Automata theory and its applications

Lecture 9-11: Automata over infinite words

Zhilin Wu

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

December 20, 2012

Outline

- Motivation
- 2 Büchi automata
- 3 Closure properties
- 4 Equivalence with MSO
- 6 Decision problem
- 6 Muller, Rabin, Strett, and Parity automata
- Determinization
- 8 Equivalence with WMSO

Why infinite words?

Reactive systems: reacting continuously with the environment

- Operating systems,
- Communicating protocols,
- Control programs,
- Vending machines,
- ...

Salient feature of reactive systems:

Nonterminating

The behavior of reactive systems:

A set of infinite words.

Outline

- Motivation
- 2 Büchi automata
- Closure properties
- 4 Equivalence with MSO
- Decision problem
- 6 Muller, Rabin, Strett, and Parity automata
- Determinization
- 8 Equivalence with WMSC

Büchi automata (BA)

A Büchi automata \mathcal{B} is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q: finite set of states, Σ : alphabet,
- q_0 : initial state, $F \subseteq Q$: set of final states,
- $\delta \subseteq Q \times \Sigma \times Q$.

A run ρ of a Büchi automata \mathcal{B} over an ω -word $w = a_1 a_2 \cdots \in \Sigma^{\omega}$ is a state sequence $q_0 q_1 \ldots$ such that $\forall i \geq 0. (q_i, a_{i+1}, q_{i+1}) \in \delta$.

Inf(ρ): the set of states occurring infinitely often in ρ .

A run is accepting iff $Inf(\rho) \cap F \neq \emptyset$.

An ω -word w is accepted by \mathcal{B} if there is an accepting run of \mathcal{B} over w.

Let $\mathcal{L}(\mathcal{B})$ denote the set of ω -words accepted by \mathcal{B} .

Büchi automata (BA)

A Büchi automata \mathcal{B} is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q: finite set of states, Σ : alphabet,
- q_0 : initial state, $F \subseteq Q$: set of final states,
- $\delta \subseteq Q \times \Sigma \times Q$.

A run ρ of a Büchi automata \mathcal{B} over an ω -word $w = a_1 a_2 \cdots \in \Sigma^{\omega}$ is a state sequence $q_0 q_1 \ldots$ such that $\forall i \geq 0. (q_i, a_{i+1}, q_{i+1}) \in \delta$.

Inf(ρ): the set of states occurring infinitely often in ρ .

A run is accepting iff $Inf(\rho) \cap F \neq \emptyset$.

An ω -word w is accepted by \mathcal{B} if there is an accepting run of \mathcal{B} over w.

Let $\mathcal{L}(\mathcal{B})$ denote the set of ω -words accepted by \mathcal{B} .

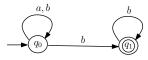
A deterministic Büchi automaton (DBA) \mathcal{B} is a BA $(Q, \Sigma, \delta, q_0, F)$ s.t.

 $\forall q \in Q, a \in \Sigma, \exists at most one q' \in Q such that (q, a, q') \in \delta.$

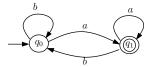
Then δ in a DBA can be seen as a partial function $\delta: Q \times \Sigma \to Q$.

Büchi automata: Example

"The letter a occurs only finitely often"



"The letter a occurs infinitely often"



Büchi automata: Several notations

Let $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$ be a BA, $q, q' \in Q$, and $w = a_1 \dots a_n \in \Sigma^*$.

A partial run of \mathcal{B} over w from q to q' is a state sequence $q_1q_2\ldots q_{n+1}$ such that

- $\forall i \leq n.(q_i, a_i, q_{i+1}) \in \delta$,
- $q_1 = q, q_{n+1} = q'$.

$$q \xrightarrow{w} q'$$
:

there is a partial run of \mathcal{B} over w from q to q'.

$$q \xrightarrow{w} q'$$
:

there is a partial run of \mathcal{B} over w from q to q' which contains an accepting state.

ω -regular languages

Theorem. Let $L \subseteq \Sigma^{\omega}$. Then

L can be defined by a BA iff
$$L = \bigcup_{i \in \mathbb{Z}} U_i V_i^{\omega}$$
,

where $\forall i: 1 \leq i \leq n$. $U_i, V_i \subseteq \Sigma^*$ are regular and $\varepsilon \notin V_i$.

Proof.

Only if direction:

Suppose that L is defined by a BA $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$.

Let
$$L_{qq'} = \{ w \in \Sigma^* \mid q \xrightarrow{w} q' \}$$
. Then $L = \bigcup_{q \in F} L_{q_0 q} (L_{qq} \setminus \{\varepsilon\})^{\omega}$.

ω -regular languages

Theorem. Let $L \subseteq \Sigma^{\omega}$. Then

L can be defined by a BA iff $L = \bigcup U_i V_i^{\omega}$,

where $\forall i: 1 \leq i \leq n$. $U_i, V_i \subseteq \Sigma^*$ are regular and $\varepsilon \notin V_i$.

Proof.

Only if direction:

Suppose that L is defined by a BA $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$.

Let
$$L_{qq'} = \{ w \in \Sigma^* \mid q \xrightarrow{w} q' \}$$
. Then $L = \bigcup_{q \in F} L_{q_0q}(L_{qq} \setminus \{\varepsilon\})^{\omega}$.

If direction: Suppose
$$L = \bigcup_{1 \le i \le n} U_i V_i^{\omega}$$
.

Since Büchi automata are closed under union (which will be shown later), it is sufficient to prove that $U_i V_i^{\omega}$ can be defined by a BA.

Let $A_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ (resp. $A_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$) define U_i (resp. V_i).

W.l.o.g. assume that there are no transitions (q, a, q_0^2) with $q \in Q_2$.

Then
$$\mathcal{B} = (Q_1 \cup Q_2, \Sigma, \delta, q_0^1, \{q_0^2\})$$
 defines L , where

$$\delta = \begin{array}{c} \delta_1 \cup \delta_2 \cup \left\{ (q, a, q') \mid q \in F_1, (q_0^2, a, q') \in \delta_2 \right\} \\ \cup \left\{ (q, a, q_0^2) \mid \exists q' \in F_2, (q, a, q') \in \delta_2 \right\} \end{array}.$$

Expressibility of DBA

Let
$$L \subseteq \Sigma^*$$
. Define $\overrightarrow{L} = \{ w \in \Sigma^{\omega} \mid \exists^{\omega} n. \ w_1 \dots w_n \in L \}$.

Proposition. Let $L \subseteq \Sigma^{\omega}$. Then

L can be defined by a DBA iff $L = \overrightarrow{L'}$ for some regular language $L' \subseteq \Sigma^*$.

Proof.

Only if direction:

Suppose L is defined by the DBA $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$.

Let L' be defined by the DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, then $L = \overrightarrow{L'}$.

It is trivial that $L \subseteq \overrightarrow{L}'$.

Suppose $w \in \overline{L}'$. Then there exist infinitely many $n \in \mathbb{N}$ s.t. $w_1 \dots w_n \in L'$.

For each such n, let $q_0 \ldots q_n$ be the accepting run of \mathcal{A} over $w_1 \ldots w_n$.

Then $q_0 \dots q_n \dots$ is an accepting run of \mathcal{B} over w. Therefore, $w \in L$.

If direction:

Let $L = \overrightarrow{L}'$ and $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA defining L'.

Then the DFA $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$ defines L.

Expressibility of DBA

Let $L \subseteq \Sigma^*$. Define $\overrightarrow{L} = \{ w \in \Sigma^{\omega} \mid \exists^{\omega} n. \ w_1 \dots w_n \in L \}.$

Proposition. Let $L \subseteq \Sigma^{\omega}$. Then

L can be defined by a DBA iff $L = \overrightarrow{L'}$ for some regular language $L' \subseteq \Sigma^*$.

Proposition. BA is strictly more expressive than DBA.

Proof.

The language L "The letter a occurs only finitely often" is not expressible in DBA.

For contradiction, assume that L is defined by a DBA \mathcal{B} .

Consider ab^{ω} . The run of \mathcal{B} over ab^{ω} is accepting. Let $n_1 \in \mathbb{N}$ s.t. $q_0 \xrightarrow{ab^{n_1}} q_1$.

Consider $ab^{n_1}ab^{\omega}$. Let $n_2 \in \mathbb{N}$ s.t. $q_1 \xrightarrow{ab^{n_2}} q_2$.

Continue like this, we can get an ω -word $ab^{n_1}ab^{n_2}\ldots$ which is accepted by \mathcal{B} , while on the other hand contains infinitely many a's, a contradiction.

Outline

- Motivation
- 2 Büchi automata
- 3 Closure properties
- 4 Equivalence with MSO
- 6 Decision problem
- 6 Muller, Rabin, Strett, and Parity automata
- Determinization
- 8 Equivalence with WMSC

Union and intersection

Proposition. The class of ω -regular languages is closed under union and intersection.

Proof.

Let $A_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ define resp. L_1, L_2 . *Union*:

The BA $\mathcal{A} = (Q_1 \cup Q_2 \cup \{q_0\}, \Sigma, \delta, q_0, F_1 \cup F_2)$ defines $L_1 \cup L_2$, where

$$\delta = \delta_1 \cup \delta_2 \cup \{(q_0, a, q) \mid (q_0^1, a, q) \in \delta_1\} \cup \{(q_0, a, q) \mid (q_0^2, a, q) \in \delta_2\}.$$

Intersection:

The BA $\mathcal{A}=(Q_1\times Q_2\times\{0,1,2\},\Sigma,\delta,(q_0^1,q_0^2,0),Q_1\times Q_2\times\{2\})$ defines $L_1\cap L_2$, where δ is defined as follows,

Suppose $(q_1, a, q_1') \in \delta_1$ and $(q_2, a, q_2') \in \delta_2$.

- If $q'_1 \notin F_1$, then $((q_1, q_2, 0), a, (q'_1, q'_2, 0)) \in \delta$, otherwise, $((q_1, q_2, 0), a, (q'_1, q'_2, 1)) \in \delta$.
- If $q'_2 \notin F_2$, then $((q_1, q_2, 1), a, (q'_1, q'_2, 1)) \in \delta$, otherwise, $((q_1, q_2, 1), a, (q'_1, q'_2, 2)) \in \delta$.
- $((q_1, q_2, 2), a, (q'_1, q'_2, 0)) \in \delta$.

Theorem. The class of ω -regular languages is closed under complementation.

Let $L \subseteq \Sigma^{\omega}$ defined by a BA $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$. Define a congruence $\sim_{\mathcal{B}}$ over Σ^* as follows:

$$u\sim_{\mathcal{B}} v \text{ iff } \forall q,q'\in Q.(q\xrightarrow{u}q'\Leftrightarrow q\xrightarrow{v}q') \text{ and } (q\xrightarrow{u}q'\Leftrightarrow q\xrightarrow{v}q').$$

Let [u] denote the equivalence class of u under $\sim_{\mathcal{B}}$.

Theorem. The class of ω -regular languages is closed under complementation.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely,

for every $u, v \in \Sigma^*$, $[u][v]^{\omega} \cap L \neq \emptyset$ implies that $[u][v]^{\omega} \subseteq L$.

Proof.

Suppose $u_1v_1v_2\cdots \in L$ s.t. $u_1 \in [u]$ and $v_1, v_2, \cdots \in [v]$.

We prove that $u_1'v_1'v_2'\cdots \in L$ for every $u_1'\in [u]$ and $v_1',v_2',\cdots \in [v]$.

There exists an accepting run ρ of \mathcal{B} over $u_1v_1v_2...$

Let q_1, q_2, \ldots be the states in ρ such that $q_0 \xrightarrow{u_1} q_1, \forall i \geq 1. q_i \xrightarrow{v_i} q_{i+1}$.

Then there are $i_1 < i_2 < \dots$ s.t.

$$q_1 \xrightarrow[F]{v_1 \dots v_{i_1}} q_{i_1+1}, \ \forall j \geqslant 1. \\ q_{i_j+1} \xrightarrow[F]{v_{i_j+1} \dots v_{i_{j+1}}} q_{i_{j+1}+1}.$$

So
$$q_0 \xrightarrow{u_1'} q_1$$
, $q_1 \xrightarrow{v_1' \dots v_{i_1}'} q_{i_1+1}$, and $\forall j \geqslant 1. q_{i_j+1} \xrightarrow{v_{i_j+1}' \dots v_{i_j+1}'} q_{i_{j+1}+1}$.

Automata over infinite words

Therefore, $u'_1v'_1v'_2...$ is accepted by \mathcal{B} , thus in L.

Theorem. The class of ω -regular languages is closed under complementation.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely,

for every $u, v \in \Sigma^*$, $[u][v]^{\omega} \cap L \neq \emptyset$ implies that $[u][v]^{\omega} \subseteq L$.

Lemma. $\forall w \in \Sigma^{\omega}, \exists u, v \in \Sigma^* \text{ s.t. } w \in [u][v]^{\omega}.$

Proof.

For a pair (i, j) such that i < j, assign a color $[w_i \dots w_{j-1}]$.

From Ramsey theorem,

 \exists a color [v] and an infinite sequence $1 \leq i_1 < i_2 < \dots$ s.t.

 $\forall j < k$, the pair (i_j, i_k) is assigned the color [v].

Let $u = w_1 \dots w_{i_1-1}$. Then

 $w = (w_1 \dots w_{i_1-1})(w_{i_1} \dots w_{i_2-1})(w_{i_2} \dots w_{i_3-1}) \dots \in [u][v]^{\omega}.$

Theorem. The class of ω -regular languages is closed under complementation.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely,

for every $u, v \in \Sigma^*$, $[u][v]^{\omega} \cap L \neq \emptyset$ implies that $[u][v]^{\omega} \subseteq L$.

Lemma. $\forall w \in \Sigma^{\omega}, \exists u, v \in \Sigma^* \text{ s.t. } w \in [u][v]^{\omega}.$

Lemma. $\forall u \in \Sigma^*$ s.t. [u] is regular.

Proof.

It is sufficient to prove that $L_{qq'} = \left\{ w \mid q \xrightarrow{w} q' \right\}$ and $L_{qq'}^F = \left\{ w \mid q \xrightarrow{w} q' \right\}$ are regular for all q, q'.

 $L_{qq'}$ is regular: Obvious.

 $L_{qq'}^F$ is regular: Defined by the NFA $(Q \times \{0,1\}, \Sigma, \delta', (q,0), (q',1))$, where

 $\forall p,p' \in Q, \ if \ (p,a,p') \in \delta, \ then \ ((p,1),a,(p',1)) \in \delta', \ and \\ if \ p' \notin F, \ then \ ((p,0),a,(p',0)) \in \delta', \ otherwise, \ ((p,0),a,(p',1)) \in \delta'.$

Theorem. The class of ω -regular languages is closed under complementation.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely,

for every $u, v \in \Sigma^*$, $[u][v]^{\omega} \cap L \neq \emptyset$ implies that $[u][v]^{\omega} \subseteq L$.

Lemma. $\forall w \in \Sigma^{\omega}, \exists u, v \in \Sigma^* \text{ s.t. } w \in [u][v]^{\omega}.$

Lemma. $\forall u \in \Sigma^* \text{ s.t. } [u] \text{ is regular.}$

Proof of the theorem.

Let
$$S = \{([u], [v]) \mid [u][v]^{\omega} \cap L \neq \emptyset\}$$
. Then $\overline{L} = \bigcup_{([u], [v]) \notin S} [u][v]^{\omega}$.

$$\bigcup_{([u],[v])\notin S} [u][v]^\omega \subseteq \overline{L} \text{: If } ([u],[v]) \notin S \text{, then } [u][v]^\omega \cap L = \varnothing \text{, so } [u][v]^\omega \subseteq \overline{L}.$$

$$\overline{L} \subseteq \bigcup_{\substack{([u],[v]) \notin S}} [u][v]^{\omega} : \text{ For every } w \in \overline{L}, \text{ there are } [u],[v] \text{ such that } w \in [u][v]^{\omega}.$$

Automata over infinite words

Because $([u], [v]) \in S$ implies $w \in [u][v]^{\omega} \subseteq L$, it follows $([u], [v]) \notin S$.

Theorem. The class of ω -regular languages is closed under complementation.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely,

for every $u, v \in \Sigma^*$, $[u][v]^{\omega} \cap L \neq \emptyset$ implies that $[u][v]^{\omega} \subseteq L$.

Lemma. $\forall w \in \Sigma^{\omega}, \exists u, v \in \Sigma^* \text{ s.t. } w \in [u][v]^{\omega}.$

Lemma. $\forall u \in \Sigma^* \text{ s.t. } [u] \text{ is regular.}$

Complexity analysis

The automaton \mathcal{B}' defining \overline{L} :

The union of the BAs for the languages $[u][v]^{\omega}$ with $([u], [v]) \notin S$.

The BA for $[u][v]^{\omega}$ can be easily obtained from the NFAs for resp. [u] and [v].

 $\textit{[u] is determined by } (\{(q,q') \mid q \xrightarrow{u} q'\}, \{(q,q') \mid q \xrightarrow{w} q'\}) \Rightarrow$

 $2^{2|Q|^2}$ equivalence classes $\Rightarrow 2^{2|Q|^2}$ states in the NFA for [u] and [v].

Conclusion: There are $2^{O(|Q|^2)}$ states in \mathcal{B}' .

Outline

- Motivation
- 2 Büchi automata
- 3 Closure properties
- 4 Equivalence with MSO
- 6 Decision problem
- 6 Muller, Rabin, Strett, and Parity automata
- Determinization
- 8 Equivalence with WMSO

MSO over infinite words

Syntax.

$$\varphi := P_{\sigma}(x) \mid x = y \mid \operatorname{suc}(x, y) \mid X(x) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$
 where $\sigma \in \Sigma$.

A MSO formula φ is satisfied over an ω -word $w = a_1 \dots a_n \dots$, with a valuation \mathcal{I} of Free (φ) over \mathcal{S}_w , denoted by $(w, \mathcal{I}) \models \varphi$, is defined as follows,

- $(w, \mathcal{I}) \models P_{\sigma}(x) \text{ iff } a_{\mathcal{I}(x)} = \sigma,$
- $(w, \mathcal{I}) \models x = y \text{ iff } \mathcal{I}(x) = \mathcal{I}(y),$
- $(w, \mathcal{I}) \models \operatorname{suc}(x, y) \text{ iff } \mathcal{I}(x) + 1 = \mathcal{I}(y),$
- $(w, \mathcal{I}) \models X(x) \text{ iff } \mathcal{I}(x) \in \mathcal{I}(X),$
- $(w, \mathcal{I}) \models \varphi_1 \vee \varphi_2$ iff $(w, \mathcal{I}) \models \varphi_1$ or $(w, \mathcal{I}) \models \varphi_2$,
- $(w, \mathcal{I}) \models \neg \varphi_1$ iff not $(w, \mathcal{I}) \models \varphi_1$,
- $(w, \mathcal{I}) \models \exists x \varphi_1 \text{ iff there is } j \in S_w \text{ such that } (w, \mathcal{I}[x \to j]) \models \varphi_1,$
- $(w, \mathcal{I}) \models \exists X \varphi_1 \text{ iff there is } J \subseteq S_w \text{ such that } (w, \mathcal{I}[X \to J]) \models \varphi_1.$

$BA \equiv MSO$

From BA to MSO

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a BA. Let $Q = \{q_0, q_1, \dots, q_n\}$. Construct the MSO formula φ as follows,

$$\exists q_0 \dots q_n (\varphi_{init} \land \varphi_{trans} \land \varphi_{final}),$$

where

- $\varphi_{init} = \exists x (\text{First}(x) \land \bigvee_{(q_0, a, q) \in \delta} (P_a(x) \land q(x))),$
- $\bullet \ \varphi_{trans} = \forall x \forall y (\operatorname{suc}(x,y) \to \bigvee_{(q,a,q') \in \delta} q(x) \land P_a(y) \land q'(y)),$
- $\varphi_{final} = \forall x \exists y \left(x < y \land \bigvee_{q \in F} q(y) \right).$ Then $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}).$

From MSO to BA

Similar to the construction of an NFA from a MSO formula.

Outline

- Motivation
- 2 Büchi automata
- 3 Closure properties
- 4 Equivalence with MSO
- **5** Decision problem
- 6 Muller, Rabin, Strett, and Parity automata
- Determinization
- 8 Equivalence with WMSO

Nonemptiness

Input: Büchi automaton $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$.

Question: Is $\mathcal{L}(\mathcal{B}) \neq \emptyset$?

Find a SCC (strongly-connected-component) C satisfying the following conditions,

- C contains an accepting state,
- C is reachable from q_0 .

Proposition. Nonemptiness of Büchi automata can be decided in linear time.

SCCs of a directed graph can be found in linear time by a DFS search.

Language inclusion

Input: Büchi automata \mathcal{B}_1 and \mathcal{B}_2 .

Question: Is $\mathcal{L}(\mathcal{B}_1) \subseteq \mathcal{L}(\mathcal{B}_2)$?

Theorem. Language inclusion of Büchi automata is PSPACE-complete.

 $Upper\ bound.$

Construct \mathcal{B}_2' defining $\overline{\mathcal{L}(\mathcal{B}_2)}$ and test the emptiness of $\mathcal{L}(\mathcal{B}_1 \cap \mathcal{B}_2')$.

There are $|Q_1|2^{O(|Q_2|^2)}$ states in $\mathcal{B}_1 \cap \mathcal{B}_2' \Rightarrow$ The nonemptiness of $\mathcal{B}_1 \cap \mathcal{B}_2'$ can be decided in PSPACE

- Guess on the fly a path from the initial state to a cycle containing an accepting state.
- $NPSPACE \equiv PSPACE$.

Language inclusion

Input: Büchi automata \mathcal{B}_1 and \mathcal{B}_2 .

Question: Is $\mathcal{L}(\mathcal{B}_1) \subseteq \mathcal{L}(\mathcal{B}_2)$?

Theorem. Language inclusion of Büchi automata is PSPACE-complete.

Lower bound.

Universality of Büchi automata $(\mathcal{L}(\mathcal{B}) = \Sigma^{\omega})$ is PSPACE-hard.

Reduction from the membership problem of PSPACE TMs.
Use BA to describe the unsuccessful computations of PSPACE TMs.

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be a linear space (say cn) TM. In addition, let $\hat{\Gamma} = \Gamma \cup Q \cup \{\$\}$.

A successful computation of M over w: $C_1 C_2 \ldots C_m \left(\widehat{\Gamma} \right)$ s.t.

- $\forall i, C_i \in \Gamma^j Q \Gamma^{cn-j}$ for some j,
- $\forall i < m, C_i \vdash_M C_{i+1}$,
- $C_1 = q_0 w B^{cn-n}, C_m \in \Gamma^* F \Gamma^*.$

Outline

- Motivation
- 2 Büchi automata
- Closure properties
- 4 Equivalence with MSO
- 6 Decision problem
- 6 Muller, Rabin, Strett, and Parity automata
- Determinization
- 8 Equivalence with WMSO

Various acceptance conditions

Acceptance conditions of ω -automata

- Muller condition: $(Q, \Sigma, \delta, q_0, \mathcal{F})$, where $\mathcal{F} \subseteq 2^Q$, A run ρ is accepting iff $\operatorname{Inf}(\rho) \in \mathcal{F}$.
- Rabin condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \leq i \leq k})$, where $\forall i. U_i, V_i \subseteq Q$, $A \ run \ \rho \ is \ accepting \ iff \ \exists i. \ Inf(\rho) \cap U_i = \varnothing \land Inf(\rho) \cap V_i \neq \varnothing$.
- Strett condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \leq i \leq k})$, where $\forall i. U_i, V_i \subseteq Q$, $A \ run \ \rho \ is \ accepting \ iff \ \forall i. \ Inf(\rho) \cap V_i \neq \emptyset \rightarrow Inf(\rho) \cap U_i \neq \emptyset$.
- Parity condition: $(Q, \Sigma, \delta, q_0, c)$, where $c: Q \to \{1, \dots, k\}$, A run ρ is accepting iff $\min(\{c(q) \mid q \in \operatorname{Inf}(\rho)\})$ is even.
- Rabin chain condition: A Rabin condition $(U_i, V_i)_{1 \le i \le k}$ s.t. $U_1 \subseteq V_1 \subseteq U_2 \subseteq V_2 \subseteq \cdots \subseteq U_k \subseteq V_k$.

Various acceptance conditions

Acceptance conditions of ω -automata

- Muller condition: $(Q, \Sigma, \delta, q_0, \mathcal{F})$, where $\mathcal{F} \subseteq 2^Q$, A run ρ is accepting iff $\operatorname{Inf}(\rho) \in \mathcal{F}$.
- Rabin condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \leq i \leq k})$, where $\forall i. U_i, V_i \subseteq Q$, $A \ run \ \rho \ is \ accepting \ iff \ \exists i. \ Inf(\rho) \cap U_i = \varnothing \land Inf(\rho) \cap V_i \neq \varnothing$.
- Strett condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \leq i \leq k})$, where $\forall i. U_i, V_i \subseteq Q$, $A \ run \ \rho \ is \ accepting \ iff \ \forall i. \ Inf(\rho) \cap V_i \neq \emptyset \rightarrow Inf(\rho) \cap U_i \neq \emptyset$.
- Parity condition: $(Q, \Sigma, \delta, q_0, c)$, where $c: Q \to \{1, \dots, k\}$, A run ρ is accepting iff $\min(\{c(q) \mid q \in \operatorname{Inf}(\rho)\})$ is even.
- Rabin chain condition: A Rabin condition $(U_i, V_i)_{1 \leq i \leq k}$ s.t. $U_1 \subseteq V_1 \subseteq U_2 \subseteq V_2 \subseteq \cdots \subseteq U_k \subseteq V_k$.

Observation. Parity \equiv Rabin chain.

Parity \Rightarrow Rabin chain: $c: Q \rightarrow \{1, \dots, 2k+1\}$

 $\forall i : 1 \le i \le k. \ U_i = \{q \mid c(q) \le 2i - 1\}, \ V_i = \{q \mid c(q) \le 2i\}.$

Rabin chain \Rightarrow Parity: $\forall i : 1 \leq i \leq k$. $c(U_i \backslash V_{i-1}) = 2i - 1$, $c(V_i \backslash U_i) = 2i$.

Equivalence of all the acceptance conditions

From Büchi to the other conditions:

Let $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$ be a BA.

- Muller: $(Q, \Sigma, \delta, q_0, \mathcal{F})$ with $\mathcal{F} = \{P \mid P \cap F \neq \emptyset\},$
- Rabin: $(Q, \Sigma, \delta, q_0, (\emptyset, F)),$
- Strett: $(Q, \Sigma, \delta, q_0, (F, Q)),$
- Parity: $(Q, \Sigma, \delta, q_0, c)$ with c(F) = 0 and $c(Q \setminus F) = 1$.

From Parity to Strett:

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, c)$ be a Parity automaton and $c: Q \to \{1, \dots, 2k+1\}$. Then \mathcal{A} is equivalent to the Strett automaton $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{0 \le i \le k})$,

where
$$U_i = \{q \mid c(q) \le 2i\}, V_i = \{q \mid c(q) \le 2i + 1\}.$$

From Rabin and Strett to Muller:

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \leq i \leq k})$ be a Rabin (resp. Strett) automaton. Then \mathcal{A} is equivalent to the Muller automaton $(Q, \Sigma, \delta, q_0, \mathcal{F})$, where $\mathcal{F} = \{F \mid \exists i.F \cap U_i = \emptyset \land F \cap V_i \neq \emptyset\}$

(resp.
$$\mathcal{F} = \{ F \mid \forall i.F \cap V_i \neq \emptyset \rightarrow F \cap U_i \neq \emptyset \}$$
).

Equivalence of all the acceptance conditions

From Muller to Büchi

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a Muller automaton s.t. $\mathcal{F} = \{F_1, \dots, F_k\}$ and $\forall i : 1 \leq i \leq k$. $F_i = \{q_i^1, \dots, q_i^{l_i}\}$. Construct a Büchi automaton $\mathcal{B} = (Q', \Sigma, \delta', q'_0, F')$ as follows.

- $\bullet \ \ Q' = Q \cup \{(q,i,j) \mid q \in Q, 1 \leqslant i \leqslant k, 0 \leqslant j \leqslant |F_i|\},$
- $q'_0 = q_0$,
- $F' = \{(q, i, |F_i|) \mid q \in Q, 1 \leq i \leq k\},\$
- δ' is defined as follows,
 - δ' contains all the transitions in δ ,
 - for every transition $(q, a, q') \in \delta$ and every $i : 1 \leq i \leq k$ such that $q' \in F_i$, $(q, a, (q', i, 0)) \in \delta'$,
 - for every transition $(q, a, q') \in \delta$,
 - if $q, q' \in F_i$ and $q' = q_i^{j+1}$, then $((q, i, j), a, (q, i, j+1)) \in \delta'$,
 - if $q, q' \in F_i$ and $q' \neq q_i^{j+1}$, then $((q, i, j), (q', i, j)) \in \delta'$,
 - for every transition $(q, a, q') \in \delta$, if $q, q' \in F_i$, then $((q, i, l_i), a, (q', i, 0)) \in \delta'$.

Theorem. Deterministic Muller, Rabin, Strett and Parity automata are expressively equivalent.

From Parity to Rabin and Strett, from Rabin and Strett to Muller: Same as the nondeterministic automata.

Theorem. Deterministic Muller, Rabin, Strett and Parity automata are expressively equivalent.

From deterministic Muller to deterministic Parity (Rabin chain):

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a deterministic Muller automaton.

Suppose $Q = \{q_0, \ldots, q_n\}.$

The main idea.

Latest appearance record (LAR)

Theorem. Deterministic Muller, Rabin, Strett and Parity automata are expressively equivalent.

From deterministic Muller to deterministic Parity (Rabin chain):

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a deterministic Muller automaton.

Suppose
$$Q = \{q_0, \ldots, q_n\}.$$

Construct a Parity automaton $\mathcal{A}' = (Q', \Sigma, \delta', q'_0, (U_i, V_i)_{0 \leq i \leq n})$ as follows.

- Q' is the set of sequences $u \sharp v$ s.t. uv is a permutation of $q_0 \ldots q_n$.
- $q_0' = \sharp q_n q_{n-1} \dots q_0.$
- if $\delta(q_{i_n}, a) = q_{i_s}$, then

$$\delta'(q_{i_0} \dots q_{i_r} \sharp q_{i_{r+1}} \dots q_{i_n}, a) = q_{i_0} \dots q_{i_{s-1}} \sharp q_{i_{s+1}} \dots q_{i_n} q_{i_s}.$$

In particular, if $\delta(q_{i_n}, a) = q_{i_n}$, then

$$\delta'(q_{i_0}\ldots q_{i_r}\sharp q_{i_{r+1}}\ldots q_{i_n},a)=q_{i_0}\ldots\sharp q_{i_n}.$$

•
$$U_i = \{u\sharp v \mid |u| < i\}, V_i = U_i \cup \{u\sharp v \mid |u| = i, \exists F \in \mathcal{F}. F = v\}.$$

$$U_0 \subseteq V_0 \subseteq U_1 \subseteq V_1 \subseteq \cdots \subseteq U_n \subseteq V_n.$$

Theorem. Deterministic Muller, Rabin, Strett and Parity automata are expressively equivalent.

From deterministic Muller to deterministic Parity (Rabin chain):

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a deterministic Muller automaton.

Suppose $Q = \{q_0, \dots, q_n\}.$

Construct a Parity automaton $\mathcal{A}' = (Q', \Sigma, \delta', q'_0, (U_i, V_i)_{0 \leq i \leq n})$ as follows.

Correctness of the construction.

Let $w \in \Sigma^{\omega}$ and ρ be the accepting run of \mathcal{A} over w. Then $\operatorname{Inf}(\rho) = F \in \mathcal{F}$. Consider the run ρ' of \mathcal{A}' corresponding to ρ .

 $\exists j \ s.t. \ after \ the \ position \ j \ in \ \rho, \ only \ the \ states \ in \ Inf(\rho) \ appear \Longrightarrow$

 $\exists j' \geqslant j \text{ s.t. after the position } j' \text{ in } \rho',$

all the states in $Inf(\rho)$ are on the right side of LAR \Longrightarrow

 $\exists i \ s.t. \ after \ the \ position \ j' \ in \ \rho', \ all \ the \ LARs \ u\sharp v \ satisfy \ |u| \geqslant i,$ and $\exists^{\omega} u\sharp v \ s.t. \ |u| = i \ and \ v = \operatorname{Inf}(\rho) = F \Longrightarrow$

 $\operatorname{Inf}(\rho') \cap U_i = \emptyset \text{ and } \operatorname{Inf}(\rho') \cap V_i \neq \emptyset$

Theorem. Deterministic Muller, Rabin, Strett and Parity automata are expressively equivalent.

From deterministic Muller to deterministic Parity (Rabin chain):

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a deterministic Muller automaton.

Suppose $Q = \{q_0, \ldots, q_n\}.$

Construct a Parity automaton $\mathcal{A}'=(Q',\Sigma,\delta',q'_0,(U_i,V_i)_{0\leqslant i\leqslant n})$ as follows.

Correctness of the construction.

Let $w \in \Sigma^{\omega}$ and ρ' be the accepting run of \mathcal{A}' over w.

 $\exists i \ s.t. \ \operatorname{Inf}(\rho') \cap U_i = \emptyset \ and \ \operatorname{Inf}(\rho') \cap V_i \neq \emptyset \Longrightarrow$

 $\exists F \in \mathcal{F} \text{ and } j' \text{ s.t. } u \sharp v \text{ in the position } j' \text{ of } \rho' \text{ satisfies } |u| = i, v = F,$ and after the position j' in ρ' .

all $u' \sharp v'$ satisfy $|u'| \ge i$, and $\exists^{\omega} u' \sharp v'$, $|u'| = i, v' = F \Longrightarrow$

Consider the run ρ of A over w: After the position j' in ρ ,

only states in F occur (o.w. $u'\sharp v'$ s.t. |u'| < i occurs after j' in ρ'), and every state in F occur infinitely often (o.w. $\exists j'' > j'$, all $u'\sharp v'$

after j'' satisfy |u'| > i, thus $Inf(\rho') \cap V_i = \emptyset$).

Therefore, ρ is accepting.

Outline

- Motivation
- 2 Büchi automata
- 3 Closure properties
- 4 Equivalence with MSO
- Decision problem
- 6 Muller, Rabin, Strett, and Parity automata
- Determinization
- 8 Equivalence with WMSO

Deterministic Muller automata (DMA)

Proposition. The class of languages recognized by DMA is closed under all Boolean operations.

- Union: $A_1 = (Q_1, \Sigma, \delta_1, q_0^1, \mathcal{F}_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_0^2, \mathcal{F}_2)$. $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), \mathcal{F})$, where
 - $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)),$
 - $\mathcal{F} = \{S \subseteq Q_1 \times Q_2 \mid \operatorname{proj}_2(S) \in \mathcal{F}_2\} \cup \{S \subseteq Q_1 \times Q_2 \mid \operatorname{proj}_1(S) \in \mathcal{F}_1\}.$
- Intersection: $A_1 = (Q_1, \Sigma, \delta_1, q_0^1, \mathcal{F}_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_0^2, \mathcal{F}_2)$.

$$\mathcal{A} = (Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), \mathcal{F}), \text{ where}$$

- $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)),$
- $\mathcal{F} = \{ S \subseteq Q_1 \times Q_2 \mid \operatorname{proj}_1(S) \in \mathcal{F}_1, \operatorname{proj}_2(S) \in \mathcal{F}_2 \}.$
- Complementation: $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F}) \Rightarrow \mathcal{B} = (Q, \Sigma, \delta, q_0, 2^Q \backslash \mathcal{F}).$

Expressibility of DMA

Theorem. An ω -language L is definable by a DMA iff L is a Boolean combination of sets \overrightarrow{W} for regular $W \subseteq \Sigma^*$.

Proof.

"If" direction:

- ullet is recognized by a deterministic Büchi automata,
- The class of languages recognized by DMAs is closed under all Boolean combinations.

"Only if" direction:

Suppose L is defined by a DMA $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F}).$

For every $q \in Q$, let W_q denote the language defined by DFA $(Q, \Sigma, \delta, q_0, \{q\})$. Then

$$L = \bigcup_{F \in \mathcal{F}} \left(\bigcap_{q \in F} \overrightarrow{W_q} \cap \bigcap_{q \notin F} \overrightarrow{\overline{W_q}} \right).$$

Mcnaughton's theorem: $NBA \equiv DMA$

Theorem. From every nondeterministic Büchi automaton, an equivalent DMA can be constructed.

 $NBA \Rightarrow Semi\text{-}deterministic B\"{u}chi automata (SDBA) \Rightarrow DMA$

Using the slides and lecture notes by Bernd Finkbeiner.

 $NBA \Rightarrow SDBA$:

- Slides: http://www.react.uni-saarland.de/teaching/ automata-games-verification-12/downloads/intro6.pdf
- Lecture notes: http://www.react.uni-saarland.de/teaching/automata-games-verification-12/downloads/notes5.pdf

 $SDBA \Rightarrow DMA$:

- Slides: http://www.react.uni-saarland.de/teaching/ automata-games-verification-12/downloads/intro7.pdf
- Lecture notes: http://www.react.uni-saarland.de/teaching/automata-games-verification-12/downloads/notes6.pdf

Homework: Prove that the construction from SDBA to DMA is correct.

Outline

- Motivation
- 2 Büchi automata
- 3 Closure properties
- 4 Equivalence with MSO
- Decision problem
- 6 Muller, Rabin, Strett, and Parity automata
- Determinization
- 8 Equivalence with WMSO

ω -regular \equiv WMSO

WMSO:

The same syntax as MSO, with the interpretations of set variables restricted to finite sets.

WMSO to **MSO**: WMSO $\varphi \Rightarrow$ MSO φ'

$$(\exists X\eta)' = \exists X(\exists y \forall x(X(x) \to x \leqslant y) \land \eta').$$

From DMA to WMSO:

It is sufficient to show that \overrightarrow{W} with W regular can be defined by a WMSO sentence φ .

 $W \text{ is } regular \Rightarrow \exists \text{ a MSO sentence } \psi \text{ on finite words equivalent to } W.$

Then \overrightarrow{W} is defined by $\forall x \exists y (x < y \land \psi_{\leq y})$, where $\psi_{\leq y}$ is obtained from ψ as follows:

- Replace every subformula $\exists X \eta$ with $\exists X (\forall x (X(x) \to x \leq y) \land \eta_{\leq y})$.
- Replace every subformula $\exists x \eta$ with $\exists x (x \leq y \land \eta_{\leq y})$.

Next lecture

Automata over finite trees