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Formal grammar

e A formal grammar G = (N, %, P, S),
N: nonterminals,
3.: terminals,
P: production rules o — 3, where a € (M U X)T,8€ (M U )*,
S € N: start symbol.

e Derivation relation: If & — 3, then wyaws = wyfws for any
wy,ws € (M u X)*

e The language generated by G (denoted by L(G)): {w e X* | S =* w}.

e Type-0 (Phrase-structure): o — f (no restrictions),

e Type-1(Context-sensitive): aAf — ayf such that vy # ¢,
e Type-2 (Context-free): A — ~,
o Type-3 (Right linear): A — a and A — aB.
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y hierarchy

D

Grammar Languages Automata
Type-0 Recursively enumerable Turing machine
Type-1 Context-sensitive Linear-bounded nondet. Turing machine
Type-2 Context-free nondet. pushdown automaton
Type-3 Regular Finite state automaton

Strictness of the inclusion

o Context-sensitive — Recursive — Recursively enumerable,
o Context-sensitive and non-context-free: {a”b"c"™ | n € N},

o Context-free and non-regular: {a"b" | n € N}.
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Informal definition

leftmost cell infinite tape
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Finito read/write head
State
Control

Informally, a Turing machine consists of
an infinite tape
with a read/write head
controlled by
a finite state device.
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Formal definition

A Turing machine M is a tuple (Q, %, T, 0, qo, B, F'), where
e (: Finite set of states,
o I': Finite set of tape alphabet,
@ B: a symbol in I, called blank,
@ X: A subset of I', not including B, called the input alphabet,
0: Next-move function, a partial mapping from @ x I' to @ x I" x {L, R},

qo € Q: Initial state,
F < Q: Set of final states.
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Formal definition (continued)

Instantaneous configuration
An instantaneous configuration of M = (Q, X, T, 9, qo, B, F') is a sequence
a1qain, where

@ g € @: The current state,

@ «a; € I'*: The sequence of symbols from the leftmost cell to the head, with
itself excluded,

@ ap € I'*: The sequence of symbols from the head to the rightmost
non-blank symbol, or ¢ if the head is scanning a blank.

Initial configuration: gow (w is the input).

a as as ay as ag ay as B B

Zhilin Wu (SKLCS) Chomsky hierarchy (Turing machine) October 10, 2012



Formal definition (continued)

A move
if 6(q7X’L) = (paKL)a then

Xl...Xi,1 q XZXZ+1XTL Vs X1 ...Xi,Q szleXan
Alternatively, if §(q, X;) = (p, Y, R), then
X1... X1 X X1 .. Xo by Xao . X Y p X X,

in particular, in the case ¢ — 1 = n, the string X; ... X,, is empty, then the
righthand side is longer than the lefthand side.

Languages accepted by M (denoted by L(M))

LM)={w|weX* Ipe F,a; eT* as e ™ s.t. qow 3, cupas},

where |-%,: The reflexive and transitive closure of ;.

Zhilin Wu (SKLCS) Chomsky hierarchy (Turing machine) October 10, 2012

10 / 28



A TM M accepting the language {0™1" | n > 1}:
The intuition:

Finite
State
Control
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A TM M accepting the language {0™1" | n > 1}:

X X|0|Y| 1| 1| B| B

Finite
State
Control

Q = {QO7qlan7Q3,q4}’ Y= {O?l}a = {Oa 13X7Y7B}a = {114},

) 0 1 X Y B
9 | (q1, X, R) - - (g3, Y, R) -
a1 | (q1,0,R) | (q2,Y, L) - (q1,Y,R) -
a2 | (g2,0,1L) - (q0, X, R) | (q2,Y,L) -
q3 - - - (g3, Y,R) | (qs,B,L)
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Mutitape Turing machine

o A finite state control with k tapes and k tape heads, one for each tape.

o In one move,
depending on the state and the symbols scanned by the tape heads,
the machine
e changes the state,
e changes the symbols scanned by the tape heads,
e moves the tape heads left or right, independently for each tape.

o Initially, the input is in the first tape and the other tapes are blank.

Finite

State

Control
ajy| aial ais al.q\é ‘ B ‘
Q21| Q22 |23 | Q24 | Q25 | B ‘
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Multitape TM = TM

Theorem. Multitape TMs can be simulated by TMs.

Finite
State
Control

apy| a12] a13 a174\< B

1| @22 |23 | 24| Q25 | B

a1 | § |ai2| 022 § $ | B | B| S <

T
\ |
| -~
I -
I ~

\ - -
left endmarker separator Symbols denoting the two heads
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Nondeterministic TM

The only difference from TM: § is not a function anymore,
0c@QxT'xQ xT x{L,R}.

In other words, § : Q xI' — 2QxI'x{L,R}
In each move, there are a finite number of (nondet.) choices.

Theorem. Nondet. TM = TM.

A nondet. TM M; can be simulated by a three-tape TM M; as follows.
Suppose r is the maximum number of nondet. choices in each move of Mj.
@ The input of M; is put on tape 1 of Ms.

@ M, generates the sequences in {1,...,7}T on tape 2 in the canonical
order.
o Shorter sequences are generated earlier;
o the sequences of the same length are generated according to the numerical
order.
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Nondeterministic TM

The only difference from TM: § is not a function anymore,
0c@QxI'xQ xT x{L,R}.

In other words, § : Q x I' — 2@*I'x{L. R}
In each move, there are a finite number of (nondet.) choices.

Theorem. Nondet. TM = TM.

A nondet. TM M; can be simulated by a three-tape TM My as follows.
Suppose r is the maximum number of nondet. choices in each move of Mj.

@ The input of M; is put on tape 1 of Ms.

e M, generates the sequences in {1,...,7}T on tape 2 in the canonical
order.

e For each sequence k; ...k, generated on tape 2,
M, copies the input to tape 3, simulates the n moves of M; on the input,
with the sequence generated on tape 2 as the nondet. choices of M;.

o If for some sequence kj ... k,, the simulation of M; on tape 3 accepts,
then M accepts.
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From TM to Type-0 grammar

Let M = (Q,%,T,4,qo, B, F') be a TM. The Type-0 grammar G
o first nondet. generates a finite word

(o)) (5)-(5),

with the intention that

@ ai...an is the input of M,
e the blanks in the second component denote the space used by M.

e then G simulates the computation of M over ag ... a,,
by rewriting the second components of the generated word.
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From TM to Type-0 grammar

Let M = (Q,%,T,4,qo, B, F') be a TM. The Type-0 grammar G
o first nondet. generates a finite word

(o)) (5)-(5),

e then G simulates the computation of M over ag ... ay,,
by rewriting the second components of the generated word.
Formally, G = (N, %, P, S) is defined as follows.
° N: Q U (EU {6}) x T U {A13A27A3}a T: Ea S = Ala
e P includes the following rules,
° A1 — quQ, A2 — [a,a]Ag, AQ e A3, A3 — [E, B]Ag, A3 — £,
e gla, X] —[a,Y]p
for each a € ¥ U {e} and ¢,p, X,Y : (¢, X) = (p,Y, R),
o [a1, Z]g[az, X] — pla1, Z][az2, Y]
for each a1,a2 € X u{e}, ZeT, and q,p, X,Y : 6(q,X) = (p,Y, L),
o [a,X]q — qaq, q[a, X] — qaq, ¢ > £
foreachae ¥, X el',and g€ F.
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From TM to Type-0 grammar (continued)

Example.

TM for {0"1" | n € N}.

The grammar:

Zhilin Wu (SKLCS)
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From Type-0 grammar to TM

Let G = (N, X, P,S) be a Type-0 grammar.
Construct a nondet. TM M to recognize the language L(G).
e M has two tapes.
@ The input of M (say w) is in tape 1.
e M simulates the derivation relation of G in tape 2 by repeating the
following procedure.
@ It nondet. chooses a position 7 in tape 2 and a production rule @ — f.
If o appears from position i in tape 2, then « is replaced by B in tape 2.
Some shifting over of the symbols on tape 2 should be done if |a| # |B].

@ M compares the sequence of symbols in tape 2 with the sequence in tape
1, to see whether w has been generated by G. If so, then M accepts.
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Decision problems and problem instances

Language-theoretical viewpoint:
@ Decision problems: A language over a finite alphabet X.

o Problem instances: A finite word over the alphabet X.

SAT: An example

SAT: Decide whether a given Boolean formula is satisfiable or not ?

e Instances of SAT problem: The Boolean formulas, e.g.
(1l v a2va3)A(—zlva2v —-xz3) A (zl v —2z2 v a3).

o SAT problem: The set of satisfiable Boolean formulas.
More formally,

@ An instance of SAT problem: A finite word over the alphabet
ESAT = {V,/\a_'v ( ’ )} Y {xvoal,""g}'
e SAT problem: A language over the alphabet Xgar.
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Recursively enumerable and recursive languages

Recursively enumerable (r.e.) languages
A language L € X* is recursively enumerable if L = L(M) for some TM M.

o If we L(M), then the computation of M over w
halts with a final state.

o If w¢ L(M), then the computation of M over w
either halts with a non-final state or never halts.
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Recursively enumerable and recursive languages

Recursively enumerable (r.e.) languages
A language L € X* is recursively enumerable if L = L(M) for some TM M.

o If we L(M), then the computation of M over w
halts with a final state.

o If w¢ L(M), then the computation of M over w
either halts with a non-final state or never halts.

Recursive languages

A language L € X% is recursive if L = L(M) for some TM M such that M
halts over all inputs.

o If we L(M), then the computation of M over w
halts with a final state.

o If w¢ L(M), then the computation of M over w
halts with a non-final state.

Intuitively, for a recursive language L, 3 an algorithm to tell for every input w,
if w € L, then the algorithm answers “yes”, otherwise, it answers “no”.
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Basic properties of r.e. and recursive languages

Theorem. The following closure properties hold.
e R.e. languages are closed under union and intersection.
@ Recursive languages are closed under all Boolean operations.

Proof sketch.
e Union and intersection:
Simulate simultaneously the two TMs by a two-tape TM.
e Complementation for recursive languages: Replace F' by Q\F.
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Basic properties of r.e. and recursive languages

Theorem. The following closure properties hold.
e R.e. languages are closed under union and intersection.

@ Recursive languages are closed under all Boolean operations.
Theorem. Let L € ¥*. If L and X*\L are both r.e., then L is recursive.

Proof sketch.

Let My, My : L = L(M;) and ¥*\L = L(M>).

Then a two-tape TM M is constructed to simulate simultaneously M;
and M.

If My accepts, then M accepts.
If M5 accepts, then M rejects.

The termination of M over all inputs is guaranteed by the following fact.

For any w e ¥*,
either the computation of My accepts,
or the computation of My accepts,
but not both.
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Decidable and undecidable problems

A problem is decidable if
the language corresponding to the problem is recursive.

Otherwise, the problem is undecidable.

@ Decidable problems: SAT problem, Primality problem, etc.
e Undecidable problems: Halting problem of TMs (defined later).
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Encoding of TMs

W.l.o.g, we restrict our attention to TMs
with the input alphabet 3 = {0, 1} and the tape alphabet I" = {0, 1, B}.
Let M = (Q,%,T,0,q1, B, F) such that Q = {q1,...,qn}
Let X1, X5, X3 denote 0,1, B and Dy, Dy denote L, R.

Binary encoding of M (denoted by (M)

e each transition 0(g;, X;) = (gx, Xi, Dy,) is encoded by the binary word
0°10710%1010™. (1)
o A binary encoding of M is a word of the form
111 code; 11 codey 11 ... 11 code, 111,

where each code; is a word of the form (1) and
each transition of M is encoded by one of the code;’s.

The notation (M, w) (where M is a TM and w € {0,1}*):
The concatenation of (M) and w.

Zhilin Wu (SKLCS) Chomsky hierarchy (Turing machine) October 10, 2012



Encoding of TMs: Example

TM for L = 10*

Let M = ({q1,42,¢3},{0,1},{0,1, B}, 6,41, {g3}), where
° 0(q1,1) = (g2, 1, R),
° 0(q2,0) = (¢2,0, R),
° 0(q2, B) = (g3, B, L).

| \

The encoding
Encoding of § transitions,

@ d(q1,1) = (g2,1, R): 0100100100100,

@ 4(q2,0) = (g2,0, R): 001010010100,

o 3(ga, B) = (g3, B, L): 0010001000100010.
Then (M, 1000) is the following word,

1110100100100100110010100101001100100010001000101111000.
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Halting problem of TMs

Halting problem.

Given an input (M, w), decide whether the computation of M on w
halts.

Ly = {{M,w) | The comutation of M over w halts}.
Proposition. The language L, is recursively enumerable.
6(gi, 1) = (g;,0, L)

(M) 071001071010

0': encoding of ¢;
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Halting problem of TMs (continued)

Theorem. The language L is not recursive.

Two notations
e M;: The TM M whose binary encoding (M) is the binary encoding of the
integer 1.

e w;: The j-th word in the list of the words in {0, 1}* according to the
canonical order.
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Halting problem of TMs (continued)

Proof sketch (Diagonalization argument).
To the contrary, suppose Lj, is recursive. w;

Then 3 a TM M, deciding Lp,. '
Define M, as follows:

Owver an input (M), M
if My, accepts {M,{M)), 2 | IN IO |0 | 1|1
then loop forever, 310 [ IN_1NYo | 1]o

otherwise accepts.

Derivation of contradiction. 5 1] 0700 ] 1N 1N0

o If My halts over (M), 6 111010 No
then M}, does not accept (Ma, (Ma)),
so Mg does not halt over (My).
@ If My does not halt over (My),
then <Md, <Md>> ¢ Lh,
so My, rejects (Ma,{(Ma),
therefore, over (Mg), Mg accepts and halts.
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