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Abstract. First-order logic is known to have limited expressive power
over finite structures. It enjoys in particular the locality property, which
states that first-order formulae cannot have a global view of a structure.
This limitation ensures their low sequential computational complexity.
We show that the locality impacts as well on their distributed computa-
tional complexity. We use first-order formulae to describe the properties
of finite connected graphs, which are the topology of communication net-
works, on which the first-order formulae are also evaluated. We show that
over bounded degree networks and planar networks, first-order proper-
ties can be frugally evaluated, that is, with only a bounded number of
messages, of size logarithmic in the number of nodes, sent over each
link. Moreover, we show that the result carries over for the extension of
first-order logic with unary counting.

1 Introduction

Logical formalisms have been widely used in many areas of computer science to
provide high levels of abstraction, thus offering user-friendliness while increas-
ing the ability to verify properties. In the field of databases, first-order logic
constitutes the basis of relational query languages, which allow to write queries
in a declarative manner, independently of the physical implementation. In this
paper, we propose to use logical formalisms to express properties of the topology
of communication networks, that can be verified in a distributed fashion over
the networks themselves.

We focus on first-order logic over graphs. First-order logic has been shown
to have limited expressive power over finite structures. In particular, it enjoys
the locality property, which states that first-order formulae are local [Gai82], in
the sense that local areas of the graphs are sufficient to evaluate them.

First-order properties have been shown to be computable with very low com-
plexity in both sequential and parallel models of computation. It was shown that
first-order properties can be evaluated in linear time over classes of bounded de-
gree graphs [See95] and over classes of locally tree-decomposable graphs1 [FG01].
? INRIA – LIAMA – CASIA – Chinese Academy of Sciences – PO Box 2728 – Beijing

100080 – PR China – Stephane.Grumbach@inria.fr, zlwu@liama.ia.ac.cn
1 Locally tree-decomposable graphs generalize bounded degree graphs, planar graphs,

and graphs of bounded genus.



These results follow from the locality of the logic. It was also shown that they
can be evaluated in constant time over Boolean circuits with unbounded fan-in
(AC0) [Imm89]. These bounds lead us to be optimistic on the complexity of the
distributed evaluation of first-order properties.

We consider communication networks based on the message passing model
[AW04], where nodes exchange messages with their neighbors. The properties to
be evaluated concern the graph which forms the topology of the network, and
whose knowledge is distributed over the nodes, which are only aware of their
1-hop neighbors. We thus focus on connected graphs.

In distributed computing, the ability to solve problems locally has attracted
a strong interest since the seminal paper of Linial [Lin92]. The ability to solve
global problems in distributed systems, while performing as much as possible
local computations, is of great interest to ensure scalability. Moreover relying as
much as possible on local information improves fault-tolerance. Finally, restrict-
ing the computation to local areas allows to optimize time and communication
complexity.

Naor and Stockmeyer [NS95] showed that there were non-trivial locally check-
able labelings that are locally computable, while on the other hand some lower-
bounds have been exhibited, thus resulting in non-local computability results
[KMW04,KMW06].

Different notions of local computation have been considered. The most widely
accepted restricts the time of the computation to be constant, that is indepen-
dent of the size of the network [NS95], while allowing messages of size O(log n),
where n is the size of the network. This condition is rather stringent. Naor and
Stockmeyer [NS95] show their result for a restricted class of graphs (eg bounded
odd degree). Godard et al. used graph relabeling systems as the distributed com-
putational model, defined local computations as graph relabeling systems with
locally-generated local relabeling rules, and characterized the classes of graphs
that are locally computable [GMM04].

Our initial motivation is to understand the impact of the logical locality on
the distributed computation, and its relationship with local distributed compu-
tation. It is easy to verify though that there are simple properties (expressible
in first-order logic) that cannot be computed locally. Consider for instance the
property “There exist at least two distinct triangles”, which requires non-local
communication to check the distinctness of the two triangles which may be far
away from each other. Nevertheless, first-order properties do admit simple dis-
tributed computations.

We thus introduce frugal distributed computations. A distributed algorithm
is frugal if during its computation only a bounded number of messages of size
O(log n) are sent over each link. If we restrict our attention to bounded degree
networks, this implies that each node is only receiving a bounded number of
messages. Frugal computations resemble local computations over bounded degree
networks, since the nodes are receiving only a bounded number of messages,
although these messages can come from remote nodes through multi-hop paths.



We prove that first-order properties can be frugally evaluated over bounded
degree networks and planar networks (Theorem 2 and Theorem 4). The proofs
are obtained by transforming the centralized linear time evaluation algorithms
[See95,FG01] into distributed ones satisfying the restriction that only a bounded
number of messages are sent over each link. Moreover, we show that the results
carry over to the extension of first-order logic with unary counting. While the
transformation of the centralized linear time algorithm is simple for first-order
properties over bounded degree networks, it is quite intricate for first-order prop-
erties over planar networks. The most intricate part is the distributed construc-
tion of an ordered tree decomposition for some subgraphs of the planar network,
inspired by the distributed algorithm to construct an ordered tree decomposition
for planar networks with bounded diameter in [GW09].

Intuitively, since in the centralized linear time computation each object is
involved only a bounded number of times, in the distributed computation, a
bounded number of messages sent over each link could be sufficient to evalu-
ate first-order properties. So it might seem trivial to design frugal distributed
algorithms for first-order properties over bounded degree networks and planar
networks. Nevertheless, this is not the case, because in the centralized compu-
tation, after visiting one object, any other object can be visited, but in the
distributed computation, only the adjacent objects (nodes, links) can be visited.

The paper is organized as follows. In the next section, we recall classical graph
theory concepts, as well as Gaifman’s locality theorem. In Section 3, we consider
the distributed evaluation of first-order properties over respectively bounded
degree and planar networks. Finally, in Section 4, we consider the distributed
evaluation of first-order logic with unary counting.

2 Graphs, first-order logic and locality

In this paper, our interest is focused to a restricted class of structures, namely
finite graphs. Let G = (V,E), be a finite graph. We use the following notations.
If v ∈ V , then deg(v) denotes the degree of v. For two nodes u, v ∈ V , the
distance between u and v, denoted distG(u, v), is the length of the shortest path
between u and v. For k ∈ N, the k-neighborhood of a node v, denoted Nk(v), is
defined as {w ∈ V |distG(v, w) ≤ k}. If v̄ = v1...vp is a collection of nodes in V ,
then the k-neighborhood of v̄, denoted Nk(v̄), is defined by

⋃
1≤i≤pNk(vi). For

X ⊆ V , let 〈X〉G denote the subgraph induced by X.
Let G = (V,E) be a connected graph, a tree decomposition of G is a rooted

labeled tree T = (T, F, r,B), where T is the set of vertices of the tree, F ⊆ T ×T
is the child-parent relation of the tree, r ∈ T is the root of the tree, and B is a
labeling function from T to 2V , mapping vertices t of T to sets B(t) ⊆ V , called
bags, such that

1. For each edge (v, w) ∈ E, there is a t ∈ T , such that {v, w} ⊆ B(t).
2. For each v ∈ V , B−1(v) = {t ∈ T |v ∈ B(t)} is connected in T .



The width of T , width(T ), is defined as max{|B(t)| − 1|t ∈ T}. The tree-
width of G, denoted tw(G), is the minimum width over all tree decompositions
of G. An ordered tree decomposition of width k of a graph G is a rooted labeled
tree T = (T, F, r, L) such that:

– (T, F, r) is defined as above,
– L assigns each vertex t ∈ T to a (k + 1)-tuple bt = (bt1, · · · , btk+1) of vertices

of G (note that in the tuple bt, vertices of G may occur repeatedly),
– If L′(t) := {btj |L(t) = (bt1, · · · , btk+1), 1 ≤ j ≤ k + 1}, then (T, F, r, L′) is a

tree decomposition.

The rank of an (ordered) tree decomposition is the rank of the rooted tree,
i.e. the maximal number of children of its vertices.

We consider first-order logic (FO) over the signature E, where E is a binary
relation symbol. The syntax and semantics of first-order formulae are defined
as usual [EF99]. The quantifier rank of a formula ϕ is the maximal number of
nestings of existential and universal quantifiers in ϕ.

A graph property is a class of graphs closed under isomorphisms. Let ϕ be a
first-order sentence, the graph property defined by ϕ, denoted Pϕ, is the class
of graphs satisfying ϕ.

The distance between nodes can be defined by first-order formulae dist(x, y) ≤
k stating that the distance between x and y is no larger than k, and dist(x, y) > k
is an abbreviation of ¬dist(x, y) ≤ k. In addition, let x̄ = x1...xp be a list of
variables, then dist(x̄, y) ≤ k is used to denote ∨

1≤i≤p
dist(xi, y) ≤ k.

Let ϕ(ȳ) be a first-order formula with free variables ȳ, k ∈ N, and x̄ be a list of
variables not occurring in ϕ(ȳ), then the formula bounding the quantifiers of ϕ(ȳ)
to the k-neighborhood of x̄, denoted (ϕ(ȳ))(k) (x̄), can be defined easily in first-
order logic by using formulae dist(x̄, y) ≤ k. For instance, if ϕ(ȳ) := ∃zψ(ȳ, z),
then

(ϕ(ȳ))(k) (x̄) := ∃z
(
dist(x̄, z) ≤ k ∧ (ψ(ȳ, z))(k) (x̄)

)
.

We can now recall the notion of logical locality introduced by Gaifman
[Gai82,EF99].

Theorem 1. [Gai82] Let ϕ be a first-order formula with free variables u1, ..., up,
then ϕ can be written in Gaifman Normal Form, that is into a Boolean combi-
nation of (i) sentences of the form:

∃x1...∃xs

 ∧
1≤i<j≤s

d(xi, xj) > 2r ∧
∧
i

ψ(r)(xi)

 (1)

and (ii) formulae of the form ψ(t)(y), where y = y1...yq such that yi ∈ {u1, ..., up}
for all 1 ≤ i ≤ q, r ≤ 7k−1, s ≤ p + k, t ≤

(
7k − 1

)
/2 (k is the quantifier rank

of ϕ)2.

2 The bound on r has been improved to 4k − 1 in [KL04]



Moreover, if ϕ is a sentence, then the Boolean combination contains only sen-
tences of the form (1).

The locality of first-order logic is a powerful tool to demonstrate non-definability
results [Lib97]. It can be used in particular to prove that counting properties,
such as the parity of the number of vertices, or recursive properties, such as the
connectivity of a graph, are not first-order.

3 Distributed evaluation of FO

We consider a message passing model of distributed computation [AW04], based
on a communication network whose topology is given by a graph G = (V,E)
of diameter ∆, where E denotes the set of bidirectional communication links
between nodes. From now on, we restrict our attention to finite connected graphs.

We assume that the distributed system is asynchronous and has no failure.
The nodes have a unique identifier taken from 1, 2, · · · , n, where n is the number
of nodes. Each node has distinct local ports for distinct links incident to it. The
nodes have states, including final accepting or rejecting states.

For simplicity, we assume that there is only one query fired in the network by
a requesting node. We also assume that a breadth-first-search (BFS) tree rooted
on the requesting node has been pre-computed in the network3, such that each
node stores locally the identifier of its parent in the BFS-tree, and the states
of the ports with respect to the BFS-tree, which are either “parent” or “child”,
denoting the ports corresponding to the tree edges, or “horizon”, “upward”,
“downward”, denoting the ports corresponding to the non-tree edges to some
node with the same, smaller, or larger depth in the BFS-tree. The computation
terminates, when the requesting node reaches a final state.

Let C be a class of graphs. A distributed algorithm is said to be frugal over C
if there is a k ∈ N such that for any network G ∈ C of n nodes and any requesting
node in G, the distributed computation terminates, with only at most k messages
of size O(log n) sent over each link. If we restrict our attention to bounded degree
networks, frugal distributed algorithms imply that each node only receives a
bounded number of messages. Frugal computations resemble local computations
over bounded degree networks, since the nodes receive only a bounded number of
messages, although these messages can come from remote nodes through multi-
hop paths.

Let C be a class of graphs, and ϕ an FO sentence, we say that ϕ can be
distributively evaluated over C if there exists a distributed algorithm such that
for any network G ∈ C and any requesting node in G, the computation of the
distributed algorithm on G terminates, with the requesting node in the accepting
state if and only if G |= ϕ. Moreover, if there is a frugal distributed algorithm
to do this, then we say that ϕ can be frugally evaluated over C.

3 The pre-computation of the BFS tree can be done in O(∆) distributed time and
with O(∆) messages sent over each link [BDLP08]



For centralized computations, it has been shown that Gaifman’s locality of
FO entails linear time evaluation of FO properties over classes of bounded de-
gree graphs and classes of locally tree-decomposable graphs [See95,FG01]. In the
following, we show that it is possible to design frugal distributed evaluation algo-
rithms for FO properties over bounded degree and planar networks, by carefully
transforming the centralized linear time evaluation algorithms into distributed
ones with computations on each node well balanced.

3.1 Bounded degree networks

We first consider the evaluation of FO properties over bounded degree networks.
We assume that each node stores the degree bound k locally.

Theorem 2. FO properties can be frugally evaluated over bounded degree net-
works.

Theorem 2 can be shown by using Hanf’s technique [FSV95], in a way similar
to the proof of Seese’s seminal result [See95].

Let r ∈ N, G = (V,E), and v ∈ V , then the r-type of v in G is the isomor-
phism type of

(
〈Nr(v)〉G, v

)
. Let r,m ∈ N, G1 and G2 be two graphs, then G1

and G2 are said to be (r,m)-equivalent if and only if for every r-type τ , either
G1 and G2 have the same number of vertices with r-type τ or else both have at
least m vertices with r-type τ . G1 and G2 are said to be k-equivalent, denoted
G1 ≡k G2, if G1 and G2 satisfy the same FO sentences of quantifier rank at
most k. It has been shown that:

Theorem 3. [FSV95] Let k, d ∈ N. There exist r,m ∈ N such that r depends
only on k, m depends on both k and d, and for any graphs G1 and G2 with
maximal degree no more than d, if G1 and G2 are (r,m)-equivalent, then G1 ≡k

G2.

Let us now sketch the proof of Theorem 2, which relies on a distributed
algorithm consisting of three phases. Suppose the requesting node requests the
evaluation of some FO sentence with quantifier rank k. Let r,m be the natural
numbers depending on k, d specified in Theorem 3.

Phase I The requesting node broadcasts messages along the BFS-tree to ask
each node to collect the topology information in its r-neighborhood;

Phase II Each node collects the topology information in its r-neighborhood;
Phase III The r-types of the nodes in the network are aggregated through

the BFS-tree to the requesting node up to the threshold m for each r-type.
Finally the requesting node decides whether the network satisfies the FO
sentence or not by using the information about the r-types.

It is easy to see that only a bounded number of messages are sent over each
link in Phase I and II. Since the total number of distinct r-types with degree
bound d depends only upon r and d and each r-type is only counted up to a
threshold m, it turns out that over each link, only a bounded number of messages
are sent in Phase III as well. So the above distributed evaluation algorithm is
frugal over bounded degree networks.



3.2 Planar networks

We now consider the distributed evaluation of FO properties over planar net-
works.

A combinatorial embedding of a planar graph G = (V,E) is an assignment
of a cyclic ordering of the set of incident edges to each vertex v such that two
edges (u, v) and (v, w) are in the same face iff (v, w) is immediately before
(v, u) in the cyclic ordering of v. Combinatorial embeddings, which encode the
information about boundaries of the faces in usual embeddings of planar graphs
into the planes, are useful for computing on planar graphs. Given a combinatorial
embedding, the boundaries of all the faces can be discovered by traversing the
edges according to the above condition.

We assume in this subsection that a combinatorial embedding of the planar
network is distributively stored in the network, i.e. a cyclic ordering of the set
of the incident links is stored in each node of the network.

Theorem 4. FO properties can be frugally evaluated over planar networks.

For the proof of Theorem 4, we first recall the centralized linear time algo-
rithm to evaluate FO properties over planar graphs in [FG01]4.

Let G = (V,E) be a planar graph and ϕ be an FO sentence. From Theorem 1,
we know that ϕ can be written into Boolean combinations of sentences of the
form (1),

∃x1...∃xs

 ∧
1≤i<j≤s

d(xi, xj) > 2r ∧
∧
i

ψ(r)(xi)

 .

It is sufficient to show that sentences of the form (1) are linear-time com-
putable over G. The centralized algorithm to evaluate FO sentences of the form
(1) over planar graphs consists of the following four phases:

1. Select some v0 ∈ V , let H = {G[i, i+ 2r]|i ≥ 0}, where G[i, j] = {v ∈ V |i ≤
distG(v0, v) ≤ j};

2. For each H ∈ H, compute Kr(H), where Kr(H) := {v ∈ H|Nr(v) ⊆ H};
3. For each H ∈ H, compute PH := {v ∈ Kr(H)|〈H〉G |= ψ(r)(v)};
4. Let P := ∪HPH , determine whether there are s distinct nodes in P such

that their pairwise distance is greater than 2r.

In the computation of the 3rd and 4th phase above, an automata-theoretical
technique to evaluate Monadic-Second-Order (MSO) formulae in linear time over
classes of graphs with bounded tree-width [Cou90,FG06,FFG02] is used. In the
following, we recall this centralized evaluation algorithm.

MSO is obtained by adding set variables and set quantifiers into FO, such
as ∃Xϕ(X) (where X is a set variable). MSO has been widely studied in the

4 In fact, in [FG01], it was shown that FO is linear-time computable over classes of
locally tree-decomposable graphs.



context of graphs for its expressive power. For instance, 3-colorability, transitive
closure or connectivity can be defined in MSO [Cou08].

The centralized linear time evaluation of MSO formulae over classes of bounded
tree-width graphs goes as follows. First an ordered tree decomposition T of the
given graph is constructed. Then from the given MSO formula, a tree automaton
A is obtained. Afterwards, T is transformed into a labeled tree T ′, finally A is
run over T ′ (maybe several times for formulae containing free variables) to get
the evaluation result.

In the rest of this section, we design a frugal distributed algorithm to evaluate
FO sentences over planar networks by adapting the above centralized algorithm.
The main difficulty is to distribute the computation among the nodes such that
only a bounded number of messages are sent over each link during the compu-
tation.

Phase I The requesting node broadcasts the FO sentence of the form (1) to all
the nodes in the network through the BFS tree;

Phase II For each v ∈ V , compute C(v) := {i ≥ 0|v ∈ G[i, i+ 2r]};
Phase III For each v ∈ V , compute D(v) := {i ≥ 0|Nr(v) ⊆ G[i, i+ 2r]};
Phase IV For each i ≥ 0, compute Pi := {v ∈ V |i ∈ D(v), 〈G[i, i + 2r]〉G |=

ψ(r)(v)};
Phase V Let P :=

⋃
i Pi, determine whether there are s distinct nodes labeled

by P such that their pairwise distance is greater than 2r.

Phase I is trivial. Phase II is easy. In the following, we illustrate the compu-
tation of Phase III, IV, and V one by one.

We first introduce a lemma for the computation of Phase III.
For W ⊆ V , let Ki(W ) := {v ∈ W |Ni(v) ⊆ W}. Let Di(v) := {j ≥ 0|v ∈

Ki(G[j, j + 2r])}.

Lemma 1. For each v ∈ V and i > 0, Di(v) = C(v) ∩
⋂

w:(v,w)∈E

Di−1(w).

With Lemma 1, D(v) = Dr(v) can be computed in an inductive way to finish
Phase III: Each node v obtains the information Di−1(w) from all its neighbors
w, and performs the in-node computation to compute Di(v).

Now we consider Phase IV.
Because ψ(r)(x) is a local formula, ψ(r)(x) can be evaluated separately over

each connected component of G[i, i+2r] and the results are stored distributively.
Let Ci be a connected component of G[i, i + 2r], and wi

1, · · · , wi
l be all the

nodes contained in Ci with distance i from the requesting node. Now we consider
the evaluation of ψ(r)(x) over Ci.

Let C ′
i be the graph obtained from Ci by including all ancestors of wi

1, · · · , wi
l

in the BFS-tree, and C∗
i be the graph obtained from C ′

i by contracting all the
ancestors of wi

1, · · · , wi
l into one vertex, i.e. C∗

i has one more vertex, called the
virtual vertex, than Ci, and this vertex is connected to wi

1, · · · , wi
l . It is easy to

see that C∗
i is a planar graph with a BFS-tree rooted on v∗ and of depth at most

2r + 1. So C∗
i is a planar graph with bounded diameter.



An ordered tree decomposition for planar networks with bounded diameter
can be distributively constructed with only a bounded number of messages sent
over each link as follows [GW09]:

– Do a depth-first-search to decompose the network into blocks, i.e. bicon-
nected components;

– Construct an ordered tree decomposition for each nontrivial block: Traverse
every face of the block according to the cyclic ordering at each node, trian-
gulate all those faces, and connect the triangles into a tree decomposition
by utilizing the pre-computed BFS tree;

– Finally the tree decompositions for the blocks are connected together into a
complete tree decomposition for the whole network.

By using the distributed algorithm for the tree decomposition of planar net-
works with bounded diameter, we can construct distributively an ordered tree
decomposition for C∗

i , while having the virtual vertex in our mind, and get an
ordered tree decomposition for Ci.

With the ordered tree decomposition for Ci, we can evaluate ψ(r)(x) over Ci

by using the automata-theoretical technique, and store the result distributively
in the network (each node stores a Boolean value indicating whether it belongs
to the result or not).

A distributed post-order traversal over the BFS tree can be done to find out
the connected components of all G[i, i+ 2r]’s and construct the tree decomposi-
tions for these connected components one by one.

Finally we consider Phase V.
Label nodes in

⋃
i Pi with P .

Then consider the evaluation of FO sentence ϕ′ over the vocabulary {E,P},

∃x1...∃xs

 ∧
1≤i<j≤s

d(xi, xj) > 2r ∧
∧
i

P (xi)

 .

Starting from some node w1 with label P , mark the vertices in N2r(w1) as
Q, then select some node w2 outside Q, and mark those nodes in N2r(w2) by
Q again, continue like this, until wl such that either l = s or all the nodes with
label P have already been labeled by Q.

If l < s, then label the nodes in
⋃

1≤i≤l

N4r(vi) as I. Each connected component

of 〈I〉G has diameter no more than 4lr < 4sr. We can construct distributively
a tree decomposition for each connected component of 〈I〉G, and connect these
tree decompositions together to get a complete tree-decomposition of 〈I〉G, then
evaluate the sentence ϕ′ by using this complete tree decomposition.

4 Beyond FO properties

We have shown that FO properties can be frugally evaluated over respectively
bounded degree and planar networks. In this section, we extend these results to
FO unary queries and some counting extension of FO.



From Theorem 1, an FO formula ϕ(x) containing exactly one free variable
x can be written into a Boolean combinations of sentences of the form (1) and
local formulae ψ(t)(x). Then it is not hard to prove the following result.

Theorem 5. FO formulae ϕ(x) with exactly one free variable x can be frugally
evaluated over respectively bounded degree and planar networks, with the results
distributively stored on the nodes of the network.

Counting is one of the ability that is lacking to first-order logic, and has been
added in commercial relational query languages (e.g. SQL). Its expressive power
has been widely studied [GO92,GT95,Ott96] in the literature. Libkin [Lib97]
proved that first-order logic with counting still enjoys Gaifman locality property.
We prove that Theorem 2 and Theorem 4 carry over as well for first-order logic
with unary counting.

Let FO(#) be the extension of first-order logic with unary counting. FO(#)
is a two-sorted logic, the first sort ranges over the set of nodes V , while the
second sort ranges over the natural numbers N. The terms of the second sort
are defined by: t := #x.ϕ(x) | t1 + t2 | t1× t2, where ϕ is a formula over the first
sort with one free variable x. Second sort terms of the form #x.ϕ(x) are called
basic second sort terms.

The atoms of FO(#) extend standard FO atoms with the following two unary
counting atoms: t1 = t2 | t1 < t2, where t1, t2 are second sort terms. Let t be a
second sort term of FO(#), G = (V,E) be a graph, then the interpretation of t
in G, denoted tG, is defined as follows:

– (#x.ϕ(x))G is the cardinality of {v ∈ V |G |= ϕ(v)};
– (t1 + t2)

G is the sum of tG1 and tG2 ;
– (t1 × t2)

G is the product of tG1 and tG2 .

The interpretation of FO(#) formulae is defined in a standard way.

Theorem 6. FO(#) properties can be frugally evaluated over respectively bounded
degree and planar networks.

The proof of the theorem relies on a normal form of FO(#) formulae.

5 Conclusion

We have shown that logical formulae used to express properties of graphs, which
constitute the topology of communication networks, can be evaluated very effi-
ciently over these networks. Their distributed computation, although not local,
can be done frugally, that is with a bounded number of messages of logarith-
mic size exchanged over each link, over respectively bounded degree and planar
networks. The frugal computation, introduced in this paper, generalizes local
computation and offers a large spectrum of applications. Moreover the results



carry over to the extension of first-order logic with unary counting. The distrib-
uted time used in the frugal evaluation of FO properties over bounded degree
networks is O(∆), while that over planar networks is O(n).

We assumed that a BFS tree is pre-computed and stored distributively in
the network. Evidently the BFS-tree varies when the requesting node is chosen
differently. Since a BFS-tree is a tree 2-spanner [CC95] of the network, we can
actually assume that a tree 2-spanner, independent of the choice of the requesting
node, is distributively pre-computed and stored in the network, and we still
guarantee the frugality of the computation by adapting slightly the distributed
evaluation algorithms in Section 3.

Beyond its interest for logical properties, the frugality of distributed algo-
rithms, which ensures an extremely good scalability of their computation, raises
fundamental questions, such as deciding what can be frugally computed. We
leave as an open problem the question of deciding whether for instance a Hamil-
tonian path can be computed frugally.
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