Automata theory and its applications

Lecture 9-11: Automata over infinite words

Zhilin Wu

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

December 20, 2012

Zhilin Wu (SK Automata over infinite words December



Outline

© Motivation

Zhilin Wu



infinite words ?

Reactive systems: reacting continuously with the environment
@ Operating systems,
o Communicating protocols,
e Control programs,
e Vending machines,

o ...
Salient feature of reactive systems:
Nonterminating
The behavior of reactive systems:

A set of infinite words.
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Biichi automata (BA)

A Biichi automata B is a tuple (@, %, 0, qo, F') where
@ (Q: finite set of states, X: alphabet,
@ ¢o: initial state, F' € @Q: set of final states,
00 QXY xQ.
A run p of a Biichi automata B over an w-word w = ajas--- € X¥ is
a state sequence qoqy ... such that Yi = 0.(¢;, ai41,¢i+1) € 9.

Inf(p): the set of states occurring infinitely often in p.
A run is accepting iff Inf(p) N F # &.

An w-word w is accepted by B if there is an accepting run of B over w.

Let £(B) denote the set of w-words accepted by B.
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Biichi automata (BA)

A Biichi automata B is a tuple (@, %, 0, qo, F') where
@ (Q: finite set of states, X: alphabet,
@ ¢o: initial state, F' € @Q: set of final states,
00 QXY xQ.
A run p of a Biichi automata B over an w-word w = ajas--- € X¥ is
a state sequence qoqy ... such that Yi = 0.(¢;, ai41,¢i+1) € 9.

Inf(p): the set of states occurring infinitely often in p.
A run is accepting iff Inf(p) N F # &.

An w-word w is accepted by B if there is an accepting run of B over w.

Let £(B) denote the set of w-words accepted by B.

A deterministic Biichi automaton (DBA) B is a BA (Q, %, 0, qo, F) s.t.
Vge Q,a€ X, 3 at most one ¢’ € Q such that (q,a,q') € 9.

Then § in a DBA can be seen as a partial function § : Q x ¥ — Q.
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Biichi automata: Example

“The letter a occurs only finitely often”

a,b b

SO

“The letter a occurs infinitely often”
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Biichi automata: Several notations

Let B=(Q,%,0,q0,F) beaBA, ¢,¢ €Q, and w =ay...a, € T*.

A partial run of B over w from q to ¢’ is a state sequence q1qs . .. qpi1
such that
o Vi < n.(gi,ai,qit1) €9,
© (1 =0, qni1=¢"

!

q->q"

there is a partial run of B over w from q to ¢'.

there is a partial run of B over w from q to ¢’
which contains an accepting state.
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w-regular languages

Theorem. Let L € ¥X“. Then
L can be defined by a BAif L= |J U, VY,

1<ign
where Vi : 1 < i< n. U, V; € ¥* are regular and ¢ ¢ V.

Proof.

Only if direction:

Suppose that L is defined by a BA B = (Q, %, 0, qo, F).

Let Lyy = {weX* | ¢ ¢'}. Then L = |J Lgoq(Lgg\{€})®-
qeEF

8 / 29
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w-regular languages

Theorem. Let L € ¥X“. Then
L can be defined by a BAif L= |J U, VY,

1<ign
where Vi : 1 < i< n. U, V; € ¥* are regular and ¢ ¢ V.

Proof.

Only if direction:

Suppose that L is defined by a BA B = (Q, %, 0, qo, F).

Let Lyy = {weX* | ¢ ¢'}. Then L = |J Lgoq(Lgg\{€})®-
qeEF

If direction: Suppose L= |J U;V¥.
1<i<n
Since Biichi automata are closed under union (which will be shown later),
it is sufficient to prove that U;V* can be defined by a BA.
Let A = (Q1,%,01, ¢35, F1) (resp. Az = (Q2,%, 2,63, F)) define U; (resp. V;).
W.lo.g. assume that there are no transitions (g, a, ¢3) with ¢ € Q.
Then B = (Q1 U Q2,%,9,q3,{q3}) defines L, where

5= 51U52U{(q7a7ql)|q€F17(q87avq/)662} ]
V{(¢,a,43) | 3¢ € F», (q,a,¢") € 32}
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Expressibility of DBA

Let L € ©*. Define L = {fweXx¥|3In. wy ... w, € L}.
Proposition. Let L € ¥“. Then

L can be defined by a DBA iff L = I for some regular language L' € X*.

Proof.
Only if direction:

Suppose L is defined by the DBA B = (Q, %, d, qo, F).

Let L be defined by the DFA A = (Q, %, 8, go, F), then L = L.

It is trivial that L € T

Suppose w € L. Then there exist infinitely many n € N s.t. wy ... w, € L.
For each such n, let qq ... ¢, be the accepting run of A over wy ... w,.
Then qq . ..qy ... is an accepting run of B over w. Therefore, w € L.

If directio_f)u
Let L = L" and A = (Q, %, 6, qo, F) be a DFA defining L’.
Then the DFA B = (Q, %, 6, qo, F') defines L. O
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Expressibility of DBA

Let L € ©*. Define L = {fweXx¥|3In. wy ... w, € L}.

Proposition. Let L € ¥“. Then _
L can be defined by a DBA iff L = L' for some regular language L' € ¥*.

Proposition. BA is strictly more expressive than DBA.

Proof.

The language L “The letter a occurs only finitely often”
is not expressible in DBA.

For contradiction, assume that L is defined by a DBA B.

Consider ab”. The run of B over ab” is accepting. Let n; € N s.t. qq %» q1-

Consider ab™ ab®. Let no € N s.t. 1 % Q2.

Continue like this, we can get an w-word ab™ ab™ ... which is accepted by B,
while on the other hand contains infinitely many a’s, a contradiction. ]

W
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Union and intersection

Proposition. The class of w-regular languages is closed under union and
intersection.

Proof.

Let Al = (th?élvq(l)vFl)vAZ = (Q272,627Q(2)7F2) define resp. L17L2'
Union:
The BA A= (Q1 U Q2 v {q},X%,0,q, F1 U Fy) defines Ly U Ly, where

0= 61 U 62 Y {(qovaaq) | (q(l)’a7q) € 61} U {(qua; q) | (qgﬂa7Q) € 62}
Intersection:
The BA A= (Q1 x Q2 x {0,1,2},%,, (¢}, ¢3,0), Q1 x Q2 x {2}) defines
L1 n Ly, where ¢ is defined as follows,
Suppose (q1,a,q}) € 61 and (g2, a, gb) € da.
o If qll ¢ Fl’ then ((Q1an70)7a7 (qllaql2a0)) € 67
otherwise, ((q1,¢2,0),a,(q},d5,1)) € 4.
o If qé ¢ F27 then ((qla q2, 1)u a, (qlla ql27 1)) € 67
otherwise, ((q1,q2,1),a,(q},d5,2)) € 4.

° ((Q1aq272)aa7 (q/17q1270)) € 9.
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Complementation

Theorem. The class of w-regular languages is closed under complementation.

Let L € ¥¢ defined by a BA B = (Q, %, 0, qo, F).
Define a congruence ~p over ¥.* as follows:

u~pviff Vg,¢' € Q¢ ¢ < g q¢) and (¢ > d' < g q)

Let [u] denote the equivalence class of u under ~g.
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Complementation

Theorem. The class of w-regular languages is closed under complementation.
Lemma. ~p is of finite index.

Lemma. ~p saturates L, namely,
for every u,v € T*, [u][v]* n L # & implies that [u][v]* < L.

Proof

Suppose uiv1ve -+ € L s.t. ug € [u] and vy, v9,- - € [v].

We prove that uwjvjvh--- € L for every uj € [u] and v'l, vh, - € [v].
There exists an accepting run p of B over ulvlv2

Let g1, 42, ... be the states in p such that g L oq, Vz l.g; 2 gip1.
Then there are i; <is < ... s.t.

|

Vi g1V
J J+1
¢ T’ Q15 V9 2 1gij 11 —— qij 141

7J/ / i1 /
So g0 —5 q1, @1 IT’ Qi+1, and Vj = 1.g;; 41 %’ Qijyr+1-
Therefore, ujvjv} ... is accepted by B, thus in L. O
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Complementation

Theorem. The class of w-regular languages is closed under complementation.
Lemma. ~p is of finite index.

Lemma. ~p saturates L, namely,
for every u,v € T*, [u][v]* n L # & implies that [u][v]* < L.

Lemma. Yw € ¥, Ju,v € * s.t. w € [u][v]“.

Proof.

For a pair (7,7) such that i < j, assign a color [w; ... w;j_1].
From Ramsey theorem,
3 a color [v] and an infinite sequence 1 < i <z < ... s.t.
Vj < k, the pair (i;,1) is assigned the color [v].
Let w = w; ... w;;—1. Then
w = (’Ujl - wil,l)(wil - wiz,l)(wiz - wis,l) e € [U][U]w ]
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Complementation

Theorem. The class of w-regular languages is closed under complementation.
Lemma. ~p is of finite index.
Lemma. ~p saturates L, namely,
for every u,v e &*, [u][v]* n L # & implies that [u][v]* < L.
Lemma. Yw € ¢, Ju,v € ¥* s.t. w € [u][v]¥.

Lemma. Yu € ¥* s.t. [u] is regular.

Proof.

It is sufficient to prove that Lqq = {w | ¢ = q’} and qu, = {w | q %’ q’} are

regular for all ¢, ¢'.
Lgyq is regular: Obvious.

F :
L, is regular: Defined by the NFA (@ x {0,1},%,0",(q,0), (¢’,1)), where

Vp,p' € Q, if (p,a,p’) €0, then ((p,1),a,(p',1)) € &', and
if p' ¢ F, then ((p,0),a, (p',0)) € &', otherwise, ((p,0),a,(p’,1)) €.
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Complementation

Theorem. The class of w-regular languages is closed under complementation.
Lemma. ~p is of finite index.
Lemma. ~p saturates L, namely,

for every u,v € T*, [u][v]* n L # & implies that [u][v]* < L.

Lemma. Yw € ¥, Ju,v € £* s.t. w € [u][v]¥.

Lemma. Yu € ¥* s.t. [u] is regular.

Proof of the theorem.

Let S = {([u], [v]) | [«][v]* n L # &}. Then L = ' ]L[J])$S[u][v]w.

[u][v]* € L: If ([u],[v]) ¢ S, then [u][v]* n L = &, so [u][v]* < L.
([ul,[vDesS
Lc U [u][v]*: For every w e L, there are [u], [v] such that w € [u][v]*.

([ul.[v]¢sS
Because ([u],[v]) € S implies w € [u][v]Y € L, it follows ([u], [v]) ¢ S. O

Zhilin Wu (SKLCS) Automata over infinite words December 20, 2012



Complementation

Theorem. The class of w-regular languages is closed under complementation.
Lemma. ~g is of finite index.
Lemma. ~p saturates L, namely,

for every u,v e L*, [u][v]* n L # & implies that [u][v]Y < L.

Lemma. Yw € £¢, Ju,v € £* s.t. w € [u][v]¥.
Lemma. Yu € ¥* s.t. [u] is regular.

Complexity analysis

The automaton B’ defining L:
The union of the BAs for the languages [u][v]* with ([u], [v]) ¢ S.

The BA for [u][v]¥ can be easily obtained from the NFAs for resp. [u] and [v].

[u] is determined by ({(q¢,¢") | ¢ = ¢'},{(¢,d") | q %» q}) =
229" equivalence classes = 22191 states in the NFA for [u] and [v].

Conclusion: There are 20(Q1") states in B'.
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MSO over infinite words

Syntax.

p:=Fy(z) |z =y [suc(z,y) | X(z) | 1 v @2 | =1 | Txpr [ IX ey,

where o € 3.

A MSO formula ¢ is satisfied over an w-word w = ay ...ay, ..., with a
valuation Z of Free(y) over S,,, denoted by (w,Z) = ¢, is defined as follows,

° (w,I) ': Po(x) iff az(z) = 0,

° (w, 1) =y iff I(z) = I(y),

o (w,T) Esuc(z,y) iff Z(x) + 1 = Z(y),

o (w,7) = X(x) iff Z(z) € Z(X),

o (,T) g1 v g2 iff (,7) = g1 or (w,T) F 2,

o (1, ) =~y iff not (w,7) = 1,

o (w,7) |= Iz iff there is j € S, such that (w,Z[z — j]) E ¢1,

o (w,T) = 3X ¢y iff there is J € S, such that (w,Z[X — J]) = ¢1.
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BA = MSO

From BA to MSO
Let A= (Q7276aQOaF) be a BA. Let Q = {quqla' . aQTL}
Construct the MSO formula ¢ as follows,

EQO e Qn((pinit A Qtrans N @final)a

where
o pinit = Jx(First(z) AV (Pulz) A q(2))),
(go,a,q)€d
® Yirans = VaVy(suc(z,y) > V  q() A FPaly) ~ d'(y)),
(g,a,9")€d
® Vfing = VY (ac <ynV q(y))
qeF

Then L(p) = L(A).

From MSO to BA
Similar to the construction of an NFA from a MSO formula.
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Nonemptiness

Input: Biichi automaton B = (Q, %, 4, qo, F).
Question: Is L(B) # & 7

Find a SCC (strongly-connected-component) C' satisfying the following
conditions,

o C contains an accepting state,

e (' is reachable from gq.
Proposition. Nonemptiness of Biichi automata can be decided in linear time.

SCCs of a directed graph can be found in linear time by a DFS search.
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Language inclusion

Input: Biichi automata B; and Bs.
Question: Is L(B1) € L(Bz2) ?

Theorem. Language inclusion of Biichi automata is PSPACE-complete.

Upper bound.

Construct B defining £(B2) and test the emptiness of L(B1 n B}).

There are |Q1|20(‘Q2‘2) states in By n By =
The nonemptiness of By n BY can be decided in PSPACE
o Guess on the fly a path

from the initial state to a cycle containing an accepting state.
e NPSPACE = PSPACE.
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Language inclusion

Input: Biichi automata B; and Bs.

Question: Is L(B1) € L(Bz2) ?

Theorem. Language inclusion of Biichi automata is PSPACE-complete.
Lower bound.

Universality of Biichi automata (£L(B) = £¢) is PSPACE-hard.

Reduction from the membership problem of PSPACE TMs.
Use BA to describe the unsuccessful computations of PSPACE TMs.

Let M = (Q,X%,T,0,qo, B, F') be a linear space (say cn) TM.
In addition, let T' =T u Q U {$}.
A successful computation of M over w: $C1$C5$. .. $Cm$(f\{$}> s.t.

e Vi, C; e I9QI*™J for some j,
o Vi<m, C;p Ciun,
o (1 = qo,chnfn, Cp e T*FT*,
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Various acceptance conditions

Acceptance conditions of w-automata
o Muller condition: (Q,3, 0, qo, F), where F € 29,
A run p is accepting iff Inf(p) € F.
o Rabin condition: (Qa 2767 q0, (U’La ‘/i)lSi$k)7 where Vi. Ui7 Vi & Q7
A run p is accepting iff 3i. Inf(p) nU; = & AInf(p) nV; # &.
o Strett condition: (Q7 2767 q0, (Ui7 Vvi)l$i$k)7 where Vi. Ui7 Vi€ Qa
A run p is accepting iff Vi. Inf(p) n'V; # & — Inf(p) nU; # &.
Parity condition: (Q,3,4,qo,c), where ¢: Q — {1,...,k},
A run p is accepting iff min({c(q) | ¢ € Inf(p)}) is even.

@ Rabin chain condition: A Rabin condition (U;, V;)1<i<k S-t-
UcVicUcVWc---cU,cV.
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Various acceptance conditions

Acceptance conditions of w-automata
o Muller condition: (Q,3, 0, qo, F), where F € 29,
A run p is accepting iff Inf(p) € F.
o Rabin condition: (Qa 2767 q0, (U’La ‘/i)lSi$k)7 where Vi. Ui7 Vi & Q7
A run p is accepting iff 3i. Inf(p) nU; = & AInf(p) nV; # &.
o Strett condition: (Q7 2767 q0, (Ui7 Vvi)l$i$k)7 where Vi. Uia Vi€ Qa
A run p is accepting iff Yi. Inf(p) n'V; # & — Inf(p) nU; # &.
Parity condition: (Q,3,4,qo,c), where ¢: Q — {1,...,k},
A run p is accepting iff min({c(q) | ¢ € Inf(p)}) is even.

@ Rabin chain condition: A Rabin condition (U;, V;)1<i<k S-t-
UcVicUcVWc---cU,cV.

Observation. Parity = Rabin chain.
Parity = Rabin chain: ¢: Q — {1,...,2k + 1}
Vi:l<i<k Ui={q|clq) <2i—1} Vi={q]|c(q) <2i}.
Rabin chain = Parity: Vi: 1 <i<k. ¢(U;\Vie1) = 2i — 1, ¢(V;\U;) = 2i.
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Equivalence of all the acceptance conditions

From Biichi to the other conditions:
Let B = (Q,X,0,q0, F) be a BA.

Muller: (Q,%,6,q0, F) with F={P | Pn F # &},

e Rabin: (Q,%, 0, qo, (T, F)),

Strett: (@, X, 9, qo, (F,Q)),

Parity: (@, %, 0, qo,c) with ¢(F) =0 and ¢(Q\F) = 1.

From Parity to Strett:

Let A = (Q, X, 0, qo, ¢) be a Parity automaton and ¢: Q — {1,...,2k +1}.

Then A is equivalent to the Strett automaton (Q, X, 4, qo, (Us, Vi)o<i<k),
where U; = {q | c(q) < 2i}, Vi = {q | e(q) < 2i + 1}.

From Rabin and Strett to Muller:
Let A =(Q,%,9,qo, (Ui, Vi)i<i<k) be a Rabin (resp. Strett) automaton.
Then A is equivalent to the Muller automaton (Q, X, d, qo, F), where
F={F|3.FnU=FAFnV,#J}
(resp. F ={F |Yi.FnV; # @ — FnU; # J}).
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Equivalence of all the acceptance conditions

From Muller to Biichi
Let A= (Q,%,0,q0,F) be a Muller automaton s.t.
F={F,...,Fyland Vi: 1 <i<k. F,= {qil,...,qii}.
Construct a Biichi automaton B = (Q', X, ", ¢f,, F’) as follows.
° Q' =Qu{(e,4,))]qeQ,1<i<k0<j<|Fl},
° Q(/) = qo,
o F'={(q,i,|Fi]) | g€ @, 1 < i<k},
@ ¢’ is defined as follows,
o ¢’ contains all the transitions in J,

o for every transition (q,a,q’) € § and every i : 1 <14 < k such that ¢’ € F;,

(q7 a7 (q’7 i7 O)) e 5’7
o for every transition (q,a,q’) € 6,
o if q, ql € F; and ql = Qg+1) then ((Q7i»j)7a» (Q7 17.7 + 1)) € 6,a
o ifq,q’ € F; and ¢’ # qf.+1, then ((q,4,7),(q,4,5)) € &,

o for every transition (q,a,q’) €6, if ¢,q' € F;, then ((q,4,1;),a, (¢’,i,0)) € &'
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Transformation between deterministic automata

Theorem. Deterministic Muller, Rabin, Strett and Parity automata are
expressively equivalent.

From Parity to Rabin and Strett, from Rabin and Strett to Muller:

Same as the nondeterministic automata.
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Transformation between deterministic automata

Theorem. Deterministic Muller, Rabin, Strett and Parity automata are
expressively equivalent.

From deterministic Muller to deterministic Parity (Rabin chain):
Let A = (Q,%,0,q0,F) be a deterministic Muller automaton.

Suppose Q = {qo,---,qn}-
The main idea.

Latest appearance record (LAR)
QioGiy -+ Cir 8iryr - - - iy,

Qioqiq - - - Qis_1 ﬁ%’sﬂ - 4,45,
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Transformation between deterministic automata

Theorem. Deterministic Muller, Rabin, Strett and Parity automata are
expressively equivalent.

From deterministic Muller to deterministic Parity (Rabin chain):
Let A = (Q,%,0,q0,F) be a deterministic Muller automaton.

Suppose Q = {qo, .- -, qn}-
Construct a Parity automaton A" = (Q', 3,8, ¢, (U;, Vi)o<i<n) as follows.

o ()’ is the set of sequences uffv s.t. uv is a permutation of qq ... q,.
® gy = andn—1---qo-
e if §(¢;,,a) = g, then
iy - 4, 8y i @) = Gig - Qi By - i G-
In particular, if 6(¢;, ,a) = ¢;,, then
5 (i - -+ Gi 8irir -+ G @) = Gig - - - §i., -
o U; ={uffv ||u|<i}, V; =U; u{ufv||u| =4i,IF e F. F = v}.
UOycVWyclUcVyc---cU, cV,.
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Transformation between deterministic automata

Theorem. Deterministic Muller, Rabin, Strett and Parity automata are
expressively equivalent.

From deterministic Muller to deterministic Parity (Rabin chain):
Let A = (Q,%,0,q0,F) be a deterministic Muller automaton.

Suppose Q = {qo, .- -, qn}-
Construct a Parity automaton A" = (Q', 3,8, ¢, (U;, Vi)o<i<n) as follows.

Correctness of the construction.
Let w € ¢ and p be the accepting run of A over w. Then Inf(p) = F € F.
Consider the run p’ of A’ corresponding to p.

3j s.t. after the position j in p, only the states in Inf(p) appear =
37’ = j s.t. after the position j' in o/,
all the states in Inf(p) are on the right side of LAR =
3i s.t. after the position j' in p', all the LARs ufv satisfy |u| = 1,
and Fuffv s.t. |u| =1 and v = Inf(p) = F =
Inf(p) "nU; = & and Inf(p') nV; # &
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Transformation between deterministic automata

Theorem. Deterministic Muller, Rabin, Strett and Parity automata are
expressively equivalent.

From deterministic Muller to deterministic Parity (Rabin chain):
Let A = (Q,%,0,q0,F) be a deterministic Muller automaton.

Suppose Q = {qo, .- -, qn}-
Construct a Parity automaton A" = (Q', 3,8, ¢, (U;, Vi)o<i<n) as follows.

Correctness of the construction.
Let w € X% and p’ be the accepting run of A’ over w.

Ji st. Inf(p") nU; = F and Inf(p) nV; # & =
3F € F and j' s.t. uffv in the position j' of p’ satisfies |u| = i,v =F,
and after the position j' in o/,
all W'V’ satisfy |u'| =i, and I°u'H’, |W/| =i,0' = F =

Consider the run p of A over w: After the position j' in p,

only states in F' occur (o.w. w'fv’ s.t. |u'| < i occurs after j' in p'),

and every state in F' occur infinitely often (o.w. 37" > j', all u'fv’
after 7" satisfy |u'| > i, thus Inf(p’) " V; = ).
Therefore, p is accepting.
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Deterministic Muller automata (DMA)

Proposition. The class of languages recognized by DMA is closed under all
Boolean operations.
@ Union: Al = (Q1327513q(1)a-/—:1 and -AQ = (Q272752,Q(2)’f2)~
A = (Ql X QQa 2757 (Q(%v q%)af)7 Where

° (5(((]17(]2),04) = (51((]1,(1),62((]2,(1))7
o F={5<S Q1 xQ2|projy(5) € Fa} u{S = Q1 X Q2 | proj, () € F1}.

o Intersection: A; = (Q1,3,01,¢5, F1) and Az = (Q2, 3, da, @3, F2).
A = (Ql X Q2a2757 (Q(%aQ(%)af)7 Where

L4 (5(((]17(]2),04) = (61((]1,(1),62((]27(1))7
o F={5C Q1% Q2] proj,(S) € F1,proj,(S) € Fa}.

o Complementation: A = (Q,%,4,q,F) = B=(Q,%,6,q,2°\F).
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Expressibility of DMA

Theorem. An w-language L is definable by a DMA iff
L is a Boolean combination of sets W for regular W < X*.

Proof.

“If” direction:

o Wis recognized by a deterministic Biichi automata,
@ The class of languages recognized by DMAs is closed under all Boolean
combinations.
“Only if” direction:
Suppose L is defined by a DMA A = (Q, %, 9, g0, F)-
For every g € @, let W, denote the language defined by DFA (Q, X, 0, o, {q}).

Then LZU(ﬂW;mﬂWq)

FEF \qeF q¢F
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Mcnaughton’s theorem: NBA = DMA

Theorem. From every nondeterministic Bilichi automaton, an equivalent
DMA can be constructed.

NBA = Semi-deterministic Biichi automata (SDBA) = DMA

Using the slides and lecture notes by Bernd Finkbeiner.
NBA = SDBA:

o Slides: http://www.react.uni-saarland.de/teaching/
automata-games-verification-12/downloads/intro6.pdf

o Lecture notes: http://www.react.uni-saarland.de/teaching/
automata-games-verification-12/downloads/notesb.pdf

SDBA = DMA:

o Slides: http://wwuw.react.uni-saarland.de/teaching/
automata-games-verification-12/downloads/intro7.pdf

o Lecture notes: http://www.react.uni-saarland.de/teaching/
automata-games-verification-12/downloads/notes6.pdf

Homework: Prove that the construction from SDBA to DMA is correct.
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w-regular = WMSO

WMSO:

The same syntaz as MSO, with the interpretations of set variables
restricted to finite sets.

WMSO to MSO: WMSO ¢ = MSO ¢’
(3Xn) =3XAWVz(X(2) >z <y) A 7).

From DMA to WMSO:
It is sufficient to show that W with W regular can be defined by a
WMSO sentence .
W is regular = 3 a MSO sentence 1 on finite words equivalent to W.
Then W is defined by Vzdy(z < y A <y), where 1<, is obtained from
as follows:
e Replace every subformula 3Xn with IX (Vz(X(z) - = < y) A n<y).

=

e Replace every subformula 3xn with Jz(z < y A ngy)-
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Next lecture

Automata over finite trees
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