Automata theory and its applications Lecture 1: Historical perspective, course syllabus, basic concepts

Zhilin Wu

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

September 26, 2012

Zhilin Wu (SKLCS)

Lecture 1: History, Syllabus, Concepts

A D > A D > A D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

September 26, 2012

- 2 Why to bother with automata theory?
- 3 Historical perspective of automata theory

About this Course

5 Basic concepts

2 / 23

イロト イヨト イヨト イヨ

Automata

The origin of the word "automata":

The Greek word "auto μ ata", which means "self-acting"

Definition

Abstract models for different aspects of computation

- Sequential computation
 - Finite memory: Finite state automata
 - Finite memory + Stack: Pushdown automata
 - Unrestricted: Turing machines
- Concurrent and reactive systems
 - Nonterminating (ω -words): Büchi automata
 - Nondeterministic (ω -trees): Büchi tree automata
- Rewriting systems
 - Terms: Tree automata over ranked trees
- Semistructured data
 - XML documents: Tree automata over unranked trees

3 / 23

イロト イヨト イヨト イヨ

Automata: Example

Finite state automata

Automata for "identifiers" in programming languages

Zhilin Wu (SKLCS)

Lecture 1: History, Syllabus, Concepts

Automata theory

In theoretical computer science, automata theory is

 $the \ study \ of \ mathematical \ properties \ of \ abstract \ computing \ machines.$

More specifically

• Expressibility

Class of languages (computational problems) defined in the model

What the model can and cannot do ?

• Closure properties

Closed under the different operations, e.g. union and complement.

The mathematical structure of the class of languages defined in the model

• Decidability and complexity

Are the decision problems (e.g. nonemptiness, inclusion) decidable? Can they be solved in PTIME ?

Are there (efficient) algorithms for the statical analysis of the model ?

Zhilin Wu (SKLCS)

2 Why to bother with automata theory?

3 Historical perspective of automata theory

About this Course

5 Basic concepts

イロト イヨト イヨト イヨ

Why to bother with automata theory?

- Theoretical foundations of various branches of computer science
 - Origin of computer science

Turing machine

• Compiler design

Lexical analysis (Finite state automata), Syntactical analysis (Pushdown automata), Code selection (Tree automata)

• Foundations of model checking

Büchi automata, Rabin tree automata

• Foundations of Web data (XML document) processing

Automata over unranked trees

• ...

• Abstract and fundamental

Compared to programming languages, automata theory is more abstract, thus ease the mathematical reasoning, but still reflects the essence of computation

• Combinatorial, algorithmic, and challenging

Zhilin Wu (SKLCS)

2 Why to bother with automata theory?

3 Historical perspective of automata theory

4 About this Course

5 Basic concepts

8 / 23

(日) (四) (三) (三) (三)

A pioneer of automata theory

Alan Turing (1912-1954)

- Father of computer science
- English logician
- Propose

Turing machine as a mathematical model of computation

• Codebreaker

for German Enigma machine in World War II

• Many other pioneering work, e.g. Turing test

・ロト ・日下・ ・日下

Historical perspective of Automata theory

1930s	Turing machines (A. Turing)
1940s -1950s	Finite state automata (W. McCulloch, W. Pitts, S. Kleene, etc.)
	Chomsky hierarchy (N. Chomsky)
1960s -1970s	Pushdown automata (A.G. Oettinger, M.P. Schutzenberger)
	Büchi automata over $\omega\text{-words}$ (J. R. Büchi)
	Rabin tree automata over ω -trees (M. O. Rabin)
	Tree automata (J. E. Doner, J. W. Thatcher, J. B. Wright, etc.)
1980s -1990s	$\omega\text{-}\mathrm{automata}$ applied to formal verification
	(M. Vardi, P. Wolper, O. Kupferman, etc.)
2000s-2010s	Automata over unranked trees applied to XML
	(A. Bruggemann-Klein, M. Murata, D. Wood, F. Neven, etc.)
	Visibly pushdown automata (R. Alur, P. Madhusudan)

Remark: Only include automata models explicitly referred to in this course

September 26, 2012

・ロト ・回ト ・ヨト ・ヨト

10 / 23

æ

- 2 Why to bother with automata theory?
- 3 Historical perspective of automata theory

4 About this Course

5 Basic concepts

Goal, organization, ...

Main goal

An extensive introduction to automata theory, with an emphasis on the developments in the last thirty years.

Organization

Organized according to the different types of structures, Finite words, Infinite words, Finite ranked and unranked trees, Infinite trees

Features

- Extensiveness of the topics In particular, the recent developments are covered
- Emphasis on algorithmic aspects
- Emphasis on the applications

Not included

- Automata models for timed and hybrid systems Timed automata, Hybrid automata
- Automata over infinite alphabets Register automata, data automata, ...

12 / 23

Syllabus (tentative and possibly adjusted later)

• Automata over finite words

- Chomsky hierarchy (A brief recall of the classical automata theory)
 - Turing machines, Linearly-bounded automata,
 - Pushdown automata, Finite state automata
- Finite state automata
 - Nondeterministic versus deterministic, Expressive equivalence with MSO,
 - Myhill-Nerode theorem, Closure properties,
 - Decision problems (Nonemptiness, language Inclusion)
- Visibly pushdown automata
 - Nondeterministic versus deterministic,
 - Closure properties,
 - Decision problems

• Automata over infinite words

- Nondeterministic Büchi, Muller, Rabin, Strett, Parity automata and their expressive equivalence
- Expressive equivalence with MSO and WMSO
- Determinization and complementation of Büchi automata
- Decision problems of Büchi automata

(D) (A) (A)

Syllabus: continued

- Automata over finite trees
 - Ranked trees

Bottom-up versus top-down tree automata, Expressive equivalence with MSO, Determinization, Decision problems, Tree-walking automata

Unranked trees

The model, Expressive equivalence with MSO, Determinization, Decision problems

• Automata over infinite trees

- Büchi tree automata, Rabin tree automata, Parity tree automata, and the comparison of their expressibility
- Complementation of Rabin tree automata
- The decision problems

(D) (A) (A)

Syllabus: continued

- Applications
 - Model checking
 - Linear temporal logic and Büchi automata
 - Alternating tree automata, Modal $\mu\text{-calculus}$
 - XML document processing
 - XPath, DTD, and their relationship with automata over unranked trees
 - Visibly pushdown automata applied to the streaming of XML documents

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Grading criteria

- \bullet Homework (not so many, do not worry): 20%
- Reading project: 20% Read a paper from a given list and make a presentation
- Reading report: 60%

Choose a topic from a given list and make a survey

Remark: The paper list and the topic list will be published later.

References

Course website: http://lcs.ios.ac.cn/~wuzl/teaching.html

- $\bullet~{\rm Textbooks}$
 - D. Kozen, Automata and computability, Springer, 1997.
 - B. Khoussainov, A. Nerode, Automata theory and its applications, Springer, 2001.
 - E. Gradel, W. Thomas, T. Wilke, Automata, logics and infinite games, Spirnger, 2002.
 - I. Comon and M. Dauchet and R. Gilleron and C. Löding and F. Jacquemard and D. Lugiez and S. Tison and M. Tommasi, *Tree Automata Techniques and Applications*, http://tata.gforge.inria.fr/

• Survey articles

- W. Thomas, *Languages, automata and logics*, Handbook of formal languages, vol. 3, Pages 389 455.
- T. Schwentick, Automata for XML-A survey, Journal of Computer and System Sciences, vol. 73(3), 2007, Pages 289-315.
- Possibly some other papers

Remark: You are not supposed to read all of them.

- 2 Why to bother with automata theory?
- 3 Historical perspective of automata theory

4 About this Course

< Ξ → < Ξ

< < >> < <</>

Finite and infinite words

Fix a finite alphabet Σ .

• Finite words

A sequence of letters from Σ , i.e. a mapping $w : [n] \to \Sigma$. Example: abab

• ω -words

An ω -sequence of letters from Σ , i.e. a mapping $w : \mathbb{N} \to \Sigma$. Example: $(ab)^{\omega}$

Finite and infinite trees

• Finite ranked trees

Ranked alphabet Σ : Rank function rank(): $\Sigma \to \mathbb{N}$. Tree domain: A nonempty subset D of \mathbb{N} such that

• if
$$xi \in D$$
, then $x \in D$,

• if $xi \in D$, then $xj \in D$ for any $j \leq i$.

Ranked trees: A Σ -tree is a mapping $t: D \to \Sigma$ such that

 $\forall x \in D, rank(t(x)) = |\max\{i \mid xi \in D\}|.$

Finite and infinite trees: continued

• Finite unranked trees Alphabet Σ is unranked Unranked trees: A mapping $t: D \to \Sigma$ (no rank constraints). catalog nbook book title author title • ω -trees (binary ω -trees)

A mapping $t: \{0,1\}^* \to \Sigma$.

author

Formal languages and closure properties

• Formal languages

A set of finite words, finite trees, etc.

- Language-theoretical operations
 - Union: $L_1 \cup L_2$,
 - Intersection: $L_1 \cap L_2$,
 - Complementation: $\Sigma^* \setminus L, \Sigma^{\omega} \setminus L, \ldots$
 - Homomorphism: A mapping $h: \Sigma \to \Pi \cup \{\varepsilon\}$.
- Closure properties
 - Union:

For every pair of automata \mathcal{A}_1 and \mathcal{A}_2 in a given model,

- is $\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$ also accepted by an automaton in the model ?
- and so on

Example:

Finite state automata are closed under all Boolean operations (union, intersection and complementation).

Expressibility and decision problems

• Expressibility: Which languages can be defined in the model ? Example

The language $\{a^n b^n \mid n \in \mathbb{N}\}$ cannot be defined by finite state automata.

- Decision problems
 - Nonemptiness

Given an automaton \mathcal{A} , does $\mathcal{L}(\mathcal{A}) \neq \emptyset$?

• Universality

Given an automaton \mathcal{A} , does $\mathcal{L}(\mathcal{A}) = \Sigma^*$ (for finite words) ? Similarly for other classes of structures

Language inclusion

Given two automata $\mathcal{A}_1, \mathcal{A}_2$, does $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?