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Infinite binary trees

A function ¢ : {0,1}* - X,

0 1
te) =a
& b t(z0) = a
/ \ / \ Ha) = b

Let Ty, denote the set of infinite binary trees over 3.
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Biichi, Muller, Rabin and parity tree automata

A Biichi tree automaton (BTA) A is a tuple (Q, X, d, qo, F) such that
@ () is the set of states,
@ Y is the finite alphabet,
00 XxXxQxQ,
@ e, FcQ.
A run of a BTA A over an infinite binary tree t:
An infinite binary tree r : {0,1}* — @ s.t.
o 7(¢) = a0,
e for every x € {0,1}*, (r(x), t(x), r(x0),r(x1)) € 4.
A run r of A over t is accepting if ¥ path 7 in r, Inf(r|;) n F # .
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Biichi, Muller, Rabin and parity tree automata

A Muller tree automaton (MTA) A is a tuple (@, X, d, go, F) s.t.
° Q,X%,0,qo are the same as BTA,
o FC29.
A run r of a MTA A over an infinite binary tree t is accepting if
Y path 7 in r, Inf(r|,) € F.
A Rabin tree automaton (RTA) A is a tuple (Q, X, d, qo, (U;, Vi)1<i<k) S-t.
@ (Q,%,0,qo are the same as BTA,
o Vi:l<i<k U,VicQ.
A run r of a RTA A over an infinite binary tree ¢ is accepting if
Vpathminr, 3i:1<i <k, Inf(r|z) nU; = & and Inf(r|;) nV; # &.
A Parity tree automaton (PTA) A is a tuple (Q, X, 0, go, ¢) s.t.
@ Q,%,0,qo are the same as BTA,
°ec:Q—{l,... Kk}
A run r of a PTA A over an infinite binary tree t is accepting if
¥ path 7 in r, min{c(q) | ¢ € Inf(r|,)} is even.
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Expressibility

Proposition. MTA = RTA = PTA.

PTA € RTA € MTA: By definition.
MTA c PTA: Latest appearance record. O
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Expressibility

Proposition. MTA = RTA = PTA.
Proposition. MTA > BTA.

L: The set of trees s.t. along every path, a only occurs finitely many times.

Claim. L is expressible in MTA, but not in BTA.
L is defined by the MTA A = ({q0,q1}, 2,9, g0, {{q1}}), where
0= {(q07 a, qo, QO)v (q07 bv q1, q1)7 (CI17 b7 q1, (I1)» (qla a, qo, qO)}
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Expressibility

Proposition. MTA = RTA = PTA.
Proposition. MTA > BTA.

Proof.

L: The set of trees s.t. along every path, a only occurs finitely many times.

Claim. L is expressible in MTA, but not in BTA.
To the contrary, suppose L is defined by a BTA B = (Q, %, 6, qo, F') of n states.
Consider the infinite tree ¢

where a occurs exactly at the positions 170, 110170, ..., (170)™.

Evidently, t is accepted by B, so there is an accepting run r of B over t.
Then Img, mq, ..., my, s.t. r(170), r(1™001™1), ... r(1700...01™) € F.
Therefore, 3i,7 : i < j s.t. r(17°0...01™¢) = r(1™00...01™).
Let ¢ be the tree obtained from ¢ by

repeating the path from 17°0...01™¢ to 1"00...01™7,

with subtrees of the nodes on the path copied.

Then t' is accepted by B, but ' contains a path where a occurs infinitely
often, a contradiction. ]

y
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Parity game: An example

Vg

Player 1

Ve | 6
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Parity game

A parity game G consists of
@ a game graph (possibly infinite) which is a bipartite graph G = (Vy, V1, E)
s.t. Yv e Vp u Vi, vE is nonempty and finite,

@ a colouring function ¢: Vo u V3 — N.

Two players: Player 0 and 1 in G, with V{, and V as resp. their territory.
A Play m is an infinite path vgv; ... in the graph G.

Winning condition

Player 0 (resp. Player 1) wins a play 7 if
min(Inf(c(m))) is even (resp. odd).
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Winning strategy

Let 0 € {0,1} and f, : (Vo u V4)*V, — Vi_, a partial function.
A prefix of a play vg ... v, conforms to f, if

for every i < mn s.t. v; € Vy, vin1 = fol(vy...v;).

A play m conforms to f, if every prefix of m conforms to f,.

Strategy and winning strategy

A strategy of Player o on U € Vy u V; is
a partial function f, : (Vo u V1)*V, —» Vi_, s.t.

Y prefiz of a play vg ... v, € (Vo U V1)*V,, starting from U and conforming to
fos fo(vo ... vy) is defined.

We can assume that the domain of f, is minimal wrt. the above condition.
A winning strategy of Player o on U is a strategy f, of Player o on U s.t.

Player o wins every play w starting from U and conforming to f,.
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Winning region

Proposition. If Player ¢ has a winning strategy on U; and Us,
then Player ¢ has a winning strategy on Uy u Us.

Proof.

Let fs,1, f5,2 be the winning strategy of Player o on U; and Uj respectively.
Define a strategy f, for Player o on U as follows:
Folvo - vp) = { foa1(vo...vn), foi(vo...vp)is deﬁn.ed

fo2(vo...vn), otherwise

f- is a winning strategy for Player ¢ on Uy u Us:
For every play m = vgv; ... conforming to f, and starting from U; u Us,

o if m starts from a vertex in Uy, then f,; is used, Player o wins,

o otherwise, f, o is used, Player o wins.
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Winning region

Proposition. If Player ¢ has a winning strategy on U; and Us,
then Player ¢ has a winning strategy on Uy u Us.

Winning region of Player ¢ in G (Win, (G))

The maximum set U s.t. Player o has a winning strategy on U.

Q Player 0 |:| Player 1

P
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Determinacy

Theorem (Martin 1975). Every parity game is determined, i.e. Wing(G) and
Win; (G) form a partition of Vg u V4.
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Determinacy

Theorem (Martin 1975). Every parity game is determined, i.e. Wing(G) and
Win; (G) form a partition of Vg u V4.

Memoryless strategy for Player ¢ in G on U:
A partial function f, : (Vo 0 V1)*V, - Vi_, s.t.
fol(vo ... vp_1vy,) is independent of vy ... vVn—1,
that is, there is a partial function g :V, — Vi_, s.t.
Yog...vn € (Vo uV1)*V,. folvg. .. Un_1vn) = g(vn).

Theorem(Emerson & Jutla 1991, Mostowski 1991). Every parity game is
memoryless determined, i.e.

Player 0 (resp. Player 1) has a memoryless winning strategy in G on
Wing(G) (resp. Winy(G)).
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Memoryless determinacy: A proof

Reachability game: G = (G, U) s.t.

o G = (Vp, V1, E) is the same as that in parity games,

e U € Vi u Vi: the set of destination vertices.
Two players: Player 0 and Player 1,
e the goal of Player 0 is to reach a destination,
e the goal of Player 1 is to prevent Player 0 to do so.

Q Player 0 |:| Player 1

4 U4
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Memoryless determinacy: A proof

Attractor set (Att,(G,U)):
Player o can force a visit to vertices in U in finitely many steps,
no matter how Player 1 — o plays.
Att,(G,U) = ;= Ui, where U;’s are defined as follows,
o Uy=U,
o U1 =U,v{ueV,|vveuE rvelU}u{ueVi_, |uE C U}

Zhilin Wu (SKLCS) Automata over infinite (ranked) trees March 15, 2013



Memoryless determinacy: A proof

Attractor set (Att,(G,U)):

Player o can force a visit to vertices in U in finitely many steps,
no matter how Player 1 — o plays.

Att,(G,U) = ;= Ui, where U;’s are defined as follows,
("] UO = U,
o U1 =U;v{ueV,|vveuE rvelU}u{ueVi_, |uE C U}

Q Player 0 |:| Player 1

f
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Memoryless determinacy: A proof

Attractor set (Att,(G,U)):

Player o can force a visit to vertices in U in finitely many steps,
no matter how Player 1 — o plays.
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(] UO = U,
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Memoryless determinacy: A proof

Attractor set (Att,(G,U)):

Player o can force a visit to vertices in U in finitely many steps,
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Memoryless determinacy: A proof

Attractor set (Att,(G,U)):

Player o can force a visit to vertices in U in finitely many steps,
no matter how Player 1 — o plays.

Att,(G,U) = ;= Ui, where U;’s are defined as follows,
o UO = Ua
o Ui =U;v{ueV,|vveuE rvelU}u{ue Vi, |uE S U}
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Memoryless determinacy: A proof

Attractor set (Att,(G,U)):
Player o can force a visit to vertices in U in finitely many steps,
no matter how Player 1 — o plays.
Att,(G,U) = ;= Ui, where U;’s are defined as follows,
o Uy=U,
o U1 =U,v{ueV,|vveuE rvelU}u{ueVi_, |uE C U}
In addition, a memoryless strategy for Player o on Att,(G,U) is obtained
by choosing for every vertex in (U;4+1\U;) n V,, a successor in Uj.
A Trap for Player o:
A set Z € VyuVp s.t. for every vetexve V, nZ, vE C Z.

Proposition. Let Z = (Vy u V1)\Att,(G,U). Then the following facts hold.
e Z is a trap for Player o.
o For every vertex ve Vi_, nZ, vEn Z # &.

Corollary. Let G' = (Z,E' = En Z x Z). Then G’ is a game graph.
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Memoryless determinacy: A proof

A notation(subgame):

Let G = (G = (Vo,V1,E),c) and Z < Vy u Vi s.t. G[Z] is a game graph.
Then G[Z] denotes the parity game (G[Z],c|z).
The proof is by an induction on the number of colours in a parity game G.
W.lo.g. assume that k = min{c(v) | v e Vo u V1} is odd.
Let X = {v | c¢(v) = k}.
Let Wy be

the mazimum set of vertices on which Player 0 has a memoryless
winning strategy.

In addition, let Z = (Vy u V4)\W.
We show that Player 1 has a memoryless winning strategy on Z.
Let Y = Attry (G, X\Wp) and Z; = (Vo u Vi)\(Wo L Y).
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Memoryless determinacy: A proof

Wy

Z

X

Fact. G[Z1] is a game graph.
o Z =Y u Z is atrap for Player 0 in G + Y = Attr; (G, X\W))
= YveVynZ1wvEnZ # .
e YWweVinZ vEnZ # & + Z is a trap for Player 1 in G[Z]
:Vvevlle.vEle 9'5@
By induction hypothesis, G[Z1] is memoryless determined.

Fact. Wlnl(g[Zl]) = Zl.
Player 0 has a memoryless winning strategy on & # U € Z; in G[Z1]
= Player 0 has also one on U in G.
e if during a play, Player 1 chooses to enter Wy, then Player 0 applies the
strategy on Wy in G,
o otherwise, the play stays in Z;, Player 0 applies the strategy on U in
glzi].
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Memoryless determinacy: A proof

Wy

Z

X

Memoryless winning strategy f of Player 1 on Z in G:
e if during a play starting from a vertex in Z, the current vertex is in 7,
then Player 1 applies the memoryless strategy of Player 1 in G[Z],

o if during a play starting from a vertex in Z, the current vertex is in Y,
then Player 1 applies the memoryless strategy of the attractor set
to force visiting X n Z.
For every play 7 starting from Z and conforming to f,
o if eventually, 7 stays in Z, then Player 1 wins,

@ otherwise, 7 visits X n Z infinitely often,
the minimum color occurring in 7 is odd, Player 1 wins.
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Union and intersection

Proposition. PTAs are closed under union and intersection.

Proof.

Union.

Suppose A; = (Q1, 2,91, q0.1,¢1) and Ay = (Q2,%, 02, qo 2, c2) are two PTAs.
Let A= (Q1 v Q2 v {q},%,9,q0,c) s.t.
0 =091 U2 v {(q,9,),(90,q0,2)}, and ¢ = ¢; U c2 U {go — 0}.
Then A defines L£(A;) u L(Az).
Intersection.
We prove instead that MTAs are closed under intersection.
Suppose .A1 = (Ql, E, (51, 40,1, fl) and ./42 = (QQ, 2, 52, 40,2, .FQ) are two MTAs.
Then A = (Q1 % Q2,%,0,(g0,1,90,2), F) defines L(A1) n L(Az), where

° 6: if (QIaO'7 qll) € 517 (q2a07 ql2) € 62’ then ((Q17q2)a07 (q/17ql2)) € 55
o F ={PC @ x Qs |Proj,(P) € Fi,Proj,(P) € Fa}.
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Complementation

Game-theoretical view of PTA.
Let A = (Q,%,6,q0,c) be a PTA and ¢ be an infinite tree.
A run of A over t can be seen as a parity game G4, = (G, )
e Two players:
o Player O(Automaton):
Guess a run of A over t and assert that the run is accepting,
o Player 1(Pathfinder):
Challenge Automaton by
choosing a path and asserting that the path is not accepting.
e Game graph G = (V, V1, E):
o Vo ={0,1}* x ¥ x Q,
o Vi ={0,1}* x ¥ x §,
o if z € {0,1}*, t(x) = o, and (q,0,q1,q2) € J, then
(CIZ’, g, q)E(xv g, (q7 0,41, q2))>
(:ZZ, o, (q7 0,41, qg))E(l’O, t(x())v q1)7 ('T7 g, (Q7 0,41, q2))E(x17 t(.’L’l), q2)'
° CI((J;’ g, Q)) = cl(mv g, (Q7 0,41, q2)) = C(Q)a
Proposition. A accepts ¢ iff Automaton has a winning strategy in G4+
starting from (g,t(g), qo)-
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Complementation

Let A= (Q,X%,9,qo,c) be a PTA and ¢ be an infinite tree.
By memoryless determinacy of parity games,

A does not accept t
if
Pathfinder has a memoryless winning strategy in Ga ¢ starting from
(e,£(2), 0)
Pathfinder’s strategy:
A function f:{0,1}* x ¥ x § — {0, 1}.

Vo e {0,1}*, let fp : ¥ x d — {0,1} defined by fy(o,7) = f(z,0,7).

Let I =3 x § — {0, 1}, Pathfinder’s strategy can be reformulated as:
An I-labeled infinite tree s, with each node x labeled by f,.
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Complementation

A play in G4+ starting from (e,t(e), go) can be described by

A sequence (19, mo)(71,m1) -+ € (6 X {0,1})¥ s.t.

Vi, let 7; = (pi, 04, Pi1; Pij2), then
@ po = qo,
® ToT1 ... is consecutive: Vi. p;y1 € {pi1,piz2},
@ 1971 ... and mgmy ... are compatible,
Vi. i =0 (resp. m; = 1) iff pix1 = pi1 (resp. piv1 = pi2),

@ 7Ty ... respects tlrom ..,

Vi. g; = t(?TO . .7T'l'_1).
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Complementation

A reformulation:

Pathfinder has a memoryless winning strategy in Ga+ starting from
(e,t(€), q0)
iff
3 an I-labeled tree s
Y plays (10, 70)(11,m1) -~ € (0 x {0,1})¥ conforming to s,
the state-seq. determined by ToTi1 ... violates the min-parity cond.

(10, m0)(T1,7m1) -+ - € (6 x {0,1})¥ conforms to s:

Slromy... applies to tlron, .. and To71 ... indeed produces momy .. .,
more specifically, Yi. s(mg ... mi—1)((t(mo ... miz1), 7)) = ™.
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Complementation

3 an I-labeled tree s
Y plays (10, 70) (11, m1) -+ € (0 x {0,1})¥ conforming to s,
the state-seq. determined by ToTi ... violates the min-parity cond.
iff
(1) 3 an I-labeled tree s
(2) v we{0,1}%,
(3) Y 197110 - E(SU‘),
(4) if (t0,m0)(11,71) ... is a play in Ga,c and conforms to s,
then the state-seq. determined by To71 ... violates the min-parity cond.
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Complementation

(1) 3 an I-labeled tree s
(2) ¥V 7we (0,1},
(3) \ ToT1 "' € 5“,
(4) if (10, m0) (11, 1) ... is a play in Gar and conforms to s,
then the state-seq. determined by To71 ... violates the min-parity cond.

Condition (4): Seen as a property of (I x 3 x ¢ x {0, 1})-labeled w-words.
Let (907007T077T0)(913 01,71, ﬂ-l) € (I X 3 x4 % {07 1})w, then

o Vi. 7, = (pi, 04, Di1, pi2) for some p;, p;1,pi2,

@ Po = qo,
® ToT1 ... is consecutive: Vi. p;y1 € {pi1,piz2},
@ 1971 ... and w7 ... are compatible:

Vi. m; =0 (resp. m; = 1) iff pir1 = pia1 (vesp. piy1 = pi2),
o Vi. gi((0i, 7)) = mi.

A (deterministic) PA M over (I x 3 x § x {0, 1})-labeled w-words
can be constructed for Cond. (4).

Zhilin Wu (SKLCS) Automata over infinite (ranked) trees March 15, 2013



Complementation

(1) 3 an I-labeled tree s
(2) ¥ we{0,1}v,
(3) Y ToT1 " € 5“,
(4) if (10, m0) (11, 1) ... is a play in Gar and conforms to s,
then the state-seq. determined by To71 ... violates the min-parity cond.
Condition (3).
A deterministic PA M’ over (I x ¥ x {0, 1})-labeled w-words for Cond. (3):
@ Complement M,
@ Projection from I x ¥ x § x {0,1} to I x ¥ x {0,1},

@ determinize and complement.

Size of M’ (By Safra construction, not covered in this course):
e number of states: 20(nklog(nk))
e number of colors: O(nk),

where n and k are resp. the number of states and colors of A.
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Complementation

(1) 3 an I-labeled tree s
(2) ¥ me{0,1}¥,
(3) \ ToT1 "' € 5w’
(4) if (10, m0) (11, 1) ... is a play in Gar and conforms to s,
then the state-seq. determined by To71 ... violates the min-parity cond.

Condition (2).

Suppose M’ = (Q', I x ¥ x {0,1},0', g}, ).

A det. PTA C = (Q',I x 3,8", ¢, ") over (I x ¥)-labeled infinite trees for
Cond. (2): 6"(q,(9.0)) = (41, q2) iff §"(q, (g,0,0)) = q1, '(q, (g,0,1)) = g
Remark. Why M’ should be deterministic in order to get the PTA C?

A counter example:
Consider the NPA ({qo,¢1}, {(a,0), (a, 1), (b,0),(b,1)},6, qo,c) s.t

¥ b,i bi bi .
° 4 =1{q @y q0, 90 o) q1, 90 &4 qo, 4o e q1, q1 G q1}, where i = 0,1,
o c(qo) = 1,¢c(q1) = 2.

Condition (1).
C is projected from I x X to ¥ to get a PTA B over Y-labeled infinite trees.
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MSO over infinite binary trees

Syntax
p = Po(z) | X(x) | So(z,y) | S1(z,y) [ =1 [ w1 v @2 | Fzer(2) | 3X 01 (X)
Semantics: Interpreted over infinite binary trees
° -,
o So(x,y) iff y = 20,
o Sy(x,y) iff y =x1,
° ---
Example:

I A TH
VX (X(x) AV21V22(X (21) A (So(z1,22) v S1(21,22)) = X(22)) = X(y))

T (Vy(e < y) A X (@) A Va(X (@) > Iy((Solw. ) v Si(@,9) A X(1)))
AVaVy(X(z) A X(y) 2 <yvy<a).

Normal form for MSO over infinite binary trees:
pi= P € X | X SV | Sing(X) | So(X,Y) | S1(X,Y) | ~¢1 | g1 v g2 | IXp(X)
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PTA = MSO

Theorem. PTA = MSO.
Proof.

From MSO to PTA.:
Similar to infinite word case,
using the normal form and the closure properties of PTA.

From PTA to MSO:
Describe a run of PTA over infinite binary trees by the MSO sentence,

Y= 3(11 ce Qn(@init N Pirans N Spacc)7
® Yinit = 2(Vy(z < y) A qo(x)),

® Yirans = YTVY(So(z,y) v Si(z,y) — ( \/) 5(1(%) A Py (z) A q'(y)),
q,0,q' )€
@ Pace = VX(@path(X) =
Vy(r<yAr X@y)— A —~d@)A ))

Jz [ X(z) A qa":e(q')<e(q)
ae(q) even \ Vy(z <y A X(y) = I2(y < 2 A X(2) A q(2)))
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Nonemptiness

Theorem. The nonemptiness of PTA is in NP n co-NP.

Let A =(Q,%,4,qo0,c) be a PTA.

The nonemptiness of A is reduced to the parity game G4 = (Q, 0, E, '):
e For every (q,0,¢1,q2) €0,

° (¢,(q,0.q1,92)) € E,
b ((q7 a, q17q2)7q1)7 ((Q7 a, q17q2)7q2) EL.

° CI(Q) = cl(((L g, (J1aCI2)) = C(q)

Lemma. Given a parity game G = (Vp, V1, F,¢) and v € Vy u V3, deciding
whether v € Wing(G) or v € Win; (G) is in NP n co-NP.

1. Guess a memoryless strategy f : Vo — V3 for Player 0 on {v}.
2. Verify that f is winning for Player 0.

Let Gy = (Vo, Vi, E n {(v, f(v)) | v e Vp}).
Decide whether there is a cycle whose min-parity is odd in Gy. O
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Language inclusion

Theorem. The language inclusion problem of PTA is EXPTIME-c.
Let A1 = (Q1,%,01,90,1,¢1) and Az = (Q2,%, 62, o2, c2) be two PTAs.
Upper bound:

o construct a PTA A for £(A;) n L(Ay) of 2°0("%) states and O(nk) colors,
where

e n: the maximum of the number of states of A; and A,
o k: the maximum of the number of colors of A; and As.

Reference. Christof. Loding, Automata over infinite trees, the handbook of the
AutoMathA project.

e test the nonemptiness of A,
Complexity: n®®) | where n is the number of states and k is the number of

colors. (Ref. Chapter 6, Automata, logics, and infinite games, LNCS 2500)

Lower bound:
Similar to the inclusion of Bottom-up tree automata over finite ranked trees,

Reduction from the nonemptiness of polynomial space alternating
Turing machines.
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