#### Automata theory and its applications Lecture 7-8: Visibly pushdown languages

#### Zhilin Wu

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

November 21, 2012

Zhilin Wu (SKLCS)

Visibly pushdown languages

November 21, 2012 1 / 30

・ロト ・回ト ・ヨト

## Outline

### 1 Visibly pushdown automata (VPA)

### 2 Closure properties

### 8 Visibly pushdown grammar (VPG)

#### 4 Logical characterization

- Equivalence of NFA and MSO
- Equivalence of VPA and  $MSO_{\mu}$

#### Decision problems

(日) (日) (日) (日) (日)

Parenthesises in arithmetic expressions



э.

イロト イヨト イヨト イヨト

Curly brackets in C Programs



< D > < B >

#### XML documents



< < >> < <</>

#### Recursive function calls and returns



< D > < B >

$$((((5 + x) * y + z) * (u - v)) / w$$

Zhilin Wu (SKLCS)

臣

《曰》 《卽》 《臣》 《臣》

$$(((5 + x) * y + z) * (u - v)) / w$$

(日) (四) (코) (코) (코) (코)

$$(((5 + x) * y + z) * (u - v)) / w$$

(日) (四) (王) (王) (王)

$$(((5 + x) * y + z) * (u - v)) / w$$

(日) (四) (里) (里)

$$((((5 + x) * y + z) * (u - v)) / w$$

(日) (四) (전) (전) (전) (전)

$$(((5 + x) * y + z) * (u - v)) / w$$

( ( \_\_\_\_\_

Zhilin Wu (SKLCS)

November 21, 2012 3 / 30

(日) (四) (里) (里)

$$(((5 + x) * y + z) * (u - v)) / w$$

(日) (四) (王) (王) (王)

Stack operations determined by the input symbol

$$(((5 + x) * y + z) * (u - v)) / w$$
  
(: Push  
): Pop

Zhilin Wu (SKLCS)

### Stack operations determined by the input symbol



< D > < B >

Stack operations determined by the input symbol



### Stack operations determined by the input symbol



Zhilin Wu (SKLCS)

## Visibly pushdown automata (VPA)

The alphabet  $\Sigma$  is partitioned into  $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ 

- $\Sigma_c$ : finite set of calls,
- $\Sigma_r$ : finite set of returns,
- $\Sigma_l$ : finite set of local actions.
- A (nondeterministic) VPA  $\mathcal{A}$  is a tuple  $(Q, \tilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ , where
  - Q is a finite set of states,
  - $\tilde{\Sigma}$  is the input alphabet,
  - $\Gamma$  is the stack alphabet,
  - $\delta \subseteq Q \times \Sigma_c \times Q \times (\Gamma \setminus \{\bot\}) \cup Q \times \Sigma_r \times \Gamma \times Q \cup Q \times \Sigma_l \times Q,$
  - $q_0$  is the initial state,
  - $\perp$  is the bottom symbol of the stack,
  - $F \subseteq Q$  is the set of final states.

# Visibly pushdown automata (VPA)

The alphabet  $\Sigma$  is partitioned into  $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ 

- $\Sigma_c$ : finite set of calls,
- $\Sigma_r$ : finite set of returns,
- $\Sigma_l$ : finite set of local actions.
- A (nondeterministic) VPA  $\mathcal{A}$  is a tuple  $(Q, \tilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ , where
  - $\bullet~Q$  is a finite set of states,
  - $\tilde{\Sigma}$  is the input alphabet,
  - $\Gamma$  is the stack alphabet,
  - $\bullet \ \delta \subseteq Q \times \Sigma_c \times Q \times (\Gamma \backslash \{\bot\}) \ \cup \ Q \times \Sigma_r \times \Gamma \times Q \ \cup \ Q \times \Sigma_l \times Q,$
  - $q_0$  is the initial state,
  - $\perp$  is the bottom symbol of the stack,
  - $F \subseteq Q$  is the set of final states.

Remark:

- No  $\varepsilon\text{-transitions},$
- Exactly one symbol is pushed in each call transition.

Zhilin Wu (SKLCS)

# Visibly pushdown automata (VPA)

- A (nondeterministic) VPA  $\mathcal{A}$  is a tuple  $(Q, \tilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ , where
  - Q is a finite set of states,
  - $\tilde{\Sigma}$  is the input alphabet,
  - $\Gamma$  is the stack alphabet,
  - $\bullet \ \delta \subseteq Q \times \Sigma_c \times Q \times (\Gamma \backslash \{\bot\}) \ \cup \ Q \times \Sigma_r \times \Gamma \times Q \ \cup \ Q \times \Sigma_l \times Q,$
  - $q_0$  is the initial state,
  - $\perp$  is the bottom symbol of the stack,
  - $F \subseteq Q$  is the set of final states.
- A deterministic VPA is a VPA  $\mathcal{A} = (Q, \tilde{\Sigma}, \Gamma, \delta, q_0, F)$  such that
  - for every  $(q, a) \in Q \times \Sigma_c$ , there is at most one pair  $(q', \gamma) \in Q \times (\Gamma \setminus \{\bot\})$  such that  $(q, a, q', \gamma) \in \delta$ ,
  - for every  $(q, a, \gamma) \in Q \times \Sigma_r \times \Gamma$ , there is at most one  $q' \in Q$  such that  $(q, a, \gamma, q') \in \delta$ ,
  - for every  $(q, a) \in Q \times \Sigma_l$ , there is at most one  $q' \in Q$  such that  $(q, a, q') \in \delta$ .

A deterministic VPA is *complete* if "at most" is replaced by "exactly".

イロト イヨト イヨト イヨト

## Visibly pushdown automata (VPA): continued

A run of a VPA  $\mathcal{A}$  over a word  $w = a_1 \dots a_n$  is

a sequence  $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$  s.t.

- $\bullet \ \forall i.q_i \in Q,$
- $\alpha_0 = \bot$ ,
- $\forall i : 1 \leq i < n$ , one of the following holds,

Call  $a_i \in \Sigma_c$ ,  $\exists \gamma \in \Gamma \setminus \{\bot\}$ . $(q_i, a_i, q_{i+1}, \gamma) \in \delta$ ,  $\alpha_{i+1} = \gamma \alpha_i$ , Return  $a_i \in \Sigma_r$ ,

- $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, \gamma, q_{i+1}) \in \delta, \ \alpha_i = \gamma \alpha_{i+1},$
- or  $(q_i, a_i, \bot, q_{i+1}) \in \delta$  and  $\alpha_i = \alpha_{i+1} = \bot$ .

Local  $a_i \in \Sigma_l$ ,  $(q_i, a_i, q_{i+1}) \in \delta$  and  $\alpha_{i+1} = \alpha_i$ .

## Visibly pushdown automata (VPA): continued

A run of a VPA  $\mathcal{A}$  over a word  $w = a_1 \dots a_n$  is

a sequence  $(q_0, \alpha_0)(q_1, \alpha_1) \dots (q_n, \alpha_n)$  s.t.

- $\bullet \ \forall i.q_i \in Q,$
- $\alpha_0 = \bot$ ,
- $\forall i : 1 \leq i < n$ , one of the following holds,

Call  $a_i \in \Sigma_c$ ,  $\exists \gamma \in \Gamma \setminus \{\bot\}$ . $(q_i, a_i, q_{i+1}, \gamma) \in \delta$ ,  $\alpha_{i+1} = \gamma \alpha_i$ , Return  $a_i \in \Sigma_r$ ,

•  $\exists \gamma \in \Gamma \setminus \{\bot\}.(q_i, a_i, \gamma, q_{i+1}) \in \delta, \ \alpha_i = \gamma \alpha_{i+1},$ 

• or 
$$(q_i, a_i, \bot, q_{i+1}) \in \delta$$
 and  $\alpha_i = \alpha_{i+1} = \bot$ .

Local  $a_i \in \Sigma_l$ ,  $(q_i, a_i, q_{i+1}) \in \delta$  and  $\alpha_{i+1} = \alpha_i$ .

A run  $(q_0, \alpha_0) \dots (q_n, \alpha_n)$  is accepting if  $q_n \in F$ .

A word w is accepted by a VPA  $\mathcal{A}$  if  $\exists$  an accepting run of  $\mathcal{A}$  over w.

The set of words accepted by  $\mathcal{A}$  is denoted by  $\mathcal{L}(\mathcal{A})$ .

**Remark**: Acceptance of VPAs are defined by final states, not by empty stack.

・ロト ・ 同ト ・ ヨト ・ ヨト

## Well-matched words

Let  $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$ .

The set of *well-matched* words  $w \in \Sigma^*$  is defined inductively as follows,

- $\varepsilon$  is well-matched,
- if w' is well matched, then

w = aw' or w = w'a such that  $a \in \Sigma_l$  is well-matched,

• if w' is well-matched, then

w = aw'b such that  $a \in \Sigma_c, b \in \Sigma_r$  is well-matched.

• if w' and w'' are well-matched, then w = w'w'' is well-matched.

**Example**: (())() is well-matched, while neither ()()) nor (() is.

Remark. As a result of the acceptance by final states,

VPAs over  $\widetilde{\Sigma}$  may accept non-well-matched words.

# Visibly pushdown languages (VPL)

A language  $L \subseteq \Sigma^*$  is a visibly pushdown language with respect to  $\tilde{\Sigma}$  if there is a VPA  $\mathcal{A}$  over  $\tilde{\Sigma}$ , satisfying that  $\mathcal{L}(\mathcal{A}) = L$ .

Example:

The language 
$$\{a^n b^n \mid n \ge 1\}$$
 is a VPL  
with respect to  $\widetilde{\Sigma} = \langle \{a\}, \{b\}, \emptyset \rangle$ .

#### Homework

Let  $L \subseteq \{a, b\}^*$  be the set of words with "equal number of a's and b's". Prove that L is not a VPL with respect to any partition of  $\Sigma = \{a, b\}$ .

# Embedding of CFL as VPLs

**Proposition**. For every CFL  $L \subseteq \Sigma^*$ , there are a VPL  $L' \subseteq (\Sigma')^*$  with respect to some  $\widetilde{\Sigma'}$  and a homomorphism  $h: (\Sigma')^* \to \Sigma^*$  such that L = h(L').

Let L be a CFL defined by a PDA  $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  (accept. by final states).

W.l.o.g, suppose that each  $(q, a, X, \alpha) \in \delta$  satisfies that  $\alpha = \varepsilon \text{ (pop) or } \alpha = X \text{ (stable) or } \alpha = YX \text{ (push).}$ Let  $\Sigma' = (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c, r, l\}$  and  $\widetilde{\Sigma}' = \langle (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{c\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{r\}, (\Sigma \cup \{\sigma_{\varepsilon}\}) \times \{l\} \rangle$ 

From  $\mathcal{A}$ , define a VPA  $\mathcal{A}' = (Q, \tilde{\Sigma}', \Gamma, \delta', q_0, Z_0, F)$  over  $\tilde{\Sigma}'$ , where  $\delta'$  is defined by the following rules,

- $\bullet \ \text{if} \ (q,a,X,q',\varepsilon) \in \delta, \ \text{then} \ (q,(a,r),X,q') \in \delta',$
- if  $(q, a, X, q', X) \in \delta$ , then add a new state  $q_1$ ,  $(q, (a, r), X, q_1), (q_1, (\sigma_{\varepsilon}, c), q_2, X) \in \delta'.$
- if  $(q, a, X, q', YX) \in \delta$ , then add two new states  $q_1, q_2$ , and  $(q, (a, r), X, q_1), (q_1, (\sigma_{\varepsilon}, c), q_2, X), (q_2, (\sigma_{\varepsilon}, c), q', Y) \in \delta'$ .

Let  $h: (\Sigma')^* \to \Sigma^*$  be a homomorphism defined by

 $\forall a \in \Sigma, s \in \{c, r, l\}. \ h((a, s)) = a, h(\sigma_{\varepsilon}, s) = \varepsilon.$ Then  $L = h(\mathcal{L}(\mathcal{A}')).$ 

Zhilin Wu (SKLCS)

# Outline

#### 1 Visibly pushdown automata (VPA)

### 2 Closure properties

#### 3 Visibly pushdown grammar (VPG)

#### 4 Logical characterization

- Equivalence of NFA and MSO
- Equivalence of VPA and  $MSO_{\mu}$

#### Decision problems

<ロト <問ト < 国ト < 国ト

**Proposition**. VPLs with respect to  $\widetilde{\Sigma}$  are closed under union and intersection. Let  $\mathcal{A}_1 = (Q_1, \widetilde{\Sigma}, \Gamma_1, \delta_1, q_0^1, \bot_1, F_1)$  and  $\mathcal{A}_2 = (Q_2, \widetilde{\Sigma}, \Gamma_2, \delta_2, q_0^2, \bot_2, F_2)$  be two VPAs.

Union.

Without loss of generality, suppose  $\bot_1 = \bot_2 = \bot$ . The VPA  $\mathcal{A} = (Q_1 \cup Q_2 \cup \{q_0\}, \tilde{\Sigma}, \Gamma_1 \cup \Gamma_2, \delta, q_0, \bot, F_1 \cup F_2)$  such that  $\delta_1 \cup \delta_2 \cup$   $\delta = \{(q_0, a, q', \gamma) \mid (q_0^1, a, q', \gamma) \in \delta_1 \text{ or } (q_0^2, a, q', \gamma) \in \delta_2\} \cup$   $\{(q_0, a, \gamma, q') \mid (q_0^1, a, \gamma, q') \in \delta_1 \text{ or } (q_0^2, a, \gamma, q') \in \delta_2\}$ defines  $\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$ .

#### Intersection.

The VPA  $\mathcal{A} = (Q_1 \times Q_2, \tilde{\Sigma}, \Gamma_1 \times \Gamma_2, \delta, (q_0^1, q_0^2), (\bot_1, \bot_2), F_1 \times F_2)$  such that  $\delta = \begin{cases} ((q_1, q_2), a, (q_1', q_2'), (\gamma_1, \gamma_2)) \mid (q_1, a, q_1', \gamma_1) \in \delta_1, (q_2, a, q_2', \gamma_2) \in \delta_2 \} \cup \\ ((q_1, q_2), a, (\gamma_1, \gamma_2), (q_1', q_2')) \mid (q_1, a, \gamma_1, q_1') \in \delta_1, (q_2, a, \gamma_2, q_2') \in \delta_2 \end{cases}$ defines  $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$ .

**Theorem.** For every VPA  $\mathcal{A}$ , a deterministic VPA  $\mathcal{A}'$  can be constructed such that  $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$ .

**Corollary**. VPLs with respect to  $\tilde{\Sigma}$  are closed under complementation. *Proof.* 

Suppose L is defined by a complete deterministic VPA  $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F).$ Then  $\mathcal{A}' = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, Q \setminus F)$  defines  $\Sigma^* \setminus \mathcal{L}(\mathcal{A}).$ 

Illustration of the intuition of the proof of the Theorem.

In an obviously way, we can define  $(q, \alpha) \xrightarrow{w} (q', \alpha')$ :

the reachability of the config.  $(q', \alpha')$  from  $(q, \alpha)$  by reading w.

**Observation**. Suppose  $(q, \alpha) \xrightarrow{w} (q', \alpha')$  and w is well-matched, then  $\alpha = \alpha'$ .

Point I.

A well-matched word w can be seen as a relation  $S_w \subseteq Q \times Q$ , without changing the content of the stack.

. . . . . . . . .

Image: A matrix

Illustration of the intuition of the proof of the Theorem.

In an obviously way, we can define  $(q, \alpha) \xrightarrow{w} (q', \alpha')$ :

the reachability of the config.  $(q', \alpha')$  from  $(q, \alpha)$  by reading w.

**Observation**. Suppose  $(q, \alpha) \xrightarrow{w} (q', \alpha')$  and w is well-matched, then  $\alpha = \alpha'$ .

Point I.

A well-matched word w can be seen as a relation  $S_w \subseteq Q \times Q$ , without changing the content of the stack.

#### Point II.

Suppose w is well-matched.

- S<sub>ε</sub> = Id<sub>Q</sub>.
  If w = aw' with a ∈ Σ<sub>l</sub>, then S<sub>w</sub> = {(q,q') | ∃q".(q, a, q") ∈ δ, (q", q') ∈ S<sub>w'</sub>}. Similarly for w = w'a.
- If w = aw'b with  $a \in \Sigma_c$  and  $b \in \Sigma_r$ , then  $S_w = \{(q,q') \mid \exists q_1, q_2, \gamma. \ (q, a, q_1, \gamma) \in \delta, (q_1, q_2) \in S_{w'}, (q_2, b, \gamma, q') \in \delta\}.$

Illustration of the intuition of the proof of the Theorem.

Point III. Get inspirations from the subset construction for NFAs.

Question:

What info. should be remembered after reading a word w in a NFA?

Image: A matrix

Illustration of the intuition of the proof of the Theorem.

Point III. Get inspirations from the subset construction for NFAs.

Question:

What info. should be remembered after reading a word w in a NFA?

Answer:

The set of states reachable from  $q_0$  after reading w.

Illustration of the intuition of the proof of the Theorem.

Point III. Get inspirations from the subset construction for NFAs.

Question:

What info. should be remembered after reading a word w in a nondeterministic VPA?

(4) (3) (4) (4) (4)

Illustration of the intuition of the proof of the Theorem.

Point III. Get inspirations from the subset construction for NFAs.

Question:

What info. should be remembered after reading a word w in a nondeterministic VPA?

Answer:

Let me think for a while ...

Illustration of the intuition of the proof of the Theorem.

**Point III**. Get inspirations from the subset construction for NFAs. Question:

> What info. should be remembered after reading a word w in a nondeterministic VPA?

Consider  $w_1 a w_2 a w_3 b b$  s.t.  $a \in \Sigma_c, b \in \Sigma_r$  and  $w_1, w_2, w_3$  are well-matched.

$$\{q_0^{'}\}_{R_1}^{'}$$
  $R_1^{'}$   $R_2^{'}$   $R_1^{'}$   $R_2^{'}$   $R_3^{'}$   $R_4^{'}$ 

Zhilin Wu (SKLCS)

Image: A matrix

Illustration of the intuition of the proof of the Theorem.

**Point III**. Get inspirations from the subset construction for NFAs. Question:

> What info. should be remembered after reading a word w in a nondeterministic VPA?

Consider  $w_1 a w_2 a w_3 b b$  s.t.  $a \in \Sigma_c, b \in \Sigma_r$  and  $w_1, w_2, w_3$  are well-matched.

Image: A matrix
Illustration of the intuition of the proof of the Theorem.

**Point III**. Get inspirations from the subset construction for NFAs. Question:

> What info. should be remembered after reading a word w in a nondeterministic VPA?

Consider  $w_1 a w_2 a w_3 b b$  s.t.  $a \in \Sigma_c, b \in \Sigma_r$  and  $w_1, w_2, w_3$  are well-matched.

Image: A matrix

Illustration of the intuition of the proof of the Theorem.

**Point III**. Get inspirations from the subset construction for NFAs. Question:

> What info. should be remembered after reading a word w in a nondeterministic VPA?

Consider  $w_1 a w_2 a w_3 b b$  s.t.  $a \in \Sigma_c, b \in \Sigma_r$  and  $w_1, w_2, w_3$  are well-matched.

Illustration of the intuition of the proof of the Theorem.

**Point III**. Get inspirations from the subset construction for NFAs. Question:

> What info. should be remembered after reading a word w in a nondeterministic VPA?

Consider  $w_1 a w_2 a w_3 b b$  s.t.  $a \in \Sigma_c, b \in \Sigma_r$  and  $w_1, w_2, w_3$  are well-matched.

A B + 
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Illustration of the intuition of the proof of the Theorem.

**Point III**. Get inspirations from the subset construction for NFAs. Question:

> What info. should be remembered after reading a word w in a nondeterministic VPA?

Consider  $w_1 a w_2 a w_3 b b$  s.t.  $a \in \Sigma_c, b \in \Sigma_r$  and  $w_1, w_2, w_3$  are well-matched.

### Complementation: continued

The construction for determinization  $\mathcal{A}' = (Q', \tilde{\Sigma}, \Gamma', \delta', (\mathrm{Id}_Q, \{q_0\}), F')$ :

- Q': (S, R) such that  $S \subseteq Q \times Q, R \subseteq Q$ ,
- $\Gamma'$ : letters (S, R, a) such that  $S \subseteq Q \times Q, R \subseteq Q, a \in \Sigma_c$ ,

• 
$$F' = \{(S, R) \mid R \cap F \neq \emptyset\},\$$

$$\begin{array}{l} \text{Local if } a \in \Sigma_l, \, \text{then } ((S,R),a,(S',R')) \in \delta', \, \text{where} \\ R' = \{q' \mid \exists q \in R.(q,a,q') \in \delta\}, \, S' = \{(q,q') \mid \exists q_1.(q,q_1) \in S, (q_1,a,q') \in \delta\}. \\ \text{Call if } a \in \Sigma_c, \, \text{then } ((S,R),a,(\operatorname{Id}_Q,R'),(S,R,a)) \in \delta', \, \text{where} \\ R' = \{q' \mid \exists q \in R, \gamma \in \Gamma.(q,a,q',\gamma) \in \delta\}. \end{array}$$

Return if  $a \in \Sigma_r$ , then  $((S, R), a, (S'', R'', a'), (S', R')) \in \delta'$ , where

$$\begin{split} S' &= \left\{ \begin{pmatrix} q, q' \end{pmatrix} \middle| \begin{array}{c} \exists q_1, q_2, q_3, \gamma \in \Gamma. \\ (q, q_1) \in S'', (q_1, a', q_2, \gamma) \in \delta, (q_2, q_3) \in S, (q_3, a, \gamma, q') \in \delta \end{array} \right\}, \\ R' &= \left\{ q' \middle| \begin{array}{c} \exists q_1, q_2, q_3, \gamma \in \Gamma. \\ q_1 \in R'', (q_1, a', q_2, \gamma) \in \delta, (q_2, q_3) \in S, (q_3, a, \gamma, q') \in \delta \end{array} \right\}, \\ \text{or } ((S, R), a, \bot, (S', R')) \in \delta', \text{ where} \\ S' &= \{(q, q') \mid \exists q''. (q, q'') \in S, (q'', a, \bot, q') \in \delta\}, \\ R' &= \{q' \mid \exists q \in R. (q, a, \bot, q') \in \delta\}. \end{split}$$

# Outline

1 Visibly pushdown automata (VPA)

### 2 Closure properties

### 3 Visibly pushdown grammar (VPG)

#### 4 Logical characterization

- Equivalence of NFA and MSO
- Equivalence of VPA and  $MSO_{\mu}$

#### 5 Decision problems

(日) (日) (日) (日) (日)

# Visibly pushdown grammar (VPG)

A CFG  $G = (\mathcal{N}, \Sigma, \mathcal{P}, S)$  is a VPG over  $\widetilde{\Sigma}$  if  $\mathcal{N}$  can be partitioned into  $\mathcal{N}_0$  and  $\mathcal{N}_1$ , and each rule in  $\mathcal{P}$  is of the following forms,

- $X \to \varepsilon$ ,
- $X \to aY$  such that if  $X \in \mathcal{N}_0$ , then  $a \in \Sigma_l, Y \in \mathcal{N}_0$ ,
- $X \to aYbZ$  such that  $a \in \Sigma_c$ ,  $b \in \Sigma_r$ ,  $Y \in \mathcal{N}_0$ , and if  $X \in \mathcal{N}_0$ , then  $Z \in \mathcal{N}_0$ .

**Example**: Let  $\widetilde{\Sigma} = (\{a\}, \{b\}, \emptyset)$ . Then the VPG

 $S \to aSbC \mid aTbC, T \to \varepsilon, C \to \varepsilon,$ 

such that  $\mathcal{N}_0 = \{S, T, C\}$  defines  $\{a^n b^n \mid n \ge 1\}$ .

## Equivalence of VPA and VPG

**Theorem.** VPA  $\equiv$  VPG. From VPA to VPG. Let  $\mathcal{A} = (Q, \tilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$  be a VPA.

The intuition: Utilizing the nonterminals  $[q, \gamma, p]$  with the meaning

the top symbol of the stack is  $\gamma$ , and from state q, by reading a well-matched word, state p can be reached.



# Equivalence of VPA and VPG

**Theorem.** VPA  $\equiv$  VPG. From VPA to VPG. Let  $\mathcal{A} = (Q, \tilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$  be a VPA. Construct a VPG  $(\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$  as follows. •  $Q = \{(q, \bot) \mid q \in Q\} \cup \{q \mid q \in Q\} \cup \{[q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\}\},\$ •  $(q, \perp)$ : the state is q and the stack is empty, • q: the state is q and the stack is nonempty. •  $\mathcal{N}_0 = \{[q, \gamma, p] \mid q, p \in Q, \gamma \in \Gamma \setminus \{\bot\}\}, S = (q_0, \bot),$ •  $\mathcal{P}$  is defined by the following rules, • if  $(a, a, a') \in \delta$  s.t.  $a \in \Sigma_I$ , then  $(q, \bot) \to a(q', \bot), q \to aq', [q, \gamma, p] \to a[q', \gamma, p].$ • if  $(a, a, a', \gamma), (p', b, \gamma, p) \in \delta$  s.t.  $a \in \Sigma_c, b \in \Sigma_r$ , then  $[q, \gamma_1, r] \rightarrow a[q', \gamma, p']b[p, \gamma_1, r], (q, \bot) \rightarrow a(q', \gamma, p')b(p, \bot),$  $q \rightarrow a(q', \gamma, p')bp.$ • if  $(a, a, a', \gamma) \in \delta$  s.t.  $a \in \Sigma_c$ , then  $(q, \bot) \to aq', q \to aq', (q, \bot) \to a[q', \gamma, p], q \to a[q', \gamma, p].$ • if  $(q, a, \bot, q') \in \delta$  s.t.  $a \in \Sigma_r$ , then  $(q, \bot) \to a(q', \bot)$ . •  $\forall q \in Q. [q, \gamma, q] \rightarrow \varepsilon$ . •  $\forall q \in F.q \to \varepsilon, (q, \bot) \to \varepsilon.$ ・ロト ・ 同ト ・ ヨト ・ ヨト

15 / 30

## Equivalence of VPA and VPG: continued

From VPG to VPA. Let  $G = (\mathcal{N}_0, \mathcal{N}_1, \widetilde{\Sigma}, \mathcal{P}, S)$  be a VPG. Construct VPA  $\mathcal{A} = (\mathcal{N}, \widetilde{\Sigma}, \Sigma_r \times \mathcal{N} \cup \{\bot, \$\}, \delta, S, F)$  as follows.  $\delta$  is defined by the following rules

•  $\delta$  is defined by the following rules,

- if  $X \to aY$  s.t.  $a \in \Sigma_l$ , then  $(X, a, Y) \in \delta$ ,
- if  $X \to aY$  s,t.  $a \in \Sigma_c$ , then  $(X, a, Y, \$) \in \delta$ ,
- if  $X \to aY$  s.t.  $a \in \Sigma_r$ , then  $(X, a, \$, Y) \in \delta$  and  $(X, a, \bot, Y) \in \delta$ ,
- if  $X \to aYbZ$ , then  $(X, a, Y, (b, Z)) \in \delta$ ,
- if  $X \to \varepsilon$  and  $X \in \mathcal{N}_0$ , then  $(X, b, (b, Y), Y) \in \delta$ .

•  $\mathcal{A}$  accepts if the state is in X s.t.  $X \to \varepsilon$  and the top symbol is \$ or  $\perp$ .

# Equivalence of VPA and VPG: continued

From VPG to VPA.
Let G = (N<sub>0</sub>, N<sub>1</sub>, Σ̃, P, S) be a VPG.
Construct VPA A = (N, Σ̃, Σ<sub>r</sub> × N ∪ {⊥, \$}, δ, S, F) as follows.
δ is defined by the following rules,
if X → aY s.t. a ∈ Σ<sub>l</sub>, then (X, a, Y) ∈ δ,
if X → aY s.t. a ∈ Σ<sub>r</sub>, then (X, a, \$, \$) ∈ δ,
if X → aY s.t. a ∈ Σ<sub>r</sub>, then (X, a, \$, Y) ∈ δ,
if X → aYbZ, then (X, a, Y, (b, Z)) ∈ δ,
if X → ε and X ∈ N<sub>0</sub>, then (X, b, (b, Y), Y) ∈ δ.
A accepts if the state is in X s.t. X → ε and the top symbol is \$ or ⊥.

 $\begin{array}{l} Adapt \ \mathcal{A} \ into \ \mathcal{A}' = (\mathcal{N} \times \Gamma, \widetilde{\Sigma}, \Gamma, \delta', (S, \bot), \{(X, \gamma) \mid X \rightarrow \varepsilon, \gamma = \$, \bot\}) \\ by \ adding \ the \ top \ symbol \ of \ the \ stack \ into \ the \ states. \end{array}$ 

- if  $X \to aY$  s.t.  $a \in \Sigma_l$ , then  $\forall \gamma.((X, \gamma), a, (Y, \gamma)) \in \delta'$ ,
- if  $X \to aY$  s,t.  $a \in \Sigma_c$ , then  $\forall \gamma.((X,\gamma), a, (Y,\$), (\$, \gamma)) \in \delta'$ ,
- if  $X \to aY$  s.t.  $a \in \Sigma_r$ , then  $\forall \gamma.((X,\gamma), a, \bot, (Y, \bot)) \in \delta$  and  $\forall \gamma.((X, \$), a, (\$, \gamma), (Y, \gamma)) \in \delta'$ ,
- if  $X \to aYbZ$ , then  $\forall \gamma.((X,\gamma), a, (Y, (b, Z)), ((b, Z), \gamma)) \in \delta'$ ,
- if  $X \to \varepsilon$  and  $X \in \mathcal{N}_0$ , then  $\forall \gamma.((X, (b, Z)), b, ((b, Z), \gamma), (Z, \gamma)) \in \delta'$ .

# Outline

1 Visibly pushdown automata (VPA)

### 2 Closure properties

**3** Visibly pushdown grammar (VPG)

#### 4 Logical characterization

- Equivalence of NFA and MSO
- Equivalence of VPA and  $MSO_{\mu}$

#### 5 Decision problems

(日) (日) (日) (日) (日)

# Outline

1 Visibly pushdown automata (VPA)

2 Closure properties

**3** Visibly pushdown grammar (VPG)

## 4 Logical characterization

- Equivalence of NFA and MSO
- Equivalence of VPA and  $MSO_{\mu}$

### 5 Decision problems

Syntax.

$$\begin{split} \varphi &:= P_{\sigma}(x) \mid x = y \mid \operatorname{suc}(x,y) \mid X(x) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1, \\ \text{where } \sigma \in \Sigma. \end{split}$$

An MSO *sentence* is a MSO formula without free variables.

Semantics.

- A structure S over  $\Sigma$  is
- a domain  $S = \{1, ..., n\},\$
- an interpretation of all the unary predicates  $P_{\sigma} \in \Sigma$  over S, denoted by  $(P_{\sigma})^{S}$ .

*Example.* Let  $\Sigma = \{a, b\}$ . Then  $S = (\{1, 2, 3\}, (P_a)^S = \{1\}, (P_b)^S = \{2, 3\})$  is a structure over  $\Sigma$ .

A word  $w = a_1 \dots a_n$  can be seen as a structure  $\mathcal{S}_w$  over  $\Sigma$ ,

- the domain of  $S_w$ , denoted by  $S_w$ , is  $\{1, \ldots, n\}$ ,
- the interpretation of every  $P_{\sigma} \in \Sigma$  is the set of positions with the letter  $\sigma$  in w.

イロト イヨト イヨト イヨト

Syntax.

 $\varphi := P_{\sigma}(x) \mid x = y \mid \operatorname{suc}(x, y) \mid X(x) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$  where  $\sigma \in \Sigma$ .

An MSO *sentence* is a MSO formula without free variables.

Semantics.

Given a MSO formula  $\varphi$ , a *valuation* of free $(\varphi)$  over a structure S is a mapping  $\mathcal{I}$  such that

- for every  $x \in \text{free}(\varphi), \mathcal{I}(x) \in S$ ,
- for every  $X \in \text{free}(\varphi), \mathcal{I}(X) \subseteq S$ .

Syntax.

$$\begin{split} \varphi &:= P_{\sigma}(x) \mid x = y \mid \operatorname{suc}(x,y) \mid X(x) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1, \\ \text{where } \sigma \in \Sigma. \end{split}$$

An MSO *sentence* is a MSO formula without free variables.

Semantics.

A MSO formula  $\varphi$  is satisfied over a word  $w = a_1 \dots a_n$ , with a valuation  $\mathcal{I}$  of free $(\varphi)$  over  $\mathcal{S}_w$ , denoted by  $(w, \mathcal{I}) \models \varphi$ , is defined as follows,

. . . . . . . .

Image: A matrix

Syntax.

$$\begin{split} \varphi &:= P_{\sigma}(x) \mid x = y \mid \operatorname{suc}(x,y) \mid X(x) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1, \\ \text{where } \sigma \in \Sigma. \end{split}$$

An MSO *sentence* is a MSO formula without free variables.

Semantics.

Let  $\varphi$  be a MSO sentence.

The language defined by  $\varphi$ , denoted  $\mathcal{L}(\varphi)$ : The set of words satisfying  $\varphi$ .

A language  $L \subseteq \Sigma^*$  is *MSO-definable* if there is a MSO sentence  $\varphi$  such that  $\mathcal{L}(\varphi) = L$ .

Zhilin Wu (SKLCS)

# Monadic Second-Order Logic (continued)

Abbreviations.

• 
$$\varphi_1 \wedge \varphi_2 = \neg (\neg \varphi_1 \vee \neg \varphi_2),$$

• 
$$\varphi_1 \to \varphi_2 = \neg \varphi_1 \lor \varphi_2,$$

• 
$$\forall x \varphi_1 = \neg \exists x (\neg \varphi_1),$$

• 
$$x < y = \frac{\neg x = y \land}{\forall X ( (X(x) \land \forall z_1 \forall z_2(X(z_1) \land \operatorname{suc}(z_1, z_2) \to X(z_2))) \to X(y) ) }$$
,  
• first $(x) = \forall y (x = y \lor x < y)$ ,  
• last $(x) = \forall y (x = y \lor y < x)$ .

#### Example.

 $\neg \exists x \text{ first}(x),$ 

$$\exists x \exists y (P_a(x) \land P_b(y) \land x < y),$$

$$\exists X \left( \begin{array}{c} \exists x (\operatorname{first}(x) \land X(x)) \land \\ \forall x \forall y \forall z (\operatorname{suc}(x,y) \land \operatorname{suc}(y,z) \land X(x) \to X(z)) \\ \land \forall x (X(x) \to P_a(x)) \end{array} \right).$$

### NFA≡MSO

#### From NFA to MSO

Let  $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$  be a NFA. Let  $Q = \{q_0, q_1, \dots, q_n\}$ . Construct the MSO formula  $\varphi$  as follows,

 $\exists q_0 \dots q_n (\varphi_{init} \land \varphi_{trans} \land \varphi_{final}),$ 

where

• 
$$\varphi_{init} = \exists x (\text{first}(x) \land \bigvee_{(q_0, a, q) \in \delta} (P_a(x) \land q(x))),$$
  
•  $\varphi_{trans} = \forall x \forall y (\text{suc}(x, y) \rightarrow \bigvee_{(q, a, q') \in \delta} q(x) \land P_a(y) \land q'(y)),$   
•  $\varphi_{final} = \exists x (\text{last}(x) \land \bigvee_{q \in F} q(x)).$   
Then  $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}).$ 

イロト イヨト イヨト イヨト

## NFA≡MSO

### From MSO to NFA.

### A normal form for MSO formulas

New modalities,

 $X \subseteq Y$ ,  $\operatorname{Sing}(X)$ , suc(X, Y).

Then a MSO formula  $\varphi$  can be transformed into a normal form  $\varphi'$  by the following rules,

• if 
$$\varphi = P_{\sigma}(x)$$
, then  $\varphi' = \operatorname{Sing}(X) \land X \subseteq P_{\sigma}$ ,

• if 
$$\varphi = x = y$$
, then  $\varphi' = \operatorname{Sing}(X) \wedge \operatorname{Sing}(Y) \wedge X \subseteq Y \wedge Y \subseteq X$ ,

• if 
$$\varphi = \operatorname{suc}(x, y)$$
, then  $\varphi' = \operatorname{suc}(X, Y)$ ,

• if  $\varphi = Z(x)$ , then  $\varphi' = \operatorname{Sing}(X) \wedge X \subseteq Z$ ,

• if 
$$\varphi = \varphi_1 \lor \varphi_2$$
, then  $\varphi' = \varphi'_1 \lor \varphi'_2$ ,

• if 
$$\varphi = \neg \varphi_1$$
, then  $\varphi' = \neg \varphi'_1$ ,

• if  $\varphi = \exists x \varphi_1$ , then  $\varphi' = \exists X(\operatorname{Sing}(X) \land \varphi'_1)$ ,

• if 
$$\varphi = \exists X \varphi_1$$
, then  $\varphi' = \exists X \varphi'_1$ .

#### From MSO to NFA.

### $\varphi := X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Sing}(X) \mid \operatorname{suc}(X, Y) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists X \varphi_1.$

Let  $\varphi(X_1, \ldots, X_k)$  be a MSO formula in the normal form. We construct a NFA  $\mathcal{A} = (Q, \Sigma \times \{0, 1\}^k, \delta, q_0, F)$  as follows.







### From MSO to NFA.

 $\varphi := X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Sing}(X) \mid \operatorname{suc}(X,Y) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists X \varphi_1.$ 

Let  $\varphi(X_1, \ldots, X_k)$  be a MSO formula in the normal form. We construct a NFA  $\mathcal{A} = (Q, \Sigma \times \{0, 1\}^k, \delta, q_0, F)$  as follows.

- $\varphi = \varphi_1 \lor \varphi_2$ NFAs are closed under union,
- $\varphi = \neg \varphi_1$

NFAs are closed under complementation,

•  $\varphi = \exists X \varphi_1$ 

NFAs are closed under projection (a special case of homomorphisms), e.g.  $(b_1, \ldots, b_k) \rightarrow (b_2, \ldots, b_k)$ .

イロト イポト イヨト イヨト

# Outline

1 Visibly pushdown automata (VPA)

2 Closure properties

3 Visibly pushdown grammar (VPG)

Logical characterization
 Equivalence of NFA and MSO
 Equivalence of VPA and MSO<sub>µ</sub>

5 Decision problems

# $MSO_{\mu}$

Fix  $\tilde{\Sigma}$ .

Given a word  $w = a_1 \dots a_n \in \Sigma^*$ , a binary relation  $\mu(x, y)$  can be defined such that

 $\mu(i,j)$  iff  $a_i$  is a call and  $a_j$  is a matching return.

**Example**. In the word "( ( ) ) ( ) ( (",  $\mu(1,4), \mu(2,3), \mu(5,6)$  hold.

### Syntax of $MSO_{\mu}$ over $\tilde{\Sigma}$ .

$$\varphi := P_{\sigma}(x) \mid x = y \mid \operatorname{suc}(x, y) \mid X(x) \mid \mu(x, y) \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$

where  $\sigma \in \Sigma$ .

Semantics of  $MSO_{\mu}$  over  $\tilde{\Sigma}$ .

•  $(w,\mathcal{I}) \models \mu(x,y)$  iff  $\mu(\mathcal{I}(x),\mathcal{I}(y))$  holds on w.

**Example**. Let  $\widetilde{\Sigma} = (\{a\}, \{b\}, \{c\})$ 

 $\forall x (P_a(x) \rightarrow \exists y \exists z (P_b(y) \land P_c(z) \land x < z \land z < y \land \mu(x,y)))$ 

# $VPA \equiv MSO_{\mu}$

From VPA to MSO<sub>µ</sub>.  
Let 
$$\mathcal{A} = (Q, \tilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$$
 be a VPA,  $Q = \{q_0, \dots, q_n\}, \Gamma = \{\gamma_1, \dots, \gamma_k\}.$   
Define  $\varphi := \exists q_0 \dots q_n P_{\gamma_1} \dots P_{\gamma_k}(\varphi_{init} \land \varphi_{trans} \land \varphi_{final})$  as follows,  
 $(\varphi_{init} = \exists x \left( first(x) \land \left( \begin{array}{c} \bigvee (P_a(x) \land q(x) \land P_{\gamma}(x)) \lor \\ (q_0, a, q, \gamma) \in \delta \\ \bigvee (P_a(x) \land q(x) \land P_{\gamma}(x)) \lor \\ (q_0, a, \bot, q) \in \delta \end{array} \right) \right)$ ,  
 $(\varphi_{trans} = \forall x \forall y (suc(x, y) \rightarrow \psi_{call} \lor \psi_{return} \lor \psi_{local}), where$   
 $(\varphi_{call} = \bigvee_{(q, a, \gamma, \gamma) \in \delta} (q(x) \land P_a(y) \land q'(y) \land P_{\gamma}(y)),$   
 $(\varphi_{return} = \bigvee_{(q, a, \gamma, q') \in \delta} (q(x) \land P_a(y) \land q'(y) \land P_{\gamma}(y) \land \exists z(\mu(z, y) \land P_{\gamma}(z))) \lor$   
 $(\varphi_{trans} = \exists x \left( last(x) \land Q_{q}(x) \land P_a(y) \land q'(y) \rangle P_{1}(y) \land \neg \exists z(\mu(z, y))) \right),$   
 $(\varphi_{final} = \exists x \left( last(x) \land Q_{q}(x) \land P_a(y) \land q'(y) \rangle P_{1}(y) \land \neg \exists z(\mu(z, y))) \right)$ 

Zhilin Wu (SKLCS)

### From $MSO_{\mu}$ to VPA.

$$\varphi := \begin{array}{c} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Sing}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \lor \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array}, \\ \sigma', \sigma'' \neq \sigma : \begin{array}{c} (\sigma', 0), \downarrow (\sigma', 0) & (\sigma', 0), \uparrow (\sigma'', 0), (\sigma, 1), \bot \\ & (\sigma', 0) \\ & (\sigma, 1) \downarrow (\sigma, 1) & (\sigma, 0), \downarrow (\sigma, 0) \end{array}$$
$$X \subseteq P_{\sigma} : \sigma \in \Sigma_{c}$$

Zhilin Wu (SKLCS)

æ

《曰》 《圖》 《臣》 《臣》

### From $MSO_{\mu}$ to VPA.

$$\begin{split} \varphi &:= \begin{array}{c} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Sing}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \lor \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array}, \\ \sigma', \sigma'' \neq \sigma : \begin{array}{c} (\sigma',0) & (\sigma',0), \uparrow (\sigma'',0), \bot \\ (\sigma,1) \uparrow (\sigma',0), \bot & (\sigma,0) \uparrow (\sigma',0), \bot \\ (\sigma,1) \uparrow (\sigma',0), \bot & (\sigma,0) \uparrow (\sigma',0), \bot \\ X \subseteq P_{\sigma} : \sigma \in \Sigma_{r} \end{array}$$

Zhilin Wu (SKLCS)

### From $MSO_{\mu}$ to VPA.

$$\varphi := \begin{array}{c} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Sing}(X) \mid \\ \operatorname{suc}(X, Y) \mid \mu(X, Y) \mid \varphi_{1} \lor \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array},$$
$$\sigma', \sigma'' \neq \sigma : \begin{array}{c} (\sigma', 0), \downarrow (\sigma', 0) (\sigma', 0), \uparrow (\sigma'', 0), \bot \\ (\sigma', 0) \\ (\sigma, 1) \\ X \subseteq P_{\sigma} : \sigma \in \Sigma_{l} \end{array}$$

Zhilin Wu (SKLCS)

æ

《曰》 《圖》 《臣》 《臣》

### From $MSO_{\mu}$ to VPA.

$$\varphi := \begin{array}{c} X \subseteq P_{\sigma} \mid P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Sing}(X) \mid \\ \operatorname{suc}(X,Y) \mid \mu(X,Y) \mid \varphi_{1} \lor \varphi_{2} \mid \neg \varphi_{1} \mid \exists X \varphi_{1} \end{array}, \\ (a, \theta_{1}, \theta_{2}), \downarrow (a, \theta_{1}, \theta_{2}) : \theta_{1} \leq \theta_{2} \\ (a, \theta_{1}, \theta_{2}), \uparrow (b, \theta_{1}', \theta_{2}'), \bot : \theta_{1} \leq \theta_{2}, \theta_{1}' \leq \theta_{2}' \\ (a, \theta_{1}, \theta_{2}) : \theta_{1} \leq \theta_{2} \end{array}$$
$$X \subseteq Y$$

Zhilin Wu (SKLCS)

æ

・ロト ・回ト ・ヨト ・ヨト

### From $MSO_{\mu}$ to VPA.



Zhilin Wu (SKLCS)

イロト イヨト イヨト イヨト

### From $MSO_{\mu}$ to VPA.



### From $MSO_{\mu}$ to VPA.



イロン イ部と イヨン イヨン 二日

# Outline

1 Visibly pushdown automata (VPA)

### 2 Closure properties

8 Visibly pushdown grammar (VPG)

#### 4 Logical characterization

- Equivalence of NFA and MSO
- Equivalence of VPA and  $MSO_{\mu}$

### **5** Decision problems

(日) (日) (日) (日) (日)

### Nonemptiness

**Theorem**. The nonemptiness of VPA can be solved in  $O(n^3)$  time.

A VPA can be transformed into an equivalent VPG in  $O(n^3)$  time. The emptiness of a CFG can be solved in linear time.

## Language inclusion

**Theorem**. The language inclusion of VPA is EXPTIME-complete.

Upper bound.

Given two VPAs  $\mathcal{A}_1$  and  $\mathcal{A}_2$ ,

- determinize  $\mathcal{A}_2$  into  $\mathcal{A}'_2$ ,
- complement  $\mathcal{A}'_2$  into  $\mathcal{B}$ ,
- test whether  $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{B}) = \emptyset$ .

The determinization procedure can be fulfilled in EXPTIME.

. . . . . . . .

# Language inclusion

Theorem. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

イロト イヨト イヨト イヨト
**Theorem**. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Result from complexity theory: APSPACE = EXPTIME.

An alternating TM (ATM) is a TM  $M = (Q_{\vee}, Q_{\wedge}, \Sigma, \Gamma, \delta, q_0, B, F)$  such that

• the state set is divided into two disjoint subsets,  $Q_{\,\,\vee}\,$  ("or" state),  $Q_{\,\,\wedge}\,$  ("and" state),

• for every  $q \in Q$  and  $a \in \Gamma$ ,  $|\delta(q, a)| = 2$ .

A run of an ATM M over an input  $w \in \Sigma^*$  is a configuration tree s.t.

• the root of the tree is the initial configuration,

- for every node (configuration)  $\alpha q\beta$  in the tree, if  $q \in Q_{\vee}$ , then  $\alpha q\beta$  has one of its successor config. as its unique child in the tree,
- for every node (configuration)  $\alpha q\beta$  in the tree, if  $q \in Q_{\wedge}$ , then the two successor config. of  $\alpha q\beta$  are both its children in the tree.

APSPACE: The class of languages accepted by ATMs using polynomial space.

イロト イヨト イヨト イヨト

Theorem. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Reduction from

the membership problem of alternating TMs using polynomial space. Let  $M = (Q_{\vee}, Q_{\wedge}, \Sigma, \Gamma, \delta, q_0, B, F)$  be a ATM using linear space, say cn. Let t be a accepting run of M over an input w. Use  $C_x$ 's (where  $x \in \{0, 1\}^*$ ) to denote the nodes of t, e.g. the root is  $C_{\varepsilon}$ , while the left child of the root is  $C_0$ , and so on.

Encode t by a word  $\theta$  which is generated by a DFS traversal of t.

(D) (A) (A) (A)

**Theorem**. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Reduction from

the membership problem of alternating TMs using polynomial space. Let  $M = (Q_{\vee}, Q_{\wedge}, \Sigma, \Gamma, \delta, q_0, B, F)$  be a ATM using linear space, say cn. Let t be a accepting run of M over an input w. Use  $C_x$ 's (where  $x \in \{0, 1\}^*$ ) to denote the nodes of t, e.g. the root is  $C_{\varepsilon}$ , while the left child of the root is  $C_0$ , and so on.

Encode t by a word  $\theta$  which is generated by a DFS traversal of t. Initially set  $\theta = \varepsilon$ .

- The traversal starts from the root  $C_{\varepsilon}$ .
- **2** When a node  $C_x$  is visited for the first time, then  $\theta = \theta(fC_x)$ ,
- When a node  $C_x$  is visited again by backtracking from its right-child, then  $\theta = \theta(b\overline{C_x})^r$ .

イロン イヨン イヨン イヨン

Theorem. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Reduction from

the membership problem of alternating TMs using polynomial space. Let  $M = (Q_{\vee}, Q_{\wedge}, \Sigma, \Gamma, \delta, q_0, B, F)$  be a ATM using linear space, say cn. Let t be a accepting run of M over an input w. Use  $C_x$ 's (where  $x \in \{0, 1\}^*$ ) to denote the nodes of t, e.g. the root is  $C_x$  while the left child of the root is  $C_x$  and so on

e.g. the root is  $C_{\varepsilon}$ , while the left child of the root is  $C_0$ , and so on. Encode t by a word  $\theta$  which is generated by a DFS traversal of t.

Such a word  $\theta$  is called a successful computation of M.



**Theorem**. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Reduction from

 $the \ membership \ problem \ of \ alternating \ TMs \ using \ polynomial \ space.$ 

Let  $M = (Q_{\vee}, Q_{\wedge}, \Sigma, \Gamma, \delta, q_0, B, F)$  be a ATM using linear space, say *cn*. Let  $\Gamma' = \Gamma \cup Q \cup \overline{\Gamma} \cup \overline{Q} \cup \{f, b\}, \quad \widetilde{\Gamma'} = \langle \Gamma \cup Q \cup \{f\}, \quad \overline{\Gamma} \cup \overline{Q} \cup \{b\} \rangle.$ The format of a successful computation  $\theta$ ,

e.g. well-matched call-returns, except consistencies of consecutive config. can be checked by a deterministic VPA  $\mathcal{A}$ .

A word  $w \in (\Gamma')^*$  is a *unsuccessful* computation of M if one of the following conditions holds,

• w is not accepted by  $\mathcal{A}$ ,

• there is a subword  $fC_x fC_{x0}$  or  $\overline{C_{x0}^r} b\overline{C_x^r} b$  or  $\overline{C_{x1}^r} b\overline{C_x^r} b$ , such that  $C_x \not\vdash C_{x0}$ , or  $C_x \not\vdash C_{x1}$ : Guess an index i: 1 < i < cn + 1, and check the relationship of the (i-1, i, i+1)-th symbol of  $C_x$  and the *i*-th symbol of  $C_{x0}, \ldots$ 

29 / 30

イロト イヨト イヨト イヨト

Theorem. The language inclusion of VPA is EXPTIME-complete.

Lower bound.

The universality of VPA is EXPTIME-hard.

Reduction from

the membership problem of alternating TMs using polynomial space. Let  $M = (Q_{\vee}, Q_{\wedge}, \Sigma, \Gamma, \delta, q_0, B, F)$  be a ATM using linear space, say cn. Let  $\Gamma' = \Gamma \cup Q \cup \overline{\Gamma} \cup \overline{Q} \cup \{f, b\}, \ \widetilde{\Gamma'} = \langle \Gamma \cup Q \cup \{f\}, \overline{\Gamma} \cup \overline{Q} \cup \{b\} \rangle$ .

The set of unsuccessful computations of  ${\cal M}$ 

can be accepted by a nondeterministic VPA  ${\mathcal B}$  of polynomial size.

M does not accept w iff  $\mathcal{L}(\mathcal{B}) = (\Gamma')^*$ .

# Automata over infinite words