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Formal grammar

Definition

A formal grammar G � pN ,Σ,P, Sq,
N : nonterminals,
Σ: terminals,
P: production rules αÑ β, where α P pN Y Σq�, β P pN Y Σq�,
S P N : start symbol.

Derivation relation: If αÑ β, then w1αw2 |ù w1βw2 for any
w1, w2 P pN Y Σq�

The language generated by G (denoted by LpGq): tw P Σ� | S |ù� wu.

Grammars

Type-0 (Phrase-structure): αÑ β (no restrictions),

Type-1(Context-sensitive): αAβ Ñ αγβ such that γ � ε,

Type-2 (Context-free): AÑ γ,

Type-3 (Right linear): AÑ a and AÑ aB.
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Chomsky hierarchy

Grammar Languages Automata

Type-0 Recursively enumerable Turing machine

Type-1 Context-sensitive Linear-bounded nondet. Turing machine

Type-2 Context-free nondet. pushdown automaton

Type-3 Regular Finite state automaton

Strictness of the inclusion
Context-sensitive � Recursive � Recursively enumerable,

Context-sensitive and non-context-free: tanbncn | n P Nu,
Context-free and non-regular: tanbn | n P Nu.
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Informal definition

. . .0 1 1 0 0 1 0 1 1 0

Finite
State

Control

read/write head

infinite tapeleftmost cell

Informally, a Turing machine consists of
an infinite tape

with a read/write head
controlled by

a finite state device.
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Formal definition

A Turing machine M is a tuple pQ,Σ,Γ, δ, q0, B, F q, where

Q: Finite set of states,

Γ: Finite set of tape alphabet,

B: a symbol in Γ, called blank,

Σ: A subset of Γ, not including B, called the input alphabet,

δ: Next-move function, a partial mapping from Q� Γ to Q� Γ� tL,Ru,

q0 P Q: Initial state,

F � Q: Set of final states.
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Formal definition (continued)

Instantaneous configuration

An instantaneous configuration of M � pQ,Σ,Γ, δ, q0, B, F q is a sequence
α1qα2, where

q P Q: The current state,

α1 P Γ�: The sequence of symbols from the leftmost cell to the head, with
itself excluded,

α2 P Γ�: The sequence of symbols from the head to the rightmost
non-blank symbol, or ε if the head is scanning a blank.

Initial configuration: q0w (w is the input).

. . .a1 a2 a3 a4 a5 a6 a7 a8 B B

q

α1 α2
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Formal definition (continued)

A move $M

if δpq,Xiq � pp, Y, Lq, then

X1 . . . Xi�1 q XiXi�1 . . . Xn $M X1 . . . Xi�2 p Xi�1Y Xi . . . Xn.

Alternatively, if δpq,Xiq � pp, Y,Rq, then

X1 . . . Xi�1 q XiXi�1 . . . Xn $M X1 . . . Xi�1Y p Xi�1 . . . Xn,

in particular, in the case i� 1 � n, the string Xi . . . Xn is empty, then the
righthand side is longer than the lefthand side.

Languages accepted by M (denoted by LpMq)

LpMq � tw | w P Σ�, Dp P F, α1 P Γ�, α2 P Γ� s.t. q0w $
�
M α1pα2u ,

where $�
M : The reflexive and transitive closure of $M .
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Example

A TM M accepting the language t0n1n | n ¥ 1u:
The intuition:

. . .0 0 0 1 1 1

Finite
State
Control

B Bspace
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Example

A TM M accepting the language t0n1n | n ¥ 1u:
The intuition:

. . .X 0 0 Y 1 1

Finite
State
Control

B Bspace
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Example

A TM M accepting the language t0n1n | n ¥ 1u:

. . .X X 0 Y 1 1

Finite
State
Control

B Bspace

Q � tq0, q1, q2, q3, q4u, Σ � t0, 1u, Γ � t0, 1, X, Y,Bu, F � tq4u,

δ 0 1 X Y B

q0 pq1, X,Rq � � pq3, Y, Rq �

q1 pq1, 0, Rq pq2, Y, Lq � pq1, Y, Rq �

q2 pq2, 0, Lq � pq0, X,Rq pq2, Y, Lq �

q3 � � � pq3, Y, Rq pq4, B, Lq
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Mutitape Turing machine

A finite state control with k tapes and k tape heads, one for each tape.

In one move,
depending on the state and the symbols scanned by the tape heads,
the machine

changes the state,
changes the symbols scanned by the tape heads,
moves the tape heads left or right, independently for each tape.

Initially, the input is in the first tape and the other tapes are blank.

a1,1 a1,2 a1,3

Finite
State
Control

. . .

. . .

a1,4 B B

a2,1 a2,2 a2,3 a2,4 a2,5 B
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Multitape TM � TM

Theorem. Multitape TMs can be simulated by TMs.

a1,1 a1,2 a1,3

Finite
State
Control

. . .

. . .

a1,4 B B

a2,1 a2,2 a2,3 a2,4 a2,5 B

a2,1 a2,2 . . .. $ a1,1 $ a1,2 $ $ B B $ /

Symbols denoting the two heads

. . .

left endmarker right endmarkerseparator
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Nondeterministic TM

The only difference from TM: δ is not a function anymore,

δ � Q� Γ�Q� Γ� tL,Ru.

In other words, δ : Q� Γ Ñ 2Q�Γ�tL,Ru.
In each move, there are a finite number of (nondet.) choices.

Theorem. Nondet. TM � TM.
A nondet. TM M1 can be simulated by a three-tape TM M2 as follows.
Suppose r is the maximum number of nondet. choices in each move of M1.

The input of M1 is put on tape 1 of M2.

M2 generates the sequences in t1, . . . , ru� on tape 2 in the canonical
order.

Shorter sequences are generated earlier;
the sequences of the same length are generated according to the numerical
order.

Zhilin Wu (SKLCS) Chomsky hierarchy (Turing machine) October 10, 2012 14 / 28



Nondeterministic TM

The only difference from TM: δ is not a function anymore,

δ � Q� Γ�Q� Γ� tL,Ru.

In other words, δ : Q� Γ Ñ 2Q�Γ�tL,Ru.
In each move, there are a finite number of (nondet.) choices.
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A nondet. TM M1 can be simulated by a three-tape TM M2 as follows.
Suppose r is the maximum number of nondet. choices in each move of M1.

The input of M1 is put on tape 1 of M2.

M2 generates the sequences in t1, . . . , ru� on tape 2 in the canonical
order.

For each sequence k1 . . . kn generated on tape 2,
M2 copies the input to tape 3, simulates the n moves of M1 on the input,
with the sequence generated on tape 2 as the nondet. choices of M1.

If for some sequence k1 . . . kn, the simulation of M1 on tape 3 accepts,
then M2 accepts.
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From TM to Type-0 grammar

Let M � pQ,Σ,Γ, δ, q0, B, F q be a TM. The Type-0 grammar G

first nondet. generates a finite word
�
a1
a1



. . .

�
an
an


�
ε
B



. . .

�
ε
B



,

with the intention that

a1 . . . an is the input of M ,
the blanks in the second component denote the space used by M .

then G simulates the computation of M over a1 . . . an,
by rewriting the second components of the generated word.
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then G simulates the computation of M over a1 . . . an,
by rewriting the second components of the generated word.

Formally, G � pN ,Σ,P, Sq is defined as follows.

N � Q
�
pΣY tεuq � Γ

�
tA1, A2, A3u, T � Σ, S � A1,

P includes the following rules,

A1 Ñ q0A2, A2 Ñ ra, asA2, A2 Ñ A3, A3 Ñ rε,BsA3, A3 Ñ ε,
qra,Xs Ñ ra, Y sp
for each a P Σ Y tεu and q, p,X, Y : δpq,Xq � pp, Y,Rq,
ra1, Zsqra2, Xs Ñ pra1, Zsra2, Y s
for each a1, a2 P Σ Y tεu, Z P Γ, and q, p,X, Y : δpq,Xq � pp, Y, Lq,
ra,Xsq Ñ qaq, qra,Xs Ñ qaq, q Ñ ε
for each a P Σ, X P Γ, and q P F .
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From TM to Type-0 grammar (continued)

Example.
TM for t0n1n | n P Nu.
The grammar:

A1 |ù q0A2 |ù q0r0, 0sA2 |ù . . .
|ù q0r0, 0sr0, 0sr0, 0sr1, 1sr1, 1sr1, 1sA2

|ù q0r0, 0sr0, 0sr0, 0sr1, 1sr1, 1sr1, 1sA3

|ù q0r0, 0sr0, 0sr0, 0sr1, 1sr1, 1sr1, 1srε,BsA3

|ù q0r0, 0sr0, 0sr0, 0sr1, 1sr1, 1sr1, 1srε,Bs
|ù r0, Xsq1r0, 0sr0, 0sr1, 1sr1, 1sr1, 1srε,Bs
|ù. . .
|ù r0, Xsr0, 0sr0, 0sq1r1, 1sr1, 1sr1, 1srε,Bs
|ù r0, Xsr0, 0sq2r0, 0sr1, Y sr1, 1sr1, 1srε,Bs
|ù . . .
|ù r0, Xsr0, Xsr0, Xsq0r1, Y sr1, Y sr1, Y srε,Bs
|ù r0, Xsr0, Xsr0, Xsr1, Y sq3r1, Y sr1, Y srε,Bs
|ù r0, Xsr0, Xsr0, Xsr1, Y sr1, Y sq3r1, Y srε,Bs
|ù r0, Xsr0, Xsr0, Xsr1, Y sr1, Y sr1, Y sq3rε,Bs
|ù r0, Xsr0, Xsr0, Xsr1, Y sr1, Y sr1, Y srε,Bsq4
|ù r0, Xsr0, Xsr0, Xsr1, Y sr1, Y sr1, Y sq4q4
|ù r0, Xsr0, Xsr0, Xsr1, Y sr1, Y sq41q4q4
|ù . . .
|ù q40q40q40q41q41q41q4q4
|ù . . .
|ù 000111
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From Type-0 grammar to TM

Let G � pN ,Σ,P, Sq be a Type-0 grammar.
Construct a nondet. TM M to recognize the language LpGq.

M has two tapes.

The input of M (say w) is in tape 1.

M simulates the derivation relation of G in tape 2 by repeating the
following procedure.

1 It nondet. chooses a position i in tape 2 and a production rule αÑ β.

If α appears from position i in tape 2, then α is replaced by β in tape 2.
Some shifting over of the symbols on tape 2 should be done if |α| � |β|.

2 M compares the sequence of symbols in tape 2 with the sequence in tape
1, to see whether w has been generated by G. If so, then M accepts.
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Decision problems and problem instances

Language-theoretical viewpoint:

Decision problems: A language over a finite alphabet Σ.

Problem instances: A finite word over the alphabet Σ.

SAT: An example

SAT: Decide whether a given Boolean formula is satisfiable or not ?

Instances of SAT problem: The Boolean formulas, e.g.
px1_ x2_ x3q ^ p x1_ x2_ x3q ^ px1_ x2_ x3q.

SAT problem: The set of satisfiable Boolean formulas.

More formally,

An instance of SAT problem: A finite word over the alphabet
ΣSAT :� t_,^, , p , qu Y tx, 0, 1, . . . , 9u.

SAT problem: A language over the alphabet ΣSAT .
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Recursively enumerable and recursive languages

Recursively enumerable (r.e.) languages

A language L � Σ� is recursively enumerable if L � LpMq for some TM M .

If w P LpMq, then the computation of M over w
halts with a final state.

If w R LpMq, then the computation of M over w
either halts with a non-final state or never halts.

Recursive languages

A language L � Σ� is recursive if L � LpMq for some TM M such that M
halts over all inputs.

If w P LpMq, then the computation of M over w
halts with a final state.

If w R LpMq, then the computation of M over w
halts with a non-final state.

Intuitively, for a recursive language L, D an algorithm to tell for every input w,
if w P L, then the algorithm answers “yes”, otherwise, it answers “no”.
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Basic properties of r.e. and recursive languages

Theorem. The following closure properties hold.
R.e. languages are closed under union and intersection.
Recursive languages are closed under all Boolean operations.

Proof sketch.

Union and intersection:
Simulate simultaneously the two TMs by a two-tape TM.
Complementation for recursive languages: Replace F by QzF .

Theorem. Let L � Σ�. If L and Σ�zL are both r.e., then L is recursive.

Proof sketch.
Let M1,M2 : L � LpM1q and Σ�zL � LpM2q.
Then a two-tape TM M is constructed to simulate simultaneously M1

and M2.

If M1 accepts, then M accepts.
If M2 accepts, then M rejects.

The termination of M over all inputs is guaranteed by the following fact.

For any w P Σ�,
either the computation of M1 accepts,
or the computation of M2 accepts,
but not both.
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Decidable and undecidable problems

A problem is decidable if

the language corresponding to the problem is recursive.

Otherwise, the problem is undecidable.

Example

Decidable problems: SAT problem, Primality problem, etc.

Undecidable problems: Halting problem of TMs (defined later).
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Encoding of TMs

W.l.o.g, we restrict our attention to TMs
with the input alphabet Σ � t0, 1u and the tape alphabet Γ � t0, 1, Bu.
Let M � pQ,Σ,Γ, δ, q1, B, F q such that Q � tq1, . . . , qnu.
Let X1, X2, X3 denote 0, 1, B and D1, D2 denote L,R.

Binary encoding of M (denoted by xMy)

each transition δpqi, Xjq � pqk, Xl, Dmq is encoded by the binary word

0i10j10k10l10m. (1)

A binary encoding of M is a word of the form

111 code1 11 code2 11 . . . 11 coder 111,

where each codei is a word of the form (1) and
each transition of M is encoded by one of the codei’s.

The notation xM,wy (where M is a TM and w P t0, 1u�):
The concatenation of xMy and w.
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Encoding of TMs: Example

TM for L � 10�

Let M � ptq1, q2, q3u, t0, 1u, t0, 1, Bu, δ, q1, tq3uq, where

δpq1, 1q � pq2, 1, Rq,

δpq2, 0q � pq2, 0, Rq,

δpq2, Bq � pq3, B, Lq.

The encoding

Encoding of δ transitions,

δpq1, 1q � pq2, 1, Rq: 0100100100100,

δpq2, 0q � pq2, 0, Rq: 001010010100,

δpq2, Bq � pq3, B, Lq: 0010001000100010.

Then xM, 1000y is the following word,

1110100100100100110010100101001100100010001000101111000.
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Halting problem of TMs

Halting problem.

Given an input xM,wy, decide whether the computation of M on w
halts.

Lh � txM,wy | The comutation of M over w haltsu.

Proposition. The language Lh is recursively enumerable.

1 1 1 . . . 1 1 1 . . .

〈M〉 w

. . .

0 0 0 . . .

0i: encoding of qi

1

δ(qi, 1) = (qj, 0, L)

. . .

0i10010j1010
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Halting problem of TMs (continued)

Theorem. The language Lh is not recursive.

Two notations

Mi: The TM M whose binary encoding xMy is the binary encoding of the
integer i.

wj : The j-th word in the list of the words in t0, 1u� according to the
canonical order.
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Halting problem of TMs (continued)

Proof sketch (Diagonalization argument).
To the contrary, suppose Lh is recursive.
Then D a TM Mh deciding Lh.
Define Md as follows:

Over an input xMy,
if Mh accepts xM, xMyy,
then loop forever,
otherwise accepts.

Derivation of contradiction.

If Md halts over xMdy,
then Mh does not accept xMd, xMdyy,
so Md does not halt over xMdy.

If Md does not halt over xMdy,
then xMd, xMdyy R Lh,
so Mh rejects xMd, xMdyy,
therefore, over xMdy, Md accepts and halts.

. . .

1

1 2 3 4 5 6

wj

2

3

4

5

6

Mi

0 1 0 1 1 0 . . .

1 1 0 0 1 1 . . .

. . .

. . .

. . .

. . .

0 1 1 0 1 0

1 0 1 0 1 1

1 0 0 1 1 0

1 0 1 0 1 0

...
...

...
...

...
...

...
.. .
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