Automata theory and its applications

Lecture 5-6: Chomsky hierarchy-Regular languages

Zhilin Wu

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

November 4, 2012

Outline

- NFA, right linear grammar and regular expression
- 2 Pumping lemma
- 3 Myhill-Nerode theorem
- 4 DFA, subset construction and minimization
- 6 Closure properties
- 6 Decision problem

Nondeterministic finite state automata (NFA)

A nondeterministic finite state automaton \mathcal{A} is a tuple $(Q, \Sigma, \delta, q_0, F)$ such that

- Q is a finite set of states,
- Σ is the finite alphabet,
- q_0 is the initial state,
- $F \subseteq Q$ is the set of final states,
- $\delta \subseteq Q \times \Sigma \times Q$ is the transition relation.

A run of \mathcal{A} over a word $w = a_1 \dots a_n \in \Sigma^*$ is a state sequence $q_0 q_1 \dots q_n$ such that for every $i : 1 \leq i \leq n$, $(q_{i-1}, a_i, q_i) \in \delta$.

A run $q_0 \dots q_n$ is accepting if $q_n \in F$.

If there is an accepting run of \mathcal{A} over w, then w is said to be accepted by \mathcal{A} .

Let $\mathcal{L}(\mathcal{A})$ denote the set of words accepted by \mathcal{A} .

NFA with ε transitions (ε -NFA)

A ε -NFA is a NFA $(Q, \Sigma, \delta, q_0, F)$ with

$$\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q.$$

A run of \mathcal{A} over a word $w \in \Sigma^*$ is a sequence $q_0 a_1 q_1 a_2 \dots a_n q_n$ s.t.

for every $i: 1 \leq i \leq n$, $(q_{i-1}, a_i, q_i) \in \delta$ and $a_1 \dots a_n = w$.

Note that a_i $(1 \le i \le n)$ may be ε .

Proposition. ε -NFA \equiv NFA.

Because a NFA is a ε -NFA, it suffices to prove that

from any ε -NFA \mathcal{A} , an equivalent NFA \mathcal{B} can be constructed.

NFA with ε transitions (ε -NFA): continued

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$. Compute inductively the ε -reachability relation R as follows.

- $R_0 = \{(q,q) \mid q \in Q\} \cup \{(q,q') \mid (q,\varepsilon,q') \in \delta\},\$
- $R_{i+1} = R_i \cup \{(q, q') \mid \exists q'' \in Q, (q, q''), (q'', q') \in R_i\}.$

Then let $\mathcal{B} = (Q, \Sigma, \delta', q_0, F)$ such that

$$\delta' = \{(q,a,q') \mid a \in \Sigma, \exists q''. (q,q'') \in R, (q'',a,q') \in \delta\}.$$

Right linear grammar

A right linear grammar is a grammar $G = (\mathcal{N}, \Sigma, \mathcal{P}, S)$ such that \mathcal{P} contains rules of the form

 $A \to aB$, or $A \to a$, or $A \to \varepsilon$, where $a \in \Sigma, B \in \mathcal{N}$.

Proposition. Right linear grammar \equiv NFA

From right linear grammar to NFA

Let $G = (\mathcal{N}, \Sigma, \mathcal{P}, S)$ be a right linear grammar.

Construct $\mathcal{A} = (\mathcal{N} \cup \{q_f\}, \Sigma, \delta, S, F)$ as follows.

- $F = \{q_f\} \cup \{A \mid A \to \varepsilon\}.$
- δ is defined by the following rules,

$$(A, a, B) \in \delta \text{ iff } A \to aB, \quad (A, a, q_f) \in \delta \text{ iff } A \to a.$$

Right linear grammar

A right linear grammar is a grammar $G = (\mathcal{N}, \Sigma, \mathcal{P}, S)$ such that \mathcal{P} contains rules of the form

$$A \to aB$$
, or $A \to a$, or $A \to \varepsilon$, where $a \in \Sigma, B \in \mathcal{N}$.

Proposition. Right linear grammar \equiv NFA

From right linear grammar to NFA

Let $G = (\mathcal{N}, \Sigma, \mathcal{P}, S)$ be a right linear grammar.

Construct $\mathcal{A} = (\mathcal{N} \cup \{q_f\}, \Sigma, \delta, S, F)$ as follows.

- $F = \{q_f\} \cup \{A \mid A \to \varepsilon\}.$
- δ is defined by the following rules,

$$(A, a, B) \in \delta \text{ iff } A \to aB, \quad (A, a, q_f) \in \delta \text{ iff } A \to a.$$

From NFA to right linear grammar

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a NFA.

Construct a right linear grammar $G = (Q, \Sigma, \mathcal{P}, q_0)$ as follows.

$$q \to aq' \text{ iff } (q, a, q') \in \delta, \quad q \to \varepsilon \text{ iff } q \in F.$$

Regular expression

Syntax of regular expressions is defined by the following rules,

$$r := a \mid \varepsilon \mid r_1 \cup r_2 \mid r_1 \cdot r_2 \mid r_1^*.$$

Semantics,

- $L(a) = \{a\}, L(\varepsilon) = \{\varepsilon\},$
- $L(r_1 \cup r_2) = L(r_1) \cup L(r_2)$,
- $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2),$
- $L(r_1^*) = (L(r_1))^*$,

where

- $L_1 \cdot L_2 = \{uv \mid u \in L_1, v \in L_2\},\$
- $\bullet L^* = \bigcup_{i=1}^{\infty} L^i,$
- $L^0 = \{\varepsilon\}, L^i = L^{i-1} \cdot L \text{ for any } i > 0.$

Equivalence between regular expression and NFA

Theorem. Regular expression \equiv NFA.

From regular expression to NFA

Let r be a regular expression. Construct \mathcal{A} from r inductively as follows.

- If r = a, then $\mathcal{A} = (\{q_0, q_1\}, \Sigma, \delta, q_0, \{q_1\})$ such that $(q_0, a, q_1) \in \delta$.
- If $r = \varepsilon$, then $\mathcal{A} = (\{q_0\}, \Sigma, \emptyset, q_0, \{q_0\}),$
- if $r = r_1 \cup r_2$, let $\mathcal{A}_i = (Q_i, \Sigma, \delta_i, q_0^i, F_i)$ for r_i (where i = 1, 2), then $\mathcal{A} = (Q_1 \cup Q_2 \cup \{q_0\}, \Sigma, \delta, q_0, F)$ such that
 - $\delta = \delta_1 \cup \delta_2 \cup \{(q_0, a, q) \mid (q_0^1, a, q) \in \delta_1 \text{ or } (q_0^2, a, q) \in \delta_2\},$
 - $F = F_1 \cup F_2$.
- If $r = r_1 \cdot r_2$, let $\mathcal{A}_i = (Q_i, \Sigma, \delta_i, q_0^i, F_i)$ for r_i (where i = 1, 2), then $\mathcal{A} = (Q_1 \cup Q_2, \Sigma, \delta, q_0^1, F)$ such that
 - $\delta = \delta_1 \cup \delta_2 \cup \{(q, a, q') \mid q \in F_1, (q_0^2, a, q') \in \delta_2\},$
 - if $q_0^1 \in F_1$ and $q_0^2 \in F$, then $F = F_2 \cup \{q_0^1\}$, otherwise $F = F_2$.
- If $r := (r_1)^*$, let $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ for r_1 , then $\mathcal{A} = (Q_1 \cup \{q_0\}, \Sigma, \delta, q_0, \{q_0\})$ such that $\delta = \delta_1 \cup \{(q_0, a, q) \mid (q_0^1, a, q) \in \delta_1\} \cup \{(q, a, q_0) \mid \exists q' \in F_1.(q, a, q') \in \delta_1\}.$

Equivalence between regular expression and NFA

Theorem. Regular expression \equiv NFA.

From NFA to regular expression

Let $\mathcal{A} = (Q, \Sigma, \delta, q_1, F)$ be a NFA. Suppose $Q = \{q_1, \dots, q_n\}$.

Consider the languages R_{ijk} 's:

The set of words over which there is a run from q_i to q_j such that the indices of all the intermediate states (not including q_i, q_j) are $\leq k$.

Define r_{ijk} 's inductively for R_{ijk} 's as follows.

$$\bullet \ r_{ij0} = \bigcup_{a:(q_i,a,q_j)\in \delta} a.$$

•
$$r_{ijk} = r_{ij(k-1)} \cup r_{ik(k-1)} (r_{kk(k-1)}) * r_{kj(k-1)}$$
.

Let
$$r = \bigcup_{q_i \in F} r_{1in}$$
.

Claim.
$$L(r) = L(A)$$
.

Regular languages:

Languages that can be defined by NFA (or right linear grammar or regular expression).

Outline

- 1 NFA, right linear grammar and regular expression
- 2 Pumping lemma
- 3 Myhill-Nerode theorem
- 4 DFA, subset construction and minimization
- 6 Closure properties
- 6 Decision problem

Pumping lemma

Pumping lemma. Let L be a regular language. Then there is $n \ge 1$ such that for any $u \in L$ with $|u| \ge n$, u can be decomposed into xyz satisfying that

- $|y| \geqslant 1$, $|y| \leqslant n$,
- and for any $i \in \mathbb{N}$, $xy^i z \in L$.

Suppose $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ is an NFA defining L.

Let n = |Q|.

Then for any $u = a_1 \dots a_m \in L$ such that $m \ge n$,

consider an accepting run of A on u, say $q_0a_1q_1...a_mq_m$.

Because $m \ge n$, it follows that

there must be $r, s : 0 \leq r < s \leq m$ such that $q_r = q_s$.

Let $x = a_1 \dots a_r$, $y = a_{r+1} \dots a_s$, $z = a_{s+1} \dots a_m$. For any $i \in \mathbb{N}$,

$$q_0 a_1 q_1 \dots a_r (q_r a_{r+1} \dots q_{s-1} a_s)^i q_s a_{s+1} q_{s+1} \dots a_m q_m$$

is still an accepting run of \mathcal{A} . Therefore, $xy^iz \in L$.

Applications of pumping lemma

 $L = \{a^n b^n \mid n \geqslant 1\}$ is not regular.

To the contrary, suppose that L is regular. Then there is a $n \ge 1$ satisfying the condition in pumping lemma.

Consider $u=a^nb^n$. Then u=xyz such that $|y|\geqslant 1$ and $|y|\leqslant n$ and $xy^iz\in L$ for any $i\in\mathbb{N}$.

- $y = a^i$ or $y = b^i$: $xy^2z \notin L$.
- $\bullet \ y = a^i b^j \colon x y^2 z \notin L.$

In both situations, we have a contradiction.

Corollary. Regular language \subset CFL.

Outline

- NFA, right linear grammar and regular expression
- 2 Pumping lemma
- 3 Myhill-Nerode theorem
- 4 DFA, subset construction and minimization
- 6 Closure properties
- 6 Decision problem

Myhill-Nerode equivalence relation

Let $L \subseteq \Sigma^*$. Define \sim_L over Σ^* as follows: For any $u, v \in \Sigma^*$,

$$u \sim_L v \text{ iff } \forall z \in \Sigma^*. uz \in L \Leftrightarrow vz \in L.$$

Proposition. \sim_L is a right congruence.

Proof.

 \sim_L is an equivalence relation: reflexive, transitive and symmetric. For any $u,v:u\sim_L v$ and $z\in\Sigma^*,\,uz\sim_L vz.$

The index of \sim_L is the number of equivalence classes of \sim_L .

Example: Let $L = a^*b$, then \sim_L contains

three equivalence classes a^* , a^*b , $a^*b(a \cup b)^+$.

Myhill-Nerode theorem

Theorem. Let $L \subseteq \Sigma^*$. Then L is regular iff \sim_L is of finite index.

"Only If" direction

Suppose L is defined by the NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$.

Then for any $x \in \Sigma^*$, define R(x) as

the set of states that can be reached from q_0 after reading x.

It follows that

for any
$$u, v \in \Sigma^*$$
, $R(u) = R(v) \Rightarrow u \sim_L v$.

Therefore, \sim_L is of finite index.

"If" direction

Suppose \sim_L is of finite index.

Let E_1, \ldots, E_n be the equivalence classes of \sim_L and $E_1 = [\varepsilon]$.

Then
$$\mathcal{A} = (\{E_1, \dots, E_n\}, \Sigma, \delta, E_1, \{E_i \mid E_i \cap L \neq \emptyset\}), \text{ where }$$

$$(E_i, a, E_j) \in \delta \text{ iff } \exists u \in E_i.ua \in E_j.$$

Outline

- NFA, right linear grammar and regular expression
- 2 Pumping lemma
- 3 Myhill-Nerode theorem
- 4 DFA, subset construction and minimization
- 6 Closure properties
- 6 Decision problem

DFA and subset construction

A DFA is an NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ such that for every $q \in Q$, $a \in \Sigma$, $|\delta(q, a)| \leq 1$.

A complete DFA is a DFA such that for every $q \in Q$, $a \in \Sigma$, $|\delta(q, a)| = 1$.

Theorem. NFA \equiv DFA.

It suffices to show that for every NFA \mathcal{A} , an equivalent DFA \mathcal{B} can be constructed.

The intuition:

DFA and subset construction: continued

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, construct $\mathcal{B} = (Q', \Sigma, \delta', q'_0, F')$ as follows.

- $\bullet \ Q' = Pow(Q),$
- $q_0' = \{q_0\},$
- $F' = \{X \in Pow(Q) \mid X \cap F \neq \emptyset\},\$
- for every $X \in Pow(Q), \ \delta(X, a) = \bigcup_{q \in X} \delta(q, a).$

The above construction is called the subset construction.

Uniqueness of minimum-size DFA

Theorem. For every regular language $L \subseteq \Sigma^*$, there is a unique complete DFA of the minimum size.

Morphism

Let $\mathcal{A} = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ and $\mathcal{B} = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ be two DFAs.

A morphism from \mathcal{A} to \mathcal{B} is a surjective mapping h from Q_1 to Q_2 such that

- $h(q_0^1) = q_0^2$,
- for every $q \in Q$, $q \in F_1$ iff $h(q) \in F_2$,
- for every $q, q' \in Q, a \in \Sigma$ s.t. $\delta_1(q, a) = q'$, it holds $\delta_2(h(q), a) = h(q')$.

A morphism is called an isomorphism iff h is bijective.

Uniqueness of minimum-size DFA: continued

Let $L \subseteq \Sigma^*$ be a regular language.

Let $\mathcal{A}_L = (Q_L, \Sigma, \delta_L, q_0^L, F_L)$ be the DFA corresponding to \sim_L ,

- Q_L is the set of equivalence classes of \sim_L ,
- $\delta_L([x], a) = [xa]$ for any $x \in \Sigma^*$,
- $q_0^L = [\varepsilon], F_L = \{ [x] \mid x \in L \}.$

Claim. For every DFA \mathcal{A} such that $L(\mathcal{A}) = L$, \exists a morphism from \mathcal{A} to \mathcal{A}_L .

Proof.

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a complete DFA such that $L(\mathcal{A}) = L$.

Then for every $x, y \in \Sigma^*$ such that $\delta(q_0, x) = \delta(q_0, y)$, we have

for every $z \in \Sigma^*$, $xz \in L$ iff $yz \in L$.

Define a mapping $h: Q \to Q_L$ as follows: h(q) = [x] with $\delta(q_0, x) = q$.

- h is surjective since \mathcal{A} is complete,
- $\bullet \ h(q_0) = [\varepsilon] = q_0^L,$
- if $q \in F$, then h(q) = [x] for $x \in \Sigma^*$ s.t. $\delta(q_0, x) = q$. So $x \in L$, $[x] \in F_L$,
- if $\delta(q, a) = q'$, then $\delta_L(h(q), a) = \delta_L([x], a) = [xa] = h(q')$ with $\delta(q_0, x) = q$.

Uniqueness of minimum-size DFA: continued

Let $L \subseteq \Sigma^*$ be a regular language.

Let $\mathcal{A}_L = (Q_L, \Sigma, \delta_L, q_0^L, F_L)$ be the DFA corresponding to \sim_L ,

- Q_L is the set of equivalence classes of \sim_L ,
- $\delta_L([x], a) = [xa]$ for any $x \in \Sigma^*$,
- $q_0^L = [\varepsilon], F_L = \{ [x] \mid x \in L \}.$

Claim. For every DFA \mathcal{A} such that $L(\mathcal{A}) = L$, \exists a morphism from \mathcal{A} to \mathcal{A}_L .

Because $|\mathcal{A}| \geqslant |\mathcal{A}_L|$,

it follows that A_L is the DFA defining L of the minimum size.

Uniqueness.

Suppose \mathcal{B} is a DFA of the minimum size defining L.

Then \mathcal{B} has the same size as \mathcal{A}_L .

According to the claim, there is a morphism h from \mathcal{B} to \mathcal{A}_L .

Because h is surjective, it follows that h is bijective.

Therefore, h is an isomorphism from \mathcal{B} to \mathcal{A}_L .

Minimization

The problem

Given a DFA A, construct an equivalent DFA B of the minimum size.

Let
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA.

Compute inductively an equivalence relation $\approx_{\mathcal{A}}$ over Q as follows, until $\approx_{\mathcal{A}}^i=\approx_{\mathcal{A}}^{i+1}.$

- $q \approx_{\mathcal{A}}^{0} q'$ iff $q \in F \Leftrightarrow q' \in F$,
- $q \approx_{\mathcal{A}}^{i+1} q'$ iff $q \approx_{\mathcal{A}}^{i} q'$ and $\forall a \in \Sigma$, $\delta(q, a) \approx_{\mathcal{A}}^{i} \delta(q', a)$.

Because $\forall i. \approx_{\mathcal{A}}^{i+1} \subseteq \approx_{\mathcal{A}}^{i}$, it follows that the above procedure terminates.

Minimization

The problem

Given a DFA A, construct an equivalent DFA B of the minimum size.

Let
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA.

Compute inductively an equivalence relation $\approx_{\mathcal{A}}$ over Q as follows, until $\approx_{\mathcal{A}}^i=\approx_{\mathcal{A}}^{i+1}.$

- $q \approx_{\mathcal{A}}^{0} q'$ iff $q \in F \Leftrightarrow q' \in F$,
- $q \approx_{\mathcal{A}}^{i+1} q'$ iff $q \approx_{\mathcal{A}}^{i} q'$ and $\forall a \in \Sigma$, $\delta(q, a) \approx_{\mathcal{A}}^{i} \delta(q', a)$.

Because $\forall i. \approx_{\mathcal{A}}^{i+1} \subseteq \approx_{\mathcal{A}}^{i}$, it follows that the above procedure terminates.

Observation. $\approx_{\mathcal{A}}$ enjoys the following properties.

- $q \approx_{\mathcal{A}} q' \Rightarrow q \in F \text{ iff } q' \in F \text{ and } \forall x \in \Sigma^*, \, \delta(q, x) \approx_{\mathcal{A}} \delta(q', x),$
- $q \not\approx_{\mathcal{A}} q' \Rightarrow \exists x \in \Sigma^* \text{ s.t. } \delta(q, x) \in F \text{ and } \delta(q', x) \notin F \text{ or vice versa.}$

Minimization

The problem

Given a DFA A, construct an equivalent DFA B of the minimum size.

Let
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA.

Compute inductively an equivalence relation $\approx_{\mathcal{A}}$ over Q as follows, until $\approx_{\mathcal{A}}^i=\approx_{\mathcal{A}}^{i+1}.$

- $q \approx_{\mathcal{A}}^{0} q'$ iff $q \in F \Leftrightarrow q' \in F$,
- $q \approx_{\mathcal{A}}^{i+1} q'$ iff $q \approx_{\mathcal{A}}^{i} q'$ and $\forall a \in \Sigma$, $\delta(q, a) \approx_{\mathcal{A}}^{i} \delta(q', a)$.

Because $\forall i. \approx_{\mathcal{A}}^{i+1} \subseteq \approx_{\mathcal{A}}^{i}$, it follows that the above procedure terminates.

Observation. $\approx_{\mathcal{A}}$ enjoys the following properties.

- $q \approx_{\mathcal{A}} q' \Rightarrow q \in F \text{ iff } q' \in F \text{ and } \forall x \in \Sigma^*, \, \delta(q, x) \approx_{\mathcal{A}} \delta(q', x),$
- $q \not\approx_{\mathcal{A}} q' \Rightarrow \exists x \in \Sigma^* \text{ s.t. } \delta(q, x) \in F \text{ and } \delta(q', x) \notin F \text{ or vice versa.}$

Corollary. $\forall u, v \in \Sigma^*, u \sim_L v \text{ iff } \delta(q_0, u) \approx_{\mathcal{A}} \delta(q_0, v).$

Therefore,

 $\mathcal{A}/\approx_{\mathcal{A}}$ is the DFA of the minimum size.

Outline

- NFA, right linear grammar and regular expression
- 2 Pumping lemma
- 3 Myhill-Nerode theorem
- 4 DFA, subset construction and minimization
- 6 Closure properties
- 6 Decision problem

Boolean operations

Theorem. Regular languages are closed under union, intersection and complementation.

Union:

Let $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ be two NFAs. Then $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ defines $L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$, where

- $Q = Q_1 \cup Q_2 \cup \{q_0\}, F = F_1 \cup F_2,$
- $\delta = \delta_1 \cup \delta_2 \cup \{(q_0, a, q) \mid (q_0^1, a, q) \in \delta_1\} \cup \{(q_0, a, q) \mid (q_0^2, a, q) \in \delta_2\}.$

Intersection:

Let $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ be two NFAs. Then $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ defines $L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$, where

- $Q = Q_1 \times Q_2$, $q_0 = (q_0^1, q_0^2)$, $F = F_1 \times F_2$,
- $((q_1,q_2),a,(q_1',q_2')) \in \delta$ iff $(q_1,a,q_1') \in \delta_1$ and $(q_2,a,q_2') \in \delta_2$.

Complementation:

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

Then $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q \backslash F)$ defines $\Sigma^* \backslash L(\mathcal{A})$.

Homomorphisms and inverse homomorphisms

Definition of homomorphism:

A mapping $h: \Sigma^* \to \Gamma^*$ such that $h(\varepsilon) = \varepsilon$ and h(xy) = h(x)h(y).

Remark: A homomorphism is determined by h(a)'s for every $a \in \Sigma$.

Example: $\Sigma = \{a, b\}$ and $\Pi = \{c, d\}$, h(a) = cc, h(b) = dd.

Theorem. Regular languages are closed under homomorphisms and inverse homomorphisms.

Homomorphism.

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a NFA and $h : \Sigma^* \to \Gamma^*$ be a homomorphism. Then $\mathcal{A}' = (Q', \Gamma, \delta', q_0, F)$ defines $h(L(\mathcal{A}))$, where Q' and δ' are defined as follows,

If $(q, a, q') \in \delta$ and $h(a) = b_1 \dots b_k$, then add (k-1)-new states p_1, \dots, p_{k-1} and add transitions $(q, b_1, p_1), \dots, (p_{k-1}, b_k, q')$. In particular, if $h(a) = \varepsilon$, then $(q, \varepsilon, q') \in \delta'$.

Claim. \mathcal{A}' defines $h(L(\mathcal{A}))$.

Homomorphisms and inverse homomorphisms

Definition of homomorphism:

A mapping $h: \Sigma^* \to \Gamma^*$ such that $h(\varepsilon) = \varepsilon$ and h(xy) = h(x)h(y).

Remark: A homomorphism is determined by h(a)'s for every $a \in \Sigma$.

Example: $\Sigma = \{a, b\}$ and $\Pi = \{c, d\}$, h(a) = cc, h(b) = dd.

Theorem. Regular languages are closed under homomorphisms and inverse homomorphisms.

Inverse homomorphism.

Let $\mathcal{A} = (Q, \Gamma, \delta, q_0, F)$ be a NFA and $h: \Sigma^* \to \Gamma^*$ be a homomorphism.

Then $\mathcal{A}' = (Q, \Sigma, \delta', q_0, F)$ defines $h^{-1}(L(\mathcal{A}))$, where δ' is defined as follows,

$$(q,a,q')\in \delta' \text{ iff } (q,h(a),q')\in \delta^*.$$

Outline

- 1 NFA, right linear grammar and regular expression
- 2 Pumping lemma
- 3 Myhill-Nerode theorem
- 4 DFA, subset construction and minimization
- 6 Closure properties
- 6 Decision problem

Nonemptiness

Nonemptiness problem:

Given a NFA A, is L(A) nonempty?

Let
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
.

Compute inductively the set of states R reachable from q_0 as follows.

- $R_0 = \{q_0\},$
- $R_{i+1} = R_i \cup \{q \mid \exists p \in R_i, a \in \Sigma.(p, a, q) \in \delta\}.$

 $L(\mathcal{A})$ is nonempty iff $R \cap F \neq \emptyset$.

Language inclusion

Language inclusion problem:

Given a NFA \mathcal{A} and a NFA \mathcal{B} , is $L(\mathcal{A}) \subseteq L(\mathcal{B})$?

Universality problem: Given a NFA \mathcal{A} , is $L(\mathcal{A}) = \Sigma^*$?

Theorem. Universality problem is PSPACE-complete.

 $Upper\ bound:$

Suppose $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a NFA.

A natural idea:

Construct the DFA $\mathcal{A}' = (Q', \Sigma, \delta', q'_0, F')$ by subset construction, decide the emptiness of $\mathcal{A}'' = (Q', \Sigma, \delta', q'_0, Q' \setminus F')$.

Nevertheless,

 \mathcal{A}' has exponentially many states.

Results from complexity theory.

• Reachability in directed graphs can be solved in NLOGSPACE

Language inclusion

Language inclusion problem:

Given a NFA \mathcal{A} and a NFA \mathcal{B} , is $L(\mathcal{A}) \subseteq L(\mathcal{B})$?

Universality problem: Given a NFA \mathcal{A} , is $L(\mathcal{A}) = \Sigma^*$?

Theorem. Universality problem is PSPACE-complete.

Upper bound:

Suppose $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a NFA.

A natural idea:

Construct the DFA $\mathcal{A}' = (Q', \Sigma, \delta', q'_0, F')$ by subset construction, decide the emptiness of $\mathcal{A}'' = (Q', \Sigma, \delta', q'_0, Q' \backslash F')$.

Nevertheless,

 \mathcal{A}' has exponentially many states.

Results from complexity theory.

- Reachability in directed graphs can be solved in NLOGSPACE Universality problem can be solved in NPSPACE.
- NPSPACE = PSPACE.

Theorem. Universality problem is PSPACE-complete.

Lower bound: Reduction from the membership problem of PSPACE TMs.

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be a nondeterministic TM with space bounded by cn (c is some constant) and $w = a_1 \dots a_n$.

Successful computation of M over w:

A word $C_0 \$ C_1 \$ \dots \$ C_n$ such that

- $C_0 = q_0 w B^{(c-1)n}$,
- for every $i: 1 \leq i \leq n, C_i \in \alpha q \beta$ with $q \in Q$ and $\alpha \beta \in \Gamma^{cn}$,
- for every $i: 0 \leq i < n, C_i \vdash_M C_{i+1}$,
- $C_n \in \Gamma^* F \Gamma^*$.

 ${\it Unsuccess ful\ computations:}$

Words in $(\Gamma \cup Q \cup \{\$\})^*$ that are not successful computations of M over w.

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be a nondeterministic TM with space bounded by cn (c is some constant) and $w = a_1 \dots a_n$.

Construct in PTIME a regular expression (or NFA) $r_{M,w}$ from M and w to describe the unsuccessful computations of M over w.

Let
$$\Sigma_C = Q \cup \Gamma \cup \$$$
.

A word $u \in r_{M,w}$ iff one of the following conditions holds.

- **1** u is not of the form $C_0 \$ C_1 \$ \dots \$ C_k$ where $\forall i : 0 \le i \le k, C_i \in \Gamma^* Q \Gamma^*$,
- 2 u does not start with $q_0 w B^{(c-1)n}$,
- \bullet there is j such that $C_j \not\vdash_M C_{j+1}$,
- $C_n \notin \Gamma^* F \Gamma^*.$

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be a nondeterministic TM with space bounded by cn (c is some constant) and $w = a_1 \dots a_n$.

Construct in PTIME a regular expression (or NFA) $r_{M,w}$ from M and w to describe the unsuccessful computations of M over w.

Let
$$\Sigma_C = Q \cup \Gamma \cup \$$$
.

A word $u \in r_{M,w}$ iff one of the following conditions holds.

• u is not of the form $C_0 \$ C_1 \$ \dots \$ C_k$ where $\forall i : 0 \leqslant i \leqslant k$, $C_i \in \Gamma^* Q \Gamma^*$,

$$r_1 = \frac{\Gamma^*\$\Sigma_C^* \cup \Gamma^*Q\Gamma^*\$\Sigma_C^* \cup \Sigma_C^*\$\Gamma^* \cup \Sigma_C^*\$\Gamma^*Q\Gamma^*Q\Gamma^*}{\Sigma_C^*\$\Gamma^*\$\Sigma_C^* \cup \Sigma_C^*\$\Gamma^*Q\Gamma^*\$\Sigma_C^*}$$

2 u does not start with $q_0 w B^{(c-1)n}$,

$$r_2 = (\Sigma_C \setminus \{q_0\}) \Sigma_C^* \cup \bigcup_{i=1}^n \Sigma_C^i (\Sigma_C \setminus \{a_i\}) \Sigma_C^* \cup \bigcup_{i=n+1}^{cn} \Sigma_C^i (\Sigma_C \setminus \{B\}) \Sigma_C^*$$

3 there is j such that $C_j \not\vdash_M C_{j+1}$,

$$r_3 = \bigcup_{i=1}^{cn-3} \bigcup_{(\sigma_1,\sigma_2,\sigma_3,\sigma_1',\sigma_2',\sigma_3') \notin f_M} \Sigma_C^* \$ \Sigma_C^i \sigma_1 \sigma_2 \sigma_3 \Sigma_C^{cn-(i+3)} \$ \Sigma_C^i \sigma_1' \sigma_2' \sigma_3' \Sigma_C^*$$

- $C_n \notin \Gamma^* F \Gamma^*.$
 - $r_4 = \Sigma_C^* \$ \Gamma^* (Q \backslash F) \Gamma^*$

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be a nondeterministic TM with space bounded by cn (c is some constant) and $w = a_1 \dots a_n$.

Construct in PTIME a regular expression (or NFA) $r_{M,w}$ from M and w to describe the unsuccessful computations of M over w.

Let
$$\Sigma_C = Q \cup \Gamma \cup \$$$
.

A word $u \in r_{M,w}$ iff one of the following conditions holds.

- u is not of the form $C_0 \$ C_1 \$ \dots \$ C_k$ where $\forall i : 0 \leqslant i \leqslant k, C_i \in \Gamma^* Q \Gamma^*, r_1 = \dots$
- ② u does not start with $q_0 w B^{(c-1)n}$, $r_2 = \dots$
- **3** there is j such that $C_j \not\vdash_M C_{j+1}$, $r_3 = \dots$
- $C_n \notin \Gamma^* F \Gamma^*.$ $r_4 = \dots$

Let $r_{M,w} = r_1 \cup r_2 \cup r_3 \cup r_4$.

Claim. M does not accept w iff $L(r_{M,w}) = \Sigma_C^*$.

Summary

- 1 NFA, right linear grammar and regular expression
- 2 Pumping lemma
- 3 Myhill-Nerode theorem
- 4 DFA, subset construction and minimization
- 6 Closure properties
- 6 Decision problem

Visibly pushdown languages