Construction of NFHA from TDTA: FCNS Encoding of unranked trees

June 13, 2013

1 The problem

Given a BUTA $\mathcal{A} = (Q, \Sigma \cup \{\#\}, \delta, F)$, construct a NFHA \mathcal{A}' s.t. $\mathcal{L}(\mathcal{A}') = \text{fcns}^{-1}(\mathcal{L}(\mathcal{A}))$.

2 The solution

The intuition of the construction of the NFHA \mathcal{A}' is to define horizontal languages of a node v as a simulation of the partial run of \mathcal{A} over the subpath $v01^*$.

The NFHA $\mathcal{A}' = (Q', \Sigma, \delta', F')$ is defined as follows.

- $Q' = Q \times Q$: The first component denotes the state of \mathcal{A} assigned to a node, and the second component denotes the state assigned to the right child of the node,
- $F' = \{(q_1, q_2) \mid q_1 \in F, (\#, q_2) \in \delta\},\$
- δ' is defined as follows: For every pair $(a, (p_1, p_2)) \in \Sigma \times Q', R_{(a, (p_1, p_2))} \subseteq (Q')^*$ is defined as follows:
 - If there exist $q \in Q$ s.t. $(\#, q), (q, p_2, a, p_1) \in \delta$, then $\varepsilon \in R_{a,(p_1, p_2)}$,
 - For every state sequence $(q_1, q'_1) \dots (q_n, q'_n)$ $(n \ge 1)$, $(q_1, q'_1) \dots (q_n, q'_n) \in R_{a,(p_1, p_2)}$ iff it satisfies the following conditions,
 - * $\forall i : 1 \le i < n, q'_i = q_{i+1},$
 - * $(q_1, p_2, a, p_1) \in \delta$,
 - * $(\#, q'_n) \in \delta$.