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Abstract. Monadic decomposability is a notion of variable independence, which
asks whether a given formula in a first-order theory is expressible as a Boolean
combination of monadic predicates in the theory. Recently, Veanes et al. showed
the usefulness of monadic decomposability in the context of SMT (i.e. the input
formula is quantifier-free), and found various interesting applications including
string analysis. However, checking monadic decomposability is undecidable in
general. Decidability for certain theories is known (e.g. Presburger Arithmetic,
Tarski’s Real-Closed Field), but there are very few results regarding their compu-
tational complexity. In this paper, we study monadic decomposability of integer
linear arithmetic in the setting of SMT. We show that this decision problem is
coNP-complete and, when monadically decomposable, a formula admits a de-
composition of exponential size in the worst case. We provide a new application
of our results to string constraint solving with length constraints. We then extend
our results to variadic decomposability, where predicates could admit multiple
free variables (in contrast to monadic decomposability). Finally, we give an ap-
plication to quantifier elimination in integer linear arithmetic where the variables
in a block of quantifiers, if independent, could be eliminated with an exponential
(instead of the standard doubly exponential) blow-up.

1 Introduction

A formula φ(x̄) in some theory L is monadically decomposable if it is L-equivalent to
a Boolean combination of monadic predicates in L, i.e., to a monadic decomposition of
φ. Monadic decomposability measures how tightly the free variables in φ are coupled.
For example, x = y is not monadically decomposable in any (finitary) logic over an
infinite domain, but x + y ≥ 2 can be decomposed, in Presburger arithmetic over
natural numbers, since it can be written as x ≥ 2 ∨ (x ≥ 1 ∧ y ≥ 1) ∨ y ≥ 2.

Veanes et al. [25] initiated the study of monadic decomposability in the setting
of Satisfiability Modulo Theories, wherein formulas are required to be quantifier-free.
Monadic decomposability has many applications, including symbolic transducers [11]
and string analysis [25]. Although the problem was shown to be in general undecid-
able, a generic semi-algorithm for outputting monadic decompositions (if decompos-
able) was provided. A termination check could in fact be added if the input formula



belongs to a theory for which monadic decomposability is decidable, e.g., linear arith-
metic, Tarski’s Real-Closed Field, and the theory of uninterpreted functions. Hitherto,
not much is known about the computational complexity of monadic decomposability
problems for many first-order theories (in particular, quantifier-free theories), and about
practical algorithms. This was an open problem raised by Veanes et al. in [25].

Monadic decomposability is intimately connected to the variable partition problem,
first studied by Libkin [19] nearly 20 years ago. In particular, a monadic decomposition
gives rise to a partition of the free variables x̄ of a formula φ(x̄), wherein each part
consists of a single variable. More precisely, take a partition Π = {Y1, . . . , Ym} of x̄
into sets Yi of variables, with linearizations yi. The formula φ(x̄) is Π-decomposable
(in some theory L) if it is L-equivalent to a boolean combination of formulas of the
form ∆(yi). As suggested in [19], such variadic decompositions of φ(x̄) have potential
applications in optimization of database query processing and quantifier elimination.
The author gave a general condition for the decidability of variable independence in
first-order theories. This result is unfortunately not easily applicable in the SMT setting
for at least two reasons: (i) the full first-order theory might be undecidable (e.g. theory
of uninterpreted functions), and (ii) even for a first-order theory that admits decidable
monadic decompositions, the complexity of the algorithm obtained from [19] could be
too prohibitive for the quantifier-free fragment. One example that epitomizes (ii) is the
problem of determining whether a given relation R ⊆ (Σ∗)k over strings represented
by a regular transducer could be expressed as a boolean combination of monadic pred-
icates. The result of [19] would give a double exponential-time algorithm for monadic
decomposability, whereas it was recently shown in [5] to be solvable in polynomial-
time (resp. polynomial-space) when the transducer is given as a deterministic (resp.
nondeterministic) machine.

Contributions. First, we determine the complexity of deciding monadic decomposabil-
ity and outputting monadic decompositions (if they exist) for the theory of integer linear
arithmetic in the setting of SMT. Our result is summarized in Theorem 1.

Theorem 1 (Monadic Decomposability). Given a quantifer-free formula φ of Pres-
burger Arithmetic, it is coNP-complete to decide if φ is monadically decomposable.
This is efficiently reducible to unsatisfiability of quantifier-free Presburger formulas.
Moreover, if a decomposition exists, it can be constructed in exponential time.

We show a new application of monadic decomposability in integer linear arithmetic
for SMT over strings, which is currently a very active research area, e.g., see [1, 9, 23,
18, 24, 2, 6, 3, 16, 20, 12]. One problem that makes string constraint solving difficult is
the presence of additional length constraints, which forces the lengths of the strings
in the solutions to satisfy certain linear arithmetic constraints. Whereas satisfiability of
string equations with regular constraints is PSPACE-complete (e.g. see [17, 13]), it is a
long-standing open problem [14, 7] whether word equations with length constraints are
decidable. Length constraints are omnipresent in Kaluza [23], arguably the first serious
string constraint benchmarks obtained from real-world JavaScript applications. Using
our monadic decomposability solver, we show that 90% of the Kaluza benchmarks are
in fact in a decidable fragment of string constraints, since occurring length constraints
can be completely removed by means of decomposition.



Next we extend our result to variadic decomposability (cf. [19]).

Theorem 2 (Variadic Decomposability). It is coNP-complete to decide if φ is Π-
decomposable, given a quantifer-free formula φ(x̄) of Presburger Arithmetic and a
partition Π = {Y1, . . . , Yn} of x̄. This is efficiently reducible to unsatisfiability of
quantifier-free Presburger formulas. Moreover, if a decomposition exists, it can be con-
structed in exponential time.

We show how this could be applied to quantifier elimination. In particular, we show that
if a formula φ(ȳ) = ∃x̄. ψ(x̄, ȳ), where ψ is quantifier-free, is {X,Y }-decomposable—
where x̄ and ȳ are linearizations of the variables in X and Y—then we can compute in
exponential time a formula θ(ȳ) such that 〈N,+〉 |= θ ↔ φ, i.e., avoiding the standard
double-exponential blow-up (cf. [26]).

Organization. Preliminaries are in Section 2. Results on monadic (resp. variadic) de-
composition are in Section 3 (resp. Section 4) and applications appear in Section 5.

2 Preliminaries

2.1 Presburger Syntax

In this paper we study the problem of monadic decomposition for formulas in linear
integer arithmetic. All of our results are presented for Presburger arithmetic over natural
numbers, but they can be adapted easily to all integers.

Definition 1 (Fragments of Presburger Arithmetic). A formula φ of Presburger
arithmetic is a formula of the form Q1x1 · · · Qnxn. ψ where Qi ∈ {∀,∃} and ψ is
a quantifier-free Presburger formula:

ψ :=
∑
i

aixi ∼ b | ax ≡k by | x ≡k c | φ1 ∧ φ2 | ¬φ

where ai, a, b ∈ Z, k, c ∈ N with 0 ≤ c < k, variables xi, x, y range over N, and
∼ ∈ {≤,≥}. The operator ≡k denotes equality modulo k, i.e., s ≡k t whenever s − t
is a multiple of k. Formulas of the shape

∑
i aixi ∼ b, ax ≡k by, or x ≡k c are called

atoms.
Existential Presburger formulas are formulas of the form ∃x1, . . . , xn. ψ for some

quantifier-free Presburger formula ψ. We let QF(N) (resp. ∃∗(N)) denote the set of all
quantifier-free (resp., existential) Presburger formulas.

Let x = (x1, . . . , xn) be a tuple of integer variables. We write f(x) =
∑
i aixi for

a linear sum over x. Let y = (y1, . . . , ym). By slight abuse of notation, we may also
write φ(x, y) to denote a QF(N) formula over the variables x1, . . . , xn, y1, . . . , ym.



2.2 Monadic Decomposability

A quantifier-free formula φ is called monadic if every atom in φ contains at most one
variable, and it is called monadically decomposable if φ is equivalent to a monadic
formula φ′. In this case, φ′ is also called a decomposition of φ. For our main results we
use a slightly refined notion of a formula being decomposable:

Definition 2 (Monadically Decomposable on x). Fix a logicL (e.g. QF(N) or ∃∗(N)).
We say a formula φ(x1, . . . , xn) in L is monadically decomposable on xi whenever

φ(x1, . . . , xn) ≡
∨
j

∆j(xi) ∧ ψj(x1, . . . , xi−1, xi+1, . . . , xn)

for some formulas ∆j and ψj in L.

It can be observed that a formula is monadically decomposable if and only if it is
monadically decomposable on all variables occurring in the formula (cf. Lemma 1). We
expand on this for the variadic case below.

We recall the following characterization of monadic decomposability for formulas
φ(x, y) with two free variables (cf. [8, 25, 5, 19]), which holds regardless of the theory
under consideration. This can be extended easily to formulas with k variables, but is not
needed in this paper. Given a formula φ(x, y), define the formula ∼ as follows:

x ∼ x′ := ∀y, y′. (φ(x, y) ∧ φ(x′, y′)→ (φ(x′, y) ∧ φ(x, y′)))

Proposition 1. The relation ∼ is an equivalence relation. Furthermore, φ(x, y) is
monadically decomposable iff ∼ has a finite index (i.e. the number of ∼-equivalence
classes is finite).

Using this proposition, it is easy to show that over a structure with an infinite domain
(e.g. integer linear arithmetic) the formula x = y is not monadically decomposable.
As was noted already in [19], to check monadic decomposability of a formula φ in
Presburger Arithmetic in general, we may simply check if there is an upper bound B
on the smallest representation of every ∼-equivalence class, i.e.,

∃B.∀x.∃xs. (xs ≤ B ∧ xs ∼ x) .

However, to derive tight complexity bounds for checking monadic decomposability,
this approach is problematic, since the above characterisation has multiple quantifier
alternations. Using known results (e.g. [15]), one would only obtain an upper bound
in the weak exponential hierarchy [15], which only admits double-exponential time
algorithms.

2.3 Variadic Decomposability

The notion of a variadic decomposition generalises monadic decomposition by consid-
ering partitions of the occurring variables.



Definition 3 (Π-Decomposable). Fix a logic L (e.g. QF(N) or ∃∗(N)). Take a formula
φ(x1, . . . , xn) in L and a partition Π = {Y1, . . . , Ym} of x1, . . . , xn. We say φ is Π-
decomposable whenever

φ(x1, . . . , xn) ≡
∨
i

∆1
i (y1) ∧ · · · ∧∆m

i (ym)

for some formulas ∆j
i in L and linearizations yj of Yj .

Observe that a formula φ(x1, . . . , xn) is monadically decomposable on xi iff it is
Π-decomposable with Π = {{xi}, {x1, . . . , xi−1, xi+1, . . . , xn}}. Moreover, we say
a formula φ over the set of variables X is variadic decomposable on Y whenever it is
Π-decomposable with Π = {Y,X \ Y }.

General Π-decompositions can be computed by decomposing on binary parti-
tions {Y,X \ Y }, which is why we focus on this binary case in the rest of the paper.
We argue why this is the case below.

Let a formula φ and Π = {Y1, . . . , Ym} be given. We can first decompose sep-
arately on each {Yi, Y } where Y = Y1 ∪ · · · ∪ Yi−1 ∪ Yi+1 ∪ · · · ∪ Ym. Using the
algorithm in Section 4 we obtain for each i a decomposition of a specific form:∨

j

∆i
j(yi) ∧ φ

(
y1, . . . , yi−1, c

i
j , yi+1, . . . , ym

)
.

Note, these decompositions can be performed independently using the algorithm in
Section 4 and the second conjunct of each disjunct is φ with yi replaced by fixed con-
stants cj . Additionally, each ∆i

j is polynomial in size and each cij can be represented
with polynomially many bits. We note also that our algorithm ensures that each ∆i

j is
satisfiable.

Given such decompositions, we can recursively decompose φ onΠ . We first use the
above decomposition for i = 1 and obtain∨

j

∆1
j (y1) ∧ φ

(
c1j , y2, . . . , ym

)
.

Next, we use the decomposition for i = 2 to decompose the copies of φ in the
decomposition above. We obtain

∨
j1

∆1
j1(y1) ∧

∨
j2

∆2
j2(y2) ∧ φ

(
c1j1 , c

2
j2 , y3, . . . , ym

) .

This process repeats until all Yi have been considered. If φ is Π-decomposable, we
find a decomposition. If φ is not Π-decomposable, then it would not be possible to do
the independent decompositions for each i. Thus, for Π = {Y1, . . . , Ym}, we can use
variadic decompositions on Yi to compute Π-decompositions.

The above algorithm runs in exponential time due both to the exponential size of the
decompositions and the branching caused by the disjuncts. If we are only interested in
whether a formula is Π-decomposable, it is enough to ask whether it is decomposable



on Yi for each i. In particular, a formula φ(x̄) is monadically decomposable iff φ is
decomposable for each variable y ∈ x̄. Since the complexity class coNP is closed under
intersection, we obtain the following:

Lemma 1. A coNP upper bound for monadic decomposability on a given variable y
implies a coNP upper bound for monadic decomposability. Likewise, a coNP upper
bound for variadic decomposability on a given subset Y of variables implies a coNP
upper bound for Π-decomposability.

2.4 Example

Consider the formula φ(x, y, z) given by z = x+ 2y ∧ z < 5. This formula is monadi-
cally decomposable, which means, it is Π-decomposable for Π = {{x}, {y}, {z}}.

Our algorithm will first take a decomposition on x and might obtain
∨4
i=0∆

1
i (x) ∧

φ(i, y, z) where ∆1
i (x) = (x = i) and φ(i, y, z) = (z = i+ 2y) ∧ z < 5. Next, we use

a decomposition on y. For each φ(i, y, z) we substitute
∨2−d i

2 e
j=0 y = j ∧ φ(i, j, z), and

as the final decomposition we get

4∨
i=0

2−d i
2 e∨

j=0

x = i ∧ y = j ∧ z = i+ 2j .

3 Monadic Decomposability

3.1 Lower Bounds

We first show that unsatisfiability of Boolean formulas can be reduced to monadic de-
composability of formulas with only two variables, directly implying coNP-hardness:

Lemma 2 (coNP-Hardness). Deciding whether a formula φ(x, y) in QF(N) is
monadic decomposable is coNP-hard.

Proof. We reduce from unsatisfiability of propositional formulas to monadic decom-
posability of φ(x, y). Take a propositional formula S(x1, . . . , xn). Let p1, . . . , pn be
the first n primes. Let ψ(x) be the formula obtained from S by replacing each occur-
rence of xi by x ≡pi 0. Given an assignment ν : {x1, . . . , xn} → {0, 1}, we let

Hν = {m ∈ N | ∀1 ≤ i ≤ n. (m ≡pi 0↔ ν(xi) = 1)} .

Thanks to the Chinese Remainder Theorem, Hν is non-empty and periodic with pe-
riod p =

∏n
i=1 pi, which implies that Hν is infinite for every ν. We also have that

ν |= S iff, for each n ∈ Hν , ψ(n) is true.
Now define φ(x, y) = (ψ(x) ∧ x = y). If S is unsatisfiable, then ψ is unsatisfiable

and so it is decomposable. Conversely, if S can be satisfied by some assignment ν, then
φ(m,m) is true for all (infinitely many) m ∈ Hν . Since all solutions to φ(x, y) imply
that x = y, by Proposition 1 we have that φ is not monadically decomposable. ut



We next provide exponential lower bounds for decompositions in either disjunctive
normal form (DNF) or conjunctive normal form (CNF). DNF has been frequently used
to represent monadic decompositions by previous papers (e.g. [19, 5, 8]), and it is most
suitable for applications in quantifier elimination.

Lemma 3 (Size of Decomposition). There exists a family {φn(x, y)}n∈N of formulas
in QF(N) such that φn grows linearly in n, while the smallest decomposition on x in
DNF/CNF is exponential in n.

Proof. Consider the formulas φn(x, y) = (x + y ≤ 2n). Using a binary encoding
of constants, the size of the formulas is linear in n. We show that decompositions in
DNF/CNF must be exponential in size.

Disjunctive: Suppose ψn(x, y) =
∨
i ψ

x
i (x) ∧ ψyi (y) is a monadic decomposition

in DNF. Each disjunct ψxi (x) ∧ ψyi (y), if it is satisfiable at all, has an upper right cor-
ner (xi, yi) such that ψxi (xi) ∧ ψyi (yi) holds, but ψxi (x) ∧ ψyi (y) ⇒ x ≤ xi ∧ y ≤ yi.
This immediately implies that exponentially many disjuncts are needed to cover the
exponentially many points on the line x+ y = 2n.

Conjunctive: Suppose ψn(x, y) is a succinct monadic decomposition of φn in CNF.
Since ¬ψn(x, y) ≡ 2n + 1 ≤ x + y ≡ (2n − x + 1) + (2n − y) ≤ 2n, it follows that
¬ψn(2n − x + 1, 2n − y) ≡ (2n − (2n − x + 1) + 1) + (2n − (2n − y)) ≤ 2n ≡
x+ y ≤ 2n. Therefore, ¬ψn(2n − x+ 1, 2n − y) is a succinct decomposition of φn in
DNF, contradicting the lower bound for DNFs. ut

3.2 Upper Bound

We prove Theorem 1. Following Lemma 1, it suffices to show that testing decom-
posability on a variable x is in coNP and that a decomposition can be computed
in exponential time. Assume without loss of generality that we have φ(x, y) where
y = (y1, . . . , yn), and that we are decomposing on the first variable x.

We claim that φ is monadically decomposable on x iff

∀x1, x2 ≥ B.∀y. SameDiv(x1, x2, y)⇒ (φ(x1, y) ⇐⇒ φ(x2, y))

where B is a bound exponential in the size of φ and SameDiv is a formula asserting
that x1 and x2 satisfy the same divisibility constraints. This bound is computable in
polynomial time and is described in Section 3.4. To define SameDiv, let Divs be the
set of all divisibility constraints az1 ≡k bz2 or z1 ≡k c appearing (syntactically) in
φ. Assume without loss of generality that x always appears on the left-hand side of a
divisibility constraint (i.e., in the z1 position of az1 ≡k bz2). We then define

SameDiv(x1, x2, y) =


∧

ax≡kbz∈Divs

(ax1 ≡k bz) ⇐⇒ (ax2 ≡k bz)

∧∧
x≡kc∈Divs

(x1 ≡k c) ⇐⇒ (x2 ≡k c)

 .

We prove the claim in the following sections and simultaneously show how to con-
struct the decomposition. Once we have established the above, we can test non-
decomposability on x by checking

∃x1, x2 ≥ B. ∃y. SameDiv(x1, x2, y) ∧ φ(x1, y) ∧ ¬φ(x2, y)



which is decidable in NP. Thus we obtain a coNP decision procedure because the above
formula is polynomial in the size of φ.

Example We consider some examples. First consider the formula x = y that cannot be
decomposed on x. Since there are no divisibility constraints, SameDiv is simply true .
It is straightforward to see that, ∀B.∃x1, x2 ≥ B.∃y. true ∧ x1 = y ∧ x2 6= y, for
example by setting x1 = B, x2 = B + 1, and y = B.

Now consider the monadically decomposable formula

φ(x, y, z) = x+ 2y ≥ 5 ∧ z < 5 ∧ x ≡2 y .

In this case SameDiv(x1, x2, y, z) = (x1 ≡2 y ⇐⇒ x2 ≡2 y). We can verify

∀x1, x2 ≥ B.∀y, z. SameDiv(x1, x2, y, z)⇒ (φ(x1, y, z) ⇐⇒ φ(x2, y, z))

holds, as it will be the case that 5 < B and for all x > 5 the formula φ will hold
whenever x ≡2 y holds and z < 5. The precondition SameDiv ensures that the if and
only if holds. We will construct the decomposition in the next section.

Expanded Divisibility Constraints Observe that divisibility constraints are always
decomposable. In particular, az1 ≡k bz2 is equivalent to a finite disjunction of clauses
z1 ≡k′ c∧ z2 ≡k′ c where k′ and c are bounded by a multiple of a, b and k. The expan-
sion is exponential in size, since the values up to k′ have to be enumerated explicitly.

We define XDivs be the set of all constraints of the form x ≡k c′ where 0 ≤ c′ < k
and x ≡k c appears directly in φ or in the expansion of the divisibility constraints of φ.
This set will be used in the next sections.

3.3 Soundness

We show that if

∀x1, x2 ≥ B.∀y. SameDiv(x1, x2, y)⇒ (φ(x1, y) ⇐⇒ φ(x2, y))

then φ is decomposable on x. We do this by constructing the decomposition.
Although there are doubly exponentially many subsets D ⊆ XDivs, there are only

exponentially many maximal consistent subsets. We implicitly restrict D to such sub-
sets. This is because, for any k, there is no value of x such that x ≡k c and x ≡k c′ both
hold with c 6= c′ but c, c′ ∈ {0, . . . , k−1}. For any maximal consistent setD ⊆ XDivs,
let cD be the smallest integer greater than or equal to B satisfying all constraints in D.
Note, since D is maximal, a value that satisfies all constraints in D also does not satisfy
an constraints not in D. The number cD can be represented using polynomially many
bits.

We can now decompose φ into (x = 0 ∧ φ(0, y))
∨ · · · ∨

(x = B − 1 ∧ φ(B − 1, y))

∨ ∨
D⊆XDivs

(
x ≥ B ∧

∧
x≡kc∈D

x ≡k c ∧ φ(cD, y)

)
.



This formula is exponential in the size of φ ifD only ranges over the maximal consistent
subsets of XDivs. For values of x less than B, equivalence with the original formula
is immediate. For larger values, we use the fact that, from our original assumption, for
any values x1 and x2 that satisfy the same divisibility constraints, we have φ(x1, y) iff
φ(x2, y). Hence, we can substitute the values cD in these cases.

Example We return to φ(x, y, z) = x + 2y ≥ 5 ∧ z < 5 ∧ x ≡2 y and compute
the decomposition on x. Assuming B is odd, the decomposition will be as follows. In
our presentation we slightly simplify the formula. Strictly speaking x ≡2 y should be
expanded to (x ≡2 0 ∧ y ≡2 0) ∨ (x ≡2 1 ∧ y ≡2 1). We simplify these to y ≡2 0 and
y ≡2 1, respectively, when instantiated with concrete values of x.

(x = 0 ∧ (0 + 2y ≥ 5 ∧ z < 5 ∧ y ≡2 0))∨
(x = 1 ∧ (1 + 2y ≥ 5 ∧ z < 5 ∧ y ≡2 1))

∨ · · · ∨
(x = B − 1 ∧ (B − 1 + 2y ≥ 5 ∧ z < 5 ∧ y ≡2 0))∨

((x ≡2 0 ∧ x ≥ B) ∧ (B + 1 + 2y ≥ 5 ∧ z < 5 ∧ y ≡2 0))∨
((x ≡2 1 ∧ x ≥ B) ∧ (B + 2y ≥ 5 ∧ z < 5 ∧ y ≡2 1))

3.4 Completeness

We now show that every formula φ decomposable on x satisfies

∀x1, x2 ≥ B.∀y. SameDiv(x1, x2, y)⇒ (φ(x1, y) ⇐⇒ φ(x2, y)) .

We first show that some B must exist. Once the existence has been established, we can
argue that it must be at most exponential in φ.

Existence of the Bound If φ(x, y) is decomposable on x, then there is an equivalent
formula

∨
i∆i(x) ∧ ψi(y). It is known that every formula ∆(x) is satisfied by a finite

union of arithmetic progressions a + jb. Let B be larger than the largest value of a in
the arithmetic progressions satisfying the ∆i(x).

We show when SameDiv(x1, x2, y) then φ(x1, y) iff φ(x2, y) for all values
x1, x2 ≥ B and y. Assume towards a contradiction that we have values x1, x2 and
a tuple of values y such that SameDiv(x1, x2, y) and φ(x1, y), but not φ(x2, y).

Let k be the product of all k′ appearing in some divisibility constraint x ≡k′ c in
XDivs. We know that there is some disjunct of the monadic decomposition such that
∆(x1)∧ψ(y) holds. Moreover, let x1 belong to the arithmetic progression a+jb. Since
x1 ≥ B > a we know that ∆(x′1) ∧ ψ(y) also holds for any x′1 = x1 + j′bk. That
is, we can pump x1 by adding a multiple of bk, while staying in the same arithmetic
progression and satisfying the same divisibility constraints.

Similarly, let d be the product of all b appearing in the (finite number of) arithmetic
progressions that define the monadic decomposition of φ, limited to disjuncts such that
ψi(y) holds. Since φ(x2, y) does not hold, then φ(x′2, y) also does not hold for any
x′2 = x2 + jdk. This means that we can pump x2 staying outside of the arithmetic



progressions defining permissible values of x for the given values y, whilst additionally
satisfying the same divisibility constraints.

Now, for each value of x′1 satisfying φ(x′1, y) we can consider the disjunctive normal
form of φ. By expanding the divisibility constraints, a disjunct becomes a conjunction
of terms of the form, where f represents some linear function on y,

1. ax+ f(y) ≤ c or ax+ f(y) ≥ c, or
2. yi ≡k′ c or x ≡k′ c.

Since there are infinitely many x′1, we can choose one disjunct satisfied by infinitely
many x′1. This means that for constraints of the form ax+ f(y) ≤ c or ax+ f(y) ≥ c
with a non-zero a, then amust be negative or positive respectively (or zero). Otherwise,
only a finite number of values of x would be permitted.

We know that x′2 and y do not satisfy the disjunct. We argue that this is a contradic-
tion by considering each term in turn. Since there are infinitely many x′2 we can assume
without loss of generality that x′2 > x′1.

1. If ax+ f(y) ≤ c (resp. ax+ f(y) ≥ c) appears and is satisfied by x′1, then a must
be negative or zero (resp. positive or zero) and x′2 will also satisfy the atom.

2. Atoms of the form yi ≡k′ c do not distinguish values of x and thus are satisfied for
both x′1 and x′2. We cannot have x′1 ≡k′ c but not x′2 ≡k′ c since x′1 and x′2 satisfy
the same divisibility constraints.

Thus, it cannot be the case that x′1 satisfies the disjunct, while x′2 does not. This is our
required contradiction. Hence, for all x1, x2 ≥ B and y such that SameDiv(x1, x2, y)
it must be the case that φ(x1, y) iff φ(x2, y). We have thus established the existence of
a bound B.

Size of the Bound We now argue that this bound is exponential in the size of φ, and
can thus be encoded in a polynomial number of bits.

Consider the formula that is essentially the negation of our property.

χ(x1, x2, y) = SameDiv(x1, x2) ∧ φ(x1, y) ∧ ¬φ(x2, y) .

There is some computable bound B′ exponential in the size of χ (and thus φ) such
that, if there exists x1, x2 ≥ B′ and some y such that χ(x1, x2, y) holds, then there are
infinitely many x′1 and x′2 such that for some y′ we have that χ(x′1, x

′
2, y
′) holds. An

argument for the existence of this bound is given in the full version In short, we first
convert the formula above into a disjunction of conjunctions of linear equalities, using
a linear number of slack variables to encode inequalities and divisibility constraints.
Then, using a result of Chistikov and Haase [10], we set B′ = 2dnm+3 where d is the
number of bits needed to encode the largest constant in the converted formula (poly-
nomially related to the size of the formula above), n is the maximum number of linear
equalities in any disjunct, and m is the number of variables (including slack variables).

Now, assume that the smallest B is larger than B′. That is

∀x1, x2 ≥ B.∀y. SameDiv(x1, x2, y)⇒ (φ(x1, y) ⇐⇒ φ(x2, y))



holds, but it does not hold that

∀x1, x2 ≥ B′.∀y. SameDiv(x1, x2, y)⇒ (φ(x1, y) ⇐⇒ φ(x2, y))

This implies there exists some x1, x2 ≥ B′ and y such that χ(x1, x2, y) holds. Thus,
there are infinitely many such x′1 and x′2, contradicting the fact that all x′1, x

′
2 ≥ B

do not satisfy the property. Thus, we take B′ as the value of B. It is computable in
polynomial time, exponential in size, and representable in a polynomial number of bits.

4 Variadic Decomposability

We consider decomposition along several variables instead of just one. In this section,
we assume without loss of generality that φ is given in positive normal form and all
(in)equalities rearranged into the form

∑
i aixi ≥ b. We may use negation ¬φ as a

shorthand. We require this form because later we use the set of all linear equations in
the DNF of a formula. Since negation alters the linear equations, it is more convenient
to assume that negation has already been eliminated.

4.1 Π-Decomposability

As described in Section 2.3, we refine the notion of Π-decomposability to separate
only a single set Yi in Π = {Y1, . . . , Yn}. Without loss of generality, we assume we
are given a formula φ(x, y) and we separate the variables in x from y.

In particular, given a formula φ(x, y) we aim to decompose the formula into
φ(x, y) ≡

∨
j

∆j(x) ∧ ψj(y) for some QF(N) formulas ∆i and ψi.

4.2 Decomposition

We show that testing whether a given formula φ is variadic decomposable on x is in
coNP. This proves Theorem 2 as the coNP lower bound follows from the monadic case.

Lemma 4 (Decomposing on x). Given a QF(N) formula φ(x, y) there is a coNP algo-
rithm to decide if φ is variadic decomposable on x. Moreover, if a decomposition exists,
it can be constructed in exponential-time and is exponential in size.

Let F be the set of all f such that f(x) + g(y) ≥ b is a linear inequality appearing
in φ. Our approach will divide the points of x into regions where all points within a
region can be paired with the same values of y to satisfy the formula. These regions are
given by a bound B. If f(x) is within the bound, then two points x1 and x2 are in the
same region if f(x1) = f(x2). If two points are outside the bound, then by a pumping
argument we can show that we have φ(x1, y) iff φ(x2, y).

Let r̂ = (UB,EQ) be a partition of F into unbounded and bounded functions
(where EQ refers to equality being asserted over bounded functions as shown below).
Define for each r̂ = (UB,EQ)

Regionr̂(x1, x2) ,

 ∧
f∈EQ

f(x1) = f(x2)

 .



Note, this formula intentionally does not say anything about the unbounded functions.
This is important when we need to derive a bound—such a derivation cannot use a
pre-existing bound.

We also need to extend SameDiv to account for x1 and x2 being vectors. This is
a straightforward extension asserting that each variable in x1 satisfies the same divis-
ibility constraints as its counterpart in x2. Again, let Divs be the set of all divisibility
constraints az1 ≡k bz2 appearing (syntactically) in φ. Let xi, x1

i and x2
i denote the ith

variable of x, x1, and x2 respectively. Assume without loss of generality that variables
in x always either appear on the left-hand side of a divisibility constraint (i.e. in the z1

position) or on both sides. Define

SameDiv(x1, x2, y) =

∧
axi≡kbz∈Divs,

z 6=xj

(ax1
i ≡k bz

)
⇐⇒(

ax2
i ≡k bz

)
 ∧ ∧

axi≡kbxj
∈

Divs

(ax1
i ≡k bx1

j

)
⇐⇒(

ax2
i ≡k bx2

j

)
 ∧∧

xi≡kc
∈

Divs

(x1
i ≡k c

)
⇐⇒(

x2
i ≡k c

)
 .

Next, we introduce an operator for comparing a vector of variables with a bound.
For a ∈ Z let abs(a) denote the absolute value of a. Given a bound B and some
r̂ = (UB,EQ) let

(x ≥r̂ B) ,
∧
f∈UB

abs(f(x)) ≥ B ∧
∧
f∈EQ

abs(f(x)) < B .

We claim there is an exponential bound B such that φ is variadic decomposable iff for
all r̂ we have

∀x1, x2 ≥r̂ B . ∀y .

 Regionr̂(x1, x2)
∧

SameDiv(x1, x2, y)

⇒
φ(x1, y)
⇐⇒

φ(x2, y)

 (DC-r̂)

Note, unsatisfiability can be tested in NP. First guess r̂, then guess x1, x2, y.
We prove soundness of the claim in the next section. Completeness is an extension

of the argument for the monadic case and is given in the full version. In the monadic
case, we were able to take some values of x1, x2 > B such that both satisfied the
same divisibility constraints, but one value satisfied the formula while the other did not.
Since these values were large, we derived an infinite number of such value pairs with
increasing values. We then used these growing solutions to show that it was impossible
for the value of x1 to satisfy the formula, while the value of x2 does not, as they were
both beyond the distinguishing power of the linear inequalities. The argument for the
variadic case is similar, with the values of x1 and x2 being replaced by the values of
f(x1) and f(x2).

4.3 Soundness

Assume there is an exponential boundB such that for each r̂, Equation DC-r̂ holds. We
show how to produce a decomposition.



As in the monadic case (Section 3.3), let XDivs be the set of all constraints of the
form xi ≡k c in the expansion of the divisibility constraints of φ. Observe again that
there are only exponentially many maximal consistent subsets D ⊆ XDivs. For each
D fix a vector of values cD that satisfies all constraints in D and is encodable in a
polynomial number of bits. Furthermore, we define

DivD(z) ,
∧

xi≡kc∈D
zi ≡k c .

For each r̂ and D we can define an equivalence relation over values of x such that
x ≥r̂ B and DivD(x).(
x1 =D

r̂ x2

)
, (x1 ≥r̂ B ∧ x2 ≥r̂ B ∧ Regionr̂(x1, x2) ∧DivD(x1) ∧DivD(x2)) .

Observe each equivalence relation has an exponential number of equivalence classes
depending on the values of the bounded f . Let CDr̂ be a set of minimal representatives
from each equivalence class such that each representative is representable in a poly-
nomial number of bits. These can be computed by solving an existential Presburger
constraint for each set of values of the bounded f . In particular, for each r̂ = (UB,EQ)
and assignments abs(cf ) < B for each f ∈ EQ, we select a solution to the equation

x ≥r̂ B ∧
∧
f∈EQ

f(x) = cf ∧DivD(x)

if such a solution exists. If no such solution exists, the assignment can be ignored.
The decomposition is∨

r̂

∨
D

∨
c∈CD

r̂

(x ≥r̂ B ∧ Regionr̂(x, c) ∧DivD(x) ∧ φ(c, y)) .

The correctness of this decomposition follows from the Equations DC-r̂. For any values
cx and cy of x and y, first assume φ(cx, cy) holds. Since there is some disjunct in the
decomposition for which it holds that cx ≥r̂ B ∧ Regionr̂(cx, c) ∧ DivD(x) then, by
applying Equation DC-r̂ we get φ(c, cy) as required. Conversely, if some disjunct of the
decomposition holds, we can apply Equation DC-r̂ and obtain φ(cx, cy).

5 Applications of Decomposition

5.1 Monadic Decomposition in String Solving

The development of effective techniques for solving string constraints has received a lot
of attention over the last years, motivated by applications ranging from program veri-
fication [2, 16] and security analysis [23, 24] to the analysis of access policies of cloud
services [4]. Strings give rise to a rich theory that may combine, depending on the stud-
ied fragment, (i) word equations, i.e., equations over the free monoid generated by some
finite (but often large) alphabet, (ii) regular expression constraints, (iii) transduction,
i.e., constraints described by finite-state automata with multiple tracks, (iv) conversion



Table 1. Statistics about the Kaluza benchmarks [23]. It should be noted (and is well-known [18])
that the categories “sat” and “unsat” do not (always) imply the status of the benchmarks, they only
represent the way the benchmarks were organised by the Kaluza authors.

Folder #Benchmarks
Benchmarks Decomposition Decomposition

with str.len checks checks succeeded
sat/small 19804 2185 2183 2155
sat/big 1741 1318 1317 56
unsat/small 11365 3910 2919 2919
unsat/big 14374 13813 6786 3362
Total 47284 21226 13205 8492

functions, e.g. between integer variables and strings encoding numbers in binary or dec-
imal notation, (v) length constraints, i.e., arithmetic constraints on the length of strings.

The handling of length constraints has turned out to be particularly challenging in
this context, both practically and theoretically. Even for the combination of word equa-
tions (or even just quadratic word equations) with length constraints, decidability of the
(quantifier-free) theory is a long-standing open problem [21]. At the same time, length
constraints are quite frequently used in applications; they are needed, for instance, when
encoding operations like indexof or substring, or also when splitting a string into the
parts separated by some delimiter. In standard benchmark libraries for string constraints,
like the Kaluza set [23], benchmarks with length constraints occur in large numbers.

The notion of monadic decomposition is in this setting important, since any monadic
length constraint (in Presburger arithmetic) can be reduced to a Boolean combination
of regular expression constraints, and is therefore easier to handle than the general case.

Proposition 2. Satisfiability of a quantifier-free formula φ = φeq∧φregex∧φlen consist-
ing of word equations, regular expression constraints, and monadically decomposable
length constraints is decidable.

Proof. Suppose w1, . . . , wn are the string variables occurring in φ, and |w1|, . . . , |wn|
the terms representing their length. A decision procedure can first compute a monadic
representation φ′len of φlen over lengths |w1|, . . . , |wn|, and then turn each atom ∆(|wi|)
in φ′len into an equivalent regular membership constraint wi ∈ L∆. This is possible
because the Presburger formula ∆ can be represented as a semi-linear set, which can
directly be translated to a regular expression. Decidability follows from the decidability
of word equations combined with regular expression constraints [13]. ut

This motivates the use of monadic decomposition as a standard pre-processing step
in string solvers, transforming away those length constraints that can be turned into
monadic form. To evaluate the effectiveness of such an optimisation, we implemented
the decomposition check defined in Section 3.2, and used it within the string SMT
solver OSTRICH [9] to determine the number of Kaluza benchmarks with monadic
decomposable length constraints.5 The results are summarised in Table 1:

5 Branch “modec” of https://github.com/uuverifiers/ostrich, which also con-
tains detailed logs of the experiments.



– Of altogether 47 284 benchmarks, 21 226 contain the str.len function, and
therefore length constraints. This number was determined by a simple textual anal-
ysis of the benchmarks.

– Running our decomposition check in OSTRICH, in 13 205 of the 21 226 cases
length constraints were found that could be analysed. The remaining 8 021 prob-
lems were proven unsatisfiable without ever reaching the string theory solver in
OSTRICH, i.e., as a result of pre-processing the input formula, or because Boolean
reasoning discovered obvious inconsistencies in the problems.

– In 8 492 of the 13 205 cases, all analysed length constraints were found to be
monadically decomposable; 4 713 of the benchmarks contained length constraints
that could not be decomposed.

This means that 42 571 of the Kaluza benchmarks (slightly more than 90%) do in
principle not require support for length constraints in a string solver, either because
there are no length constraints, or because length constraints can be decomposed and
then turned into regular expression constraints.

Even with a largely unoptimised implementation, the time required to check
whether length constraints can be decomposed was negligible in case of the Kaluza
benchmarks, with the longest check requiring 2.1 seconds (on an AMD Opteron 2220
SE machine). The maximum number of variables in a length constraint was 140.

5.2 Variadic Decomposition in Quantifier Elimination

A second natural application of decomposition is quantifier elimination, i.e., the prob-
lem of deriving an equivalent quantifier-free formula φ′ for a given formula φ with
quantifiers. In Presburger arithmetic, for a formula φ = ∃x1, . . . , xn. ψ with n quan-
tifiers but no quantifier alternations, quantifier elimination in the worst case causes a
doubly-exponential increase in formula size [26].

Variadic decomposition can be used to eliminate quantifiers with a smaller worst-
case increase in size, provided that the matrix of a quantifier formula can be decom-
posed. Suppose φ = ∃x̄. ψ(x̄, ȳ) is given and ψ is variadic decomposable on x̄, i.e.,

ψ(x̄, ȳ) ≡
∨
j

∆j(x̄) ∧ ψj(ȳ)

This means that the existential quantifiers can be distributed over the disjunction, and
their elimination turns into a simpler satisfiability check:

∃x̄. ψ(x̄, ȳ) ≡
∨
j

∃x̄.∆j(x̄) ∧ ψj(ȳ) ≡
∨

j: ∆j(x̄) is sat

ψj(ȳ)

Universal quantifiers can be handled in a similar way by negating the matrix first.

Proposition 3. Take a formula φ(ȳ) = ∃x̄. ψ(x̄, ȳ) in Presburger arithmetic in which
ψ is quantifier-free and variadic decomposable on x̄. Then there is a quantifier-free
formula φ′(ȳ) that is equivalent to φ and at most singly-exponentially bigger than φ.

Checking whether a formula can be decomposed is therefore a simple optimisation
that can be added to any quantifier elimination procedure for Presburger arithmetic.



6 Conclusion and Future Work

We have shown that the monadic and variadic decomposability problem for QF(N) is
coNP-complete. Moreover, when a decomposition exists, it is at most exponential in
size and can be computed in exponential time. This formula size is tight for decompo-
sitions presented in either disjunctive or conjunctive normal form.

We gave two applications of our results. The first was in string constraint solving.
In program analysis, string constraints are often mixed with numerical constraints on
the lengths of the strings (for example, via the indexOf function). Length constraints
significantly complicate the analysis of strings. However, if the string constraints permit
a monadic decomposition, they may be reduced to regular constraints and thus elimi-
nated. We analysed the well-known Kaluza benchmarks and showed that less than 10%
of the benchmarks contained length constraints that could not be decomposed.

For the second application, we showed that the doubly exponential blow-up caused
by quantifier elimination can be limited to a singly exponential blow up whenever the
formula is decomposable on the quantified variables. Thus, variadic decomposition can
form an optimisation step in a quantifier elimination algorithm.

Interesting problems are opened up by our results. It would be interesting to study
lower bounds for general boolean formulas. If smaller decompositions are possible,
they would be useful for applications in string solving.

Second, we may consider variadic decomposition where a partition Π is not given
as part of the input. Instead, one must check whether a Π-decomposition exists for
some non-trivial Π . This variant of the problem has a simple ΣP

2 algorithm that first
guesses some Π and then verifies Π-decomposability. However, the only known lower
bound is coNP, which follows the same argument as monadic decomposability. A better
algorithm would not improve the worst-case complexity for our quantifier elimination
application, but it might provide a way to quickly identify a subset of a block of quan-
tifiers that can be eliminated quickly with Π-decompositions.
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