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Unranked trees: The motivation
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Unranked trees: The definition

An unranked tree t is a binary tuple (D, L), where
e D < N* is a finite tree domain, that is,

e D is prefix closed,
o if zi € D, then z0,...,z(i —1) € D.

o L:D— 3.

C d
0 V\
b a )

Us:: The set of unranked trees over X.
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Nondeterministic finite hedge automata (NFHA)

A hedge: A sequence of unranked trees t1,...,t,.
A NFHA A is a tuple (Q, X, 6, F'), where
o FCQ,
@ J is a finite set of transition rules of the form a(R) — ¢, where
e a€EX, q€EQ,

o RS Q* is a regular language over Q.
The languages R are called the horizontal languages.
A run of Aover atree t = (D, L) is a tree 74, = (D, L') s.t.
Va € D labeled by a and with children 20, ... xt,
3 a rule a(R) — q s.t. T4 (20)...74(zi) € R and ra: = q.
A run r 4, is accepting if ra4(c) € F.

Let L € Ux. Then L is regular if 3 a NFHA A recognizing L.
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Normalised and deterministic NFHA

A normalised NFHA is a NFHA A = (Q, 3,0, F) s.t.
V(a,q) € ¥ x Q, 3 at most one rule of the form a(R) — ¢ in J.

Proposition. V NFHA A, 3 an equivalent normalised NFHA A’

a(R1) — q,a(R2) —» ¢ = a(R; U Rs) — q.
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Normalised and deterministic NFHA

A deterministic finite hedge automaton (DFHA) is a NFHA A = (Q, 3,0, F')
s.t.

Yae X, if a(Ry) — q1,a(R2) — q2 s5.t. q1 # q2, then Ry 0 Ry = (.
Proposition. YV NFHA A, 3 an equivalent DFHA A’ of exponential size.

Proof.
Let A= (Q,%,0, F) be a NFHA.
Assume A is normalised. For (a,q) € ¥ x @, let R, , denote R : a(R) — q.
Define A’ = (29, %, 8, F') as follows.
o F/={S|SnF #J},
o VaeX,Se29 a(R')— Sed, where
S1...5,€Riff S={q|3q1€51,.---,¢. € Sn-q1---Gn € Ry q}-
R’ is regular:
Define Lq g as {S1...5, |31 € S1,..-,qn € Sn- ¢1--.Gn € Rag}-
Then R’ = (| La,g)\(U Laq)-
qes q¢S
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First-child-next-sibling (FCNS) encoding

An example:
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First-child-next-sibling (FCNS) encoding

For every unranked tree t over the alphabet ¥, construct a ranked tree fens(t)
as follows.

o fens(a) = a(#, #),
o fens(a(ty,. .., t,)) = a(fens(ty, ..., tn), #),
o for every hedge t1,...,t, with n > 2
fens(ty, ..., t,) = fens(ty) @ fens(to, ..., t,), where a(s, #) @Q s' = a(s, s').
For a tree language L € Us;, let fens(L) = {fens(t) | ¢t € L}.
Ezxample:

(a,b)) =
= d(a(#, #)Qb(#, #),

fens(d

d(fens(a, b), #) = d(fens(a)@fens(b), #)
) = d(a(#, b(#, #)), #)
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From unranked regular to ranked regular

Proposition. Let L € Usx. Then L is regular implies that fens(L) is regular.

Proof.

Suppose L is recognized by a normalised NFHA A = (Q, X, 0, F).
For every (a,q) s.t. Ryq # &,

suppose that R, 4 is recognized by a NFA B, g = (Pa.q,Q,0,p0 4, Fa.q)-
W.lo.g. assume that the state sets P, , are disjoint from each other.

The intuition:

(p;q,P') € by

P a’q’\/p/ S Pb,q’ \\

|
/,\ /
- [N p
oo SRS -
/ \ -
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From unranked regular to ranked regular

Proposition. Let L € Usx. Then L is regular implies that fens(L) is regular.

Proof.
Suppose L is recognized by a normalised NFHA A = (Q, X, 0, F).

For every (a,q) s.t. Ryq # &,
suppose that R, 4 is recognized by a NFA B, g = (Pa.q,Q,0,p0 4, Fa.q)-
W.lo.g. assume that the state sets P, , are disjoint from each other.

Define A’ = (@', %, ', F') as follows.
°o Q' =Qu UPa,qU{Q#}y
a,q

o F' =F,
o ¢’ is defined by the following rules,
° (a#f; q#) €6,
!
© (pa,qaq#7a7 (J) € 5 )
o if aba q7pl7ql s.t. p7p, € Pb,q’? (p7 qvpl) € 6b,q’7 then (pgu,qvp/? (L,p) € 5’)
o if3b,q,p',q st. €€ Ra,q, PE Py g, 0 € Fy oy, (p,q,P") € 0pqr, then

(g, q#,a,p) €Y,
° lf aba q7pla ql st. e€e Rﬂ,qv pap, € Pb,q’7 (pa q7pl) € 6b,q’) then (q#vplv a’7p) € 5"

April 3, 2013
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From ranked regular to unranked regular

Proposition. Let L € Ty (#;. Then L is regular implies fcnsfl(L) is regular.
A notation: fens (L) = {t € Us | fens(t) € L}.

Let A= (Q,X U {#},0,F) be a NBUT (over ranked trees).
We can define a NFHA A’ such that the horizontal languages of A’ are used to
simulate the partial runs of A over the paths x01*. O

Homework. Give the detailed construction for fens™' (L) from A in the
above proof.
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Closure properties

Corollary. The set of regular languages over unranked trees are closed under
all Boolean operations.
Fact: The following facts hold for fens and fens™!.

o fens : Uy, — T is an injective (non-surjective) function,

e fcns ! : T, — Us is an injective and surjective partial function.

Proof.

Suppose L1, Lo € Us, are regular.

The corollary follows from the closure property of regular languages over
ranked trees and the following equations.

o Ly U Ly = fens *(fens(Ly) U fens(Ly)), similarly for ,
o Us\Ly = fCHS_l(TEv{#}\fCHS(Ll)).
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Representation of horizontal languages

We use DFA or NFA to represent the horizontal languages,
NFA): NFHA with horizontal languages represented by NFA,

): NFHA with horizontal languages represented by DFA,
NFA): DFHA with horizontal languages represented by NFA,
): DFHA with horizontal languages represented by DFA.

April 3, 2013
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Nondeterminism of DFHA(DFA)

Let A= (Q,%,6,F) be a DFHA(DFA).
W.lLo.g, assume that A is normalised:
V(a,q), Ra,q is given by a DFA B, g = (Qa,q, 2, 0a,q> 444> Farq)-
Size of a DFHA(DFA) A: |Q| + Y. |Qaql-
a.q

Nondet. choice of different DFAs:
A= ({q1,92,qu, @}, {r,a,b}, 9, {q1,q2}), where § is defined as follows,
o a({e}) = qa, b({e}) = @,
o 7({¢ata}) = a1, ({dams}) = @2
qa da
O—0—0O
da qb
O—O—@

3

NN N
a a @ Qa a ga a (a a Qa
(a) (b) (c)
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Minimization of DFHA(DFA) is dificult

No unique minimum DFHA(DFA) for a given language:

The language {r(a(w)) | w € L}, where
L=1LyuLyu L, Ly = (bbb)*, Ly = b(bbbbbb)* and L3 = bb(bbbbbbbbb)™*.

©O—® O—E—0O—®
(a)
BRSO
O—-EO-0O-© O——®
(b)
Theorem. DFHA(DFA) minimization is NP-complete.

Reference. W. Martens, and J. Niehren, Minimizing Tree Automata for Unranked
Trees, DBPL 2005.
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Deterministic stepwise hedge automata (DSHA)

The intuition (Deterministic horizontal automata with output):

output
q «-.
a .
Hy -7~ S
"¢ an
aj ap

A DSHA is a tuple A = (Q, X, do, F, §), where
e Q,%, F are as usual,
@ §p : X — @ is the initial state assignment function,
e and § : QQ x Q — (@ is the transition function.

For every a € ¥, define 6} as follows,

65 (€) = do(a), 05 (wq) = 6(6; (w),q).-
A run of a DSHA A = (Q, X, o, F,J) over a tree t = (D, L):
Atreeray = (D, L) s.t.

Y node x with label a and children xO0, ..., xk,
L'(x) = 0X(L'(x0) ... L' (xk)).

Zhilin Wu (SKLCS) Automata over unranked trees April 3, 2013



Extension operator

Extension operator Q:
Given two trees t,t' € Uy s.t. t = a(ty,...,t,), then tQt' = a(ty,...,t,,t").

Encoding of unranked trees by extension operator:

The extension encoding ext : Us — Tiayos,

e ext(a) = a,

o ext(a(ty,... t,)) = Qext(alty,... tho1)),ext(ty)).
Proposition. ext : Us — Tiayuyx is a bijection.
For L € Uy, define ext(L) = {ext(t) | t € L}.
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DSHA as DBUTA ov

The intuition:

ranked | stepwise
(a,9) | dola) =g¢q
(Q17QZa@7Q) ‘ 5(Q1a‘]2) =q

Lemma. Let A= (Q,,dy, F,J) be a DSHA and ¢,t' € Uy s.t. 744(e) =¢
and 74, (¢) = ¢, then 7 4 ar () = d(q, ¢).

/a\d(%q‘)
dola) 1 g, gt
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DSHA as DBUTA over Tiayuy

The intuition:

ranked | stepwise
(a,9) | dola) =g¢q
(Q17QZa@7Q) ‘ 5(Q1a‘]2) =q

Lemma. Let A= (Q,,dy, F,J) be a DSHA and ¢,t' € Uy s.t. 744(e) =¢
and rav(€) = ¢, then 74 ar(€) = (g, ).
For a DSHA A = (Q, %, do, F,0), define ext(A) = (Q,{Q} u X,d', F), where
o for every a € X, (a,q) € §" iff 6p(a) = q,
o (q1,92,Q,q) € ¢ iff 6(q1,492) = q.

Proposition. For every DSHA A, L(ext(A)) = ext(L(A)).
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Minimization of DSHA

Theorem. For each regular language L € Uy, there is a unique minimum
DSHA recognizing L.

Suppose A; and A, are two minimum DSHAs for L.
Then ext(A;) and ext(As) are two minimum DBTUAs for ext(L).
Therefore, ext(A;) = ext(Az), so A; = As. O
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Minimization of DSHA

Theorem. For each regular language L € Uy, there is a unique minimum
DSHA recognizing L.

Define a congruence =, (wrt. @) over Uy, as follows:

t1 =g to iff ext(t1) =cpr(r) evt(ta).
Theorem. Let L € Us. Then L is regular iff =, is of finite index.

Proof.
Suppose =, is of finite index. Then L is recognized by the DSHA
(@, X, 00, F, 6), where
o Q={[t]|teUs}, F={[t]|teL}
° do(a) = [a], 8([ta]; [to]) = [t21Qto].
Suppose L is regular. Then ext(L) is also regular.
So =c¢(1), and thus =g, is of finite index. O
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Membership

Theorem. The membership problem for NFHA(NFA) is in PTIME.
Proof.

Let A= (Q,%,6,F) be a NFHA(NFA) and ¢ be a tree.
The following problem can be solved in PTIME.

Given a NFA B = (leQaélvqan/)} a word Sl 000 STL € (QQ)*;
decide whether dq; ... q, s.t. Yi. q; € S;, and q1 - . . g, 1S accepted by B.
@ Compute the set of reachable states

° PO = {q0}7
o fori>0,P, ={¢ |3p € P_1,q€ S;,(p',q,q¢") € &'}

@ Check whether P, n F' # .

Then the set of reachable states of A after reading ¢ in bottom-up can be
computed in PTIME.

O

o’
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Emptiness

Theorem. The emptiness problem for NFHA(NFA) is in PTIME.
Proof.

Let A =(Q,%,6, F) be a normalised NFHA(NFA).

A state q is reachable if 3 a run of A over a tree t, sayr, s.t. r(e) = q.

Compute the set of reachable states R 4 as follows, until R4 ; = R4,i—1.
© Rao=1{q]|3a,R. a(R) - g€ d,ec € R},
© Rpi=Rai1Vi{q|3a,R. a(R) > q,Rn (Ra;i1)* # T}
Claim. L(A) is nonempty iff R4 n F # &. O
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Inclusion

Theorem. The inclusion problem of NFHA(NFA) is EXPTIME-complete.
Proof.

Upper bound:
Let A, A’ be two NFHA(NFA).

@ Determinize A": In EXPTIME, obtaining a complete DFHA(DFA) A",

@ Complement A” to get A”: Just complementing the set of accepting
states,

@ Decide whether L(A) n L(A") is empty: In polynomial time over the size
of A and A”.

Lower bound:

Reduction from APSPACE TMs to the universality of NFHA(NFA).

Similar to the lower bound for the universality of NBTUA over ranked

trees. L]
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Determinism

Theorem. Checking whether a NFHA(NFA) is deterministic is in PTIME.

Proof.
Let A = (Q,X%,0, F) be a normalised NFHA (NFA) s.t. every R, 4 is given by a
NFA B, ,.

The following computation is in PTIME:
Va(Ra,q,) = q1,0(Ra,q,) — G2 €0 s.t. q1 # qo, test Ry g, N Ryqo = .
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Completeness

A complete NFHA is a NFHA A = (Q,%,0, F) s.t

Vt, 3 at least one run of A over t.

Theorem. Completeness of NFHA(NFA) (resp. DFHA(DFA)) is PSPACE-c.
Proof.

PSPACE-hardness: Reduction from intersection of DFAs.
Suppose A1, ..., A, are n DFAs s.t. A; = (Qs, %, 95, 90,4, F3).
Construct a DFHA(DFA) B = (Q',%', ', F’), where

o @ ={q1,¢-}V{gu|aeX}, ¥ =S {r}, F ={q},

o ¢’ is defined as follows.

Let R; = prj(L(A;)) (where prj(a) = ¢a), R’ = Q™*({gr, 1 })Q"*.
Then ¢' = {a(R;) = qa,a(R') = q1,7(R;) = ¢, 7 (R') - q}.

Claim.
B is complete iff | JR; = ({g, | a € £})* iff UL =X*iff L(A) = O.

Zhilin Wu (SKLCS) Automata over unranked trees April 3, 2013



Completeness

A complete NFHA is a NFHA A = (Q, 3,0, F) s.t.

Vt, 3 at least one run of A over t.
Theorem. Completeness of NFHA(NFA) (resp. DFHA(DFA)) is PSPACE-c.
Proof.

In PSPACE:
Let A= (Q,%,d, F) be a normalised NFHA (NFA)
s.t. the languages Rq 4 are defined by NFAs B, 4.

W.l.o.g assume that all the states of .4 are reachable.
A state q is reachable if 3 a run of A over a tree t, say r, s.t. r(e) = q.
Claim. A is complete iff Ya € . | ] Ry q = Q*.

q€Q
From the NFAs Ba,q7

e an NFA C, can be constructed in PTIME to recognize |J Rq.q,
q€Q

@ the universality of C, can be checked in PSPACE.
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(Possibly) Open questions

DFHA (DFA):

The complexity of inclusion problem
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Next lecture

Applications to model checking
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