolding the rule R1 once and at least twice
respectively. We include the construction here so one can see the role of the
transitive closure in Abspφq. The details of Abspφq can be found in [14].

Let ai “ P pZ1,µ;Z2,ν;χq and R1 be the inductive rule in Eqn. (˚). If E
occurs in γ in the body of R1, we use idxpP,γ,Eq to denote the unique index j
such that γj “ E. (The uniqueness follows from C4.)

Definition 3 (Ufld1paiq and Ufldě2paiq). Ufld1paiq and Ufldě2paiq are defined
by distinguishing the following two cases:

– If E occurs in γ in the body of R1, then Ufld1paiq :“ pE “ βidxpP,γ,Eq
^

ϕP pdtpαq, dtpβqqqrZ1{E,µ{α, Z2{F,ν{β,χ{ξs and Ufldě2paiq :“
¨

˝

E ‰ βidxpP,γ,Eq
^ E ‰ γ2,idxpP,γ,Eq

^

ϕP rdtpγ1q{dtpβqs ^ ϕP rdtpγ1q{dtpαq, dtpγ2q{dtpβqs ^
pTCrϕP sqrdtpγ2q{dtpαqs

˛

‚rZ1{E,µ{α, Z2{F,ν{β,χ{ξs,

where γ1 and γ2 are fresh variables.
– Otherwise, let Ufld1paiq :“ ϕP rZ1{E,µ{α, Z2{F,ν{β,χ{ξs and

Ufldě2paiq :“

¨

˝

ϕP rdtpγ1q{dtpβqs ^
ϕP rdtpγ1q{dtpαq, dtpγ2q{dtpβqs ^
pTCrϕP sqrdtpγ2q{dtpαqs

˛

‚rZ1{E,µ{α, Z2{F,ν{β,χ{ξs,

where γ1 and γ2 are fresh variables.

Here, TCrϕP spdtpαq, dtpβqq denotes the transitive closure of ϕP . In Section 5,
it will be shown that TCrϕP spdtpαq, dtpβqq can be written as an RQSPA for-
mula. As a result, since we are only concerned with satisfiability and can treat
the location data type L simply as integers Z, Abspφq can also be read as an
RQSPA formula. In Section 6, we shall show that the satisfiability of RQSPA
is decidable. Following this chain of reasoning, we conclude that the satisfiability
of SLIDS

LCrP s formulae is decidable.

5 Transitive closure of difference-bound set relations

In this section, we show how to compute the transitive closure of the difference-
bound set relation R given by a DBS formula ϕRpS,S

1q. Our approach is, in a
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nutshell, to encode TCrϕRspS,S
1q into RQSPA. We shall only sketch part of a

simple case, i.e., in ϕRpS, S
1q only one source and destination set parameter are

present. The details are however given in [14].
Recall that, owing to the simplicity of DBS, the integer terms Ti in ϕRpS, S

1q

can only be minpSq, maxpSq, minpS1q or maxpS1q, whereas the set terms Ts are
H, tminpSqu, tminpS1qu, tmaxpSqu, tmaxpS1qu, or their union. For reference,
we write ϕRpS, S

1q “ ϕR,1 ^ ϕR,2, where ϕR,1 is an equality of set terms (i.e.,
they are of the form S “ S1 Y Ts or S1 “ S Y Ts), and ϕR,2 is a conjunction
of constraints over integer terms (i.e., a conjunction of formulae Ti ď Ti ` c).
ϕR,1 and ϕR,2 will be referred to as the set and integer subformula of ϕRpS, S

1q

respectively. We shall focus on the case ϕR,1 :“ S “ S1 Y Ts. The symmetrical
case ϕR,1 :“ S1 “ S Y Ts can be adapted easily.

The integer subformula ϕR,2 can be represented by an edge-weighted directed
graph GpϕR,2q, where the vertices are all integer terms appearing in ϕR,2, and
there is an edge from T1 to T2 with weight c iff T1 “ T2 ` c (equivalent to
T2 “ T1 ´ c), or T1 ď T2 ` c, or T2 ` c ě T1 appears in ϕR,2. The weight
of a path in GpϕR,2q is the sum of the weights of the edges along the path.
A negative cycle in GpϕR,2q is a cycle with negative weight. It is known that
ϕR,2 is satisfiable iff GpϕR,2q contains no negative cycles [24]. Suppose ϕR,2 is
satisfiable. We define the normal form of ϕR,2, denoted by NormpϕR,2q, as the
conjunction of the formulae T1 ď T2` c such that T1 ‰ T2, T2 is reachable from
T1 in GpϕR,2q, and c is path from T1 to T2 with the minimal weight in GpϕR,2q.

S (resp. S1) is said to be surely nonempty in ϕR if minpSq or maxpSq (resp.
minpS1q or maxpS1q) occurs in ϕR; otherwise, S (resp. S1) is possibly empty in ϕR.
Recall that, according to the semantics, an occurrence of minpSq or maxpSq (resp.
minpS1q or maxpS1q) in ϕR implies that S (resp. S1) is interpreted as a nonempty
set in every satisfiable assignment. Provided that S1 is nonempty, we know that
minpS1q and maxpS1q belong to S1. Therefore, for simplicity, here we assume that
in S “ S1 Y Ts, Ts contains neither minpS1q nor maxpS1q. The situation that Ts
contains minpS1q and maxpS1q can be dealt with in a similar way.

Saturation. For technical convenience, we introduce a concept of saturation. The
main purpose of saturation is to regularise Ts and ϕR,2, which would make the
transitive closure construction more “syntactic”.

Definition 4. Let ϕRpS, S
1q :“ S “ S1 Y Ts ^ ϕR,2 be a DBS formula. Then

ϕRpS, S
1q is saturated if ϕRpS, S

1q satisfies the following conditions

– ϕR,2 is satisfiable and in normal forms,
– Ts Ď tmaxpSq,minpSqu,
– if S (resp. S1) is surely nonempty in ϕR, then ϕR,2 contains a conjunct

minpSq ď maxpSq´c for some c ě 0 (resp. minpS1q ď maxpS1q´c1 for some
c1 ě 0),

– if both S and S1 are surely nonempty in ϕR, then
‚ ϕR,2 contains two conjuncts minpSq ď minpS1q ´ c and maxpS1q ď

maxpSq ´ c1 for some c, c1 ě 0,
‚ minpSq R Ts iff ϕR,2 contains the conjuncts minpSq ď minpS1q and

minpS1q ď minpSq,
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‚ maxpSq R Ts iff ϕR,2 contains the conjuncts maxpS1q ď maxpSq and
maxpSq ď maxpS1q,

– if ϕR,2 contains the conjuncts minpSq ď maxpSq and maxpSq ď minpSq,
then maxpSq R Ts (possibly minpSq P Ts).

For a formula ϕRpS, S
1q :“ S “ S1 Y Ts ^ ϕR,2, one can easily saturate ϕR,

yielding a saturated formula StrtpϕRpS, S
1qq. (It is possible, however, to arrive

at an unsatisfiable formula, then we are done.)

Proposition 1. Let ϕRpS, S
1q :“ ϕR,1 ^ ϕR,2 be a DBS formula such that

ϕR,1 :“ S “ S1 Y Ts and ϕR,2 is satisfiable. Then ϕR can be transformed, in
polynomial time, to an equisatisfiable formula StrtpϕRpS, S

1qq, and if the integer
subformula of StrtpϕRpS, S

1qq is satisfiable, then StrtpϕRpS, S
1qq is saturated.

In the sequel, we assume that ϕRpS, S
1q :“ ϕR,1^ϕR,2 is satisfiable and sat-

urated. For notational convenience, for A Ď tminpSq,maxpSq,minpS1q,maxpS1qu
with |A| “ 2, let tϕR,2uA denote the conjunction of atomic formulae in ϕR,2
where all the elements of A occur.

Evidently, tϕR,2uA gives a partition of atomic formulae of ϕR,2. Namely,

ϕR,2 “
Ź

AĎtminpSq,maxpSq,minpS1q,maxpS1qu,|A|“2 tϕR,2uA.

We proceed by a case-by-case analysis of ϕR,1. There are four cases: (I) ϕR,1 :“
S “ S1, (II) ϕR,1 :“ S “ S1 Y tminpSqu, (III) ϕR,1 “ S “ S1 Y tmaxpSqu and
(IV) ϕR,1 “ S “ S1 Y tminpSq,maxpSqu. Case (I) is trivial, and Case (III) is
symmetrical to (II). However, both (II) and (IV) are technically involved. We
shall only give a “sample” treatment of these cases, i.e., part of arguments for
Case (II); the full account of Case (II) and (IV) are given in [14].

To start with, Case (II) can be illustrated schematically as | ´

S1

hkkkkkkkkikkkkkkkkj

| ´ ´ ´´´´|
loooooooooomoooooooooon

S

.

We observe that S is surely nonempty in ϕR. We then distinguish two subcases
depending on whether S1 is possibly empty or surely nonempty in ϕR. Here we
give the details of the latter subcase because it is more interesting. In this case,
both S and S1 are surely nonempty in ϕR. By Definition 4(4–5), ϕR,2 contains
a conjunct minpSq ď minpS1q ´ c for some c ě 0, as well as maxpS1q ď maxpSq
and maxpSq ď maxpS1q (i.e., maxpS1q “ maxpSq). Therefore, we can assume

ϕR,2 “ maxpS1q ď maxpSq ^maxpSq ď maxpS1q ^ tϕR,2uminpSq,minpS1q ^

tϕR,2uminpSq,maxpSq ^ tϕR,2uminpS1q,maxpS1q.

Note that in ϕR,2 above, the redundant subformulae tϕR,2uminpSq,maxpS1q and
tϕR,2uminpS1q,maxpSq have been omitted.

The formula tϕR,2uminpSq,minpS1q is said to be strict if it contains a conjunct
minpSq ď minpS1q ´ c for some c ą 0. Otherwise, it is said to be non-strict.
Intuitively, if tϕR,2uminpSq,minpS1q is strict, then for n, n1 P Z, the validity of
ptϕR,2uminpSq,minpS1qqrn{minpSq, n1{minpS1qs implies that n ă n1. For the sketch
we only present the case that tϕR,2uminpSq,minpS1q is strict ; the other cases are
similar and can be found in [14].
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Evidently, TCrϕRspS, S
1q can be written as pS “ S1q _

Ž

ně1
ϕ
pnq
R , where ϕ

pnq
R

is obtained by unfolding ϕR for n times, that is,

ϕ
pnq
R “ DS1, ¨ ¨ ¨ , Sn`1.

˜

S1 “ S ^ Sn`1 “ S1 ^
Ź

iPrns

pSi “ Si`1 Y tminpSiqu ^ ϕR,2rSi{S, Si`1{S
1
sq

¸

,

where ϕR,2rSi{S, Si`1{S
1s is obtained from ϕR,2 by replacing S (resp. S1) with

Si (resp. Si`1).

Clearly, ϕ
p1q
R “ ϕR, and

ϕ
p2q
R “ DS2. pS “ S2YtminpSqu^S2 “ S1YtminpS2qu^ϕR,2rS2{S

1
s^ϕR,2rS2{Ssq.

For ϕ
pnq
R where n ě 3, we first simplify ϕ

pnq
R to construct a finite formula for

TCrϕRspS, S
1q. The subformula

Ź

iPrns

pSi “ Si`1YtminpSiqu^ϕR,2rSi{S, Si`1{S
1sq

can be rewritten as

Ź

iPrns

¨

˝

Si “ Si`1 Y tminpSiqu ^maxpSiq “ maxpSi`1q ^

ptϕR,2uminpSq,minpS1qrSi{S, Si`1{S
1
sq ^ ptϕR,2uminpSq,maxpSqrSi{Ssq ^

ptϕR,2uminpS1q,maxpS1qrSi`1{S
1
sq

˛

‚.

Because Si “ Si`1 Y tminpSiqu for each i P rns, we have maxpS1q “ ¨ ¨ ¨ “

maxpSnq and minpS1q ď ¨ ¨ ¨ ď minpSnq. Since tϕR,2uminpSq,maxpSq is a con-
junction of difference-bound constraints involving minpSq and maxpSq only, we
have

Ź

iPrns

tϕR,2uminpSq,maxpSqrSi{Ss is equivalent to tϕR,2uminpSq,maxpSqrS1{Ss ^

tϕR,2uminpSq,maxpSqrSn{Ss. To see this, assume, for instance,

tϕR,2uminpSq,maxpSq ” c ď maxpSq ´minpSq ď c1

for some constants c, c1 ě 0 with c ď c1. Then maxpS1q ´minpS1q ď c1 implies
maxpSiq ´ minpSiq ď c1 for each i P rns, and c ď maxpSnq ´ minpSnq implies
c ď maxpSiq ´ minpSiq for each i P rns. Therefore, tϕR,2uminpSq,maxpSqrS1{Ss ^
tϕR,2uminpSq,maxpSqrSn{Ss ” c ď maxpS1q ´ minpS1q ď c1 ^ c ď maxpSnq ´
minpSnq ď c1 implies that

Ź

iPrns

tϕR,2uminpSq,maxpSqrSi{Ss, thus they are equivalent.

(The other direction is trivial.) Likewise, one has tϕR,2uminpS1q,maxpS1qrS2{S
1s ^

tϕR,2uminpS1q,maxpS1qrSn`1{S
1s implies

Ź

iPrns

tϕR,2uminpS1q,maxpS1qrSi`1{S
1s, thus they

are equivalent. Therefore, ϕ
pnq
R can be transformed into

DS2, Sn.

¨

˚

˚

˚

˚

˚

˚

˝

tϕR,2uminpSq,maxpSq ^ ptϕR,2uminpSq,maxpSqrSn{Ssq ^
ptϕR,2uminpS1q,maxpS1qrS2{S

1
sq ^ tϕR,2uminpS1q,maxpS1q ^ S “ S2 Y tminpSqu ^

Sn “ S1 Y tminpSnqu ^maxpSq “ maxpS2q ^maxpSnq “ maxpS1q ^
ptϕR,2uminpSq,minpS1qrS2{S

1
sq ^ ptϕR,2uminpSq,minpS1qrSn{Ssq^

DS3, ¨ ¨ ¨ , Sn´1.
Ź

2ďiďn´1

ˆ

Si “ Si`1 Y tminpSiqu ^maxpSiq “ maxpSi`1q ^

ptϕR,2uminpSq,minpS1qrSi{S, Si`1{S
1
sq

˙

˛

‹

‹

‹

‹

‹

‹

‚

.

Claim. Suppose n ě 3 and tϕR,2uminpSq,minpS1q is strict. Then

DS3, ¨ ¨ ¨ , Sn´1.
Ź

2ďiďn´1

ˆ

Si “ Si`1 Y tminpSiqu ^maxpSiq “ maxpSi`1q ^

ptϕR,2uminpSq,minpS1qrSi{S, Si`1{S
1
sq

˙

is equivalent to

Sn ‰ H^ S2zSn ‰ H^ Sn Ď S2 ^ |S2zSn| “ n´ 2^maxpS2zSnq ă minpSnq ^

@y, z. succppS2zSnq Y tminpSnqu, y, zq Ñ ptϕR,2uminpSq,minpS1qry{minpSq, z{minpS1qsq,
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where succpS, x, yq specifies intuitively that y is the successor of x in S, that is,

succpS, x, yq “ x P S ^ y P S ^ x ă y ^ @z P S. pz ď x_ y ď zq.

Note that | ¨ | denotes the set cardinality which can be easily encoded into
RQSPA. ([14] gives the proof of the claim.) It follows that TCrϕRspS, S

1q “

pS “ S1q _ ϕRpS, S
1
q _ ϕ

p2q
R pS, S1q _

DS1, S2.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

S “ S1 Y tminpSqu ^ S2 “ S1 Y tminpS2qu ^

maxpSq “ maxpS1q ^maxpS2q “ maxpS1q ^
S2 ‰ H^ S1zS2 ‰ H^ S2 Ď S1 ^maxpS1zS2q ă minpS2q ^

tϕR,2uminpSq,maxpSq ^ ptϕR,2uminpSq,maxpSqrS2{Ssq ^
ptϕR,2uminpS1q,maxpS1qrS1{S

1
sq ^ tϕR,2uminpS1q,maxpS1q ^

ptϕR,2uminpSq,minpS1qrS1{S
1
sq ^ ptϕR,2uminpSq,minpS1qrS2{Ssq ^

@y, z.

ˆ

succppS1zS2q Y tminpS2qu, y, zq Ñ
ptϕR,2uminpSq,minpS1qry{minpSq, z{minpS1qsq

˙

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

6 Satisfiability of RQSPA

In this section, we focus on the second ingredient of the procedure for deciding
satisfiability of SLIDS

LCrP s, i.e., the satisfiability of RQSPA. We first note that
RQSPA is defined over Z. To show the decidability, it turns to be much easier
to work on N. We shall write RQSPAZ and RQSPAN to differentiate them
when necessary. Moreover, for technical reasons, we also introduce RQSPA´,
the fragment of RQSPA excluding formulae of the form Tm ’ 0.

The decision procedure for the satisfiability of RQSPA proceeds with the
following three steps:

Step I. Translate RQSPAZ to RQSPAN,

Step II. Normalize an RQSPAN formula Φpx,Sq into
Ž

i

pΦ
piq
core^Φ

piq
countq, where

Φ
piq
core is an RQSPA´N formula, and Φ

piq
count is a conjunction of formulae of the

form Tm ’ 0 which contain only variables from xY S,

Step III. For each disjunct Φ
piq
core ^ Φ

piq
count, construct a Presburger automaton

(PA) ApiqΦ which captures the models of Φ
piq
core ^ Φ

piq
count. Satisfiability is thus

reducible to the nonemptiness of PA, which is decidable [29].

These steps are technically involved. In particular, the third step requires ex-
ploiting Presburger automata [29]. The details can be found in [14].

7 Conclusion

In this paper, we have defined SLIDS
LC, SL with linearly compositional inductive

predicates and set data constraints. The main feature is to identify DBS as a
special class of set data constraints in the inductive definitions. We encoded the
transitive closure of DBS into RQSPA, which was shown to be decidable. These
together yield a complete decision procedure for the satisfiability of SLIDS

LC.
The precise complexity of the decision procedure—Nonelementary is the

best upper-bound we have now—is left open for further studies. Furthermore,
the entailment problem of SLIDS

LC is an immediate future work.
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