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Infinite binary trees

A function t : t0, 1u� Ñ Σ,

0 1

a b

0 1 10

a b a b

a

t(ε) = a

t(x0) = a

t(x1) = b

Let TωΣ denote the set of infinite binary trees over Σ.
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Büchi, Muller, Rabin and parity tree automata

A Büchi tree automaton (BTA) A is a tuple pQ,Σ, δ, q0, F q such that

Q is the set of states,

Σ is the finite alphabet,

δ � Q� Σ�Q�Q,

q0 P Q, F � Q.

A run of a BTA A over an infinite binary tree t:
An infinite binary tree r : t0, 1u� Ñ Q s.t.

rpεq � q0,

for every x P t0, 1u�, prpxq, tpxq, rpx0q, rpx1qq P δ.

A run r of A over t is accepting if @ path π in r, Infpr|πq X F � H.
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Büchi, Muller, Rabin and parity tree automata

A Muller tree automaton (MTA) A is a tuple pQ,Σ, δ, q0,Fq s.t.

Q,Σ, δ, q0 are the same as BTA,

F � 2Q.

A run r of a MTA A over an infinite binary tree t is accepting if
@ path π in r, Infpr|πq P F .

A Rabin tree automaton (RTA) A is a tuple pQ,Σ, δ, q0, pUi, Viq1¤i¤kq s.t.

Q,Σ, δ, q0 are the same as BTA,

@i : 1 ¤ i ¤ k. Ui, Vi � Q.

A run r of a RTA A over an infinite binary tree t is accepting if
@ path π in r, Di : 1 ¤ i ¤ k, Infpr|πq X Ui � H and Infpr|πq X Vi � H.

A Parity tree automaton (PTA) A is a tuple pQ,Σ, δ, q0, cq s.t.

Q,Σ, δ, q0 are the same as BTA,

c : QÑ t1, . . . , ku.

A run r of a PTA A over an infinite binary tree t is accepting if
@ path π in r, mintcpqq | q P Infpr|πqu is even.
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Expressibility

Proposition. MTA � RTA � PTA.

Proof.
PTA � RTA � MTA: By definition.
MTA � PTA: Latest appearance record.

Proposition. MTA ¡ BTA.

Proof.
L: The set of trees s.t. along every path, a only occurs finitely many times.

Claim. L is expressible in MTA, but not in BTA.
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Proposition. MTA ¡ BTA.

Proof.
L: The set of trees s.t. along every path, a only occurs finitely many times.

Claim. L is expressible in MTA, but not in BTA.

L is defined by the MTA A � ptq0, q1u,Σ, δ, q0, ttq1uuq, where
δ � tpq0, a, q0, q0q, pq0, b, q1, q1q, pq1, b, q1, q1q, pq1, a, q0, q0qu.
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Expressibility

Proposition. MTA � RTA � PTA.

Proposition. MTA ¡ BTA.

Proof.
L: The set of trees s.t. along every path, a only occurs finitely many times.

Claim. L is expressible in MTA, but not in BTA.

To the contrary, suppose L is defined by a BTA B � pQ,Σ, δ, q0, F q of n states.
Consider the infinite tree t

where a occurs exactly at the positions 1�0, 1�01�0, . . . , p1�0qn.

Evidently, t is accepted by B, so there is an accepting run r of B over t.
Then Dm0,m1, . . . ,mn s.t. rp1m0q, rp1m001m1q, . . . , rp1m00 . . . 01mnq P F .
Therefore, Di, j : i   j s.t. rp1m00 . . . 01miq � rp1m00 . . . 01mj q.
Let t1 be the tree obtained from t by

repeating the path from 1m00 . . . 01mi to 1m00 . . . 01mj ,
with subtrees of the nodes on the path copied.

Then t1 is accepted by B, but t1 contains a path where a occurs infinitely
often, a contradiction.
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Parity game: An example
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Parity game

A parity game G consists of

a game graph (possibly infinite) which is a bipartite graph G � pV0, V1, Eq
s.t. @v P V0 Y V1, vE is nonempty and finite,

a colouring function c : V0 Y V1 Ñ N.

Two players: Player 0 and 1 in G, with V0 and V1 as resp. their territory.

A Play π is an infinite path v0v1 . . . in the graph G.

Winning condition

Player 0 (resp. Player 1) wins a play π if

minpInfpcpπqqq is even (resp. odd).
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Winning strategy

Conform to . . .

Let σ P t0, 1u and fσ : pV0 Y V1q
�Vσ Ñ V1�σ a partial function.

A prefix of a play v0 . . . vn conforms to fσ if

for every i   n s.t. vi P Vσ, vi�1 � fσpv1 . . . viq.

A play π conforms to fσ if every prefix of π conforms to fσ.

Strategy and winning strategy

A strategy of Player σ on U � V0 Y V1 is
a partial function fσ : pV0 Y V1q

�Vσ Ñ V1�σ s.t.

@ prefix of a play v0 . . . vn P pV0 Y V1q
�Vσ starting from U and conforming to

fσ, fσpv0 . . . vnq is defined.

We can assume that the domain of fσ is minimal wrt. the above condition.

A winning strategy of Player σ on U is a strategy fσ of Player σ on U s.t.

Player σ wins every play π starting from U and conforming to fσ.
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Winning region

Proposition. If Player σ has a winning strategy on U1 and U2,
then Player σ has a winning strategy on U1 Y U2.

Proof.
Let fσ,1, fσ,2 be the winning strategy of Player σ on U1 and U2 respectively.
Define a strategy fσ for Player σ on U as follows:

fσpv0 . . . vnq �

"
fσ,1pv0 . . . vnq, fσ,1pv0 . . . vnq is defined
fσ,2pv0 . . . vnq, otherwise

fσ is a winning strategy for Player σ on U1 Y U2:
For every play π � v0v1 . . . conforming to fσ and starting from U1 Y U2,

if π starts from a vertex in U1, then fσ,1 is used, Player σ wins,

otherwise, fσ,2 is used, Player σ wins.
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Winning region

Proposition. If Player σ has a winning strategy on U1 and U2,
then Player σ has a winning strategy on U1 Y U2.

Winning region of Player σ in G (WinσpGq)

The maximum set U s.t. Player σ has a winning strategy on U .
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Determinacy

Theorem (Martin 1975). Every parity game is determined, i.e. Win0pGq and
Win1pGq form a partition of V0 Y V1.

Memoryless strategy for Player σ in G on U :

A partial function fσ : pV0 Y V1q
�Vσ Ñ V1�σ s.t.

fσpv0 . . . vn�1vnq is independent of v0 . . . vn�1,
that is, there is a partial function g : Vσ Ñ V1�σ s.t.
@v0 . . . vn P pV0 Y V1q

�Vσ. fσpv0 . . . vn�1vnq � gpvnq.

Theorem(Emerson & Jutla 1991, Mostowski 1991). Every parity game is
memoryless determined, i.e.

Player 0 (resp. Player 1) has a memoryless winning strategy in G on
Win0pGq (resp. Win1pGq).
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Memoryless determinacy: A proof

Reachability game: G � pG,Uq s.t.

G � pV0, V1, Eq is the same as that in parity games,

U � V0 Y V1: the set of destination vertices.

Two players: Player 0 and Player 1,

the goal of Player 0 is to reach a destination,

the goal of Player 1 is to prevent Player 0 to do so.
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Memoryless determinacy: A proof

Attractor set (AttσpG,Uq):

Player σ can force a visit to vertices in U in finitely many steps,
no matter how Player 1� σ plays.

AttσpG,Uq �
�
i¥0 Ui, where Ui’s are defined as follows,

U0 � U ,

Ui�1 � Ui Y tu P Vσ | Dv.v P uE ^ v P Uiu Y tu P V1�σ | uE � Uiu.
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Memoryless determinacy: A proof

Attractor set (AttσpG,Uq):

Player σ can force a visit to vertices in U in finitely many steps,
no matter how Player 1� σ plays.

AttσpG,Uq �
�
i¥0 Ui, where Ui’s are defined as follows,

U0 � U ,

Ui�1 � Ui Y tu P Vσ | Dv.v P uE ^ v P Uiu Y tu P V1�σ | uE � Uiu.

In addition, a memoryless strategy for Player σ on AttσpG,Uq is obtained
by choosing for every vertex in pUi�1zUiq X Vσ a successor in Ui.

A Trap for Player σ:

A set Z � V0 Y V1 s.t. for every vetex v P Vσ X Z, vE � Z.

Proposition. Let Z � pV0 Y V1qzAttσpG,Uq. Then the following facts hold.

Z is a trap for Player σ.

For every vertex v P V1�σ X Z, vE X Z � H.

Corollary. Let G1 � pZ,E1 � E X Z � Zq. Then G1 is a game graph.
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Memoryless determinacy: A proof

A notation(subgame):
Let G � pG � pV0, V1, Eq, cq and Z � V0 Y V1 s.t. GrZs is a game graph.

Then GrZs denotes the parity game pGrZs, c|Zq.

The proof is by an induction on the number of colours in a parity game G.

W.l.o.g. assume that k � mintcpvq | v P V0 Y V1u is odd.
Let X � tv | cpvq � ku.
Let W0 be

the maximum set of vertices on which Player 0 has a memoryless
winning strategy.

In addition, let Z � pV0 Y V1qzW0.
We show that Player 1 has a memoryless winning strategy on Z.
Let Y � Attr1pG,XzW0q and Z1 � pV0 Y V1qzpW0 Y Y q.

W0

X

Y

Z1
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Memoryless determinacy: A proof

W0

X

Y

Z1

Fact. GrZ1s is a game graph.
Z � Y Y Z1 is a trap for Player 0 in G + Y � Attr1pG,XzW0q
ùñ @v P V0 X Z1.vE X Z1 � H.

@v P V1 X Z, vE X Z � H + Z1 is a trap for Player 1 in GrZs
ùñ @v P V1 X Z1.vE X Z1 � H.

By induction hypothesis, GrZ1s is memoryless determined.

Fact. Win1pGrZ1sq � Z1.
Player 0 has a memoryless winning strategy on H � U � Z1 in GrZ1s
ñ Player 0 has also one on U in G.

if during a play, Player 1 chooses to enter W0, then Player 0 applies the
strategy on W0 in G,
otherwise, the play stays in Z1, Player 0 applies the strategy on U in
GrZ1s.
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Memoryless determinacy: A proof

W0

X

Y

Z1

Memoryless winning strategy f of Player 1 on Z in G:
if during a play starting from a vertex in Z, the current vertex is in Z1,
then Player 1 applies the memoryless strategy of Player 1 in GrZ1s,

if during a play starting from a vertex in Z, the current vertex is in Y ,
then Player 1 applies the memoryless strategy of the attractor set

to force visiting X X Z.

For every play π starting from Z and conforming to f ,

if eventually, π stays in Z1, then Player 1 wins,

otherwise, π visits X X Z infinitely often,
the minimum color occurring in π is odd, Player 1 wins.
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Union and intersection

Proposition. PTAs are closed under union and intersection.

Proof.
Union.
Suppose A1 � pQ1,Σ, δ1, q0,1, c1q and A2 � pQ2,Σ, δ2, q0,2, c2q are two PTAs.
Let A � pQ1 YQ2 Y tq0u,Σ, δ, q0, cq s.t.

δ � δ1 Y δ2 Y tpq0, q0,1q, pq0, q0,2qu, and c � c1 Y c2 Y tq0 Ñ 0u.
Then A defines LpA1q Y LpA2q.

Intersection.
We prove instead that MTAs are closed under intersection.
Suppose A1 � pQ1,Σ, δ1, q0,1,F1q and A2 � pQ2,Σ, δ2, q0,2,F2q are two MTAs.
Then A � pQ1 �Q2,Σ, δ, pq0,1, q0,2q,Fq defines LpA1q X LpA2q, where

δ: if pq1, σ, q
1
1q P δ1, pq2, σ, q

1
2q P δ2, then ppq1, q2q, σ, pq

1
1, q

1
2qq P δ,

F � tP � Q1 �Q2 | Proj1pP q P F1,Proj2pP q P F2u.

Zhilin Wu (SKLCS) Automata over infinite (ranked) trees March 15, 2013 19 / 32



Complementation

Game-theoretical view of PTA.
Let A � pQ,Σ, δ, q0, cq be a PTA and t be an infinite tree.
A run of A over t can be seen as a parity game GA,t � pG, c

1q

Two players:

Player 0(Automaton):
Guess a run of A over t and assert that the run is accepting,
Player 1(Pathfinder):
Challenge Automaton by

choosing a path and asserting that the path is not accepting.

Game graph G � pV0, V1, Eq:

V0 � t0, 1u
� � Σ�Q,

V1 � t0, 1u
� � Σ� δ,

if x P t0, 1u�, tpxq � σ, and pq, σ, q1, q2q P δ, then
px, σ, qqEpx, σ, pq, σ, q1, q2qq,

px, σ, pq, σ, q1, q2qqEpx0, tpx0q, q1q, px, σ, pq, σ, q1, q2qqEpx1, tpx1q, q2q.

c1ppx, σ, qqq � c1px, σ, pq, σ, q1, q2qq � cpqq,

Proposition. A accepts t iff Automaton has a winning strategy in GA,t
starting from pε, tpεq, q0q.
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Complementation

Let A � pQ,Σ, δ, q0, cq be a PTA and t be an infinite tree.
By memoryless determinacy of parity games,

A does not accept t
iff
Pathfinder has a memoryless winning strategy in GA,t starting from
pε, tpεq, q0q

Pathfinder’s strategy:

A function f : t0, 1u� � Σ� δ Ñ t0, 1u.

@x P t0, 1u�, let fx : Σ� δ Ñ t0, 1u defined by fxpσ, τq � fpx, σ, τq.

Let I � Σ� δ Ñ t0, 1u, Pathfinder’s strategy can be reformulated as:

An I-labeled infinite tree s, with each node x labeled by fx.
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Complementation

A play in GA,t starting from pε, tpεq, q0q can be described by

A sequence pτ0, π0qpτ1, π1q � � � P pδ � t0, 1uq
ω s.t.

@i, let τi � ppi, σi, pi,1, pi,2q, then

p0 � q0,

τ0τ1 . . . is consecutive: @i. pi�1 P tpi,1, pi,2u,

τ0τ1 . . . and π0π1 . . . are compatible,

@i. πi � 0 (resp. πi � 1) iff pi�1 � pi,1 (resp. pi�1 � pi,2),

τ0τ1 . . . respects t|π0π1...,

@i. σi � tpπ0 . . . πi�1q.
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Complementation

A reformulation:

Pathfinder has a memoryless winning strategy in GA,t starting from
pε, tpεq, q0q
iff
D an I-labeled tree s
@ plays pτ0, π0qpτ1, π1q � � � P pδ � t0, 1uq

ω conforming to s,
the state-seq. determined by τ0τ1 . . . violates the min-parity cond.

pτ0, π0qpτ1, π1q � � � P pδ � t0, 1uq
ω conforms to s:

s|π0π1... applies to t|π0π1... and τ0τ1 . . . indeed produces π0π1 . . . ,
more specifically, @i. spπ0 . . . πi�1qpptpπ0 . . . πi�1q, τiqq � πi.
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Complementation

D an I-labeled tree s
@ plays pτ0, π0qpτ1, π1q � � � P pδ � t0, 1uq

ω conforming to s,
the state-seq. determined by τ0τ1 . . . violates the min-parity cond.

iff
(1) D an I-labeled tree s
(2) @ π P t0, 1uω,
(3) @ τ0τ1 � � � P δ

ω,
(4) if pτ0, π0qpτ1, π1q . . . is a play in GA,t and conforms to s,

then the state-seq. determined by τ0τ1 . . . violates the min-parity cond.
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Complementation

(1) D an I-labeled tree s
(2) @ π P t0, 1uω,
(3) @ τ0τ1 � � � P δ

ω,
(4) if pτ0, π0qpτ1, π1q . . . is a play in GA,t and conforms to s,

then the state-seq. determined by τ0τ1 . . . violates the min-parity cond.

Condition (4): Seen as a property of pI � Σ� δ � t0, 1uq-labeled ω-words.
Let pg0, σ0, τ0, π0qpg1, σ1, τ1, π1q � � � P pI � Σ� δ � t0, 1uqω, then

@i. τi � ppi, σi, pi,1, pi,2q for some pi, pi,1, pi,2,

p0 � q0,

τ0τ1 . . . is consecutive: @i. pi�1 P tpi,1, pi,2u,

τ0τ1 . . . and π0π1 . . . are compatible:
@i. πi � 0 (resp. πi � 1) iff pi�1 � pi,1 (resp. pi�1 � pi,2),

@i. gippσi, τiqq � πi.

A (deterministic) PA M over pI � Σ� δ � t0, 1uq-labeled ω-words
can be constructed for Cond. (4).
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Complementation

(1) D an I-labeled tree s
(2) @ π P t0, 1uω,
(3) @ τ0τ1 � � � P δ

ω,
(4) if pτ0, π0qpτ1, π1q . . . is a play in GA,t and conforms to s,

then the state-seq. determined by τ0τ1 . . . violates the min-parity cond.

Condition (3).
A deterministic PA M1 over pI � Σ� t0, 1uq-labeled ω-words for Cond. (3):

1 Complement M,

2 Projection from I � Σ� δ � t0, 1u to I � Σ� t0, 1u,

3 determinize and complement.

Size of M1 (By Safra construction, not covered in this course):

number of states: 2Opnk logpnkqq,

number of colors: Opnkq,

where n and k are resp. the number of states and colors of A.
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Complementation

(1) D an I-labeled tree s
(2) @ π P t0, 1uω,
(3) @ τ0τ1 � � � P δ

ω,
(4) if pτ0, π0qpτ1, π1q . . . is a play in GA,t and conforms to s,

then the state-seq. determined by τ0τ1 . . . violates the min-parity cond.

Condition (2).
Suppose M1 � pQ1, I � Σ� t0, 1u, δ1, q10, c

1q.
A det. PTA C � pQ1, I � Σ, δ2, q10, c

1q over pI � Σq-labeled infinite trees for
Cond. (2): δ2pq, pg, σqq � pq1, q2q iff δ1pq, pg, σ, 0qq � q1, δ1pq, pg, σ, 1qq � q2.

Remark. Why M1 should be deterministic in order to get the PTA C?
A counter example:

Consider the NPA ptq0, q1u, tpa, 0q, pa, 1q, pb, 0q, pb, 1qu, δ, q0, cq s.t.

δ � tq0
pa,iq
ÝÑ q0, q0

pa,iq
ÝÑ q1, q0

pb,iq
ÝÑ q0, q0

pb,iq
ÝÑ q1, q1

pb,iq
ÝÑ q1u, where i � 0, 1,

cpq0q � 1, cpq1q � 2.

Condition (1).
C is projected from I � Σ to Σ to get a PTA B over Σ-labeled infinite trees.
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MSO over infinite binary trees

Syntax

ϕ :� Pσpxq | Xpxq | S0px, yq | S1px, yq |  ϕ1 | ϕ1 _ ϕ2 | Dxϕ1pxq | DXϕ1pXq

Semantics: Interpreted over infinite binary trees

� � � ,

S0px, yq iff y � x0,

S1px, yq iff y � x1,

� � � .

Example:

x ¤ y:
@XpXpxq ^ @z1@z2pXpz1q ^ pS0pz1, z2q _ S1pz1, z2qq Ñ Xpz2qq Ñ Xpyqq

ϕpathpXq:
Dxp@ypx ¤ yq ^Xpxqq ^ @xpXpxq Ñ DyppS0px, yq _ S1px, yqq ^Xpyqqq

^@x@ypXpxq ^Xpyq Ñ x ¤ y _ y ¤ xq.

Normal form for MSO over infinite binary trees:

ϕ :� Pσ � X | X � Y | SingpXq | S0pX,Y q | S1pX,Y q |  ϕ1 | ϕ1 _ ϕ2 | DXϕ1pXq
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PTA � MSO

Theorem. PTA � MSO.

Proof.
From MSO to PTA:
Similar to infinite word case,

using the normal form and the closure properties of PTA.

From PTA to MSO:
Describe a run of PTA over infinite binary trees by the MSO sentence,

ϕ :� Dq1 . . . qnpϕinit ^ ϕtrans ^ ϕaccq,

ϕinit :� Dxp@ypx ¤ yq ^ q0pxqq,

ϕtrans :� @x@ypS0px, yq _ S1px, yq Ñ
�

pq,σ,q1qPδ

qpxq ^ Pσpxq ^ q
1pyqq,

ϕacc :� @XpϕpathpXq Ñ

Dx

�
Xpxq ^

�
q:cpqq even

�
@ypx ¤ y ^Xpyq Ñ

�
q1:cpq1q cpqq

 q1pyqq^

@ypx ¤ y ^Xpyq Ñ Dzpy ¤ z ^Xpzq ^ qpzqqq

��
.
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Nonemptiness

Theorem. The nonemptiness of PTA is in NP X co-NP.

Let A � pQ,Σ, δ, q0, cq be a PTA.
The nonemptiness of A is reduced to the parity game GA � pQ, δ,E, c

1q:

For every pq, σ, q1, q2q P δ,

pq, pq, σ, q1, q2qq P E,
ppq, σ, q1, q2q, q1q, ppq, σ, q1, q2q, q2q P E.

c1pqq � c1ppq, σ, q1, q2qq � cpqq.

Lemma. Given a parity game G � pV0, V1, E, cq and v P V0 Y V1, deciding
whether v P Win0pGq or v P Win1pGq is in NP X co-NP.

Proof.

1. Guess a memoryless strategy f : V0 Ñ V1 for Player 0 on tvu.
2. Verify that f is winning for Player 0.

Let Gf � pV0, V1, E X tpv, fpvqq | v P V0uq.
Decide whether there is a cycle whose min-parity is odd in Gf .
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Language inclusion

Theorem. The language inclusion problem of PTA is EXPTIME-c.

Let A1 � pQ1,Σ, δ1, q0,1, c1q and A2 � pQ2,Σ, δ2, q0,2, c2q be two PTAs.

Upper bound:

construct a PTA A for LpA1q X LpA2q of 2Opnkq states and Opnkq colors,
where

n: the maximum of the number of states of A1 and A2,
k: the maximum of the number of colors of A1 and A2.

Reference. Christof. Löding, Automata over infinite trees, the handbook of the

AutoMathA project.

test the nonemptiness of A,
Complexity: nOpkq, where n is the number of states and k is the number of

colors. (Ref. Chapter 6, Automata, logics, and infinite games, LNCS 2500)

Lower bound:

Similar to the inclusion of Bottom-up tree automata over finite ranked trees,

Reduction from the nonemptiness of polynomial space alternating
Turing machines.
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Next lecture

Automata over unranked trees
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