
On Effective Construction of the Greatest Solution
of Language Inequality XA ⊆ BX

Olivier Ly a Zhilin Wu b,∗
aLaBRI, Université Bordeaux/CNRS, 33400, Talence, France

bState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
P.O.Box 8718, 100190, Beijing, China

Abstract

In this paper, we consider effective constructions of the greatest solution of the language inequality XA ⊆ BX . It has been proved
by Kunc in 2005 that the greatest solution of XA ⊆ BX is regular provided that B is regular, no matter what A is. However this
proof is based on Kruskal’s tree theorem, and does not provide any effective way to construct the greatest solution.

We focus on this gap in this paper. We give an effective construction of the greatest solution for the following two cases:
(i) A,B are regular and there exists k ≥ 1 such that pref(B)Ak ∩ B≤kpref(B) = ∅, where pref(B) is the set of prefixes of

words in B,
(ii) A,B are regular and B is a code with finite decoding delay.
Our construction takes the point of view of games. As shown by Kunc in his regularity proof, the construction of the greatest

solution can be reduced to the construction of the winning region of a two-player game. Our contribution is to show that the winning
regions of the two-player game for the two cases can be constructed effectively.

The main ingredient of the construction for the first case is a shrinking lemma for the words on which one of the players has a
winning strategy. While the construction for the second case is based on the observation that the two-player game can be reduced
to a two-player reachability game played on the transition graph of a one-counter machine.

Key words: Language equations, Regular languages, Codes, Pushdown games, One counter machine.

1. Introduction

Language equations appear as a natural generalization of word equations, and exist in computer science from the
early beginning of formal language theory. One can think about Arden’s lemma for instance, or context-free languages
which are components of the least solutions of systems of polynomial equations. Actually, many natural classes of
formal languages have gotten characterizations in terms of equations (see [17,18]).

However, even simple equations may appear to be very difficult. This is the case of the equation XL = LX where
X is unknown: The long-standing Conway’s problem asks whether the greatest solution of this equation is regular
provided that L is regular ([6], see also [9,5,7,8]).

∗ Corresponding author.
Email addresses: ly@labri.fr (Olivier Ly), wuzl@ios.ac.cn (Zhilin Wu).

Preprint submitted to Theoretical Computer Science February 12, 2014

Many advances have been achieved in this domain in the last few years ([9,7,8]). Recently Conway’s problem has
gotten a solution: Surprisingly, it has been proved by Kunc in [13] that there exists a finite language L such that the
greatest solution of XL = LX is not recursively enumerable.

For the language inequalityXA ⊆ BX , it has been proved by Kunc in [12] that the greatest solution ofXA ⊆ BX
is regular provided that B is regular, whatever A is. But the situation is tight: If one imposes on X to be contained
in some given star-free language, then the greatest solution of XA ⊆ BX can become non-recursively enumerable
([11]).

Kunc’s regularity proof is obtained by showing that the greatest solution of XA ⊆ BX is upward-closed with
respect to a well-quasi-ordering, where the well-quasi-orderedness follows from Kruskal’s tree theorem ([10]). The
proof is not constructive, i.e., it does not give any effective construction of the greatest solution. We focus on the
effective construction of the greatest solution in this paper. We give such an effective construction for the following
two cases:

(i) A,B are regular and there exists k ≥ 1 such that pref(B)Ak ∩ B≤kpref(B) = ∅, where pref(B) is the set of
prefixes of words in B,

(ii) A,B are regular and B is a code with finite decoding delay (cf. Section 2).
Note that the first case above subsumes the situation that A and B are both finite and maxv∈B |v| < minu∈A |u|

considered in [14]: Let k = maxv∈B |v|+ 1. It holds that pref(B)Ak ∩B≤kpref(B) = ∅.
As in [12,14], our construction takes the point of view of games. We consider a game G(A,B) with two players:

Attacker and Defender. Configurations of the game are words. The game consists of a succession of rounds as follows:
First, Attacker chooses a word u ∈ A and appends it to x, where x is the current configuration of the game. If xu
has no prefix in B then Attacker wins and the game stops. Otherwise, Defender chooses a prefix of xu which belongs
to B, say v, and cuts it from xu, driving the game to a new configuration x′ (i.e. xu = vx′) for the next round.
Defender wins if the game consists of infinitely many rounds. Whether a given word belongs to the greatest solution
of XA ⊆ BX is equivalent to the existence of a winning strategy for Defender over that word, and the greatest
solution of XA ⊆ BX is exactly the winning region of Defender (see [12]).

The main ingredient of the effective construction for the first case is a shrinking lemma for words on which Attacker
has a winning strategy (see Section 3.1), from which it can be deduced that the winning region for Defender is a union
of equivalence classes of a right congruence of finite index over Σ∗.

Codes with finite decoding delay are particular codes which generalize prefix codes (cf. Section 2, also [1]).
The idea of using codes to simplify the discussion of language equation (or inequality) problems is not new. In

[19,7], Conway’s problem was solved positively for regular prefix codes and codes, i.e. it was shown that the greatest
solution for the language equationXL = LX is regular if L is a regular prefix code or code. On the other hand, it was
shown that the greatest solution for the language equation XA = BX is regular provided that A,B are finite biprefix
codes [4].

Under the assumption that A,B are regular and B is a code with finite decoding delay, we observe that the game
G(A,B) can be reduced to a two-player reachability game played on the transition graph of a one-counter machine.
For the situation that A,B are finite, the state space of the one-counter machine is finite and the transition relation
is finitely branching. Since such a one-counter machine is a special case of pushdown automata and it is well-known
that the winning region of a pushdown game is regular and can be constructed effectively [21,3,20], it follows that the
greatest solution of XA ⊆ BX can be constructed effectively from A,B for the situation that A,B are finite and B
is a code with finite decoding delay. Nevertheless, if A,B are infinite, then the state space of the one-counter machine
is infinite and the transition relation is infinitely branching, which goes beyond the scope of pushdown automata.

To tackle the difficulty, we first show that a congruence can be defined to make the state space finite. We thus obtain
a one-counter machine with finite state space, but still with infinitely-branching transition relation 1 . We go one-step
further to illustrate how the one-counter game can be simplified so that the transition relation can be trimmed into a
finitely-branching one, without modifying the winning regions. Then the effectiveness of the greatest solution follows
from the classical results on pushdown games as mentioned before.

This paper is organized as follows. Preliminaries are given in the next section. Then in Section 3, the effective
construction for the first case is presented. Section 4 considers the second case, where the game G(A,B) is reduced

1 Reachability games played on counter machines, or vector addition systems with states, including a different kind of infinitely-branching transi-
tion relation, have been considered in [2].

2

step-by-step to a one-counter reachability game of finite state space and finitely-branching transition relation. Finally
in Section 5, some conclusion is given and the future work is discussed.

Throughout this paper, we assume that the languages A,B in XA ⊆ BX are regular.

2. Preliminaries

A finite alphabet Σ is fixed in this paper.
Let v be a prefix (respectively a suffix) of w. We denote by v−1w (respectively wv−1) the unique word v′ such that

w = vv′ (respectively w = v′v).
Suppose L,M ⊆ Σ∗. Let LM denote the concatenation of L and M , L \M = {v ∈ Σ∗ | v ∈ L, v 6∈ M} and

L = Σ∗ \L. Let M−1L and LM−1 denote respectively the left and right quotient of L by M , i.e. M−1L = {v−1w |
v is a prefix of w, v ∈ M,w ∈ L}, LM−1 = {vw−1 | w is a suffix of v, v ∈ L,w ∈ M}. Let pref(L) denote the set
of prefixes of words in L. Let L0 = {ε} and Li = Li−1L for any i > 0. Moreover, for any i ≥ 0, let L≥i (respectively
L≤i) denote the union of the languages Lj for j : j ≥ i (respectively for j : 0 ≤ j ≤ i).

Suppose L ⊆ Σ∗ is a regular language. Let ∼L denote the Myhill-Nerode equivalence relation of L, that is, for
every x, y ∈ Σ∗, x ∼L y iff for every z ∈ Σ∗, xz ∈ L iff yz ∈ L. In addition, let [x]L denote the equivalence class of
∼L containing x, E(L) denote the set of equivalence classes of ∼L, and NL denote the cardinality of E(L). For every
x, y ∈ pref(L), we have x ∼L y; and for every x ∈ pref(L), z ∈ pref(L), we have x 6∼L z. So if pref(L) 6= ∅, then
pref(L) is an equivalence class of ∼L. Let ⊥ denote this equivalence class of ∼L.

Given A,B ⊆ Σ∗, let C(A,B) denote the greatest solution of XA ⊆ BX .
Let w ∈ Σ∗. A play in the game G(A,B) starting from w is

– either an infinite sequence (u1, v1)(u2, v2) . . . such that u1, u2, . . . ∈ A, v1, v2, . . . ∈ B, and for every i ≥ 1,
v1 . . . vi is a prefix of wu1 . . . ui,

– or a finite sequence (u1, v1) . . . (uk, vk)(uk+1, ?) (where k ≥ 0) such that u1, . . . , uk+1 ∈ A, v1, . . . , vk ∈ B, for
every i : 1 ≤ i ≤ k, v1 . . . vi is a prefix of wu1 . . . ui, and (v1 . . . vk)−1(wu1 . . . uk+1) 6∈ BΣ∗.

Attacker is the winner of every play of finitely many rounds and Defender is the winner of every play of infinitely
many rounds.

Let (u1, v1) . . . be a play of the game G(A,B) starting from w. Then a prefix of the play (u1, v1) . . . is either a
sequence (u1, v1) . . . (uk, vk) or a sequence (u1, v1) . . . (uk, vk)uk+1.

Letw ∈ Σ∗, f be a partial function from Σ∗×(A×B)∗ toA. Then a prefix of a play of the form (u1, v1) . . . (uk, vk)
in the game G(A,B) starting from w is said to be consistent with f , if u1 = f(w, ε) and for every i : 1 ≤ i < k,
ui+1 = f(w, (u1, v1) . . . (ui, vi)). A play is said to be consistent with f if every prefix of the play of the form
(u1, v1) . . . (uk, vk) is consistent with f . A strategy for Attacker in the game G(A,B) starting from w is a partial
function f from Σ∗ × (A × B)∗ to A such that for every prefix of a play of the form (u1, v1) . . . (uk, vk) consistent
with f , f(w, (u1, v1) . . . (uk, vk)) is defined. A winning strategy for Attacker in the game G(A,B) starting from w
is a strategy f such that every play consistent with f in the game G(A,B) starting from w is finite (thus winning
for Attacker). Strategies and winning strategies for Defender can be defined similarly, with the modification that f is
changed to a partial function from Σ∗×((A×B)∗A) toB, and prefixes of plays of the form (u1, v1) . . . (uk, vk)uk+1

are considered. The winning region for Attacker (respectively Defender), denoted by Winα(G(A,B)) (respectively
Winβ(G(A,B))), is the set of words w ∈ Σ∗ such that Attacker (respectively Defender) has a winning strategy in the
game G(A,B) starting from w.

It was proved in [12] that for every w ∈ Σ∗, Defender has a winning strategy in the game G(A,B) starting from w
iff w ∈ C(A,B). Combining this with Martin’s determinacy theorem ([15]), we get the following result.

Theorem 1 ([12]) The game G(A,B) is determined. More precisely, we have the following.
– Attacker has a winning strategy in the game G(A,B) starting from w iff w 6∈ C(A,B).
– Defender has a winning strategy in the game G(A,B) starting from w iff w ∈ C(A,B).

Observation 2 Let w ∈ Σ∗ and f be a winning strategy for Attacker in the game G(A,B) starting from w. Then
there is a number Mf ≥ 1 such that every (finite) play consistent with f has length at most Mf .

A strong strategy for Attacker (respectively Defender) is a strategy in the game G(A,B) modified such that Attacker
(respectively Defender) can choose the concatenations of several words of A (respectively B) in the same round.

3

Formally, a strong strategy for Attacker (respectively Defender) is a strategy in the game G(A+, B) (respectively
G(A,B+)) instead of G(A,B).

Proposition 3 In the game G(A,B), Attacker (respectively Defender) has a winning strong strategy iff he (respec-
tively she) has a winning strategy.

PROOF. We illustrate the proof for Attacker.
“If” direction:
The proof is trivial, since a winning strategy of Attacker is a winning strong strategy of Attacker.
“Only if” direction:
Suppose f is a winning strategy for Attacker in the game G(A+, B) starting from w. We construct a strategy f ′ for

Attacker in the game G(A,B) starting from w as follows.
– Suppose f(w, ε) = u1 . . . ui1 . Then f ′(w, ε) = u1.
– Suppose that in the first round of G(A,B), the choice of Defender is v1, and f(w, (u1 . . . ui1 , v1)) = ui1+1 . . . ui2 .

Define f ′(w, (u1, v1)) = u2.
– In general, suppose that in the game G(A,B) starting from w, j rounds have been played, the choices of De-

fender are v1, . . . , vj , and for every 0 ≤ k < j, f ′(w, (u1, v1) . . . (uk, vk)) = uk+1. Our goal is to define
f ′(w, (u1, v1) . . . (uj , vj)). For this purpose, consider the game G(A+, B) starting from w. Suppose that in the
j rounds of G(A+, B), the choices of Defender are v1, . . . , vj , and Attacker has played by following f . Then for
every k : 0 ≤ k ≤ j, f(w, (u1 . . . ui1 , v1) . . . (uik−1+1 . . . uik , vk)) = uik+1 . . . uik+1

(i0 = 0 by convention),
where u1, . . . , uij+1 ∈ A. Evidently, ij+1 ≥ j + 1. We define f ′(w, (u1, v1) . . . (uj , vj)) = uj+1.

Because f is a winning strategy in the game G(A+, B) starting from w, from Observation 2, we know that there is
Mf ≥ 1 such that every play in the game G(A+, B) consistent with f has length at most Mf . Therefore, every play
in the game G(A,B) consistent with f ′ has also length at most Mf . We conclude that f ′ is a winning strategy for
Attacker. 2

It is easy to show the following upper bound for C(A,B).

Proposition 4 C(A,B) ⊆ B∗pref(B).
As a result of Proposition 4, in the rest of this paper, we will concentrate on the set of configurations belonging to

B∗pref(B). We also would like to remark that the set B∗pref(B) is prefix-closed.

In the rest of this paper, for the language inequality XA ⊆ BX , it is assumed that

A,B are regular, A,B 6= ∅, A,B ⊆ Σ+.

Note that the assumption that A,B ⊆ Σ+ is justified by the following observation.

Observation 5 If ε ∈ B, then the greatest solution of XA ⊆ BX is Σ∗; on the other hand, if ε ∈ A and ε 6∈ B, then
the greatest solution is ∅.

PROOF. If ε ∈ B, then Defender has the following winning strategy in the game G(A,B) starting from any word:
Cut the current configuration by the empty word ε in each round, no matter what Attacker chooses. Therefore, the
winning region of Defender, that is, the greatest solution, is Σ∗.

On the other hand, if ε ∈ A and ε 6∈ B, then Attacker has the following winning strategy in the game G(A,B)
starting from any word: Append the empty word ε in each round, no matter what Defender chooses. Because ε 6∈ B,
Defender has to cut at least one letter from the current configuration in each round, and the length of the configuration
(word) decreases strictly in each round. Therefore, Defender loses the game starting from any word, and the winning
region of Defender, i.e. the greatest solution, is ∅. 2

Definition 6 (Finitely lengthening) Let A,B ⊆ Σ+ and k ≥ 1. Then the pair of languages (A,B) is said to be k
lengthening if pref(B)Ak ∩ B≤kpref(B) = ∅. Intuitively, if (A,B) is k lengthening, then for every w ∈ pref(B),
the words obtained by concatenating any k choices of Attacker to the right of w, will take Defender at least (k + 1)
rounds to cut. In addition, (A,B) is said to be finitely lengthening if (A,B) is k lengthening for some k ≥ 1.

4

Definition 7 (Codes and finite decoding delay) Let L ⊆ Σ+. L is a code if for every x1, . . . , xn, x
′
1, . . . , x

′
m ∈ L,

x1 . . . xn = x′1 . . . x
′
m implies that n = m and xi = x′i for all i. L is called a prefix code if for every u, v ∈ L, u is

not a strict prefix of v. L is called a code with finite decoding delay if there is a natural number d ≥ 0 such that
∀x, x′ ∈ L,∀y ∈ Ld,∀u ∈ Σ∗, xyu ∈ x′L∗ ⇒ x = x′.

If L has finite decoding delay, then the smallest integer d satisfying the above condition is called the decoding delay
of L.

Intuitively, suppose that L is a code with decoding delay d, then given a word x ∈ L∗ (which has a unique
decomposition into words in L), if the words v1, . . . , vd+1 ∈ L have been found during the decoding of x such that
x = v1 . . . vd+1x

′ for some x′ ∈ Σ∗, then the unique correct decoding of x into words in L must start with v1.
A code has decoding delay 0 iff it is a prefix code ([1]). On the other hand, it is not hard to verify thatL = {a, abc, c}

is a code with decoding delay 1.

Definition 8 (Strategy trees) For each x ∈ B∗pref(B), define the strategy tree 2 of x, denoted by S(x), as follows:
– The nodes of S(x) are the sequences [v1, . . . , vn] such that v1, . . . , vn ∈ B, and x = v1 . . . vny for some y ∈
B∗pref(B).

– For every node [v1, . . . , vn−1] and node [v1, . . . , vn] in S(x), [v1, . . . , vn−1] is the parent of [v1, . . . , vn]. In par-
ticular, the root of S(x) is ε, and the leaves of S(x) are the nodes [v1, . . . , vn] such that x = v1 . . . vny with
y ∈ pref(B) \B+pref(B).

– For every node [v1, . . . , vn] in S(x) such that x = v1 . . . vny, the label of [v1, . . . , vn] is [y]B .

Note that in the above definition of S(x), if x = v1 . . . vny such that v1, . . . , vn ∈ B and y 6∈ B∗pref(B), then
[v1, . . . , vn] is not included as a node of S(x) 3 .

Definition 9 (Subtrees, tree morphisms and isomorphisms) Let Γ be a finite alphabet.
– Suppose that T is a Γ-labeled finite tree and x is a node in T . Then let T |x denote the subtree of T rooted at x.
– Let T1, T2 be two Γ-labeled finite trees.
· A morphism π from T1 to T2 is a mapping from T1 to T2 which preserves the root, the parent-child relation and

the labels of nodes. Let . and ' denote respectively the quasi-order and the equivalence relation induced by
the morphisms over Γ-labeled finite trees. More specifically, T1 . T2 iff there is a morphism from T1 to T2, and
T1 ' T2 iff T1 . T2 and T2 . T1.
· An isomorphism from T1 to T2 is a bijective morphism from T1 to T2. If there is an isomorphism from T1 to T2,

then T1 and T2 are said to be isomorphic, denoted by T1
∼= T2.

Let ≈S denote the equivalence relation on B∗pref(B) defined as follows: x ≈S y iff S(x) ∼= S(y).

Proposition 10 Let x, y ∈ B∗pref(B) such that x ≈S y. Then for every z ∈ Σ∗, xz ∈ B∗pref(B) iff yz ∈
B∗pref(B). Moreover, if xz, yz ∈ B∗pref(B), then S(xz) ∼= S(yz).

PROOF. Suppose x, y ∈ B∗pref(B), x ≈S y, and z ∈ Σ∗.
At first, we show that xz ∈ B∗pref(B) iff yz ∈ B∗pref(B). By symmetry, it is sufficient to show that xz ∈

B∗pref(B) implies that yz ∈ B∗pref(B).
Suppose xz ∈ B∗pref(B). Then xz = v1 . . . viz

′ for some v1, . . . , vi ∈ B and z′ ∈ pref(B).
There are the following two situations, z is a suffix of z′ or z′ is a suffix of z.
If z is a suffix of z′, then x = v1 . . . vix

′ and z′ = x′z for some x′ ∈ Σ∗. Because S(x) ∼= S(y), then there are
v′1, . . . , v

′
i ∈ B and y′ such that y = v′1 . . . v

′
iy
′ and x′ ∼B y′. Therefore, x′z ∼B y′z. Because z′ = x′z ∈ pref(B),

it follows that y′z ∈ pref(B). Consequently, yz = v′1 . . . v
′
i(y
′z) ∈ B∗pref(B).

On the other hand, if z′ is a suffix of z, then x = v1 . . . vj−1x
′, z = x′′vj+1 . . . viz

′, and vj = x′x′′ for some
j : 1 ≤ j ≤ i and x′, x′′ ∈ Σ∗. From the fact that S(x) ∼= S(y), we know that there are v′1, . . . , v

′
j−1 ∈ B and

y′ ∈ Σ∗ such that y = v′1 . . . v
′
j−1y

′ and x′ ∼B y′. Then y′x′′ ∈ B, since x′x′′ = vj ∈ B. Therefore, yz =
v′1 . . . v

′
j−1(y′x′′)vj+1 . . . viz

′ ∈ B∗pref(B).

2 The concept of strategy trees was introduced in [12], where each node of the strategy tree is labeled by a set of equivalence classes of ∼B ,
instead of a single one.
3 In the definition of [12], [v1, . . . , vn] is also included as a node of S(x), which is another difference between our definition of strategy trees and
that in [12].

5

Suppose xz, yz ∈ B∗pref(B). Then S(xz) is obtained from S(x) as follows: For each node [v1, . . . , vi] in S(x)
such that x = v1 . . . vix

′ and x′ ∈ pref(B), do the following:
For every nonempty prefix z′ of z such that x′z′ ∈ B and z′′ = (z′)−1z ∈ B∗pref(B), add [v1, . . . , vi, x

′z′] labeled
by [z′′]B as a child of [v1, . . . , vi], and add the strategy tree S(z′′) as the subtree of the node [v1, . . . , vi, x

′z′], which
means that every node [v′1, . . . , v

′
j] in S(z′′) becomes a node [v1, . . . , vi, x

′z′, v′1, . . . , v
′
j] in S(xz), with the label

preserved.

Similarly, S(yz) can be obtained from S(y).
From the above procedure to obtain S(xz) and S(yz) from respectively S(x) and S(y) and the fact that S(x) and

S(y) are isomorphic, it is not hard to see that S(xz) and S(yz) are isomorphic as well. 2

The following result follows from Proposition 10.
Proposition 11 Let x, y ∈ B∗pref(B) such that S(x) ∼= S(y). Then Defender has a winning strategy in G(A,B)
starting from x iff Defender has a winning strategy in G(A,B) starting from y.

3. The case that (A,B) is finitely lengthening

At first, we would like to point out a fact that the condition that (A,B) is finitely lengthening subsumes the condition
that A,B are finite and maxb∈B |b| < mina∈A |a| considered in [14]: Let k = maxv∈B |v| + 1, then pref(B)Ak ∩
B≤kpref(B) = ∅. Moreover, this subsumption is strict, since A and B are not required to be finite for finitely
lengthening (A,B). For instance, let A = {bba}, B = a∗b and k = 1, then it is not hard to verify that pref(B)Ak ∩
B≤kpref(B) = pref(B)A ∩B≤1pref(B) = ∅.

Let us assume that k ≥ 1 and (A,B) is k lengthening in the rest of this section.

Proposition 12 Suppose that (A,B) is k lengthening. Then (B∗pref(B))Akn ∩B≤(k+1)n−1pref(B) = ∅ for every
n ≥ 1.

PROOF.
At first, we show that pref(B)Akn∩B≤(k+1)n−1pref(B) = ∅ implies (B∗pref(B))Akn∩B≤(k+1)n−1pref(B) =

∅.
Suppose (B∗pref(B))Akn ∩ B≤(k+1)n−1pref(B) 6= ∅. Then there are x ∈ B∗pref(B), u1, . . . , ukn ∈ A, t ≤

(k + 1)n− 1, v1, . . . , vt ∈ B, y ∈ pref(B) such that xu1 . . . ukn = v1 . . . vty.
– If x is a prefix of v1 . . . vt, then x = v1 . . . vj−1v

′
j , u1 . . . ukn = v′′j vj+1 . . . vty, and vj = v′jv

′′
j for some j : 1 ≤

j ≤ t and v′j , v
′′
j ∈ Σ∗. It follows that v′ju1 . . . ukn = vj . . . vty. Therefore, pref(B)Akn ∩B≤(k+1)n−1pref(B) 6=

∅.
– If v1 . . . vt is a prefix of x, then x = v1 . . . vty

′, u1 . . . ukn = y′′, and y = y′y′′ for some y′, y′′ ∈ Σ∗. It follows
that y′u1 . . . ukn = y′y′′ = y ∈ pref(B), so pref(B)Akn ∩B≤(k+1)n−1pref(B) 6= ∅ as well.

Next, we show that pref(B)Akn ∩B≤(k+1)n−1pref(B) = ∅ and complete the proof.
The proof goes by induction on n.
Induction base n = 1: Follows from the assumption.
Induction step n > 1: To the contrary, suppose that pref(B)Akn ∩ B≤(k+1)n−1pref(B) 6= ∅. Then there are x ∈

pref(B), u1, . . . , ukn ∈ A, i ≤ (k + 1)n− 1, v1, . . . , vi ∈ B, and y ∈ pref(B) such that xu1 . . . ukn = v1 . . . viy.
– If xu1 . . . uk is a prefix of v1 . . . vi, then xu1 . . . uk = v1 . . . vj−1v

′
j , uk+1 . . . ukn = v′′j vj+1 . . . viy, and vj =

v′jv
′′
j for some j : 1 ≤ j ≤ i, v′j , v

′′
j ∈ Σ∗. It follows that v′juk+1 . . . ukn = vj . . . viy. Because pref(B)Ak ∩

B≤kpref(B) = ∅ from the assumption, and pref(B)Ak(n−1) ∩ B≤(k+1)(n−1)−1pref(B) = ∅ according to the
induction hypothesis, it follows that j − 1 > k and i − j + 1 ≥ (k + 1)(n − 1). Therefore, i ≥ (k + 1)n, a
contradiction.

– If v1 . . . vi is a prefix of xu1 . . . uk, then xu1 . . . uk = v1 . . . viy
′, uk+1 . . . ukn = y′′ and y = y′y′′ for some

y′, y′′ ∈ Σ∗. Thus, y′uk+1 . . . ukn = y′y′′ = y ∈ pref(B). Therefore, pref(B)Ak(n−1)∩pref(B) 6= ∅. We deduce
that pref(B)Ak(n−1) ∩B≤(k+1)(n−1)−1pref(B) 6= ∅, a contradiction to the induction hypothesis. 2

6

Proposition 12 tells us that for every word w ∈ B∗pref(B), the words obtained by concatenating any kn choices
of Attacker to the right of w, will take Defender at least (k + 1)n rounds to cut.

3.1. A Shrinking Lemma on Attacker’s Strategies

We fix a number N1 = 2k(k+ 1) max
{
k + 2, 2NB2NB + 1

}
(recall that NB is the number of equivalence classes

of ∼B) in this section, whose purpose will become clear later.
Let x ∈ Σ∗. Define the visibility of Defender through x, denoted by Vis(x), as follows:

Vis(x) := {[y]B | y ∈ pref(B) and x ∈ B∗y} .

Intuitively, Vis(x) consists of the labels [y]B of all nodes [v1, . . . , vn] in S(x) such that x = v1 . . . vny and y ∈
pref(B).

Note that Vis(x) = ∅ for every x 6∈ B∗pref(B) and ⊥ 6∈ Vis(x) for every x ∈ B∗pref(B).

Proposition 13 Let x, y, w ∈ Σ∗ such that Vis(x) = Vis(y). Then Vis(xw) = Vis(yw).

PROOF. Suppose x, y, w ∈ Σ∗ and Vis(x) = Vis(y). In the following, we will show that Vis(xw) ⊆ Vis(yw). The
argument for Vis(yw) ⊆ Vis(xw) is symmetric.

Let z ∈ pref(B) such that xw ∈ B∗z. We show that [z]B ∈ Vis(yw).
Suppose xw = v1 . . . vrz for v1, . . . , vr ∈ B.
There are the following two cases.

– x = v1 . . . vjv
′
j , w = v′′j vj+1 . . . vrz, and vj = v′jv

′′
j for some j : 1 ≤ j ≤ r, v′j , v

′′
j ∈ Σ∗.

– x = v1 . . . vrz
′, w = z′′, and z = z′z′′ for z′, z′′ ∈ Σ∗.

For the first case above, because [v′j]B ∈ Vis(x) = Vis(y), there is y′ ∈ pref(B) such that y ∈ B∗y′ and
[v′j]B = [y′]B . From the fact that v′jv

′′
j = vj ∈ B, it is deduced that y′v′′j ∈ B. Therefore, yw = (yv′′j)vj+1 . . . vrz ∈

B∗(y′v′′j)vj+1 . . . vrz ⊆ B∗z, we conclude that [z]B ∈ Vis(yw).
For the second case above, because [z′]B ∈ Vis(x) = Vis(y), there is y′ ∈ pref(B) such that y ∈ B∗y′ and [z′]B =

[y′]B . Therefore, [z]B = [z′z′′]B = [y′z′′]B and yw = yz′′ ∈ B∗y′z′′. It follows that [z]B = [y′z′′]B ∈ Vis(yw). 2

Definition 14 (N1-visibility tree) Let x ∈ B∗pref(B), define the N1-visibility tree of x, denoted by SN1
(x), as

follows:
SN1

(x) is obtained from the strategy tree S(x) by the following two steps:
(i) remove all the nodes at depth (strictly) greater than N1 (the root has depth 0),

(ii) relabel every node [v1, . . . , vN1] (at depth N1) such that x = v1 . . . vN1y by Vis(y).

Note that SN1
(x) is a 2E(B)-labeled finite tree.

Proposition 15 Let x, y ∈ B∗pref(B) and π be a morphism from SN1
(x) to SN1

(y). For every node [v1, . . . , vn]
in SN1

(x), suppose x = v1 . . . vnx
′, π([v1, . . . , vn]) = [v′1, . . . , v

′
n], and y = v′1 . . . v

′
ny
′, then we have Vis(x′) ⊆

Vis(y′).

PROOF. Suppose [x′′]B ∈ Vis(x′), that is, x′ ∈ B∗x′′ with x′′ ∈ pref(B). We show that [x′′]B ∈ Vis(y′).
Since x′ ∈ B∗x′′, there are vn+1, . . . , vm ∈ B (where m ≥ n) such that x′ = vn+1 . . . vmx

′′. Then x =
v1 . . . vnx

′ = v1 . . . vnvn+1 . . . vmx
′′.

If m ≤ N1, then [v1, . . . , vm] is a node in SN1(x), so there are v′n+1, . . . , v
′
m ∈ B such that [v′1, . . . , v

′
m] is a node

in SN1(y) and π([v1, . . . , vm]) = [v′1, . . . , v
′
m]. Suppose y = v′1 . . . v

′
my
′′. Then y′ = v′n+1 . . . v

′
my
′′. Since [y′′]B , the

label of [v′1, . . . , v
′
m], is equal to [x′′]B , the label of [v1, . . . , vm], it follows that y′′ ∈ pref(B) and [x′′]B = [y′′]B ∈

Vis(y′).
On the other hand, if m > N1, then [v1, . . . , vN1

] is a node in SN1
(x), so there are v′n+1, . . . , v

′
N1
∈ B such that

π([v1, . . . , vN1]) = [v′1, . . . , v
′
N1

] and y′ = v′n+1 . . . v
′
N1
y′′ for some y′′ ∈ B∗pref(B). It follows that Vis(y′′), the

label of [v′1, . . . , v
′
N1

] in SN1(y), is equal to Vis(vN1+1 . . . vmx
′′), the label of [v1, . . . , vN1] in SN1(x). Therefore,

[x′′]B ∈ Vis(vN1+1 . . . vmx
′′) = Vis(y′′) ⊆ Vis(v′n+1 . . . v

′
N1
y′′) = Vis(y′). 2

7

Definition 16 (Reduced N1-visibility tree) Let x ∈ B∗pref(B). The reduced N1-visibility tree of x, denoted by
RSN1(x), is obtained from SN1(x) by the following algorithm.

Initially let i = N1, TN1(x) = SN1(x), repeat the following procedure until i = 0.
Ti−1(x) is obtained from Ti(x) by applying the following operations:
For each node [v1, . . . , vi−1] in Ti(x), select a subset of the children of [v1, . . . , vi−1], say [v1, . . . , vi−1, vi,1], . . . ,
[v1, . . . , vi−1, vi,r], such that
– for each child [v1, . . . , vi−1, v

′
i] of [v1, . . . , vi−1], there is j : 1 ≤ j ≤ r such that Ti(x)|[v1,...,vi−1,v′i]

.
Ti(x)|[v1,...,vi−1,vi,j],

– the subtrees Ti(x)|[v1,...,vi−1,vi,1], . . . , Ti(x)|[v1,...,vi−1,vi,r] form an antichain of ..
Keep the subtrees of [v1, . . . , vi−1] rooted at [v1, . . . , vi−1, vi,1], . . . , [v1, . . . , vi−1, vi,r] and remove all the other
subtrees of [v1, . . . , vi−1].
Set i := i− 1. If i = 0, set RSN1

(x) := T0(x).

By an induction on the depth of trees, it is not hard to show that there are only finitely many non-isomorphic reduced
N1-visibility trees.

Proposition 17 Let x, y ∈ B∗pref(B). Then RSN1
(x) ∼= RSN1

(y) iff RSN1
(x) ' RSN1

(y).

PROOF. The “Only if” direction is trivial.
“If” direction:
Suppose RSN1

(x) ' RSN1
(y), i.e. there are two morphisms π1 : RSN1

(x) → RSN1
(y) and π2 : RSN1

(y) →
RSN1

(x).
In the following, we will show that for every node [v1, . . . , vi] in RSN1

(x), π2(π1([v1, . . . , vi])) = [v1, . . . , vi].
Symmetrically, we can also show that for every node [v′1, . . . , v

′
i] in RSN1(y), π1(π2([v′1, . . . , v

′
i])) = [v′1, . . . , v

′
i].

From these two facts, it is deduced that π1 and π2 are both injective mappings. We conclude that π1 and π2 are in fact
isomorphisms, so RSN1

(x) ∼= RSN1
(y).

The proof of π2(π1([v1, . . . , vi])) = [v1, . . . , vi] is by an induction on i.
Suppose [v1, . . . , vi] is a node in RSN1

(x).
Induction base: i = 0. From the definition of morphisms, we know that π2(π1(ε)) = ε.
Induction step: i > 0.
Let [v1, . . . , vi−1, vi,0], [v1, . . . , vi−1, vi,1], . . . , [v1, . . . , vi−1, vi,r] be a list of all the children of [v1, . . . , vi−1] in

RSN1
(x) with vi,0 = vi. Then by the induction hypothesis, π2(π1([v1, . . . , vi−1])) = [v1, . . . , vi−1].

From the definition of morphisms, we know that π1 maps the children of [v1, . . . , vi−1] to those of π1([v1, . . . , vi−1])
and π2 maps the children of π1([v1, . . . , vi−1]) to those of [v1, . . . , vi−1]. Therefore, π2(π1([v1, . . . , vi])) is a child of
[v1, . . . , vi−1].

On the one hand, we have RSN1(x)|[v1,...,vi] . RSN1(y)|π1([v1,...,vi]) . RSN1(x)|π2(π1([v1,...,vi])). On the other
hand, according to the construction of RSN1

(x) from SN1
(x), it is impossible that there is a morphism between the

two subtrees of RSN1
(x) rooted at two distinct children of [v1, . . . , vi−1]. We conclude that π2(π1([v1, . . . , vi])) =

[v1, . . . , vi]. 2

Proposition 18 Let x, y ∈ B∗pref(B). Then RSN1
(x) ∼= RSN1

(y) iff SN1
(x) ' SN1

(y).

PROOF. From Proposition 17, we know that RSN1
(x) ∼= RSN1

(y) iff RSN1
(x) ' RSN1

(y).
Since RSN1(x) is a subgraph of SN1(x), it is evident that there is a morphism from RSN1(x) to SN1(x).
Moreover, according to the construction ofRSN1(x) from SN1(x), it is not hard to see that there is also a morphism

from SN1
(x) to RSN1

(x).
Therefore, SN1

(x) ' RSN1
(x). Similarly, SN1

(y) ' RSN1
(y).

Since ' is an equivalence relation, it follows that RSN1
(x) ∼= RSN1

(y) iff RSN1
(x) ' RSN1

(y) iff SN1
(x) '

SN1(y). 2

Definition 19 (B-relation) Let w,w′ ∈ Σ∗. Then w,w′ are said to be B-related, denoted by w ↔B w′, iff
– either w,w′ 6∈ B∗pref(B),

8

– or w,w′ ∈ B∗pref(B) and SN1
(w) ' SN1

(w′).

Lemma 20 The relation↔B is a right congruence of finite index.

PROOF. From Proposition 18 and the fact that there are only finitely many non-isomorphic reduced N1-visibility
trees, we know that↔B is of finite index.

It remains to show that↔B is a right congruence.
Suppose that w ↔B w′ and x ∈ Σ∗.
If w,w′ 6∈ B∗pref(B), then obviously wx,w′x 6∈ B∗pref(B). Therefore, wx↔B w′x.
In the following, we assume that w,w′ ∈ B∗pref(B). Then SN1

(w) ' SN1
(w′). Let π be a morphism from

SN1(w) to SN1(w′).
We first prove that wx ∈ B∗pref(B) iff w′x ∈ B∗pref(B). By symmetry, it is sufficient to show that wx ∈

B∗pref(B) implies w′x ∈ B∗pref(B). Suppose wx ∈ B∗pref(B). Then wx = v1 . . . vny for v1, . . . , vn ∈ B and
y ∈ pref(B).
– If w is a prefix of v1 . . . vn, then there are j : 1 ≤ j ≤ n, v′j , v

′′
j ∈ Σ∗ such that w = v1 . . . vj−1v

′
j , x =

v′′j vj+1 . . . vny, and vj = v′jv
′′
j . So v′j ∈ pref(B) and [v′j]B ∈ Vis(w). From Proposition 15, we know that

Vis(w) ⊆ Vis(w′). Therefore, [v′j]B ∈ Vis(w′), so there is z ∈ pref(B) such that w′ ∈ B∗z and [v′j]B = [z]B .
From this, we deduce that zv′′j ∈ B and w′x ∈ B∗(zv′′j)vj+1 . . . vny ⊆ B∗pref(B).

– If v1 . . . vn is a prefix of w, then there is x′ ∈ Σ∗ such that w = v1 . . . vnx
′ and x′x = y. So [x′]B ∈ Vis(w).

From Proposition 15, we know that Vis(w) ⊆ Vis(w′). Therefore, there is z ∈ pref(B) such that w′ ∈ B∗z and
[x′]B = [z]B . From the fact that x′x ∼B zx and x′x = y ∈ pref(B), we deduce thatw′x ∈ B∗(zx) ⊆ B∗pref(B).

If wx,w′x 6∈ B∗pref(B), then we are done.
Now suppose that wx,w′x ∈ B∗pref(B), we show that SN1

(wx) ' SN1
(w′x).

In the following, we show that there is a morphism from SN1(wx) to SN1(w′x). The argument for the existence of
a morphism from SN1(w′x) to SN1(wx) is symmetric.

Let [v1, . . . , vi] be a non-root node in SN1
(wx). Then there is x′ ∈ B∗pref(B) such that wx = v1 . . . vix

′. There
are two situations:
– x is a suffix of x′. Then w = v1 . . . viy and x′ = yx for some y ∈ Σ∗. Therefore, y ∈ B∗pref(B), and we deduce

that [v1, . . . , vi] is a node in SN1
(w).

– x′ is a suffix of x. Then v1 . . . vi = wx′′ and x′′x′ = x for some x′′ ∈ Σ∗.
We define a mapping π′ : SN1(wx)→ SN1(w′x) as follows.

– For each node [v1, . . . , vi] in SN1
(wx) such that [v1, . . . , vi] is also a node in SN1

(w), let π′([v1, . . . , vi]) =
π([v1, . . . , vi]). The definition is justified by the fact that π([v1, . . . , vi]) is a node in SN1

(w′x). The argument
goes as follows: Let y ∈ Σ∗ such that w = v1 . . . viy. Since [v1, . . . , vi] is a node in SN1

(wx), it follows that
yx ∈ B∗pref(B). Let y′ ∈ Σ∗ such that w′ = π([v1, . . . , vi])y

′. From Proposition 15, we know that Vis(y) ⊆
Vis(y′). From the facts yx ∈ B∗pref(B) and Vis(y) ⊆ Vis(y′), we deduce that y′x ∈ B∗pref(B). Because
w′x = π([v1, . . . , vi])y

′x, it follows that π([v1, . . . , vi]) is a node in SN1
(w′x).

– For each node [v1, . . . , vi] in SN1
(wx) such that v1 . . . vi = wx′′ and x′′x′ = x for some x′′, x′ ∈ Σ∗, there

are j : 1 ≤ j ≤ i, vj,1, vj,2 ∈ Σ∗ such that w = v1 . . . vj−1vj,1, vj = vj,1vj,2, and x′′ = vj,2vj+1 . . . vi.
Then [v1, . . . , vj−1] is a node in SN1(w). Let π([v1, . . . , vj−1]) = [v′1, . . . , v

′
j−1]. There is y ∈ B∗pref(B) such

that w′ = v′1 . . . v
′
j−1y and [y]B = [vj,1]B . Since vj,1vj,2 = vj ∈ B, we deduce that yvj,2 ∈ B, and w′x =

v′1 . . . v
′
j−1yx = v′1 . . . v

′
j−1yx

′′x′ = v′1 . . . v
′
j−1(yvj,2)vj+1 . . . vix

′. Because x′ ∈ B∗pref(B), we deduce that
[v′1, . . . , v

′
j−1, yvj,2, vj+1, . . . , vi] is a node in SN1

(w′x), let π′([v1, . . . , vi]) = [v′1, . . . , v
′
j−1, yvj,2, vj+1, . . . , vi].

Now we show that π′ is a morphism.

Preservation of the parent-child relationship:
For every pair of nodes [v1, . . . , vi−1] and [v1, . . . , vi] in SN1

(wx), we show that π′([v1, . . . , vi−1]) is the parent of
π′([v1, . . . , vi]).
– If [v1, . . . , vi−1] and [v1, . . . , vi] are both nodes in SN1

(w), then π′([v1, . . . , vi−1]) = π([v1, . . . , vi−1]) and
π′([v1, . . . , vi]) = π([v1, . . . , vi]) are both nodes in SN1(w′). So π([v1, . . . , vi−1]) is the parent of π([v1, . . . , vi])
in SN1(w′x).

9

– If [v1, . . . , vi−1] and [v1, . . . , vi] satisfy that wx′′ = v1 . . . vi−1 and x = x′′x′ for some x′′, x′ ∈ Σ∗, then from
the definition of π′, we know that π′([v1, . . . , vi−1]) = [v′1, . . . , v

′
j−1, yvj,2, vj+1, . . . , vi−1] and π′([v1, . . . , vi]) =

[v′1, . . . , v
′
j−1, yvj,2, vj+1, . . . , vi] with j, v′1, . . . , v

′
j−1, y, vj,2 satisfying the conditions specified in the definition of

π′. Evidently, [v′1, . . . , v
′
j−1, yvj,2, vj+1, . . . , vi−1] is the parent of [v′1, . . . , v

′
j−1, yvj,2, vj+1, . . . , vi] in SN1

(w′x).
– If [v1, . . . , vi−1] and [v1, . . . , vi] satisfy that v1 . . . vi−1 is a prefix of w and w is a prefix of v1 . . . vi, then from

the definition of π′, we know that π′([v1, . . . , vi−1]) = π([v1, . . . , vi−1]) = [v′1, . . . , v
′
i−1], and π′([v1, . . . , vi]) =

[v′1, . . . , v
′
i−1, yvi,2] with y, vi,2 satisfying the conditions specified in the definition of π′. Evidently, [v′1, . . . , v

′
i−1]

is the parent of [v′1, . . . , v
′
i−1, yvi,2] in SN1(w′x).

Preservation of the label:
Let [v1, . . . , vi] be a node in SN1(wx). Then there is x′ ∈ B∗pref(B) such that wx = v1 . . . vix

′.
– If w is a prefix of v1 . . . vi, then π′([v1, . . . , vi]) = [v′1, . . . , v

′
j−1, yvj,2, vj+1, . . . , vi], with j, v′1, . . . , v

′
j−1, y, vj,2

satisfying the conditions specified in the definition of π′. Because w′x = v′1 . . . v
′
j−1yvj,2vj+1 . . . vix

′, we deduce
that [v1, . . . , vi] and π′([v1, . . . , vi]) are either labeled by [x′]B (if i < N1) or Vis(x′) (if i = N1), so they have the
same label.

– If v1 . . . vi is a prefix of w, then from the definition of π′, we know that π′([v1, . . . , vi]) = π([v1, . . . , vi]) =
[v′1, . . . , v

′
i]. Let w = v1 . . . viy and w′ = v′1 . . . v

′
iy
′ for y, y′ ∈ Σ∗.

· If i < N1, then [y]B , the label of [v1, . . . , vi] in SN1
(w), is equal to [y′]B , the label of [v′1, . . . , v

′
i] = π([v1, . . . , vi])

in SN1
(w′). From this, we know that [yx]B , the label of [v1, . . . , vi] in SN1

(wx), and [y′x]B , the label of
π′([v1, . . . , vi]) = [v′1, . . . , v

′
i] in SN1

(w′x), are the same.
· If i = N1, then Vis(y), the label of [v1, . . . , vi] in SN1(w), is equal to Vis(y′), the label of [v′1, . . . , v

′
i] =

π([v1, . . . , vi]) in SN1(w′). From Proposition 13 and the fact Vis(y) = Vis(y′), we know that Vis(yx) =
Vis(y′x). So Vis(yx), the label of [v1, . . . , vi] in SN1

(wx), and Vis(y′x), the label of π′([v1, . . . , vi]) = [v′1, . . . , v
′
i]

in SN1
(w′x), are the same. 2

Lemma 21 (Shrinking Lemma) Given two B-related words w,w′ ∈ B∗pref(B), and a strategy f for Attacker in
the game G(A,B) starting from w, there exists a strong strategy f ′ for Attacker in the game G(A,B) starting from w′

with the following property: Whatever the plays of Defender, by following f ′, in a finite number of rounds,
– either Attacker wins,
– or he drives the game from w′ to a configuration w′1 such that there exists a non-void prefix of a play consistent

with f in the game G(A,B) starting from w, driving the game from w to a configuration w1 which is B-related to
w′1.

Before going into its proof, let us state the main consequence of this result.

Theorem 22 Let w,w′ ∈ B∗pref(B) be two B-related words. Then Attacker has a winning strategy in the game
G(A,B) starting from w iff he has one in G(A,B) starting from w′.

PROOF. By symmetry, it is sufficient to show that if Attacker has a winning strategy in the game G(A,B) starting
from w, then Attacker also has a winning strategy in the game G(A,B) starting from w′.

Let f be a winning strategy of Attacker in the game G(A,B) starting from w.
Lemma 21 provides us with a strong strategy f ′ in the game G(A,B) starting from w′, satisfying the following

condition: Let Attacker start playing according to this strategy. Then in a finite number of rounds,
– either Attacker wins (that is what we want and the game stops here),
– or else, he drives the game to a word w′1 such that there exists a non-void prefix of a play consistent with f in the

game G(A,B) starting from w, driving the game to a new word w1 which is B-related to w′1.
The strategy f induces a winning strategy in the game G(A,B) starting from this new word w1, we then start again
the process with the words w1 and w′1, and so on.

Therefore, we obtain a sequence w1, w2, . . . , wl, . . . of words which are configurations of a prefix of a play con-
sistent with f in the game G(A,B) starting from w. Let us note that for every i ≥ 1, the two configurations wi and
wi+1 are separated by at least one round. In particular, when the game arrives at the word wl, at least l rounds have
been played. Because f is a winning strategy for Attacker in the game G(A,B) starting from w, from Observation 2
we know that there exists a number Mf such that Attacker wins for sure in less than Mf rounds in the game G(A,B)

10

starting from w, no matter what Defender chooses. Therefore, l is bounded byMf . This implies that our process stops
after at most Mf applications of Lemma 21. Consequently, Attacker wins for sure no matter what Defender plays in
the game G(A+, B) starting from w′, in other words, Attacker has a winning strong strategy in the game G(A,B)
starting from w′. From Proposition 3, we conclude that Attacker has a winning strategy in the game G(A,B) starting
from w′. 2

For the proof of Lemma 21, we need the concept of waiting loops.

Definition 23 (Waiting Loop) Let w = w1w2w3w4. Then w3 is called a waiting loop of w1 with respect to w2 in w
if the following three conditions hold,
– w1 ∈ B≥N1pref(B)\B≤N1−1pref(B) (this condition ensures that the labels of all the non-leaf nodes in SN1

(w1)
are ⊥ and all the leaves in SN1(w1) are of depth N1 and labeled by Vis(y) for some y ∈ B∗pref(B)),

– w3 is nonempty,
– for every y ∈ pref(B) such that w1 ∈ B∗y, Vis(yw2) = Vis(yw2w3).

Proposition 24 Suppose w = w1w2w3w4, and for every y ∈ pref(B) such that w1 ∈ B∗y, it holds that Vis(yw2) =
Vis(yw2w3). Then for every z ∈ B∗pref(B) such that w1 = v1 . . . viz with v1, . . . , vi ∈ B, we have Vis(zw2) =
Vis(zw2w3).

PROOF. Let z ∈ B∗pref(B), w1 = v1 . . . viz, and v1, . . . , vi ∈ B.
In the following, we will show that Vis(zw2) ⊆ Vis(zw2w3). The proof of Vis(zw2w3) ⊆ Vis(zw2) is similar.
Suppose z′ ∈ pref(B) and zw2 ∈ B∗z′. We show that [z′]B ∈ Vis(zw2w3).
Let zw2 = v1 . . . vnz

′ for n ∈ N and v1, . . . , vn ∈ B.
If z′ is a suffix of w2, then z = v1 . . . vj−1v

′
j , w2 = v′′j vj+1 . . . vnz

′, and vj = v′jv
′′
j for some j : 1 ≤ j ≤ n and

v′j , v
′′
j ∈ Σ∗. It follows that v′j ∈ pref(B) and w1 ∈ B∗z = B∗v1 . . . vj−1v

′
j ⊆ B∗v′j . So Vis(v′jw2) = Vis(v′jw2w3)

from the assumption. Therefore, [z′]B ∈ Vis(v′jw2) = Vis(v′jw2w3). Because zw2w3 = v1 . . . vj−1(v′jw2w3), we
conclude that [z′]B ∈ Vis(zw2w3).

If w2 is a suffix of z′, then z = v1 . . . vnz
′′ and z′′w2 = z′ for some z′′ ∈ Σ∗. It follows that z′′ ∈ pref(B)

and w1 ∈ B∗z = B∗(v1 . . . vn)z′′ ⊆ B∗z′′. So Vis(z′′w2) = Vis(z′′w2w3) according to the assumption. Since
[z′]B ∈ Vis(z′′w2), we have [z′]B ∈ Vis(z′′w2w3). Because zw2w3 = v1 . . . vn(z′′w2w3), we conclude that [z′]B ∈
Vis(zw2w3). 2

Proposition 25 Let w = w1w2w3w4, and w3 be a waiting loop of w1 with respect to w2 in w. Then for every
y ∈ B≥N1pref(B) \B≤N1−1pref(B) such that w1 = v1 . . . viy for v1, . . . , vi ∈ B, it holds that w3 is a waiting loop
of y with respect to w2 in yw2w3w4.

PROOF. Suppose w = w1w2w3w4, w3 is a waiting loop of w1 with respect to w2 in w, y ∈ B≥N1pref(B) \
B≤N1−1pref(B), and w1 = v1 . . . viy for v1, . . . , vi ∈ B.

To prove that w3 is a waiting loop of y with respect to w2 in yw2w3w4, it is sufficient to show that for every
z ∈ pref(B) such that y ∈ B∗z, Vis(zw2) = Vis(zw2w3).

Let z ∈ pref(B) such that y ∈ B∗z. Because w1 = v1 . . . viy ∈ B∗y, we have w1 ∈ B∗z. From the assumption
that w3 is a waiting loop of w1 with respect to w2 in w, we deduce that Vis(zw2) = Vis(zw2w3). 2

Lemma 26 (Waiting Loops and B-Relation) Let w = w1w2w3w4, and w3 be a waiting loop of w1 with respect to
w2 in w. Then w is B-related to every word in w1w2w

∗
3w4.

PROOF.
Let w = w1w2w3w4, and w3 be a waiting loop of w1 with respect to w2 in w.
We first prove the following claim.

Claim. For each i ≥ 0 and every y ∈ B∗pref(B) such that w1 = v1 . . . vjy and [v1, . . . , vj] is a node in SN1
(w1),

it holds that Vis(yw2) = Vis(yw2w3) = Vis(yw2w
i
3).

11

We prove this claim by an induction on i.
Induction base i = 0: From Proposition 24, we know that Vis(yw2) = Vis(yw2w3).
Induction step i ≥ 1:
By the induction hypothesis, Vis(yw2) = Vis(yw2w

i−1
3). Then from Proposition 13, we know that Vis(yw2w3) =

Vis(yw2w
i−1
3 w3) = Vis(yw2w

i
3). Therefore, Vis(yw2) = Vis(yw2w

i
3).

The proof of the claim is complete.

In order to prove that w is B-related to every word in w1w2w
∗
3w4, it is sufficient to prove that w1w2 ↔B w1w2w

i
3

for every i ≥ 1, since↔B is a right congruence.
From the claim, it follows that for every i ≥ 1, Vis(w1w2) = Vis(w1w2w

i
3). So w1w2 ∈ B∗pref(B) iff w1w2w

i
3 ∈

B∗pref(B).
If w1w2, w1w2w

i
3 6∈ B∗pref(B), then we are done.

So in the following, we assume that w1w2, w1w2w
i
3 ∈ B∗pref(B).

It remains to prove that SN1
(w1w2) ' SN1

(w1w2w
i
3), in order to show that w1w2 ↔B w1w2w

i
3.

Because w3 is a waiting loop of w1 with respect to w2 in w, it follows that w1 ∈ B≥N1pref(B)\B≤N1−1pref(B).
Then every leaf in SN1

(w1), SN1
(w1w2), and SN1

(w1w2w
i
3) must be of depth exactlyN1. So SN1

(w1w2)(respectively
SN1(w1w2w

i
3)) is obtained from SN1(w1) through the following two-step procedure:

(i) Replace the label of each leaf [v1, . . . , vN1], say Vis(y) such that w1 = v1 . . . vN1y and y ∈ B∗pref(B), by
Vis(yw2) (respectively Vis(yw2w

i
3)).

(ii) Remove all the subtrees such that all the leaves [v1, . . . , vN1
] in the subtree are labeled by the empty set. In

other words, remove all the subtrees in which all the leaves [v1, . . . , vN1
] such that w1 = v1 . . . vN1

y satisfy
that Vis(yw2) = ∅ (respectively Vis(yw2w

i
3) = ∅).

From the claim and the above constructions of SN1(w1w2) and SN1(w1w2w
i
3) from SN1(w1), it follows that

SN1
(w1w2) ' SN1

(w1w2w
i
3) (in fact, they are isomorphic). 2

Lemma 27 (Existence of waiting loops, Version 1) For every w ∈ Σ∗ and every prefix w1 of w such that w1 ∈
B≥N1pref(B) \B≤N1−1pref(B) and the length of w−1

1 w is at least 2NB2NB + 1, there exists a decomposition of w
into w1w2w3w4 such that w3 is a waiting loop of w1 with respect to w2 in w.

PROOF. Let w1 ∈ B≥N1pref(B) \B≤N1−1pref(B) be a prefix of w, and w−1
1 w = σ1 . . . σr with r ≥ 2NB2NB + 1

and σ1, . . . , σr ∈ Σ.
In the following, we will show that there are i, j : 1 ≤ i < j ≤ r such that for each y ∈ pref(B) such that w1 ∈

B∗y, Vis(yσ1 . . . σi) = Vis(yσ1 . . . σj). If this holds, let w2 = σ1 . . . σi, w3 = σi+1 . . . σj , and w4 = σj+1 . . . σr,
then w3 is a waiting loop of w1 with respect to w2 in w.

Let [v1,1, . . . , v1,i1], . . . , [vl,1, . . . , vl,il] be a collection of the nodes in S(w1) and y1, . . . , yl ∈ B∗pref(B) such
that
– for every j : 1 ≤ j ≤ l, w1 = vj,1 . . . vj,ijyj ;
– for every y ∈ B∗pref(B) such that w1 ∈ B∗y, there is l′ : 1 ≤ l′ ≤ l such that Vis(y) = Vis(yl′).
It is not hard to see that such a collection of nodes with l ≤ 2NB exists.

Consider the following sequence of tuples

(Vis(y1σ1), . . . ,Vis(ylσ1)) , . . . , (Vis(y1σ1 . . . σr), . . . ,Vis(ylσ1 . . . σr)) .

For each i : 1 ≤ i ≤ r, it holds that (Vis(y1σ1 . . . σi), . . . ,Vis(ylσ1 . . . σi)) ∈
(
2E(B)

)l
. Because l ≤ 2NB and

r ≥ 2NB2NB + 1, it follows that there are i, j : 1 ≤ i < j ≤ r such that

(Vis(y1σ1 . . . σi), . . . ,Vis(ylσ1 . . . σi)) = (Vis(y1σ1 . . . σj), . . . ,Vis(ylσ1 . . . σj)).

In the following, we will complete the proof by showing that for every y ∈ pref(B) such that w1 ∈ B∗y, it holds
that Vis(yσ1 . . . σi) = Vis(yσ1 . . . σj).

Suppose y ∈ pref(B) and w1 ∈ B∗y. Then there is l′ : 1 ≤ l′ ≤ l such that Vis(y) = Vis(yl′). From Proposition
13, it follows that Vis(yσ1 . . . σi) = Vis(yl′σ1 . . . σi) = Vis(yl′σ1 . . . σj) = Vis(yσ1 . . . σj). 2

Similarly, we can show the following result.

12

Lemma 28 (Existence of waiting loops, Version 2) Let w = c1c2 . . . cn be a decomposition of w into n factors.
Let n1 be such that c1 . . . cn1 ∈ B≥N1pref(B) \ B≤N1−1pref(B) and n − n1 ≥ 2NB2NB + 1. Then there is a
decomposition of w into w1w2w3w4 such that w3 is a waiting loop of w1 with respect to w2 in w, and for every
i = 1, 2, 3, 4, wi = cni−1+1 . . . cni , where 0 = n0 < n1 ≤ n2 < n3 ≤ n4 = n.

Now we are ready to prove Lemma 21.

PROOF. [of Lemma 21]
Suppose w ↔B w′. Then there is a morphism π : SN1(w′)→ SN1(w).
We describe round by round a strong strategy f ′ in the game G(A,B) starting from w′.
During this description, we shall use f as an oracle to which we provide choices of Defender and which tells us

what f suggests for Attacker’s choices.
There are three stages in the strategy f ′.

At first we remark that if during the three stages, the game arrives at a configuration belonging to B∗pref(B), then
Attacker wins and the description of f ′ ends there.

1. Informally, the first stage starts at the beginning and goes on until the word obtained by concatenating all choices
of Attacker is sufficiently long, actually in B≥N1pref(B) \B≤N1−1pref(B).

Let N ′1 = kmax
{
k + 2, 2NB2NB + 1

}
.

Precisely, the first stage consists of kn1 rounds of the game (u1, v1), (u2, v2), . . . , (ukn1 , vkn1), where n1 is such
that (k + 1)(n1 − 1) < N1 +N ′1 + 1 ≤ (k + 1)n1. It follows that

n1 = p(N1 +N ′1 + 1)/(k + 1)q = p((k(2k + 3))/(k + 1)) max
{
k + 2, 2NB2NB + 1

}
+ 1/(k + 1)q .

Note that

N1 − kn1 ≥ 2k(k + 1) max
{
k + 2, 2NB2NB + 1

}
− k2 2k + 3

k + 1
max

{
k + 2, 2NB2NB + 1

}
− k

k + 1
− k

=
k(k + 2)

k + 1
max

{
k + 2, 2NB2NB + 1

}
− k

k + 1
− k

= kmax
{
k + 2, 2NB2NB + 1

}
+

k

k + 1

(
max

{
k + 2, 2NB2NB + 1

}
− (k + 2)

)
≥ kmax

{
k + 2, 2NB2NB + 1

}
= N ′1.

We also would like to remark that k + 2 in max{k + 2, 2NB2NB + 1} is used to get the last inequality above. The
inequality N1 − kn1 ≥ N ′1 guarantees that in the game G(A,B) starting from w′, Attacker is able to follow f by
utilizing the morphism π in this stage and Stage 2 below.

During the kn1 rounds of the game starting from w′, Attacker utilizes the morphism π and follows f as follows.

Suppose f(w, ε) = u1 ∈ A. Then in the first round of the game G(A,B) starting from w′, Attacker just follows f
and chooses u1. Let v′1 be the choice of Defender in the first round of the game G(A,B) starting from w′.

If w′ is completely erased by v′1, then there are x, y ∈ Σ∗ such that v′1 = w′x and u1 = xy. So the game
G(A,B) starting from w′ reaches the configuration (v′1)−1(w′u1) = y. Because π(ε) = ε and π preserves the
labels of nodes, we deduce that [w′]B = [w]B . Therefore, wx ∈ B as well, since w′x = v′1 ∈ B. Suppose in
the first round of the game G(A,B) starting from w, Attacker has followed f and chosen u1, and Defender has
chosen wx. Then the game G(A,B) starting from w reaches the configuration (wx)−1(wu1) = y. Therefore, the
game G(A,B) starting from w′ and the game G(A,B) starting from w reach the same configuration after the first
round. Consequently, in this situation, after the first round of the game G(A,B) starting from w′, Attacker is able
to completely follow f , so the description of f ′ ends here.

If w′ is not completely erased by v′1, then the description of f ′ continues.

13

For the general situation, suppose that i rounds (where 1 ≤ i < kn1) have been played in the game G(A,B)
starting fromw′, and in these i rounds, Attacker has followed the strategy f by utilizing the morphism π. In addition,
w′ has not been erased completely after the i rounds.

Let (u1, v
′
1) . . . (ui, v

′
i) be the choices of Attacker and Defender in these first i rounds of the game G(A,B)

starting from w′, then [v′1, . . . , v
′
i] is a node in SN1

(w′). So there are v1, . . . , vi ∈ B such that π([v′1, . . . , v
′
i]) =

[v1, . . . , vi]. In the first i rounds of the game G(A,B) starting from w′, Attacker has followed the strategy f in
the game G(A,B) starting from w by utilizing the morphism π. Therefore, (u1, v1) . . . (ui, vi) is a prefix of a play
consistent with f in the game G(A,B) starting from w. Let ui+1 = f(w, (u1, v1) . . . (ui, vi)). Then in the strategy
f ′, we let Attacker choose ui+1 in the (i+ 1)-st round of the game G(A,B) starting from w′. Let v′i+1 ∈ B be the
choice of Defender in the (i+ 1)-st round of the game G(A,B) starting from w′.

If w′ is completely erased by v′1 . . . v
′
iv
′
i+1, since w′ is not completely erased by v′1 . . . v

′
i, it follows that there are

x′, y′ ∈ Σ∗ such that w′ = v′1 . . . v
′
ix
′, v′1 . . . v

′
iv
′
i+1 = w′y′, and v′i+1 = x′y′. Then after the (i + 1) rounds, the

game G(A,B) starting from w′ reaches the configuration (y′)−1(u1 . . . ui+1). From the above discussion, we know
that π([v′1, . . . , v

′
i]) = [v1, . . . , vi]. Let x = (v1 . . . vi)

−1w. Then [x′]B = [x]B . So xy′ ∈ B, since x′y′ = v′i+1 ∈
B. Therefore, (u1, v1) . . . (ui, vi)(ui+1, xy

′) is a prefix of a play consistent with f in the game G(A,B) starting
from w. Then after i+ 1 rounds, the game G(A,B) starting from w reaches the configuration (y′)−1(u1 . . . ui+1).
Therefore, the game G(A,B) starting from w′ and the game G(A,B) starting from w reach the same configuration
after the i+ 1 rounds. Consequently, in this situation, after the i+ 1 rounds of the game G(A,B) starting from w′,
Attacker is able to completely follow f , so the description of f ′ ends here.

If w′ is not completely erased by v′1 . . . v
′
iv
′
i+1, then let i := i+ 1, the description of f ′ continues.

If after the kn1 rounds of the game G(A,B) starting from w′, Attacker has not won yet and w′ has not been
completely erased, then we go to Stage 2. Note that the choices of Defender in the kn1 rounds of the game G(A,B)
starting from w′ are v′1, . . . , v

′
kn1

, according to the above description.
Becausew′u1 . . . ukn1 ∈ B∗pref(B) (otherwise, Attacker wins), it follows from Proposition 12 thatw′u1 . . . ukn1 ∈

B≥(k+1)n1pref(B)\B≤(k+1)n1−1pref(B). From the fact that (k+1)n1 ≥ N1+N ′1+1, we deduce thatw′u1 . . . ukn1 ∈
B≥N1+N ′1+1pref(B) \B≤N1+N ′1pref(B).

2. In Stage 2, Attacker still follows f by utilizing the morphism π until a waiting loop is found.
The description of f ′ in Stage 2 is the same as that in Stage 1. The description of f ′ in Stage 2 ends in the (kn2)-th

round such that
(i) either w′ has been completely erased after the kn2 rounds,

(ii) or else, there exists n′2 : n1 ≤ n′2 < n2 such that ukn′2+1 . . . ukn2
is a waiting loop ofw′u1 . . . ukn1

with respect
to ukn1+1 . . . ukn′2 in (w′u1 . . . ukn1

)(ukn1+1 . . . ukn′2)(ukn′2+1 . . . ukn2
)(ε).

BecauseN1−kn1 ≥ N ′1 ≥ k(2NB2NB +1), from Lemma 28 (where we take each ci as a concatenation of k words
uj), we know that by following the strategy f ′, in the game G(A,B) starting from w′, a number n2 exists such that
kn1 ≤ kn2 ≤ kn1 +N ′1 ≤ N1 and n2 satisfies the property stated above. Moreover, we choose n2 to be minimal for
the property.

If w′ has not been completely erased after the kn2 rounds, then let v′kn1+1, . . . , v
′
kn2

be the choices of Defender in
Stage 2, and π([v′1, . . . , v

′
kn2

]) = [v1, . . . , vkn2
], we go to Stage 3.

3. During Stage 3, Attacker no longer follows f . He plays the sequence ukn′2+1, . . . , ukn2 in loop until Defender erases
w′ completely, i.e., until the (n3 + 1)-st round for some n3 : n3 ≥ kn2 such that w′ is a prefix of v′1 . . . v

′
n3
v′n3+1

and v′1 . . . v
′
n3

is a (proper) prefix of w′, where v′kn2+1, . . . , v
′
n3+1 are all the choices of Defender after the (kn2)-th

round. It follows that there are z′1, z
′
2 ∈ Σ∗ such that w′ = v′1 . . . v

′
n3
z′1 and v′n3+1 = z′1z

′
2. Evidently, z′1 ∈ pref(B).

We would like to remark that because B ⊆ Σ+, such a number n3 + 1 exists.
Let us note that in the (n3 + 1)-st round, Attacker may be inside the loop, i.e., he may be playing some ur with

kn′2 + 1 ≤ r < kn2. Then after the (n3 + 1)-st round in the game G(A,B) starting from w′, Attacker finishes the
current loop. This drives the game G(A,B) starting from w′ to some round kn4. Let v′n3+2, . . . , v

′
kn4

be the choices
of Defender from the (n3 + 2)-nd round to the (kn4)-th round. Because kn2 − kn′2 ≤ kn2 − kn1 ≤ N ′1, it follows
that kn4 − n3 ≤ N ′1. Note that while Attacker is finishing his loop, starting from the (n3 + 1)-st round, Defender
erases the choices of Attacker, actually, the choices u1, . . . , ukn1 of Attacker in Stage 1. Because z′1 ∈ pref(B) and

14

we know from Proposition 12 that pref(B)Akn1 ∩B≤(k+1)n1−1pref(B) = ∅, it follows that

z′1u1 . . . ukn1
∈ B≥(k+1)n1pref(B) \B≤(k+1)n1−1pref(B) ⊆ B≥N1+N ′1+1pref(B) \B≤N1+N ′1pref(B).

Let u = (v′1 . . . v
′
kn4

)−1(w′u1 . . . ukn1) = (z′2v
′
n3+2 . . . v

′
kn4

)−1(u1 . . . ukn1) =
(
v′n3+1 . . . v

′
kn4

)−1
(z′1u1 . . . ukn1).

From the fact that kn4 − n3 ≤ N ′1, it is deduced that u ∈ B≥N1+1pref(B) \B≤N1pref(B).
Now, the sequence of choices which have been made by Attacker and Defender in the game G(A,B) starting from

w′ is

(u1, v
′
1) . . . (ukn′2 , v

′
kn′2

)(ukn′2+1, v
′
kn′2+1) . . . (ukn2

, v′kn2
)(ukn′2+1, v

′
kn2+1) . . . (ur, v

′
n3+1) . . . (ukn2

, v′kn4
).

Recall that in the end of Stage 2, kn2 rounds have been played and π([v′1, . . . , v
′
kn2

]) = [v1, . . . , vkn2
]. Because

z′1 = (v′1 . . . v
′
n3

)−1w′ ∈ pref(B) and n3 ≥ kn2, it follows that [z′1]B ∈ Vis((v′1 . . . v
′
kn2

)−1w′). From Proposition
15, we know that Vis((v′1 . . . v

′
kn2

)−1w′) ⊆ Vis((v1 . . . vkn2
)−1w). So [z′1]B ∈ Vis((v1 . . . vkn2

)−1w). Consequently,
there are v̄1, . . . , v̄m ∈ B such that [(v1 . . . vkn2 v̄1 . . . v̄m)−1w]B = [z′1]B . Now, let us consider the following prefix
of a play consistent with f in the game G(A,B) starting from w,

(u1, v1) . . . (ukn2
, vkn2

)(ū1, v̄1) . . . (ūm, v̄m),

where for each j : 1 ≤ j ≤ m, ūj = f(w, (u1, v1) . . . (ukn2
, vkn2

)(ū1, v̄1) . . . (ūj−1, v̄j−1)). Suppose z1 =
(v1 . . . vkn2 v̄1 . . . v̄m)−1w. Then z1z

′
2 ∈ B, since z′1z

′
2 = v′n3+1 ∈ B and [z1]B = [z′1]B . After kn2 + m rounds

in the game G(A,B) starting from w, the configuration z1u1 . . . ukn2 ū1 . . . ūm is reached. Let vn3+1 = z1z
′
2. Then

(vn3+1v
′
n3+2 . . . v

′
kn4

)−1(z1u1 . . . ukn2 ū1 . . . ūm) =

(z′2v
′
n3+2 . . . v

′
kn4

)−1(u1 . . . ukn2 ū1 . . . ūm) =(
(z′2v

′
n3+2 . . . v

′
kn4

)−1(u1 . . . ukn1
)
)

(ukn1+1 . . . ukn2
ū1 . . . ūm) =

uukn1+1 . . . ukn2
ū1 . . . ūm.

Thus, we can obtain the following prefix of a play consistent with f in the game G(A,B) starting from w,

(u1, v1) . . . (ukn2 , vkn2)(ū1, v̄1) . . . (ūm, v̄m)(ū′n3+1, vn3+1)(ū′n3+2, v
′
n3+2) . . . (ū′kn4

, v′kn4
),

where ū′n3+1 = f(w, (u1, v1) . . . (ukn2
, vkn2

)(ū1, v̄1) . . . (ūm, v̄m)) and for each j : n3 + 2 ≤ j ≤ kn4,

ū′j = f
(
w, (u1, v1) . . . (ukn2 , vkn2)(ū1, v̄1) . . . (ūm, v̄m)(ū′n3+1, vn3+1)(ū′n3+2, v

′
n3+2) . . . (ū′j−1, v

′
j−1)

)
.

Therefore, after kn2 +m+ kn4−n3 rounds above in the game G(A,B) starting from w, the following configuration
is reached,

(v1 . . . vkn2
v̄1 . . . v̄mvn3+1v

′
n3+2 . . . v

′
kn4

)−1(wu1 . . . ukn2
ū1 . . . ūmū

′
n3+1ū

′
n3+2 . . . ū

′
kn4

) =

(vn3+1v
′
n3+2 . . . v

′
kn4

)−1(z1u1 . . . ukn2 ū1 . . . ūmū
′
n3+1ū

′
n3+2 . . . ū

′
kn4

) =

uukn1+1 . . . ukn2 ū1 . . . ūmū
′
n3+1 . . . ū

′
kn4

.

Let ū′kn4+1 =

f(w, (u1, v1) . . . (ukn2
, vkn2

)(ū1, v̄1) . . . (ūm, v̄m)(ū′n3+1, vn3+1)(ū′n3+2, v
′
n3+2) . . . (ū′kn4

, v′kn4
)),

in other words, ū′kn4+1 is the choice of Attacker by following the strategy f in the (kn2 +m+kn4−n3 +1)-st round
of the game G(A,B) starting from w.

Let us go back to the description of f ′ in the game G(A,B) starting from w′. We are in the (kn4 + 1)-st round, and
Attacker is going to play. Let u′kn4+1 denote ū1 . . . ūmū

′
n3+1 . . . ū

′
kn4+1. Then in f ′, we define the choice of Attacker

in the (kn4 + 1)-st round to be u′kn4+1 (recall that our goal is to define a strong strategy f ′). Let v′kn4+1 be the choice
of Defender in the (kn4 + 1)-st round.

The description of f ′ ends here.

15

From the above description of f ′, we deduce that in the game G(A,B) starting from w′ by following f ′, the
following configuration is reached,

w′1 =

w̄1︷ ︸︸ ︷
((v′kn4+1)−1u)

w̄2︷ ︸︸ ︷
ukn1+1 . . . ukn′2

w̄∗3︷ ︸︸ ︷
(ukn′2+1 . . . ukn2

) . . . (ukn′2+1 . . . ukn2
)

w̄4︷ ︸︸ ︷
ū1 . . . ūmū

′
n3+1 . . . ū

′
kn4+1 .

On the other hand, in the game G(A,B) starting fromw, let the choice of Defender in the (kn2+m+kn4−n3+1)-st
round be v′kn4+1 ∈ B, then by following the strategy f , the following configuration is reached,

w1 = ((v′kn4+1)−1u)︸ ︷︷ ︸
w̄1

ukn1+1 . . . ukn′2︸ ︷︷ ︸
w̄2

ukn′2+1 . . . ukn2︸ ︷︷ ︸
w̄3

ū1 . . . ūmū
′
n3+1 . . . ū

′
kn4+1︸ ︷︷ ︸

w̄4

.

Recall that u = (v′1 . . . v
′
kn4

)−1(w′u1 . . . ukn1
) = (z′2v

′
n3+2 . . . v

′
kn4

)−1(u1 . . . ukn1
) is a suffix of u1 . . . ukn1

,
moreover, u ∈ B≥N1+1pref(B) \ B≤N1pref(B). Then it follows that w̄1 = (v′kn4+1)−1u ∈ B≥N1pref(B) \
B≤N1−1pref(B). In addition, w̄1 satisfies that w′u1 . . . ukn1

= (v′1 . . . v
′
kn4

v′kn4+1)w̄1. On the other hand, w̄3 =
ukn′2+1 . . . ukn2

is a waiting loop of w′u1 . . . ukn1
with respect to w̄2 = ukn1+1 . . . ukn′2 in (w′u1 . . . ukn1

)w̄2w̄3w̄4

(see Stage 2 above). Then from Proposition 25, we know that w̄3 is a waiting loop of w̄1 with respect to w̄2 in
w̄1w̄2w̄3w̄4 = w1. According to Lemma 26, we conclude that w1 is B-related to w′1.

The proof of the lemma is complete. 2

3.2. Effective construction of the greatest solution

From Theorem 22, every pair of B-related words either both belong to C(A,B) or both do not.
From the definition,B∗pref(B) is an equivalence class of↔B . The other equivalence classes of↔B are determined

completely by the reduced N1-visibility trees.
For each reduced N1-visibility tree T , it is not hard to show the following facts:

– The equivalence class of↔B corresponding to T is regular and a finite automaton for this equivalence class can be
effectively constructed from T .

– It is decidable whether the equivalence class of↔B corresponding to T is a subset of C(A,B) or does not intersect
with C(A,B): Pick an arbitrary word w from the equivalence class and decide whether w ∈ C(A,B), whose
decidability follows from Kunc’s regularity proof ([12]).

Because there are only finitely many non-isomorphic reduced N1-visibility trees, it follows that C(A,B) can be
effectively constructed from A,B.

4. The case that B is a code with finite decoding delay

In this section, for the language inequality XA ⊆ BX , it is assumed that

A,B are regular, and B is a code with decoding delay d ≥ 0.

Moreover, the set of words B∗pref(B) \ Bd+1Σ∗ is called the set of bottom configurations of G(A,B), denoted
by Confbt(A,B), and the set of words Confbt(A,B) ∩ BdΣ∗ = (B∗pref(B) ∩ BdΣ∗) \ Bd+1Σ∗ is called border
configurations of G(A,B), denoted by Confbd(A,B).

4.1. Reduction into a two-player one-counter reachability game

In the following, we first observe that with the assumption thatA,B are regular andB is a code with finite decoding
delay, the game G(A,B) can be reduced to a two-player reachability game played on the transition graph of some
one-counter machine. If A,B are finite, then the one-counter machine has finite state space and finitely-branching
transition relation, so the effectiveness of the greatest solution follows from the well-known results on two-player
games played on the transition graph of pushdown automata ([21,3,20]). Nevertheless, if A,B are infinite, then the
one-counter machine has infinite state space and infinitely-branching transition relation, which goes beyond the scope

16

of pushdown automata. We solve the problem by showing that the one-counter reachability game can be reduced
further to one with finite state space and finitely-branching transition relation.

4.1.1. From G(A,B) to a two-player one-counter reachability game
We first state a property of codes with finite decoding delay, which is pertinent to the reduction of the game G(A,B)

into a one-counter reachability game.

Lemma 29 Let B be a code with decoding delay d ≥ 0. Then for every x ∈ Bd+1Σ∗ ∩B∗pref(B), there are v ∈ B
and y ∈ BdΣ∗ ∩ B∗pref(B) such that x = vy. In addition, for every v′ ∈ B, z ∈ B∗pref(B) such that x = v′z, it
holds that v = v′ and y = z.

PROOF.
Let x ∈ Bd+1Σ∗ ∩B∗pref(B). Then there are v1, . . . , vd+1 ∈ B and x′ ∈ Σ∗ such that x = v1 . . . vd+1x

′.
Because x ∈ B∗pref(B), there is x′′ ∈ Σ∗ such that xx′′ ∈ B+. Let v ∈ B such that xx′′ ∈ vB∗. Then

xx′′ = v1 . . . vd+1x
′x′′ = v1(v2 . . . vd+1)(x′x′′) ∈ vB∗. From the definition of finite decoding delays, we deduce

that v1 = v and v2 . . . vd+1x
′x′′ ∈ B∗. Let y = v2 . . . vd+1x

′. Then y ∈ B∗pref(B) ∩BdΣ∗ and x = vy.
Suppose v′ ∈ B, z ∈ B∗pref(B) such that x = v′z. In the following, we will show that v = v′ and y = z.
From the fact that z ∈ B∗pref(B), we know that there is z′ ∈ Σ∗ such that zz′ ∈ B+. Because v′(zz′) =

xz′ = v1 . . . vd+1x
′z′ = v1(v2 . . . vd+1)x′z′, it follows that v1(v2 . . . vd+1)x′z′ ∈ v′B∗. From the definition of finite

decoding delays, we deduce that v′ = v1 = v and y = z. 2

Corollary 30 Let B be a code with decoding delay d ≥ 0. Then for every x ∈ B∗pref(B) ∩ Bd+1Σ∗, there is a
unique pair (i, y) such that i ≥ 1, y ∈ Confbd(A,B) (recall that Confbd(A,B) = (B∗pref(B)∩BdΣ∗)\Bd+1Σ∗),
and x ∈ Biy.

PROOF. Suppose x ∈ B∗pref(B)∩Bd+1Σ∗. Then according to Lemma 29, there is a unique pair (v1, y1) such that
v1 ∈ B, y1 ∈ B∗pref(B) ∩BdΣ∗, and x = v1y1.

If y1 ∈ Bd+1Σ∗, then we can apply Lemma 29 to y1 to get v2 ∈ B and y2 ∈ B∗pref(B) ∩ BdΣ∗ such that
y1 = v2y2, and so on.

Evidently this process will terminate. Finally we get v1, . . . , vi ∈ B and yi ∈ (B∗pref(B) ∩ BdΣ∗) \ Bd+1Σ∗ =
Confbd(A,B) such that x = v1 . . . viyi. So we get a pair (i, yi) such that i ≥ 1, yi ∈ Confbd(A,B), and x ∈ Biyi.

In addition, Lemma 29 guarantees that the words v1, . . . , vi ∈ B and yi ∈ Confbd(A,B) are unique. Therefore,
there is one unique desired pair (i, y). 2

Definition 31 (Index and Remainder) For each x ∈ B∗pref(B)∩Bd+1Σ∗, define the index of x, denoted by idx(x),
and the remainder of x, denoted by rmd(x), as respectively the number i ≥ 1 and the word y ∈ Confbd(A,B) stated
in Corollary 30. Moreover, if x ∈ Confbt(A,B), i.e. x ∈ B∗pref(B) \ Bd+1Σ∗, then idx(x) = 0 and rmd(x) = x
by convention.

Now we illustrate how the game G(A,B) can be reduced to a one-counter game. From Proposition 4, we know that
C(A,B) ⊆ B∗pref(B). Therefore, in the game G(A,B), it is sufficient to consider the configurations belonging to
B∗pref(B).

Lemma 32 Let B be a code with decoding delay d and x, y ∈ B∗pref(B). If idx(x) = idx(y) and rmd(x) =
rmd(y), then x ∈Winβ(G(A,B)) iff y ∈Winβ(G(A,B)).

PROOF. If idx(x) = idx(y) and rmd(x) = rmd(y), then we know that S(x) ∼= S(y). From Proposition 11, we
conclude that x ∈Winβ(G(A,B)) iff y ∈Winβ(G(A,B)). 2

Lemma 33 Let x ∈ B∗pref(B) and u ∈ A such that xu ∈ B∗pref(B). Then rmd(xu) = rmd(rmd(x)u) and
idx(xu) = idx(x) + idx(rmd(x)u).

17

PROOF. If idx(x) = 0 and rmd(x) = x, then it is evident that the conclusion of the lemma holds.
In the following, we assume that idx(x) = i > 0.
Let x′ = rmd(x). Then x′ ∈ Confbd(A,B) and x = v1 . . . vix

′ for v1, . . . , vi ∈ B.
Because xu ∈ B∗pref(B), there are y ∈ Σ∗ and v ∈ B such that xuy ∈ vB∗. From xuy = v1 . . . vix

′uy, we have
v1v2 . . . vix

′uy ∈ vB∗. According to the fact that x′ ∈ BdΣ∗ and the definition of finite decoding delays, we deduce
that v1 = v and v2 . . . vix

′uy ∈ B∗. Then there is v′ ∈ B such that v2 . . . vix
′uy ∈ v′B∗. By a similar argument,

we deduce that v′ = v2 and v3 . . . vix
′uy ∈ B∗, and so on. At last, we deduce that x′uy ∈ B∗. This implies that

x′u ∈ B∗pref(B) ∩BdΣ∗.
From the fact that xu = v1 . . . vi(x

′u) and the proof of Corollary 30, we know that v1, . . . , vi are exactly the first i
words from B to cut from the beginning of xu, in order to get the remainder of xu. Therefore, rmd(xu) = rmd(x′u)
and idx(xu) = i+ idx(x′u) = idx(x) + idx(rmd(x)u). 2

From Lemma 32 and Lemma 33, we reduce the game G(A,B) into a two-player one-counter reachability game,
denoted G = (V,W,→), as follows,
– V is the set of game positions for Attacker,

V = {(x, 0, α) | x ∈ Confbt(A,B)} ∪ {(x, i, α) | x ∈ Confbd(A,B), i > 0} .

– W is the set of game positions for Defender,

W = {(⊥, β)} ∪ {(x, 0, β) | x ∈ Confbt(A,B)} ∪ {(x, i, β) | x ∈ Confbd(A,B), i > 0} .

– → ⊆ V ×W ∪W × V is defined as follows.
Let (x, i, α) ∈ V , (y, j, β) ∈W . Then
· (x, i, α)→ (⊥, β) iff there exists some u ∈ A such that xu 6∈ B∗pref(B),
· (x, i, α)→ (y, j, β) iff there exists some u ∈ A such that y = rmd(xu) and j = i+ idx(xu).

Let (x, i, β) ∈W , (y, j, α) ∈ V . Then (x, i, β)→ (y, j, α) iff one of the following conditions holds,
· i > 0, j = i− 1, y = x.
· i = 0, j = 0 and there is v ∈ B such that x = vy.

There are no arcs out of (⊥, β).

The dead points of G are (⊥, β) or those vertices (x, 0, β) ∈ W without successors, which happens when x ∈
pref(B) \B+pref(B).

Each play of the reachability game G starts from some vertex in V ∪W , and goes as follows: If the game reaches
some vertex (x, i, α) ∈ V , then Attacker selects a successor (y, j, β) ∈ W of (x, i, α) and the game continues on
(y, j, β). Similarly for Defender when the game reaches a vertex in W .

Attacker wins a play if some dead point in W (thus Defender is not able to move) is reached, and Defender wins
every infinite play.

The winning strategies and regions can be defined in a standard way, similarly to those for parity games ([16]), e.g.
a winning strategy for Attacker in the game G starting from (x, i, α) is a partial function f from (VW)∗V to W such
that for every prefix of a play, say (x0, j0, α)(x1, j1, β)(x2, j2, α) . . . (x2k, j2k, α) (where x0 = x, j0 = i, and k ≥ 0),
consistent with f , that is, for every r : 0 ≤ r < k, f((x0, j0, α)(x1, j1, β) . . . (x2r, j2r, α)) = (x2r+1, j2r+1, β), it
holds that f((x0, j0, α)(x1, j1, β) . . . (x2k, j2k, α)) is defined and is a successor of (x2k, j2k, α) in G.

The winning region of Attacker and Defender are denoted as respectively Winα(G) and Winβ(G).
From Lemma 32, it follows that the winning regions of G correspond to those of G(A,B) as follows.

Lemma 34 For each x ∈ B∗pref(B),

x ∈Winβ(G(A,B)) iff (rmd(x), idx(x), α) ∈Winβ(G).

For each (x, i, p) ∈ V ∪W (where p ∈ {α, β}), let suc((x, i, p)) denote the set of successors of (x, i, p) in G. The
following result shows some regularity of the structure of the transition graph of G.

Lemma 35 Let x ∈ Confbd(A,B) and j = i+ r with r > 0. Then the mapping ϕ : suc((x, i, α))→ suc((x, j, α))
defined by ϕ((⊥, β)) = (⊥, β) and ϕ((y, k, β)) = (y, k + r, β) for each (y, k, β) ∈ suc((x, i, α)) is a bijection.

18

Remark 36 IfA,B are finite, thenG is a one-counter reachability game with finite state space and finitely-branching
transition relation, i.e. a pushdown game with unary pushdown alphabet. From the classical results on pushdown
games [21,3,20], it follows that the winning regions of G are regular and can be constructed effectively.

Nevertheless, if A,B are infinite, then G is a game with infinite state space and infinitely-branching transition
relation, which goes beyond the scope of pushdown automata. But we can still reduce the game G to a game with the
finite state space and the finitely-branching transition relation.

4.1.2. Making the state space finite and the transition relation finitely-branching
In this subsection, we first show that the right congruence ≈S over the state space of G, that is, Confbt(A,B),

satisfies that the quotient of Confbt(A,B) with respect to ≈S is finite. Then we show how to trim the transition
relation into a finitely-branching one.

It is easy to see that the strategy tree S(x) for each x ∈ Confbt(A,B) has depth at most d (the root has depth 0).

Lemma 37 For each x ∈ Confbt(A,B), no two distinct leaves of S(x) have the same label.

PROOF. To the contrary, suppose that there are two distinct leaves [v1, . . . , vi] and [v′1, . . . , v
′
j] of S(x) such that

x = v1 . . . viy = v′1 . . . v
′
jz, [y]B = [z]B , and y, z ∈ pref(B) \B+pref(B).

Because y, z ∈ pref(B) and y ∼B z, it follows that there is u ∈ Σ∗ such that yu, zu ∈ B.
Then xu = v1 . . . vi(yu) = v′1 . . . v

′
j(zu). Because B is a code, xu ∈ B∗ has a unique decomposition into words

in B, so we have that i = j, v` = v′` for each ` ≤ i, and y = z, a contradiction to the distinctness of [v1, . . . , vi] and
[v′1, . . . , v

′
j]. 2

From Lemma 37, we know that the number of leaves of S(x) for every x ∈ Confbt(A,B) is bounded by NB .
Because the depth of S(x) is bounded by d, it follows that the number of nodes in S(x) is bounded by (d + 1)NB .
Thus the number of non-isomorphic strategy trees for words in Confbt(A,B) is bounded by a number, sayNS , which
depends on d and NB .

For each x ∈ Confbt(A,B), let [x]S denote the equivalence class of ≈S containing x. The number of equivalence
classes of ≈S on Confbt(A,B) is bounded by NS .

From Proposition 10, it is easy to deduce the following fact.

Proposition 38 Suppose x, y ∈ Confbt(A,B), x ≈S y and z ∈ Σ∗. Then xz ∈ B∗pref(B) iff yz ∈ B∗pref(B).
Moreover, if xz, yz ∈ B∗pref(B), then idx(xz) = idx(yz) and rmd(xz) ≈S rmd(yz).

Lemma 39 The transition relation→ is compatible with ≈S . Let x, y ∈ Confbt(A,B) and x ≈S y. Then
(i) (x, i, α)→ (⊥, β) iff (y, i, α)→ (⊥, β) for any i ∈ N.

(ii) Suppose (x, i, α) → (z, j, β) for z ∈ Confbt(A,B), i, j ∈ N. Then there exists z′ ∈ Confbt(A,B) such that
(y, i, α)→ (z′, j, β) and z ≈S z′.

(iii) Suppose (x, i, β) → (z, j, α) for z ∈ Confbt(A,B), i, j ∈ N. Then there exists z′ ∈ Confbt(A,B) such that
(y, i, β)→ (z′, j, α) and z ≈S z′.

PROOF.
(i). Since x and y have the isomorphic strategy trees, it follows from Proposition 38 that for any u ∈ A, xu ∈

B∗pref(B) iff yu ∈ B∗pref(B). Therefore, according to the definition ofG, (x, i, α)→ (⊥, β) iff (y, i, α)→ (⊥, β)
for any i ∈ N.

(ii). Suppose (x, i, α) → (z, j, β) such that there exists u ∈ A satisfying that xu ∈ B∗pref(B), j = i + idx(xu),
and z = rmd(xu). Since x ≈S y, from Proposition 38, it follows that idx(xu) = idx(yu) and rmd(xu) ≈S rmd(yu).
Let z′ = rmd(yu). Then (y, i, α)→ (z′, j, β) in G and z ≈S z′.

(iii) Suppose (x, i, β)→ (z, j, α).
If i > 0, then z = x and j = i− 1. Let z′ = y. Then we have (y, i, β)→ (z′, j, β) and z ≈S z′.
Otherwise, j = 0 and there is v ∈ B such that x = vz. Because x ≈S y, we know that there are v′ ∈ B and

z′ ∈ Confbt(A,B) such that y = v′z′ and z ≈S z′. Then we have (y, 0, α)→ (z′, 0, β) and z ≈S z′. 2

19

Corollary 40 Let x ≈S y, i ∈ N, and p ∈ {α, β} such that (x, i, p), (y, i, p) ∈ V ∪W . Then (x, i, p) ∈ Winβ(G)
iff (y, i, p) ∈Winβ(G).

Therefore G can be reduced to the quotient of G with respect to ≈S , denoted G/≈S = (V/≈S ,W/≈S ,→ /≈S),
as follows,
– V/≈S = {([x]S , i, α) | (x, i, α) ∈ V },
– W/≈S = {(⊥, β)} ∪ {([x]S , i, β) | (x, i, β) ∈W},
– ([x]S , i, α)→ /≈S (⊥, β) iff (x, i, α)→ (⊥, β).
– ([x]S , i, p)→ /≈S ([y]S , j, q) iff there exist y′ ∈ [y]S such that (x, i, p)→ (y′, j, q), where p, q ∈ {α, β}.
Remark 41 Although the gameG/≈S has finite state space, its transition relation→ /≈S is still infinitely-branching.
This infinity is due to the fact that A may be infinite, and in game G(A,B), Attacker may append an arbitrarily long
word from A to the end of the current configuration. For pushdown automata, allowing to push into the stack the
words from an infinite regular language does not increase the expressive power, since this kind of pushing can still be
simulated by pushdown automata. This is not the case in general for one-counter automata. In the following, we will
show that some transitions of G/≈S can be trimmed to make the transition relation of G/≈S finitely-branching.

We finally trim the transition relation of G/≈S into a finitely-branching one and reduce G/≈S to a one-counter
reachability game (G/≈S)⊥ = (V/≈S ,W/≈S ,) as follows.
– ([x]S , i, α) (⊥, β) iff ([x]S , i, α)→ /≈S (⊥, β).
– ([x]S , i, α) ([y]S , j, β) iff ([x]S , i, α) → /≈S ([y]S , j, β) and j is the minimal j′ such that ([x]S , i, α) →
/≈S ([y]S , j

′, β).
– ([x]S , i, β) ([y]S , j, α) iff ([x]S , i, β)→ /≈S ([y]S , j, α).

Lemma 42 Suppose ([x]S , i, α) ∈ V/≈S . Then ([x]S , i, α) ∈Winβ(G/≈S) iff ([x]S , i, α) ∈Winβ((G/≈S)⊥).

From Lemma 42, Corollary 40, and Lemma 34, we get the main result of this section.

Theorem 43 C(A,B) =
⋃

([x]S ,i,α)∈Winβ((G/≈S)⊥)

Bi[x]S .

To prove Lemma 42, we introduce a concept of strong strategies of Defender in G and G/ ≈S .

Definition 44 (Strong strategies of Defender in G and G/≈S) Strong strategies of Defender 4 in G starting from
(x, i, α) are the same as strategies of Defender in G starting from (x, i, α), that is, they are functions f from (VW)+

to V , with the difference that (x2k, j2k, α) = f((x0, j0, α)(x1, j1, β) . . . (x2k−1, j2k−1, β)) may not be a successor
of (x2k−1, j2k−1, β) in G. Instead, (x2k, j2k, α) satisfies the following condition:

Either x2k = x2k−1 and 0 ≤ j2k < j2k−1, or j2k = 0 and (x2k−1, 0, β)→ (x2k, 0, α).

Strong strategies of Defender inG/≈S starting from ([x]S , i, α) are defined similarly. A strong strategy f of Defender
in G or G/≈S is winning if every play consistent with f is winning for Defender.

Intuitively, if the counter value of the current configuration ([x]S , i, β) for Defender is greater than zero, then by
applying a strong strategy, Defender may decrease the counter value arbitrarily in G and does not change the state, or
decrease the counter value to zero and choose a successor of ([x]S , 0, β).

From Lemma 34, it is easy to observe that every strong strategy of Defender in G induces a strong strategy of
Defender in G(A,B). Therefore, from Proposition 3 and Lemma 34, we have the following result.

Lemma 45 If Defender has a winning strong strategy in G starting from (x, i, α), then Defender has a winning
strategy in G starting from (x, i, α).

It is also easy to observe that every winning strong strategy of Defender in G induces a winning strong strategy in
G/ ≈S , and vice versa. From Lemma 45, we deduce the following result.

Lemma 46 If Defender has a winning strong strategy in G/≈S starting from ([x]S , i, α), then Defender has a win-
ning strategy in G/≈S starting from ([x]S , i, α).

Now we are ready to prove Lemma 42.

4 We do not define strong strategies of Attacker in G and G/ ≈S here, since they are not needed for the proof of Lemma 42.

20

PROOF. (Lemma 42)
It is sufficient to prove ([x]S , i, α) ∈Winβ(G/≈S) iff ([x]S , i, α) ∈Winβ((G/≈S)⊥).
“Only if ” direction:
From the fact that (G/≈S)⊥ is obtained from G/≈S by restricting the choices of Attacker, we know that a winning

strategy of Defender inG/≈S starting from ([x]S , i, α) induces a winning strategy of Defender in ((G/≈S)⊥ starting
from ([x]S , i, α).

“If ” direction:
Suppose f is a winning strategy of Defender in (G/≈S)⊥ starting from ([x]S , i, α). From Lemma 46, it is sufficient

to show that there is a winning strong strategy f ′ of Defender in G/≈S starting from ([x]S , i, α).
The description of f ′ is as follows.
In a play of G/≈S , f ′ follows f if all the choices of Attacker so far belong to (G/≈S)⊥ until some round such that

the choice of Attacker in that round does not belong to (G/≈S)⊥.
Suppose k rounds have been played in G/≈S starting from ([x]S , i, α) and all the choices of Attacker so far

belong to (G/≈S)⊥. Let ([x0]S , j0, α) . . . ([x2k−1]S , j2k−1, β)([x2k]S , j2k, α) (where [x0]S = [x]S and j0 = i) be
the history of the k rounds. Suppose in the (k + 1)-st round of G/≈S starting from ([x]S , i, α), Attacker chooses
a successor of ([x2k]S , j2k, α), say ([x2k+1]S , j2k+1, β), such that ([x2k]S , j2k, α) ([x2k+1]S , j2k+1, β) does not
hold. Then there is j′ : j′ < j2k+1 such that ([x2k]S , j2k, α) ([x2k+1]S , j

′, β).
Suppose f(([x0]S , j0, α) . . . ([x2k−1]S , j2k−1, β)([x2k]S , j2k, α)([x2k+1]S , j

′, β)) = ([x2k+2]S , j
′′, α).

Let f ′(([x0]S , j0, α) . . . ([x2k−1]S , j2k−1, β)([x2k]S , j2k, α)([x2k+1]S , j2k+1, β)) = ([x2k+2]S , j
′′, α).

Notice that either j′ > 0, [x2k+2]S = [x2k+1]S and j′′ = j′ − 1 < j2k+1, or j′′ = j′ = 0 and ([x2k+1]S , 0, β) →
/≈S ([x2k+2]S , 0, α). So f ′ defined above satisfies the condition stated in the definition of strong strategies.

The game G/≈S starting from ([x]S , i, α) continues with the configuration ([x2k+2]S , j
′′, α) in the beginning of

the (k + 2)-nd round. Starting from the (k + 2)-nd round, f ′ still follows f , until some round such that the choice of
Attacker in that round does not belong to (G/≈S)⊥. If this happens, then we can repeat the above argument to define
f ′, and so on.

Since f is a winning strategy in (G/≈S)⊥, it follows that f ′ is a winning strong strategy in G/≈S . 2

4.2. Effective construction of the greatest solution

In the last subsection, we have reduced G(A,B) to a one-counter reachability game (G/≈S)⊥ with finite state
space and finitely-branching transition relation. In the following, we show that the reduction is effective. Because
(G/≈S)⊥ is a reachability game played on the transition graph of a one-counter machine, it is sufficient to show that
the a finite representation of the one-counter machine can be computed effectively from (A,B). To be more precise,
the one-counter machine is defined as follows.
– The state space of the one-counter machine, denoted byQ, is the union of {(⊥, β)} and the set of ([x]S , p)’s, where
x ∈ Confbt(A,B) and p ∈ {α, β}.

– The transition relation of the one-counter machine, denoted by δ, is a subset of Q × Q × {= 0, 6= 0} × I, where
{= 0, 6= 0} is the set of guards testing whether the current counter value is zero, and I is a set of finitely many
instructions +c,−c for c ∈ N. The transition relation δ is defined by the following rules.
· If ([x]S , 0, α) (⊥, β), then (([x]S , α), (⊥, β),= 0,+0) ∈ δ.
· If ([x]S , 1, α) (⊥, β), then (([x]S , α), (⊥, β), 6= 0,+0) ∈ δ.
· If ([x]S , 0, α) ([y]S , c, β), then (([x]S , α), ([y]S , β),= 0,+c) ∈ δ.
· If ([x]S , 1, α) ([y]S , c, β), then (([x]S , α), ([y]S , β), 6= 0,+(c− 1)) ∈ δ.
· If ([x]S , 0, β) ([y]S , 0, α), then (([x]S , β), ([yS], α),= 0,+0) ∈ δ.
· If ([x]S , 1, β) ([x]S , 0, α), then (([x]S , β), ([xS], α), 6= 0,−1) ∈ δ.
In the following, we illustrate that both the state space and the transition relation of the one-counter machine can

be computed effectively from (A,B).

Effective computation of the state space Q.

The equivalence classes of ∼B correspond to the states of the minimal automaton recognizing B. The non-
isomorphic trees of depth at most d, labeled by the equivalence classes of ∼B , can be effectively enumerated.

21

By an induction on i ≤ d, we can show that for each such tree T , a finite automaton AT can be constructed effec-
tively fromB to recognize all words x ∈ Confbt(A,B) whose strategy tree is isomorphic to T . So each equivalence
class of ≈S can be finitely represented by a finite state automaton AT .

Because Q is the union of {(⊥, β)} and the set of ([x]S , p)’s with x ∈ Confbt(A,B) and p ∈ {α, β}, we
conclude that a finite representation of the state space Q can be computed effectively from (A,B).

Effective computation of the transition relation δ.
It is sufficient to show how to compute from A,B the (finite) set of transitions of the form ([x]S , 0, α)
([y]S , c, β), ([x]S , 1, α) ([y]S , c, β), ([x]S , 0, α) (⊥, β), ([x]S , 1, α) (⊥, β), ([x]S , 0, β) ([y]S , 0, α),
and ([x]S , 1, β) ([x]S , 0, α) in (G/≈S)⊥. In the following, we only illustrate how to compute the transitions of
the form ([x]S , 0, α) ([y]S , c, β). The computation of the other transitions is similar.

For each pair ([x]S , α), ([y]S , β) ∈ Q, we do the following computation.
(i) If y 6∈ Confbd(A,B), then test whether [x]SA ∩ [y]S 6= ∅. If the answer is yes, then set ([x]S , 0, α)

([y]S , 0, β).
(ii) If y ∈ Confbd(A,B), then test whether [x]SA ∩B∗[y]S 6= ∅. If the answer is yes, then compute the minimal

c ≥ 0 such that [x]SA ∩Bc[y]S 6= ∅. Denote such a minimal c as c0, and set ([x]S , 0, α) ([y]S , c0, β).

Therefore, we have shown that a finite representation of the one-counter reachability game (G/≈S)⊥ can be com-
puted effectively from (A,B). Finally, from the classical results on pushdown games ([21,3,20]), we conclude that
the greatest solution of XA ⊆ BX , which corresponds to the winning region of Defender in (G/≈S)⊥, can be
constructed effectively from (A,B).

5. Conclusion

In this paper, we gave an effective construction of the greatest solution for the language inequality XA ⊆ BX for
the two cases: (i) A,B are regular and there exist k ≥ 1 such that pref(B)Ak ∩ B≤kpref(B) = ∅, and (ii) A,B
are regular and B is a code with decoding delay d. In both cases, we adopted the view of a two-player game and
reduced the problem to the computation of winning region of one of the players. While the solution of the first case
relied on a shrinking lemma for winning strategies, that of the second case was based on the observation that the
game can be reduced to a two-player one-counter game. If A,B are infinite, then the one-counter game for the second
case has infinite state space and infinitely-branching transition relation. We further reduced the game to a one-counter
reachability game with finite state space and finitely-branching transition relation. Then it follows from the classical
results on pushdown games that the greatest solution can be effectively constructed.

There are several directions for the future work. The first direction is to extend the approach proposed in this paper
to the more general cases. The most interesting and promising case seems to be the case that B is a code without finite
decoding delay. The second direction is to investigate whether the game-solving approach proposed in this paper can
be used to construct effectively the greatest solution for language equations, e.g. XA = BX .

Acknowledgement. The authors would like to thank the anonymous referees for their invaluable comments and
suggestions to improve the quality of the paper.

References

[1] J. Berstel and D. Perrin. Theory of Codes. Academic Press, Inc., 1985.
[2] T. Brázdil, P. Jančar, and A. Kučera. Reachability games on extended vector addition systems with states. In ICALP, pages 478–489, 2010.
[3] T. Cachat. Uniform solution of parity games on prefix-recognizable graphs. Electronic Notes in Theoretical Computer Science, 68(6), 2002.
[4] J. Cassaigne, J. Karhumäki, and P. Salmela. Conjugacy of finite biprefix codes. Theoretical Computer Science, 410(24-25):2345–2351, 2009.
[5] C. Choffrut, J. Karhumäki, and N. Ollinger. The commutation of finite sets: a challenging problem. Theoretical Computer Science, 273(1-

2):69–79, 2002.
[6] J. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
[7] J. Karhumäki, M. Latteux, and I. Petre. Commutation with codes. Theoretical Computer Science, 340(2):322–333, 2005.
[8] J. Karhumäki, M. Latteux, and I. Petre. Commutation with Ternary Sets of Words. Theory of Computing Systems, 38(2), 2005.
[9] J. Karhumäki and I. Petre. Conway’s Problem for Three-Word Sets. Theoretical Computer Science, 289:705–725, 2002.

22

[10] J. Kruskal. Well-Quasi-Ordering, the Tree Theorem and Vazsonyi’s Conjecture. Transactions of American Mathematical Society, 95:210–225,
1960.

[11] M. Kunc. On language inequalities XK ⊆ LX . In DLT, pages 327–337, 2005.
[12] M. Kunc. Regular Solutions of Language Inequalities and Well Quasi-Orders. Theoretical Computer Science, 348(2-3):277–293, 2005.
[13] M. Kunc. The power of commuting with finite sets of words. Theory of Computing Systems, 40(4):521–551, 2007.
[14] O. Ly. A Constructive Solution of the Language Inequation XA ⊆ BX . In TALE’07, "Theory and Applications of Language Equations"

2007, General Publications series of Turku Centre for Computer Science, 44, pages 76–84, 2007.
[15] D. A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, Sept. 1975.
[16] R. Mazala. Infinite games. In Automata, Logics, and Infinite Games, LNCS 2500, pages 23–42, 2001.
[17] A. Okhotin. Decision problems for language equations with Boolean operations. In ICALP, pages 239–251. LNCS 2719, 2003.
[18] A. Okhotin. A Characterization of the Arithmetical Hierarchy by Language Equations. In DCFS, pages 225–237, 2004.
[19] B. Ratoandromanana. Codes et motifs. RAIRO - Theoretical Informatics and Applications, 23(4):425–444, 1989.
[20] O. Serre. Note on winning positions on pushdown games with [omega]-regular conditions. Information Processing Letters, 85(6):285–291,

2003.
[21] I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Computation, 164(2):234–263, 2001.

23

