Automata theory and its applications Lecture 2: Chomsky hierarchy-Overview and Turing machine

Zhilin Wu

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

October 10, 2012

Zhilin Wu (SKLCS)

・ロト ・日ト ・ヨト

Outline

1 Chomsky hierarchy: An Overview

2 Turing machine

- Definition
- Equivalence with Type-0 grammar
- Halting problem: Undecidability

イロト イヨト イヨト イヨト

Formal grammar

Definition

- A formal grammar $G = (\mathcal{N}, \Sigma, \mathcal{P}, S),$
 - \mathcal{N} : nonterminals,
 - Σ : terminals,
 - \mathcal{P} : production rules $\alpha \to \beta$, where $\alpha \in (\mathcal{N} \cup \Sigma)^+, \beta \in (\mathcal{N} \cup \Sigma)^*$,
 - $S \in \mathcal{N}$: start symbol.
- Derivation relation: If $\alpha \to \beta$, then $w_1 \alpha w_2 \models w_1 \beta w_2$ for any $w_1, w_2 \in (\mathcal{N} \cup \Sigma)^*$
- The language generated by G (denoted by L(G)): $\{w \in \Sigma^* \mid S \models^* w\}$.

Grammars

- Type-0 (Phrase-structure): $\alpha \rightarrow \beta$ (no restrictions),
- Type-1 (Context-sensitive): $\alpha A\beta \rightarrow \alpha \gamma \beta$ such that $\gamma \neq \varepsilon$,
- Type-2 (Context-free): $A \rightarrow \gamma$,
- Type-3 (Right linear): $A \to a$ and $A \to aB$.

Chomsky hierarchy

Grammar	Languages	Automata	
Type-0	Recursively enumerable	Turing machine	
Type-1	Context-sensitive	Linear-bounded nondet. Turing machine	
Type-2	Context-free	nondet. pushdown automaton	
Type-3	Regular	Finite state automaton	

Strictness of the inclusion

- Context-sensitive \subset Recursive \subset Recursively enumerable,
- Context-sensitive and non-context-free: $\{a^n b^n c^n \mid n \in \mathbb{N}\},\$
- Context-free and non-regular: $\{a^n b^n \mid n \in \mathbb{N}\}.$

イロト イヨト イヨト イヨト

1 Chomsky hierarchy: An Overview

2 Turing machine

- Definition
- Equivalence with Type-0 grammar
- Halting problem: Undecidability

イロト イヨト イヨト イヨト

1 Chomsky hierarchy: An Overview

2 Turing machine

• Definition

- Equivalence with Type-0 grammar
- Halting problem: Undecidability

(ロ) (日) (日) (日) (日)

Informal definition

Informally, a Turing machine consists of an infinite tape with a read/write head controlled by a finite state device.

・ロト ・日下・ ・ ヨト

Formal definition

- A Turing machine M is a tuple $(Q, \Sigma, \Gamma, \delta, q_0, B, F)$, where
 - Q: Finite set of *states*,
 - Γ : Finite set of *tape alphabet*,
 - B: a symbol in Γ , called *blank*,
 - Σ : A subset of Γ , not including B, called the *input alphabet*,
 - δ : Next-move function, a partial mapping from $Q \times \Gamma$ to $Q \times \Gamma \times \{L, R\}$,
 - $q_0 \in Q$: Initial state,
 - $F \subseteq Q$: Set of final states.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Formal definition (continued)

Instantaneous configuration

An instantaneous configuration of $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ is a sequence $\alpha_1 q \alpha_2$, where

- $q \in Q$: The current state,
- $\alpha_1 \in \Gamma^*$: The sequence of symbols from the leftmost cell to the head, with itself excluded,
- $\alpha_2 \in \Gamma^*$: The sequence of symbols from the head to the rightmost non-blank symbol, or ε if the head is scanning a blank.

Initial configuration: $q_0 w$ (w is the input).

Formal definition (continued)

A move \vdash_M

if $\delta(q, X_i) = (p, Y, L)$, then

 $X_1 \dots X_{i-1} \ q \ X_i X_{i+1} \dots X_n \vdash_M X_1 \dots X_{i-2} \ p \ X_{i-1} Y X_i \dots X_n.$

Alternatively, if $\delta(q, X_i) = (p, Y, R)$, then

 $X_1 \dots X_{i-1} \ q \ X_i X_{i+1} \dots X_n \vdash_M X_1 \dots X_{i-1} Y \ p \ X_{i+1} \dots X_n,$

in particular, in the case i - 1 = n, the string $X_i \dots X_n$ is empty, then the righthand side is longer than the lefthand side.

Languages accepted by M (denoted by L(M))

$$L(M) = \{ w \mid w \in \Sigma^*, \exists p \in F, \alpha_1 \in \Gamma^*, \alpha_2 \in \Gamma^* \text{ s.t. } q_0 w \vdash_M^* \alpha_1 p \alpha_2 \},\$$

where \vdash_M^* : The reflexive and transitive closure of \vdash_M .

《曰》 《聞》 《臣》 《臣》 三臣 …

A TM M accepting the language $\{0^n 1^n \mid n \ge 1\}$: The intuition:

æ

11 / 28

(< E) < E)</p>

A TM M accepting the language $\{0^n 1^n \mid n \ge 1\}$: The intuition:

11 / 28

(< E) < E)</p>

A TM *M* accepting the language $\{0^n 1^n \mid n \ge 1\}$: The intuition:

æ

11 / 28

• • • •

A TM *M* accepting the language $\{0^n 1^n \mid n \ge 1\}$: The intuition:

11 / 28

• E •

A TM M accepting the language $\{0^n 1^n \mid n \ge 1\}$: The intuition:

æ

11 / 28

(< E) < E)</p>

A TM M accepting the language $\{0^n 1^n \mid n \ge 1\}$: The intuition:

æ

(< E) < E)</p>

A TM *M* accepting the language $\{0^n 1^n \mid n \ge 1\}$: The intuition:

æ

• 3 >

A TM M accepting the language $\{0^n 1^n \mid n \ge 1\}$: The intuition:

11 / 28

(< E) < E)</p>

A TM *M* accepting the language $\{0^n 1^n \mid n \ge 1\}$: The intuition:

11 / 28

• E • •

A TM M accepting the language $\{0^n 1^n \mid n \ge 1\}$:

 $Q=\{q_0,q_1,q_2,q_3,q_4\},\, \Sigma=\{0,1\},\, \Gamma=\{0,1,X,Y,B\},\, F=\{q_4\},\,$

δ	0	1	X	Y	В
q_0	(q_1, X, R)	—	—	(q_3, Y, R)	—
q_1	$(q_1, 0, R)$	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	$(q_2, 0, L)$	_	(q_0, X, R)	(q_2, Y, L)	_
q_3	_	_	_	(q_3, Y, R)	(q_4, B, L)

Zhilin Wu (SKLCS)

Image: A matrix

Mutitape Turing machine

- A finite state control with k tapes and k tape heads, one for each tape.
- In one move,

depending on the state and the symbols scanned by the tape heads, the machine

- changes the state,
- changes the symbols scanned by the tape heads,
- moves the tape heads left or right, independently for each tape.

• Initially, the input is in the first tape and the other tapes are blank.

Multitape $TM \equiv TM$

Theorem. Multitape TMs can be simulated by TMs.

Zhilin Wu (SKLCS)

13 / 28

・ロト ・日ト ・ヨト

Nondeterministic TM

The only difference from TM: δ is not a function anymore,

 $\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$

In other words, $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$.

In each move, there are a finite number of (nondet.) choices.

Theorem. Nondet. $TM \equiv TM$.

A nondet. TM M_1 can be simulated by a three-tape TM M_2 as follows. Suppose r is the maximum number of nondet. choices in each move of M_1 .

- The input of M_1 is put on tape 1 of M_2 .
- M_2 generates the sequences in $\{1, \ldots, r\}^+$ on tape 2 in the canonical order.
 - Shorter sequences are generated earlier;
 - the sequences of the same length are generated according to the numerical order.

(ロ) (四) (三) (三)

Nondeterministic TM

The only difference from TM: δ is not a function anymore,

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

In other words, $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$.

In each move, there are a finite number of (nondet.) choices.

Theorem. Nondet. $TM \equiv TM$.

A nondet. TM M_1 can be simulated by a three-tape TM M_2 as follows. Suppose r is the maximum number of nondet. choices in each move of M_1 .

- The input of M_1 is put on tape 1 of M_2 .
- M_2 generates the sequences in $\{1, \ldots, r\}^+$ on tape 2 in the canonical order.
- For each sequence $k_1 \dots k_n$ generated on tape 2, M_2 copies the input to tape 3, simulates the *n* moves of M_1 on the input, with the sequence generated on tape 2 as the nondet. choices of M_1 .
- If for some sequence $k_1 \dots k_n$, the simulation of M_1 on tape 3 accepts, then M_2 accepts.

1 Chomsky hierarchy: An Overview

2 Turing machine

- Definition
- Equivalence with Type-0 grammar
- Halting problem: Undecidability

・ロト ・回ト ・ヨト

From TM to Type-0 grammar

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be a TM. The Type-0 grammar G• first nondet. generates a finite word

$$\left(\begin{array}{c}a_1\\a_1\end{array}\right)\cdots\left(\begin{array}{c}a_n\\a_n\end{array}\right)\left(\begin{array}{c}\varepsilon\\B\end{array}\right)\cdots\left(\begin{array}{c}\varepsilon\\B\end{array}\right),$$

with the intention that

- $a_1 \ldots a_n$ is the input of M,
- $\bullet\,$ the blanks in the second component denote the space used by M.
- then G simulates the computation of M over $a_1 \ldots a_n$, by rewriting the second components of the generated word.

From TM to Type-0 grammar

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be a TM. The Type-0 grammar G• first nondet. generates a finite word

$$\left(\begin{array}{c} a_1 \\ a_1 \end{array} \right) \cdots \left(\begin{array}{c} a_n \\ a_n \end{array} \right) \left(\begin{array}{c} \varepsilon \\ B \end{array} \right) \cdots \left(\begin{array}{c} \varepsilon \\ B \end{array} \right),$$

• then G simulates the computation of M over $a_1 \ldots a_n$, by rewriting the second components of the generated word.

Formally, $G = (\mathcal{N}, \Sigma, \mathcal{P}, S)$ is defined as follows.

• $\mathcal{N} = Q \bigcup (\Sigma \cup \{\varepsilon\}) \times \Gamma \bigcup \{A_1, A_2, A_3\}, \mathcal{T} = \Sigma, S = A_1,$

• \mathcal{P} includes the following rules,

•
$$A_1 \to q_0 A_2, A_2 \to [a, a] A_2, A_2 \to A_3, A_3 \to [\varepsilon, B] A_3, A_3 \to \varepsilon,$$

- $q[a, X] \rightarrow [a, Y]p$ for each $a \in \Sigma \cup \{\varepsilon\}$ and $q, p, X, Y : \delta(q, X) = (p, Y, R)$,
- $[a_1, Z]q[a_2, X] \rightarrow p[a_1, Z][a_2, Y]$ for each $a_1, a_2 \in \Sigma \cup \{\varepsilon\}, Z \in \Gamma$, and $q, p, X, Y : \delta(q, X) = (p, Y, L)$,
- $[a, X]q \rightarrow qaq, q[a, X] \rightarrow qaq, q \rightarrow \varepsilon$ for each $a \in \Sigma, X \in \Gamma$, and $q \in F$.

・ロト ・回ト ・ヨト ・ヨト

From TM to Type-0 grammar (continued)

Example. TM for $\{0^n 1^n \mid n \in \mathbb{N}\}$. The grammar:

$$\begin{split} &A_1 \models q_0 A_2 \models q_0 [0, 0] A_2 \models \dots \\ &\models q_0 [0, 0] [0, 0] [0, 0] [1, 1] [1, 1] [1, 1] A_3 \\ &\models q_0 [0, 0] [0, 0] [0, 0] [1, 1] [1, 1] [1, 1] A_3 \\ &\models q_0 [0, 0] [0, 0] [0, 0] [1, 1] [1, 1] [1, 1] [\varepsilon, B] \\ &\models q_0 [0, 0] [0, 0] [0, 0] [1, 1] [1, 1] [1, 1] [\varepsilon, B] \\ &\models q_0 [0, 0] [0, 0] [0, 0] [1, 1] [1, 1] [1, 1] [\varepsilon, B] \\ &\models [0, X] q_1 [0, 0] [0, 0] q_1 [1, 1] [1, 1] [1, 1] [\varepsilon, B] \\ &\models \dots \\ &\models [0, X] [0, 0] [0, 0] q_1 [1, 1] [1, 1] [1, 1] [\varepsilon, B] \\ &\models \dots \\ &\models [0, X] [0, 0] q_2 [0, 0] [1, Y] [1, 1] [1, 1] [\varepsilon, B] \\ &\models \dots \\ &\models [0, X] [0, X] [0, X] q_0 [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models \dots \\ &\models [0, X] [0, X] [0, X] [1, Y] q_3 [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [1, Y] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [0, X] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [0, X] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [0, X] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [0, X] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [0, X] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [0, X] [1, Y] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [0, X] [1, Y] [\varepsilon, B] \\ &\models [0, X] [0, X] [0, X] [0, X] [0, X] [0, X] \\ &\models [0, X] [0, X] [0, X] [0, X] [0, X] \\ &\models [0, X] [0, X] [0, X] [0, X] \\ &\models [0, X] [0, X] [0, X] [0, X] \\ &\models [0, X]$$

Zhilin Wu (SKLCS)

イロト イヨト イヨト イヨト

From Type-0 grammar to TM

Let $G = (\mathcal{N}, \Sigma, \mathcal{P}, S)$ be a Type-0 grammar. Construct a nondet. TM M to recognize the language L(G).

- $\bullet~M$ has two tapes.
- The input of M (say w) is in tape 1.
- M simulates the derivation relation of G in tape 2 by repeating the following procedure.

It nondet. chooses a position i in tape 2 and a production rule α → β.
 If α appears from position i in tape 2, then α is replaced by β in tape 2.
 Some shifting over of the symbols on tape 2 should be done if |α| ≠ |β|.

M compares the sequence of symbols in tape 2 with the sequence in tape 1, to see whether w has been generated by G. If so, then M accepts.

(D) (A) (A)

Chomsky hierarchy: An Overview

2 Turing machine

- Definition
- Equivalence with Type-0 grammar
- Halting problem: Undecidability

イロト イヨト イヨト イヨ

Decision problems and problem instances

Language-theoretical viewpoint:

- Decision problems: A language over a finite alphabet $\Sigma.$
- Problem instances: A finite word over the alphabet Σ .

SAT: An example

SAT: Decide whether a given Boolean formula is satisfiable or not ?

- Instances of SAT problem: The Boolean formulas, e.g. $(x1 \lor x2 \lor x3) \land (\neg x1 \lor x2 \lor \neg x3) \land (x1 \lor \neg x2 \lor x3).$
- SAT problem: The set of satisfiable Boolean formulas.

More formally,

- An instance of SAT problem: A finite word over the alphabet $\Sigma_{SAT} := \{ \lor, \land, \neg, (,) \} \cup \{x, 0, 1, \dots, 9 \}.$
- SAT problem: A language over the alphabet Σ_{SAT} .

Recursively enumerable and recursive languages

Recursively enumerable (r.e.) languages

A language $L \subseteq \Sigma^*$ is recursively enumerable if L = L(M) for some TM M.

- If $w \in L(M)$, then the computation of M over w halts with a final state.
- If w ∉ L(M), then the computation of M over w either halts with a non-final state or never halts.

Recursively enumerable and recursive languages

Recursively enumerable (r.e.) languages

A language $L \subseteq \Sigma^*$ is recursively enumerable if L = L(M) for some TM M.

- If $w \in L(M)$, then the computation of M over w halts with a final state.
- If w ∉ L(M), then the computation of M over w either halts with a non-final state or never halts.

Recursive languages

A language $L \subseteq \Sigma^*$ is recursive if L = L(M) for some TM M such that M halts over all inputs.

- If $w \in L(M)$, then the computation of M over w halts with a final state.
- If $w \notin L(M)$, then the computation of M over w halts with a non-final state.

Intuitively, for a recursive language L, \exists an algorithm to tell for every input w, if $w \in L$, then the algorithm answers "yes", otherwise, it answers "no".

Basic properties of r.e. and recursive languages

Theorem. The following closure properties hold.

- R.e. languages are closed under union and intersection.
- Recursive languages are closed under all Boolean operations.

Proof sketch.

• Union and intersection:

Simulate simultaneously the two TMs by a two-tape TM.

• Complementation for recursive languages: Replace F by $Q \setminus F$.

22 / 28

Basic properties of r.e. and recursive languages

Theorem. The following closure properties hold.

- R.e. languages are closed under union and intersection.
- Recursive languages are closed under all Boolean operations.

Theorem. Let $L \subseteq \Sigma^*$. If L and $\Sigma^* \setminus L$ are both r.e., then L is recursive.

Proof sketch.

Let $M_1, M_2 : L = L(M_1)$ and $\Sigma^* \setminus L = L(M_2)$.

Then a two-tape TM M is constructed to simulate simultaneously M_1 and M_2 .

If M_1 accepts, then M accepts. If M_2 accepts, then M rejects.

The termination of M over all inputs is guaranteed by the following fact.

```
For any w \in \Sigma^*,
either the computation of M_1 accepts,
or the computation of M_2 accepts,
but not both.
```

Decidable and undecidable problems

A problem is decidable if

the language corresponding to the problem is recursive.

Otherwise, the problem is undecidable.

Example

- Decidable problems: SAT problem, Primality problem, etc.
- Undecidable problems: Halting problem of TMs (defined later).

Encoding of TMs

W.l.o.g, we restrict our attention to TMs with the input alphabet $\Sigma = \{0, 1\}$ and the tape alphabet $\Gamma = \{0, 1, B\}$. Let $M = (Q, \Sigma, \Gamma, \delta, q_1, B, F)$ such that $Q = \{q_1, \ldots, q_n\}$. Let X_1, X_2, X_3 denote 0, 1, B and D_1, D_2 denote L, R.

Binary encoding of M (denoted by $\langle M \rangle$)

• each transition $\delta(q_i, X_j) = (q_k, X_l, D_m)$ is encoded by the binary word

 $0^i 10^j 10^k 10^l 10^m. (1)$

• A binary encoding of M is a word of the form

 $111 \operatorname{code}_1 11 \operatorname{code}_2 11 \ldots 11 \operatorname{code}_r 111,$

where each $code_i$ is a word of the form (1) and each transition of M is encoded by one of the $code_i$'s.

The notation $\langle M, w \rangle$ (where M is a TM and $w \in \{0, 1\}^*$): The concatenation of $\langle M \rangle$ and w.

Zhilin Wu (SKLCS)

/ 28

・ロト ・回ト ・ヨト ・ヨト

Encoding of TMs: Example

TM for $L = 10^*$

Let $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, \{q_3\})$, where

- $\delta(q_1, 1) = (q_2, 1, R),$
- $\delta(q_2, 0) = (q_2, 0, R),$
- $\delta(q_2, B) = (q_3, B, L).$

The encoding

Encoding of δ transitions,

- $\delta(q_1, 1) = (q_2, 1, R)$: 0100100100100,
- $\delta(q_2, 0) = (q_2, 0, R)$: 001010010100,
- $\delta(q_2, B) = (q_3, B, L)$: 0010001000100010.

Then $\langle M, 1000 \rangle$ is the following word,

Zhilin Wu (SKLCS)

・ロト ・ 同ト ・ ヨト ・ ヨト

Halting problem of TMs

Halting problem.

Given an input $\langle M, w \rangle$, decide whether the computation of M on w halts.

 $L_h = \{ \langle M, w \rangle \mid \text{The comutation of } M \text{ over } w \text{ halts} \}.$

Proposition. The language L_h is recursively enumerable.

 0^i : encoding of q_i

 $\delta(q_i, 1) = (q_j, 0, L)$ $\langle M \rangle \quad 0^i 10010^j 1010$ $1 \quad 1 \quad \cdots \quad 1 \quad 1 \quad 1 \quad 1$ $1 \quad 1 \quad \cdots \quad 1$

Zhilin Wu (SKLCS)

0 0 0

26 / 28

・ロト ・四ト ・ヨト ・ヨト

w

Halting problem of TMs (continued)

Theorem. The language L_h is not recursive.

Two notations

- M_i : The TM M whose binary encoding $\langle M \rangle$ is the binary encoding of the integer i.
- w_j : The *j*-th word in the list of the words in $\{0, 1\}^*$ according to the canonical order.

27 / 28

Halting problem of TMs (continued)

Proof sketch (Diagonalization argument). To the contrary, suppose L_h is recursive. Then \exists a TM M_h deciding L_h . Define M_d as follows:

> Over an input $\langle M \rangle$, if M_h accepts $\langle M, \langle M \rangle \rangle$, then loop forever, otherwise accepts.

Derivation of contradiction.

- If M_d halts over $\langle M_d \rangle$, then M_h does not accept $\langle M_d, \langle M_d \rangle \rangle$, so M_d does not halt over $\langle M_d \rangle$.
- If M_d does not halt over ⟨M_d⟩, then ⟨M_d, ⟨M_d⟩⟩ ∉ L_h, so M_h rejects ⟨M_d, ⟨M_d⟩⟩, therefore, over ⟨M_d⟩, M_d accepts and halts.

28 / 28