Automata theory and its applications Lecture 15 -16: Automata over infinite (ranked) trees

Zhilin Wu

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

March 15, 2013

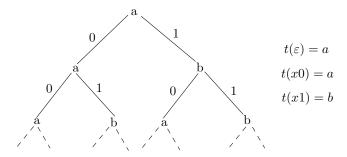
Zhilin Wu (SKLCS)

Automata over infinite (ranked) trees

・ロト ・日下 ・ ヨト

Infinite binary trees

A function $t: \{0, 1\}^* \to \Sigma$,



Let T_{Σ}^{ω} denote the set of infinite binary trees over Σ .

Outline

1 Automata over infinite binary trees

2 Expressibility

3 Parity games

4 Closure properties

5 Equivalence with MSO

6 Decision problems

イロト イヨト イヨト イヨ

Büchi, Muller, Rabin and parity tree automata

- A Büchi tree automaton (BTA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, q_0, F)$ such that
 - Q is the set of states,
 - Σ is the finite alphabet,
 - $\delta \subseteq Q \times \Sigma \times Q \times Q$,
 - $q_0 \in Q, F \subseteq Q$.
- A run of a BTA \mathcal{A} over an infinite binary tree t: An infinite binary tree $r : \{0,1\}^* \to Q$ s.t.
 - $r(\varepsilon) = q_0$,
 - for every $x \in \{0,1\}^*$, $(r(x), t(x), r(x0), r(x1)) \in \delta$.

A run r of \mathcal{A} over t is accepting if \forall path π in r, $\operatorname{Inf}(r|_{\pi}) \cap F \neq \emptyset$.

Büchi, Muller, Rabin and parity tree automata

- A Muller tree automaton (MTA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, q_0, \mathcal{F})$ s.t.
 - Q, Σ, δ, q_0 are the same as BTA,
 - $\mathcal{F} \subseteq 2^Q$.
- A run r of a MTA \mathcal{A} over an infinite binary tree t is accepting if \forall path π in r, $\operatorname{Inf}(r|_{\pi}) \in \mathcal{F}$.
- A Rabin tree automaton (RTA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \leq i \leq k})$ s.t.
 - Q, Σ, δ, q_0 are the same as BTA,
 - $\forall i : 1 \leq i \leq k. \ U_i, V_i \subseteq Q.$
- A run r of a RTA \mathcal{A} over an infinite binary tree t is accepting if \forall path π in r, $\exists i : 1 \leq i \leq k$, $\operatorname{Inf}(r|_{\pi}) \cap U_i = \emptyset$ and $\operatorname{Inf}(r|_{\pi}) \cap V_i \neq \emptyset$.
- A Parity tree automaton (PTA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, q_0, c)$ s.t.
 - Q, Σ, δ, q_0 are the same as BTA,
 - $c: Q \to \{1, \ldots, k\}.$

A run r of a PTA \mathcal{A} over an infinite binary tree t is accepting if \forall path π in r, min $\{c(q) \mid q \in \text{Inf}(r|_{\pi})\}$ is even.

・ロト ・日ト ・ヨト ・ヨト

Outline

2 Expressibility

3 Parity games

Olosure properties

5 Equivalence with MSO

6 Decision problems

イロト イヨト イヨト イヨ

Expressibility

Proposition. MTA \equiv RTA \equiv PTA.

Proof.

 $PTA \subseteq RTA \subseteq MTA$: By definition. MTA \subseteq PTA: Latest appearance record.

イロト イヨト イヨト イヨ

Expressibility

Proposition. MTA \equiv RTA \equiv PTA.

Proposition. MTA > BTA.

Proof.

 $L\!\!:$ The set of trees s.t. along every path, a only occurs finitely many times.

Claim. L is expressible in MTA, but not in BTA.

L is defined by the MTA $\mathcal{A} = (\{q_0, q_1\}, \Sigma, \delta, q_0, \{\{q_1\}\}),$ where $\delta = \{(q_0, a, q_0, q_0), (q_0, b, q_1, q_1), (q_1, b, q_1, q_1), (q_1, a, q_0, q_0)\}.$

Expressibility

Proposition. MTA \equiv RTA \equiv PTA.

Proposition. MTA > BTA.

Proof.

L: The set of trees s.t. along every path, a only occurs finitely many times. Claim. L is expressible in MTA, but not in BTA.

To the contrary, suppose L is defined by a BTA $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$ of n states. Consider the infinite tree t

where a occurs exactly at the positions 1^+0 , 1^+01^+0 , ..., $(1^+0)^n$.

Evidently, t is accepted by \mathcal{B} , so there is an accepting run r of \mathcal{B} over t. Then $\exists m_0, m_1, \ldots, m_n$ s.t. $r(1^{m_0}), r(1^{m_0}01^{m_1}), \ldots, r(1^{m_0}0\ldots 01^{m_n}) \in F$. Therefore, $\exists i, j : i < j$ s.t. $r(1^{m_0}0\ldots 01^{m_i}) = r(1^{m_0}0\ldots 01^{m_j})$. Let t' be the tree obtained from t by

repeating the path from $1^{m_0}0...01^{m_i}$ to $1^{m_0}0...01^{m_j}$, with subtrees of the nodes on the path copied.

Then t' is accepted by \mathcal{B} , but t' contains a path where a occurs infinitely often, a contradiction.

Outline

2 Expressibility

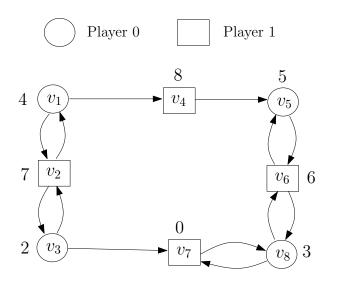
4 Closure properties

5 Equivalence with MSO

6 Decision problems

イロト イヨト イヨト イヨ

Parity game: An example



Zhilin Wu (SKLCS)

-

・ロト ・日ト ・ヨト・

Parity game

A parity game \mathcal{G} consists of

- a game graph (possibly infinite) which is a bipartite graph $G = (V_0, V_1, E)$ s.t. $\forall v \in V_0 \cup V_1, vE$ is nonempty and finite,
- a colouring function $c: V_0 \cup V_1 \to \mathbb{N}$.

Two players: Player 0 and 1 in \mathcal{G} , with V_0 and V_1 as resp. their territory.

A Play π is an infinite path $v_0 v_1 \dots$ in the graph \mathcal{G} .

Winning condition

Player 0 (resp. Player 1) wins a play π if $\min(\inf(c(\pi)))$ is even (resp. odd).

<ロト (四) (三) (三)

Winning strategy

Conform to ...

Let $\sigma \in \{0, 1\}$ and $f_{\sigma} : (V_0 \cup V_1)^* V_{\sigma} \to V_{1-\sigma}$ a partial function. A prefix of a play $v_0 \dots v_n$ conforms to f_{σ} if

for every i < n s.t. $v_i \in V_\sigma$, $v_{i+1} = f_\sigma(v_1 \dots v_i)$.

A play π conforms to f_{σ} if every prefix of π conforms to f_{σ} .

Strategy and winning strategy

A strategy of Player σ on $U \subseteq V_0 \cup V_1$ is a partial function $f_{\sigma} : (V_0 \cup V_1)^* V_{\sigma} \to V_{1-\sigma}$ s.t.

 \forall prefix of a play $v_0 \dots v_n \in (V_0 \cup V_1)^* V_\sigma$ starting from U and conforming to f_σ , $f_\sigma(v_0 \dots v_n)$ is defined.

We can assume that the domain of f_{σ} is minimal wrt. the above condition.

A winning strategy of Player σ on U is a strategy f_{σ} of Player σ on U s.t. Player σ wins every play π starting from U and conforming to f_{σ} .

Zhilin Wu (SKLCS)

Winning region

Proposition. If Player σ has a winning strategy on U_1 and U_2 , then Player σ has a winning strategy on $U_1 \cup U_2$.

Proof.

Let $f_{\sigma,1}, f_{\sigma,2}$ be the winning strategy of Player σ on U_1 and U_2 respectively. Define a strategy f_{σ} for Player σ on U as follows: $f_{\sigma}(v_0 \dots v_n) = \begin{cases} f_{\sigma,1}(v_0 \dots v_n), & f_{\sigma,1}(v_0 \dots v_n) \text{ is defined} \\ f_{\sigma,2}(v_0 \dots v_n), & \text{otherwise} \end{cases}$

 f_{σ} is a winning strategy for Player σ on $U_1 \cup U_2$: For every play $\pi = v_0 v_1 \dots$ conforming to f_{σ} and starting from $U_1 \cup U_2$,

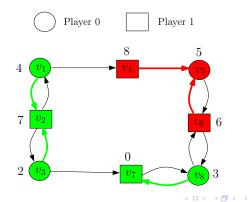
- if π starts from a vertex in U_1 , then $f_{\sigma,1}$ is used, Player σ wins,
- otherwise, $f_{\sigma,2}$ is used, Player σ wins.

Winning region

Proposition. If Player σ has a winning strategy on U_1 and U_2 , then Player σ has a winning strategy on $U_1 \cup U_2$.

Winning region of Player σ in \mathcal{G} (Win_{σ}(\mathcal{G}))

The maximum set U s.t. Player σ has a winning strategy on U.



Determinacy

Theorem (Martin 1975). Every parity game is determined, i.e. $Win_0(\mathcal{G})$ and $Win_1(\mathcal{G})$ form a partition of $V_0 \cup V_1$.

Determinacy

Theorem (Martin 1975). Every parity game is determined, i.e. $Win_0(\mathcal{G})$ and $Win_1(\mathcal{G})$ form a partition of $V_0 \cup V_1$.

Memoryless strategy for Player σ in \mathcal{G} on U:

 $\begin{array}{l} A \ partial \ function \ f_{\sigma} : (V_0 \cup V_1)^* V_{\sigma} \to V_{1-\sigma} \ s.t. \\ f_{\sigma}(v_0 \ldots v_{n-1}v_n) \ is \ independent \ of \ v_0 \ldots v_{n-1}, \\ that \ is, \ there \ is \ a \ partial \ function \ g : V_{\sigma} \to V_{1-\sigma} \ s.t. \\ \forall v_0 \ldots v_n \in (V_0 \cup V_1)^* V_{\sigma}. \ f_{\sigma}(v_0 \ldots v_{n-1}v_n) = g(v_n). \end{array}$

Theorem(Emerson & Jutla 1991, Mostowski 1991). Every parity game is memoryless determined, i.e.

Player 0 (resp. Player 1) has a memoryless winning strategy in \mathcal{G} on $\operatorname{Win}_0(\mathcal{G})$ (resp. $\operatorname{Win}_1(\mathcal{G})$).

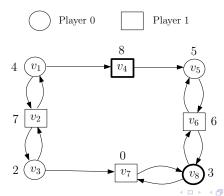
(D) (A) (A) (A) (A)

Reachability game: $\mathcal{G} = (G, U)$ s.t.

- $G = (V_0, V_1, E)$ is the same as that in parity games,
- $U \subseteq V_0 \cup V_1$: the set of destination vertices.

Two players: Player 0 and Player 1,

- the goal of Player 0 is to reach a destination,
- the goal of Player 1 is to prevent Player 0 to do so.



Zhilin Wu (SKLCS)

Attractor set $(Att_{\sigma}(G, U))$:

Player σ can force a visit to vertices in U in finitely many steps, no matter how Player $1 - \sigma$ plays.

 $Att_{\sigma}(G, U) = \bigcup_{i \ge 0} U_i$, where U_i 's are defined as follows,

- $U_0 = U$,
- $U_{i+1} = U_i \cup \{u \in V_\sigma \mid \exists v.v \in uE \land v \in U_i\} \cup \{u \in V_{1-\sigma} \mid uE \subseteq U_i\}.$

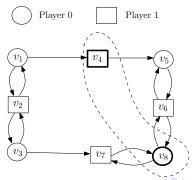
・ロト ・ 同ト ・ ヨト ・ ヨト

Attractor set $(Att_{\sigma}(G, U))$:

Player σ can force a visit to vertices in U in finitely many steps, no matter how Player $1 - \sigma$ plays.

 $Att_{\sigma}(G, U) = \bigcup_{i \ge 0} U_i$, where U_i 's are defined as follows,

- $U_0 = U$,
- $U_{i+1} = U_i \cup \{u \in V_\sigma \mid \exists v.v \in uE \land v \in U_i\} \cup \{u \in V_{1-\sigma} \mid uE \subseteq U_i\}.$

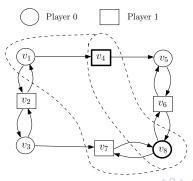


Attractor set $(Att_{\sigma}(G, U))$:

Player σ can force a visit to vertices in U in finitely many steps, no matter how Player $1 - \sigma$ plays.

 $Att_{\sigma}(G, U) = \bigcup_{i \ge 0} U_i$, where U_i 's are defined as follows,

- $U_0 = U$,
- $U_{i+1} = U_i \cup \{u \in V_\sigma \mid \exists v.v \in uE \land v \in U_i\} \cup \{u \in V_{1-\sigma} \mid uE \subseteq U_i\}.$

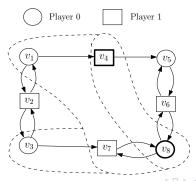


Attractor set $(Att_{\sigma}(G, U))$:

Player σ can force a visit to vertices in U in finitely many steps, no matter how Player $1 - \sigma$ plays.

 $Att_{\sigma}(G, U) = \bigcup_{i \ge 0} U_i$, where U_i 's are defined as follows,

- $U_0 = U$,
- $U_{i+1} = U_i \cup \{u \in V_\sigma \mid \exists v.v \in uE \land v \in U_i\} \cup \{u \in V_{1-\sigma} \mid uE \subseteq U_i\}.$

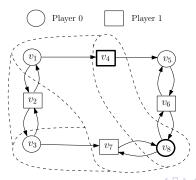


Attractor set $(Att_{\sigma}(G, U))$:

Player σ can force a visit to vertices in U in finitely many steps, no matter how Player $1 - \sigma$ plays.

 $Att_{\sigma}(G, U) = \bigcup_{i \ge 0} U_i$, where U_i 's are defined as follows, • $U_0 = U$.

• $U_{i+1} = U_i \cup \{u \in V_\sigma \mid \exists v.v \in uE \land v \in U_i\} \cup \{u \in V_{1-\sigma} \mid uE \subseteq U_i\}.$



Attractor set $(Att_{\sigma}(G, U))$:

Player σ can force a visit to vertices in U in finitely many steps, no matter how Player $1 - \sigma$ plays.

 $Att_{\sigma}(G, U) = \bigcup_{i \ge 0} U_i$, where U_i 's are defined as follows,

•
$$U_0 = U$$
,

• $U_{i+1} = U_i \cup \{u \in V_\sigma \mid \exists v.v \in uE \land v \in U_i\} \cup \{u \in V_{1-\sigma} \mid uE \subseteq U_i\}.$

In addition, a memoryless strategy for Player σ on $Att_{\sigma}(G, U)$ is obtained by choosing for every vertex in $(U_{i+1} \setminus U_i) \cap V_{\sigma}$ a successor in U_i .

A **Trap** for Player σ :

A set $Z \subseteq V_0 \cup V_1$ s.t. for every vetex $v \in V_\sigma \cap Z$, $vE \subseteq Z$.

Proposition. Let $Z = (V_0 \cup V_1) \setminus Att_{\sigma}(G, U)$. Then the following facts hold.

- Z is a trap for Player σ .
- For every vertex $v \in V_{1-\sigma} \cap Z$, $vE \cap Z \neq \emptyset$.

Corollary. Let $G' = (Z, E' = E \cap Z \times Z)$. Then G' is a game graph.

비에 소리에 소문에 소문에

A notation(subgame):

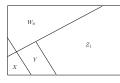
Let $\mathcal{G} = (G = (V_0, V_1, E), c)$ and $Z \subseteq V_0 \cup V_1$ s.t. G[Z] is a game graph. Then $\mathcal{G}[Z]$ denotes the parity game $(G[Z], c|_Z)$.

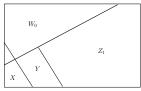
The proof is by an induction on the number of colours in a parity game \mathcal{G} .

W.l.o.g. assume that $k = \min\{c(v) \mid v \in V_0 \cup V_1\}$ is odd. Let $X = \{v \mid c(v) = k\}$. Let W_0 be

the maximum set of vertices on which Player 0 has a memoryless winning strategy.

In addition, let $Z = (V_0 \cup V_1) \setminus W_0$. We show that Player 1 has a memoryless winning strategy on Z. Let $Y = \text{Attr}_1(G, X \setminus W_0)$ and $Z_1 = (V_0 \cup V_1) \setminus (W_0 \cup Y)$.





Fact. $G[Z_1]$ is a game graph.

- $Z = Y \cup Z_1$ is a trap for Player 0 in $G + Y = \text{Attr}_1(G, X \setminus W_0)$ $\implies \forall v \in V_0 \cap Z_1 . v E \cap Z_1 \neq \emptyset.$
- $\forall v \in V_1 \cap Z, vE \cap Z \neq \emptyset + Z_1 \text{ is a trap for Player 1 in } G[Z]$ $\implies \forall v \in V_1 \cap Z_1.vE \cap Z_1 \neq \emptyset.$

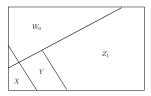
By induction hypothesis, $\mathcal{G}[Z_1]$ is memoryless determined.

Fact. Win₁($\mathcal{G}[Z_1]$) = Z_1 .

Player 0 has a memoryless winning strategy on $\emptyset \neq U \subseteq Z_1$ in $\mathcal{G}[Z_1]$ \Rightarrow Player 0 has also one on U in \mathcal{G} .

- if during a play, Player 1 chooses to enter W_0 , then Player 0 applies the strategy on W_0 in \mathcal{G} ,
- otherwise, the play stays in Z_1 , Player 0 applies the strategy on U in $\mathcal{G}[Z_1]$.

Zhilin Wu (SKLCS)



Memoryless winning strategy f of Player 1 on Z in G:

- if during a play starting from a vertex in Z, the current vertex is in Z_1 , then Player 1 applies the memoryless strategy of Player 1 in $\mathcal{G}[Z_1]$,
- if during a play starting from a vertex in Z, the current vertex is in Y, then Player 1 applies the memoryless strategy of the attractor set to force visiting X ∩ Z.

For every play π starting from Z and conforming to f,

- if eventually, π stays in Z_1 , then Player 1 wins,
- otherwise, π visits $X \cap Z$ infinitely often, the minimum color occurring in π is odd, Player 1 wins.

Outline

2 Expressibility

3 Parity games

4 Closure properties

5 Equivalence with MSO

6 Decision problems

イロト イヨト イヨト イヨ

Union and intersection

Proposition. PTAs are closed under union and intersection.

Proof.

Union.

Suppose $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, c_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, c_2)$ are two PTAs. Let $\mathcal{A} = (Q_1 \cup Q_2 \cup \{q_0\}, \Sigma, \delta, q_0, c)$ s.t.

 $\delta = \delta_1 \cup \delta_2 \cup \{(q_0, q_{0,1}), (q_0, q_{0,2})\}, \text{ and } c = c_1 \cup c_2 \cup \{q_0 \to 0\}.$ Then \mathcal{A} defines $\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2).$

Intersection.

We prove instead that MTAs are closed under intersection. Suppose $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, \mathcal{F}_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, \mathcal{F}_2)$ are two MTAs. Then $\mathcal{A} = (Q_1 \times Q_2, \Sigma, \delta, (q_{0,1}, q_{0,2}), \mathcal{F})$ defines $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$, where

- δ : if $(q_1, \sigma, q'_1) \in \delta_1, (q_2, \sigma, q'_2) \in \delta_2$, then $((q_1, q_2), \sigma, (q'_1, q'_2)) \in \delta$,
- $\mathcal{F} = \{ P \subseteq Q_1 \times Q_2 \mid \operatorname{Proj}_1(P) \in \mathcal{F}_1, \operatorname{Proj}_2(P) \in \mathcal{F}_2 \}.$

Game-theoretical view of PTA.

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, c)$ be a PTA and t be an infinite tree. A run of \mathcal{A} over t can be seen as a parity game $\mathcal{G}_{\mathcal{A},t} = (G, c')$

- Two players:
 - Player 0(Automaton): Guess a run of A over t and assert that the run is accepting,
 - Player 1(Pathfinder): Challenge Automaton by

choosing a path and asserting that the path is not accepting.

• Game graph
$$G = (V_0, V_1, E)$$
:

•
$$V_0 = \{0, 1\}^* \times \Sigma \times Q,$$

• $V_1 = \{0, 1\}^* \times \Sigma \times \delta,$
• if $x \in \{0, 1\}^*, t(x) = \sigma$, and $(q, \sigma, q_1, q_2) \in \delta$, then
 $(x, \sigma, q) E(x, \sigma, (q, \sigma, q_1, q_2)),$
 $(x, \sigma, (q, \sigma, q_1, q_2)) E(x0, t(x0), q_1), (x, \sigma, (q, \sigma, q_1, q_2)) E(x1, t(x1), q_2).$
 $c'((x, \sigma, q)) = c'(x, \sigma, (q, \sigma, q_1, q_2)) = c(q),$

Proposition. \mathcal{A} accepts t iff Automaton has a winning strategy in $\mathcal{G}_{\mathcal{A},t}$ starting from $(\varepsilon, t(\varepsilon), q_0)$.

۵

(日) (四) (日) (日) (日)

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, c)$ be a PTA and t be an infinite tree. By memoryless determinacy of parity games,

 \mathcal{A} does not accept t

$i\!f\!f$

Pathfinder has a memoryless winning strategy in $\mathcal{G}_{\mathcal{A},t}$ starting from $(\varepsilon, t(\varepsilon), q_0)$

Pathfinder's strategy:

A function $f : \{0,1\}^* \times \Sigma \times \delta \rightarrow \{0,1\}.$

 $\forall x \in \{0,1\}^*, \text{ let } f_x : \Sigma \times \delta \to \{0,1\} \text{ defined by } f_x(\sigma,\tau) = f(x,\sigma,\tau).$

Let $I = \Sigma \times \delta \rightarrow \{0, 1\}$, Pathfinder's strategy can be reformulated as:

An I-labeled infinite tree s, with each node x labeled by f_x .

(D) (A) (A) (A)

A play in $\mathcal{G}_{\mathcal{A},t}$ starting from $(\varepsilon, t(\varepsilon), q_0)$ can be described by A sequence $(\tau_0, \pi_0)(\tau_1, \pi_1) \cdots \in (\delta \times \{0, 1\})^{\omega}$ s.t. $\forall i, \text{ let } \tau_i = (p_i, \sigma_i, p_{i,1}, p_{i,2}), \text{ then}$

- $p_0 = q_0$,
- $\tau_0 \tau_1 \dots$ is consecutive: $\forall i. p_{i+1} \in \{p_{i,1}, p_{i,2}\},\$
- $\tau_0 \tau_1 \dots$ and $\pi_0 \pi_1 \dots$ are compatible, $\forall i. \ \pi_i = 0 \ (resp. \ \pi_i = 1) \ iff \ p_{i+1} = p_{i,1} \ (resp. \ p_{i+1} = p_{i,2}),$
- $\tau_0 \tau_1 \dots$ respects $t|_{\pi_0 \pi_1 \dots}$,

$$\forall i. \ \sigma_i = t(\pi_0 \dots \pi_{i-1}).$$

A reformulation:

Pathfinder has a memoryless winning strategy in $\mathcal{G}_{\mathcal{A},t}$ starting from $(\varepsilon, t(\varepsilon), q_0)$ iff \exists an I-labeled tree s \forall plays $(\tau_0, \pi_0)(\tau_1, \pi_1) \cdots \in (\delta \times \{0, 1\})^{\omega}$ conforming to s, the state-seq. determined by $\tau_0 \tau_1 \dots$ violates the min-parity cond.

 $(\tau_0, \pi_0)(\tau_1, \pi_1) \cdots \in (\delta \times \{0, 1\})^{\omega}$ conforms to s:

 $s|_{\pi_0\pi_1\dots}$ applies to $t|_{\pi_0\pi_1\dots}$ and $\tau_0\tau_1\dots$ indeed produces $\pi_0\pi_1\dots$, more specifically, $\forall i. \ s(\pi_0\dots\pi_{i-1})((t(\pi_0\dots\pi_{i-1}),\tau_i)) = \pi_i.$

- \exists an *I*-labeled tree s
 - $\forall \ plays \ (\tau_0, \pi_0)(\tau_1, \pi_1) \cdots \in (\delta \times \{0, 1\})^{\omega} \ conforming \ to \ s,$

the state-seq. determined by $\tau_0 \tau_1 \dots$ violates the min-parity cond.

iff

- (1) \exists an I-labeled tree s
- (2) $\forall \pi \in \{0,1\}^{\omega}$,
- (3) $\forall \tau_0 \tau_1 \cdots \in \delta^{\omega}$,
- (4) if $(\tau_0, \pi_0)(\tau_1, \pi_1) \dots$ is a play in $\mathcal{G}_{\mathcal{A},t}$ and conforms to s, then the state-seq. determined by $\tau_0 \tau_1 \dots$ violates the min-parity cond.

(D) (A) (A) (A)

- (1) \exists an *I*-labeled tree s
- (2) $\forall \pi \in \{0,1\}^{\omega}$,
- (3) $\forall \tau_0 \tau_1 \dots \in \delta^{\omega}$,
- (4) if $(\tau_0, \pi_0)(\tau_1, \pi_1) \dots$ is a play in $\mathcal{G}_{\mathcal{A},t}$ and conforms to s, then the state-seq. determined by $\tau_0 \tau_1 \dots$ violates the min-parity cond.

Condition (4): Seen as a property of $(I \times \Sigma \times \delta \times \{0, 1\})$ -labeled ω -words. Let $(g_0, \sigma_0, \tau_0, \pi_0)(g_1, \sigma_1, \tau_1, \pi_1) \cdots \in (I \times \Sigma \times \delta \times \{0, 1\})^{\omega}$, then

- $\forall i. \ \tau_i = (p_i, \sigma_i, p_{i,1}, p_{i,2})$ for some $p_i, p_{i,1}, p_{i,2}$,
- $p_0 = q_0$,
- $\tau_0 \tau_1 \dots$ is consecutive: $\forall i. p_{i+1} \in \{p_{i,1}, p_{i,2}\},\$
- $\tau_0 \tau_1 \dots$ and $\pi_0 \pi_1 \dots$ are compatible: $\forall i. \ \pi_i = 0 \text{ (resp. } \pi_i = 1 \text{) iff } p_{i+1} = p_{i,1} \text{ (resp. } p_{i+1} = p_{i,2} \text{)},$
- $\forall i. g_i((\sigma_i, \tau_i)) = \pi_i.$
- A (deterministic) PA \mathcal{M} over $(I \times \Sigma \times \delta \times \{0, 1\})$ -labeled ω -words can be constructed for Cond. (4).

・ロト ・ 同ト ・ ヨト ・ ヨト

- (1) \exists an *I*-labeled tree s
- (2) $\forall \pi \in \{0,1\}^{\omega}$,
- (3) $\forall \tau_0 \tau_1 \dots \in \delta^{\omega}$,
- (4) if $(\tau_0, \pi_0)(\tau_1, \pi_1) \dots$ is a play in $\mathcal{G}_{\mathcal{A},t}$ and conforms to s, then the state-seq. determined by $\tau_0 \tau_1 \dots$ violates the min-parity cond.

Condition (3).

A deterministic PA \mathcal{M}' over $(I \times \Sigma \times \{0, 1\})$ -labeled ω -words for Cond. (3):

- $O Complement \ \mathcal{M},$
- $\textbf{@} \ \text{Projection from} \ I \times \Sigma \times \delta \times \{0,1\} \ \text{to} \ I \times \Sigma \times \{0,1\},$
- **③** determinize and complement.

Size of \mathcal{M}' (By Safra construction, not covered in this course):

- number of states: $2^{O(nk \log(nk))}$,
- number of colors: O(nk),

where n and k are resp. the number of states and colors of \mathcal{A} .

・ロト ・回ト ・ヨト ・ヨト

- (1) \exists an *I*-labeled tree s
- (2) $\forall \pi \in \{0,1\}^{\omega}$,
- (3) $\forall \tau_0 \tau_1 \dots \in \delta^{\omega}$,
- (4) if $(\tau_0, \pi_0)(\tau_1, \pi_1) \dots$ is a play in $\mathcal{G}_{\mathcal{A},t}$ and conforms to s, then the state-seq. determined by $\tau_0 \tau_1 \dots$ violates the min-parity cond.

Condition (2).

Suppose $\mathcal{M}' = (Q', I \times \Sigma \times \{0, 1\}, \delta', q'_0, c')$. A det. PTA $\mathcal{C} = (Q', I \times \Sigma, \delta'', q'_0, c')$ over $(I \times \Sigma)$ -labeled infinite trees for Cond. (2): $\delta''(q, (g, \sigma)) = (q_1, q_2)$ iff $\delta'(q, (g, \sigma, 0)) = q_1, \delta'(q, (g, \sigma, 1)) = q_2$. *Remark.* Why \mathcal{M}' should be deterministic in order to get the PTA \mathcal{C} ? A counter example:

Consider the NPA $(\{q_0, q_1\}, \{(a, 0), (a, 1), (b, 0), (b, 1)\}, \delta, q_0, c)$ s.t.

•
$$\delta = \{q_0 \xrightarrow{(a,i)} q_0, q_0 \xrightarrow{(a,i)} q_1, q_0 \xrightarrow{(b,i)} q_0, q_0 \xrightarrow{(b,i)} q_1, q_1 \xrightarrow{(b,i)} q_1\}$$
, where $i = 0, 1$,
• $c(q_0) = 1, c(q_1) = 2$.

Condition (1).

 \mathcal{C} is projected from $I \times \Sigma$ to Σ to get a PTA \mathcal{B} over Σ -labeled infinite trees.

・ロト ・日ト ・ヨト ・ヨト

Outline

2 Expressibility

3 Parity games

Closure properties

5 Equivalence with MSO

6 Decision problems

イロト イヨト イヨト イヨ

MSO over infinite binary trees

Syntax

 $\varphi := P_{\sigma}(x) \mid X(x) \mid S_0(x,y) \mid S_1(x,y) \mid \neg \varphi_1 \mid \varphi_1 \lor \varphi_2 \mid \exists x \varphi_1(x) \mid \exists X \varphi_1(X)$

Semantics: Interpreted over infinite binary trees

- $S_1(x, y)$ iff y = x1,
- • • .

Example:

•
$$x \leq y$$
:
 $\forall X(X(x) \land \forall z_1 \forall z_2(X(z_1) \land (S_0(z_1, z_2) \lor S_1(z_1, z_2)) \to X(z_2)) \to X(y))$

•
$$\varphi_{path}(X)$$
:
 $\exists x (\forall y(x \leq y) \land X(x)) \land \forall x(X(x) \rightarrow \exists y((S_0(x, y) \lor S_1(x, y)) \land X(y))) \land \forall x \forall y(X(x) \land X(y) \rightarrow x \leq y \lor y \leq x).$

Normal form for MSO over infinite binary trees:

$$\varphi := P_{\sigma} \subseteq X \mid X \subseteq Y \mid \operatorname{Sing}(X) \mid S_0(X,Y) \mid S_1(X,Y) \mid \neg \varphi_1 \mid \varphi_1 \lor \varphi_2 \mid \exists X \varphi_1(X)$$

$PTA \equiv MSO$

Theorem. PTA \equiv MSO.

Proof.

From MSO to PTA:

Similar to infinite word case,

using the normal form and the closure properties of PTA.

From PTA to MSO:

Describe a run of PTA over infinite binary trees by the MSO sentence,

$$\begin{split} \varphi &:= \exists q_1 \dots q_n (\varphi_{init} \land \varphi_{trans} \land \varphi_{acc}), \\ \bullet & \varphi_{init} := \exists x (\forall y(x \leqslant y) \land q_0(x)), \\ \bullet & \varphi_{trans} := \forall x \forall y (S_0(x, y) \lor S_1(x, y) \rightarrow \bigvee_{(q, \sigma, q') \in \delta} q(x) \land P_{\sigma}(x) \land q'(y)), \\ \bullet & \varphi_{acc} := \forall X (\varphi_{path}(X) \rightarrow & & \\ \exists x \left(X(x) \land \bigvee_{\substack{q:c(q) \text{ even}}} \begin{pmatrix} \forall y(x \leqslant y \land X(y) \rightarrow \bigwedge_{\substack{q':c(q') < c(q) \\ \forall y(x \leqslant y \land X(y) \rightarrow \exists z(y \leqslant z \land X(z) \land q(z)))} \end{pmatrix} \right). \end{split}$$

Zhilin Wu (SKLCS)

Outline

1 Automata over infinite binary trees

2 Expressibility

3 Parity games

Closure properties

(5) Equivalence with MSO

6 Decision problems

イロト イヨト イヨト イヨ

Nonemptiness

Theorem. The nonemptiness of PTA is in NP \cap co-NP.

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, c)$ be a PTA.

The nonemptiness of \mathcal{A} is reduced to the parity game $\mathcal{G}_{\mathcal{A}} = (Q, \delta, E, c')$:

- For every $(q, \sigma, q_1, q_2) \in \delta$,
 - $(q, (q, \sigma, q_1, q_2)) \in E$,
 - $((q, \sigma, q_1, q_2), q_1), ((q, \sigma, q_1, q_2), q_2) \in E.$

•
$$c'(q) = c'((q, \sigma, q_1, q_2)) = c(q).$$

Lemma. Given a parity game $\mathcal{G} = (V_0, V_1, E, c)$ and $v \in V_0 \cup V_1$, deciding whether $v \in Win_0(\mathcal{G})$ or $v \in Win_1(\mathcal{G})$ is in NP \cap co-NP.

Proof.

- 1. Guess a memoryless strategy $f: V_0 \to V_1$ for Player 0 on $\{v\}$.
- 2. Verify that f is winning for Player 0.

Let
$$G_f = (V_0, V_1, E \cap \{(v, f(v)) \mid v \in V_0\}).$$

Decide whether there is a cycle whose min-parity is odd in G_f .

イロト イヨト イヨト イヨト

Language inclusion

Theorem. The language inclusion problem of PTA is EXPTIME-c. Let $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, c_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, c_2)$ be two PTAs. **Upper bound**:

- construct a PTA \mathcal{A} for $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$ of $2^{O(nk)}$ states and O(nk) colors, where
 - n: the maximum of the number of states of \mathcal{A}_1 and \mathcal{A}_2 ,
 - k: the maximum of the number of colors of \mathcal{A}_1 and \mathcal{A}_2 .

Reference. Christof. Löding, *Automata over infinite trees*, the handbook of the AutoMathA project.

• test the nonemptiness of \mathcal{A} , Complexity: $n^{O(k)}$, where n is the number of states and k is the number of colors. (Ref. Chapter 6, Automata, logics, and infinite games, LNCS 2500)

Lower bound:

Similar to the inclusion of Bottom-up tree automata over finite ranked trees,

Reduction from the nonemptiness of polynomial space alternating Turing machines.

Zhilin Wu (SKLCS)

Automata over unranked trees

< 17 × <