Automata theory and its applications

Lecture 17 -18: Automata over unranked trees

Zhilin Wu

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

April 3, 2013

Outline

Hedge automata

2 Closure properties

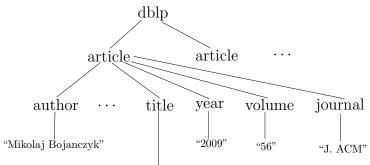
3 Minimization

Decision problems

Unranked trees: The motivation

```
<dblp>
 <article key="journals/jacm/BojanczykMSS09" mdate="2009-05-20">
   <author>Mikolaj Bojanczyk</author>
   <author>Anca Muscholl</author>
   <author>Thomas Schwentick</author>
   <author>Luc Segoufin</author>
   <ti+1e>
    Two-variable logic on data trees and XML reasoning.
   </title>
   <vear>2009</vear>
   <volume>56</volume>
   <journal>J. ACM</journal>
   <number>3</number>
   <ee>http://doi.acm.org/10.1145/1516512.1516515</ee>
   <url>db/journals/jacm/jacm56.html#BojanczykMSS09</url>
 </article>
</dblp>
```

Unranked trees: The motivation

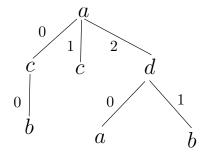


"Two-variable logic on data trees and XML reasoning"

Unranked trees: The definition

An unranked tree t is a binary tuple (D, L), where

- $D \subseteq \mathbb{N}^*$ is a finite tree domain, that is,
 - D is prefix closed,
 - if $xi \in D$, then $x0, \ldots, x(i-1) \in D$.
- $L:D\to\Sigma$.



 U_{Σ} : The set of unranked trees over Σ .

Nondeterministic finite hedge automata (NFHA)

A hedge: A sequence of unranked trees t_1, \ldots, t_n .

A NFHA \mathcal{A} is a tuple (Q, Σ, δ, F) , where

- $F \subseteq Q$,
- δ is a finite set of transition rules of the form $a(R) \to q$, where
 - $a \in \Sigma$, $q \in Q$,
 - $R \subseteq Q^*$ is a regular language over Q.

The languages R are called the *horizontal languages*.

A run of \mathcal{A} over a tree t = (D, L) is a tree $r_{\mathcal{A},t} = (D, L')$ s.t.

 $\forall x \in D \ labeled \ by \ a \ and \ with \ children \ x0, \dots, xi,$

$$\exists \ a \ rule \ a(R) \rightarrow q \ s.t. \ r_{\mathcal{A},t}(x0) \dots r_{\mathcal{A},t}(xi) \in R \ and \ r_{\mathcal{A},t} = q.$$

A run $r_{\mathcal{A},t}$ is accepting if $r_{\mathcal{A},t}(\varepsilon) \in F$.

Let $L \subseteq U_{\Sigma}$. Then L is regular if \exists a NFHA \mathcal{A} recognizing L.

Normalised and deterministic NFHA

A normalised NFHA is a NFHA $\mathcal{A} = (Q, \Sigma, \delta, F)$ s.t.

 $\forall (a,q) \in \Sigma \times Q, \ \exists \ at \ most \ one \ rule \ of \ the \ form \ a(R) \rightarrow q \ in \ \delta.$

Proposition. \forall NFHA \mathcal{A} , \exists an equivalent normalised NFHA \mathcal{A}' .

Proof.

$$a(R_1) \to q, a(R_2) \to q \Longrightarrow a(R_1 \cup R_2) \to q.$$

Normalised and deterministic NFHA

A deterministic finite hedge automaton (DFHA) is a NFHA $\mathcal{A} = (Q, \Sigma, \delta, F)$ s.t.

$$\forall a \in \Sigma, if \ a(R_1) \to q_1, a(R_2) \to q_2 \ s.t. \ q_1 \neq q_2, then \ R_1 \cap R_2 = \emptyset.$$

Proposition. \forall NFHA \mathcal{A} , \exists an equivalent DFHA \mathcal{A}' of exponential size.

Proof.

Let $\mathcal{A} = (Q, \Sigma, \delta, F)$ be a NFHA.

Assume \mathcal{A} is normalised. For $(a, q) \in \Sigma \times Q$, let $R_{a,q}$ denote $R : a(R) \to q$. Define $\mathcal{A}' = (2^Q, \Sigma, \delta', F')$ as follows.

- $\bullet \ F' = \{ S \mid S \cap F \neq \emptyset \},\$
- $\forall a \in \Sigma, S \in 2^Q, \ a(R') \to S \in \delta', \text{ where}$ $S_1 \dots S_n \in R' \text{ iff } S = \{q | \exists q_1 \in S_1, \dots, q_n \in S_n, \ q_1 \dots q_n \in R_{a,q}\}.$ R' is regular:

Outline

Hedge automata

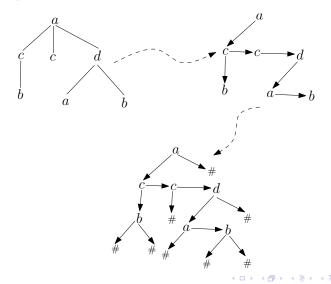
2 Closure properties

3 Minimization

4 Decision problems

First-child-next-sibling (FCNS) encoding

An example:



First-child-next-sibling (FCNS) encoding

For every unranked tree t over the alphabet Σ , construct a ranked tree fcns(t) as follows.

- fcns(a) = a(#, #),
- $fcns(a(t_1,...,t_n)) = a(fcns(t_1,...,t_n), \#),$
- for every hedge t_1, \ldots, t_n with $n \ge 2$, fcns $(t_1, \ldots, t_n) = \text{fcns}(t_1)$ @ fcns (t_2, \ldots, t_n) , where a(s, #) @ s' = a(s, s').

For a tree language $L \subseteq U_{\Sigma}$, let fcns $(L) = \{fcns(t) \mid t \in L\}$.

Example:

$$fcns(d(a,b)) = d(fcns(a,b), \#) = d(fcns(a)@fcns(b), \#)$$

= $d(a(\#, \#)@b(\#, \#), \#) = d(a(\#, b(\#, \#)), \#)$

From unranked regular to ranked regular

Proposition. Let $L \subseteq U_{\Sigma}$. Then L is regular implies that fcns(L) is regular.

Proof.

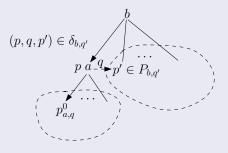
Suppose L is recognized by a normalised NFHA $\mathcal{A} = (Q, \Sigma, \delta, F)$.

For every (a,q) s.t. $R_{a,q} \neq \emptyset$,

suppose that $R_{a,q}$ is recognized by a NFA $\mathcal{B}_{a,q} = (P_{a,q}, Q, \delta, p_{a,q}^0, F_{a,q})$.

W.l.o.g. assume that the state sets $P_{a,q}$ are disjoint from each other.

The intuition:



From unranked regular to ranked regular

Proposition. Let $L \subseteq U_{\Sigma}$. Then L is regular implies that fcns(L) is regular.

Proof.

Suppose L is recognized by a normalised NFHA $\mathcal{A} = (Q, \Sigma, \delta, F)$.

For every (a,q) s.t. $R_{a,q} \neq \emptyset$,

suppose that $R_{a,q}$ is recognized by a NFA $\mathcal{B}_{a,q} = (P_{a,q}, Q, \delta, p_{a,q}^0, F_{a,q})$.

W.l.o.g. assume that the state sets $P_{a,q}$ are disjoint from each other.

Define $\mathcal{A}' = (Q', \Sigma, \delta', F')$ as follows.

- $Q' = Q \cup \bigcup_{a,q} P_{a,q} \cup \{q_\#\},$
- F' = F,
- δ' is defined by the following rules,
 - $(\#, q_\#) \in \delta'$,
 - $(p_{a,q}^0, q_\#, a, q) \in \delta',$
 - if $\exists b, q, p', q' \text{ s.t. } p, p' \in P_{b,q'}, (p, q, p') \in \delta_{b,q'}, \text{ then } (p_{a,q}^0, p', a, p) \in \delta',$
 - if $\exists b, q, p', q'$ s.t. $\varepsilon \in R_{a,q}, p \in P_{b,q'}, p' \in F_{b,q'}, (p, q, p') \in \delta_{b,q'}$, then $(q_\#, q_\#, a, p) \in \delta'$,
 - if $\exists b, q, p', q'$ s.t. $\varepsilon \in R_{a,q}, p, p' \in P_{b,q'}, (p, q, p') \in \delta_{b,q'}$, then $(q_{\#}, p', a, p) \in \delta'$.

From ranked regular to unranked regular

Proposition. Let $L \subseteq T_{\Sigma \cup \{\#\}}$. Then L is regular implies fcns⁻¹(L) is regular.

A notation: $fcns^{-1}(L) = \{t \in U_{\Sigma} \mid fcns(t) \in L\}.$

Proof sketch.

Let $\mathcal{A} = (Q, \Sigma \cup \{\#\}, \delta, F)$ be a NBUT (over ranked trees).

We can define a NFHA \mathcal{A}' such that the horizontal languages of \mathcal{A}' are used to simulate the partial runs of \mathcal{A} over the paths $x01^*$.

Homework. Give the detailed construction for fcns⁻¹(L) from \mathcal{A} in the above proof.

Closure properties

Corollary. The set of regular languages over unranked trees are closed under all Boolean operations.

Fact: The following facts hold for fcns and fcns⁻¹.

- fcns : $U_{\Sigma} \to T_{\Sigma}$ is an injective (non-surjective) function,
- fcns⁻¹: $T_{\Sigma} \to U_{\Sigma}$ is an injective and surjective partial function.

Proof.

Suppose $L_1, L_2 \subseteq U_{\Sigma}$ are regular.

The corollary follows from the closure property of regular languages over ranked trees and the following equations.

- $L_1 \cup L_2 = \text{fcns}^{-1}(\text{fcns}(L_1) \cup \text{fcns}(L_2))$, similarly for \cap ,
- $U_{\Sigma}\backslash L_1 = \operatorname{fcns}^{-1}(T_{\Sigma\cup\{\#\}}\backslash \operatorname{fcns}(L_1)).$

Outline

Hedge automata

2 Closure properties

3 Minimization

4 Decision problems

Representation of horizontal languages

We use DFA or NFA to represent the horizontal languages,

- \bullet NFHA(NFA): NFHA with horizontal languages represented by NFA,
- \bullet NFHA(DFA): NFHA with horizontal languages represented by DFA,
- \bullet DFHA(NFA): DFHA with horizontal languages represented by NFA,
- \bullet DFHA(DFA): DFHA with horizontal languages represented by DFA.

Nondeterminism of DFHA(DFA)

Let $\mathcal{A} = (Q, \Sigma, \delta, F)$ be a DFHA(DFA).

W.l.o.g, assume that A is normalised:

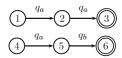
$$\forall (a,q), R_{a,q} \text{ is given by a DFA } \mathcal{B}_{a,q} = (Q_{a,q}, \Sigma, \delta_{a,q}, q_{a,q}^0, F_{a,q}).$$

Size of a DFHA(DFA)
$$\mathcal{A}$$
: $|Q| + \sum_{a,q} |Q_{a,q}|$.

Nondet. choice of different DFAs:

 $\mathcal{A} = (\{q_1, q_2, q_a, q_b\}, \{r, a, b\}, \delta, \{q_1, q_2\}),$ where δ is defined as follows,

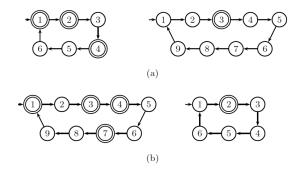
- $a(\{\varepsilon\}) \to q_a, b(\{\varepsilon\}) \to q_b,$
- $r(\{q_aq_a\}) \to q_1, r(\{q_aq_b\}) \to q_2.$



Minimization of DFHA(DFA) is difficult

No unique minimum DFHA(DFA) for a given language:

The language $\{r(a(w)) \mid w \in L\}$, where $L = L_1 \cup L_2 \cup L_3$, $L_1 = (bbb)^*$, $L_2 = b(bbbbb)^*$ and $L_3 = bb(bbbbbbbb)^*$.

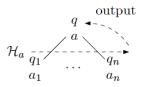


Theorem. DFHA(DFA) minimization is NP-complete.

Reference. W. Martens, and J. Niehren, Minimizing Tree Automata for Unranked Trees, DBPL 2005.

Deterministic stepwise hedge automata (DSHA)

The intuition (Deterministic horizontal automata with output):



A DSHA is a tuple $\mathcal{A} = (Q, \Sigma, \delta_0, F, \delta)$, where

- Q, Σ, F are as usual,
- $\delta_0: \Sigma \to Q$ is the initial state assignment function,
- and $\delta: Q \times Q \to Q$ is the transition function.

For every $a \in \Sigma$, define δ_a^* as follows,

$$\delta_a^*(\varepsilon) = \delta_0(a), \ \delta_a^*(wq) = \delta(\delta_a^*(w), q).$$

A run of a DSHA $\mathcal{A} = (Q, \Sigma, \delta_0, F, \delta)$ over a tree t = (D, L): A tree $r_{\mathcal{A},t} = (D, L')$ s.t.

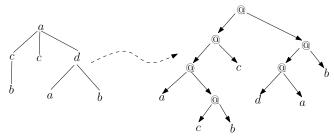
 \forall node x with label a and children $x0, \ldots, xk$, $L'(x) = \delta_{\sigma}^*(L'(x0) \ldots L'(xk)).$

Extension operator

Extension operator @:

Given two trees $t, t' \in U_{\Sigma}$ s.t. $t = a(t_1, \dots, t_n)$, then $t@t' = a(t_1, \dots, t_n, t')$.

Encoding of unranked trees by extension operator:



The extension encoding ext: $U_{\Sigma} \to T_{\{\mathbb{Q}\} \cup \Sigma}$,

- \bullet ext(a) = a,
- $ext(a(t_1,...,t_n)) = @(ext(a(t_1,...,t_{n-1})), ext(t_n)).$

Proposition. $ext: U_{\Sigma} \to T_{\{@\} \cup \Sigma}$ is a bijection.

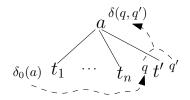
For $L \subseteq U_{\Sigma}$, define $ext(L) = \{ext(t) \mid t \in L\}$.

DSHA as DBUTA over $T_{\{\hat{0}\}\cup\Sigma}$

The intuition:

ranked	stepwise
(a,q)	$\delta_0(a) = q$
$(q_1, q_2, @, q)$	$\delta(q_1, q_2) = q$

Lemma. Let $\mathcal{A} = (Q, \Sigma, \delta_0, F, \delta)$ be a DSHA and $t, t' \in U_{\Sigma}$ s.t. $r_{\mathcal{A}, t}(\varepsilon) = q$ and $r_{\mathcal{A}, t'}(\varepsilon) = q'$, then $r_{\mathcal{A}, t \otimes t'}(\varepsilon) = \delta(q, q')$.



DSHA as DBUTA over $T_{\{\hat{0}\}\cup\Sigma}$

The intuition:

ranked	stepwise
(a,q)	$\delta_0(a) = q$
$(q_1, q_2, @, q)$	$\delta(q_1, q_2) = q$

Lemma. Let $\mathcal{A} = (Q, \Sigma, \delta_0, F, \delta)$ be a DSHA and $t, t' \in U_{\Sigma}$ s.t. $r_{\mathcal{A}, t}(\varepsilon) = q$ and $r_{\mathcal{A}, t'}(\varepsilon) = q'$, then $r_{\mathcal{A}, t@@u'}(\varepsilon) = \delta(q, q')$.

For a DSHA $\mathcal{A} = (Q, \Sigma, \delta_0, F, \delta)$, define $ext(\mathcal{A}) = (Q, \{@\} \cup \Sigma, \delta', F)$, where

- for every $a \in \Sigma$, $(a, q) \in \delta'$ iff $\delta_0(a) = q$,
- $(q_1, q_2, @, q) \in \delta' \text{ iff } \delta(q_1, q_2) = q.$

Proposition. For every DSHA \mathcal{A} , $L(ext(\mathcal{A})) = ext(L(\mathcal{A}))$.

Minimization of DSHA

Theorem. For each regular language $L \subseteq U_{\Sigma}$, there is a unique minimum DSHA recognizing L.

Proof.

Suppose A_1 and A_2 are two minimum DSHAs for L.

Then $ext(A_1)$ and $ext(A_2)$ are two minimum DBTUAs for ext(L).

Therefore, $ext(A_1) \cong ext(A_2)$, so $A_1 \cong A_2$.

Minimization of DSHA

Theorem. For each regular language $L \subseteq U_{\Sigma}$, there is a unique minimum DSHA recognizing L.

Define a congruence \equiv_L (wrt. @) over U_{Σ} as follows:

$$t_1 \equiv_L t_2 \text{ iff } ext(t_1) \equiv_{ext(L)} ext(t_2).$$

Theorem. Let $L \subseteq U_{\Sigma}$. Then L is regular iff \equiv_L is of finite index.

Proof.

Suppose \equiv_L is of finite index. Then L is recognized by the DSHA $(Q, \Sigma, \delta_0, F, \delta)$, where

- $Q = \{[t] \mid t \in U_{\Sigma}\}, F = \{[t] \mid t \in L\},\$
- $\delta_0(a) = [a], \ \delta([t_1], [t_2]) = [t_1@t_2].$

Suppose L is regular. Then ext(L) is also regular.

So $\equiv_{ext(L)}$, and thus \equiv_L , is of finite index.

Outline

Hedge automata

2 Closure properties

Minimization

4 Decision problems

Membership

Theorem. The membership problem for NFHA(NFA) is in PTIME.

Proof.

Let $\mathcal{A} = (Q, \Sigma, \delta, F)$ be a NFHA(NFA) and t be a tree.

The following problem can be solved in PTIME.

Given a NFA $\mathcal{B} = (Q', Q, \delta', q_0, F')$, a word $S_1 \dots S_n \in (2^Q)^*$, decide whether $\exists q_1 \dots q_n \text{ s.t. } \forall i. \ q_i \in S_i, \text{ and } q_1 \dots q_n \text{ is accepted by } \mathcal{B}$.

- Ompute the set of reachable states
 - $P_0 = \{q_0\},$
 - for i > 0, $P_i = \{q' \mid \exists p' \in P_{i-1}, q \in S_i, (p', q, q') \in \delta'\}.$
- ② Check whether $P_n \cap F' \neq \emptyset$.

Then the set of reachable states of \mathcal{A} after reading t in bottom-up can be computed in PTIME.

Emptiness

Theorem. The emptiness problem for NFHA(NFA) is in PTIME.

Proof.

Let $\mathcal{A} = (Q, \Sigma, \delta, F)$ be a normalised NFHA(NFA).

A state q is reachable if \exists a run of \mathcal{A} over a tree t, say r, s.t. $r(\varepsilon) = q$.

Compute the set of reachable states $R_{\mathcal{A}}$ as follows, until $R_{\mathcal{A},i} = R_{\mathcal{A},i-1}$.

- $R_{\mathcal{A},0} = \{ q \mid \exists a, R. \ a(R) \to q \in \delta, \varepsilon \in R \},$
- $R_{\mathcal{A},i} = R_{\mathcal{A},i-1} \cup \{q \mid \exists a, R. \ a(R) \rightarrow q, R \cap (R_{\mathcal{A},i-1})^* \neq \emptyset\}.$

Claim. L(A) is nonempty iff $R_A \cap F \neq \emptyset$.

Inclusion

Theorem. The inclusion problem of NFHA(NFA) is EXPTIME-complete.

Proof.

Upper bound:

Let $\mathcal{A}, \mathcal{A}'$ be two NFHA(NFA).

- $\textcircled{0} \ \ \text{Determinize} \ \mathcal{A}' \text{: In EXPTIME, obtaining a complete DFHA(DFA)} \ \mathcal{A}'', \\$
- ② Complement \mathcal{A}'' to get \mathcal{A}''' : Just complementing the set of accepting states,
- **3** Decide whether $L(A) \cap L(A''')$ is empty: In polynomial time over the size of A and A'''.

Lower bound:

Reduction from APSPACE TMs to the universality of NFHA(NFA). Similar to the lower bound for the universality of NBTUA over ranked trees.

Determinism

Theorem. Checking whether a NFHA(NFA) is deterministic is in PTIME.

Proof.

Let $\mathcal{A} = (Q, \Sigma, \delta, F)$ be a normalised NFHA(NFA) s.t. every $R_{a,q}$ is given by a NFA $\mathcal{B}_{a,q}$.

The following computation is in PTIME:

$$\forall a(R_{a,q_1}) \rightarrow q_1, a(R_{a,q_2}) \rightarrow q_2 \in \delta \text{ s.t. } q_1 \neq q_2, \text{ test } R_{a,q_1} \cap R_{a,q_2} = \varnothing.$$

Completeness

A complete NFHA is a NFHA $\mathcal{A} = (Q, \Sigma, \delta, F)$ s.t.

 $\forall t, \exists at least one run of A over t.$

 ${\bf Theorem.}\ \ {\bf Completeness}\ \ {\bf of}\ \ {\bf NFHA(NFA)}\ \ ({\bf resp.}\ \ {\bf DFHA(DFA)})\ \ {\bf is}\ \ {\bf PSPACE-c.}$

Proof.

PSPACE-hardness: Reduction from intersection of DFAs.

Suppose A_1, \ldots, A_n are n DFAs s.t. $A_i = (Q_i, \Sigma, \delta_i, q_{0.i}, F_i)$.

Construct a DFHA(DFA) $\mathcal{B} = (Q', \Sigma', \delta', F')$, where

- $Q' = \{q_1, q_r\} \cup \{q_a \mid a \in \Sigma\}, \Sigma' = \Sigma \cup \{r\}, F' = \{q_r\},$
- δ' is defined as follows.

Let
$$R_i = prj(L(\overline{A_i}))$$
 (where $prj(a) = q_a$), $R' = Q'^*(\{q_r, q_1\})Q'^*$.
Then $\delta' = \{a(R_i) \rightarrow q_a, a(R') \rightarrow q_1, r(R_i) \rightarrow q_r, r(R') \rightarrow q_1\}$.

Claim.

 $\mathcal{B} \text{ is complete iff } \bigcup_i R_i = (\{q_a \mid a \in \Sigma\})^* \text{ iff } \bigcup_i L(\overline{\mathcal{A}_i}) = \Sigma^* \text{ iff } \bigcap_i L(\mathcal{A}_i) = \varnothing.$

Completeness

A complete NFHA is a NFHA $\mathcal{A} = (Q, \Sigma, \delta, F)$ s.t.

 $\forall t, \exists at least one run of A over t.$

Theorem. Completeness of NFHA(NFA) (resp. DFHA(DFA)) is PSPACE-c.

Proof.

In PSPACE:

Let $\mathcal{A} = (Q, \Sigma, \delta, F)$ be a normalised NFHA(NFA)

s.t. the languages $R_{a,q}$ are defined by NFAs $\mathcal{B}_{a,q}$.

W.l.o.g assume that all the states of \mathcal{A} are reachable.

A state q is reachable if \exists a run of \mathcal{A} over a tree t, say r, s.t. $r(\varepsilon) = q$.

Claim. \mathcal{A} is complete iff $\forall a \in \Sigma$. $\bigcup_{a \in O} R_{a,q} = Q^*$.

From the NFAs $\mathcal{B}_{a,q}$,

- an NFA C_a can be constructed in PTIME to recognize $\bigcup_{q \in Q} R_{a,q}$,
- the universality of C_a can be checked in PSPACE.

(Possibly) Open questions

DFHA(DFA):

The complexity of inclusion problem

Next lecture

Applications to model checking