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XML documents: An example
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XML documents: An example

conference

/l(m\ track
talk talk / ’ \

title speaker title speaker

Pierre Bourhis

Loris D’Antoni
Monadic Datalog Containment

Streaming Tree Transducers
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XML documents: An example

The schema:

<IDOCTYPE CONFERENCE [
<!IELEMENT conference (track® | (session, break?)")>
<IELEMENT track (session, break?)* >
<!IELEMENT session (talk")>
<IELEMENT talk (title, speaker)>
<IELEMENT title (#PCDATA)>
<IELEMENT speaker (#PCDATA)>
1>

More formally
conference — track® + session (break + )%,
track — session (break+ ¢)*
session —> talk™
talk — title speaker
title — DATA
speaker — DATA
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XML documents: An example

Navigation and query: XPath
/conference/ /talk/title

Select all the titles of talks in a conference

/conference/ /track|/break]

Select all the tracks containing at least one break

/conference/ /track[/break]//talk /title

Select the titles of all talks in a track containing at least one break
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XML documents: An example

Transformation: XSLT

<?xml version="1.0" encoding="UTF-8"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform” version="1.0">
<xsl:output method="xml” indent="yes” />
<xsl:template match="/conference” >
<root>
<xsl:for-each select="//title” >
<title>
<xsl:value-of select="."/>
</title>
< /xsl:for-each>
< /root>
< /xsl:stylesheet>

root

7

title title

Monadic Datalog Containment Streaming Tree Transducers
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Document Type Definition (DTD)

A DTD D is a tuple (X%, s,0), where
@ s e X is the start symbol,
e and 0 is a mapping assigning to each symbol a regular expression over X.

Suppose d(a) =r, then r is also called the content model.
We also write d(a) =r as a > r.

DTD seen as a DFHA (Deterministic Finite Hedge Automata):
Ap =(Qp,X,0p, F), where

° Qp =X, F'={s},

e dp={a(é(a)) »>alacX}.

Proposition. DTD < NFHA.

Consider the language L = {a(b(c,d)),a’(b(d,c))}.

Suppose L is defined by a DTD, then a — r and b — 7’ s.t. be L(r) and

dce L(r").

It follows that a(b(d,c)) € L, a contradiction. O
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Deterministic DTD

The intuition: A rule a — r is deterministic
For a given word w € L(r), we can uniquely match each symbol in w
to an occurrence of the same symbol in r
by a single left to right pass without looking ahead in the input.

Marking of regular expressions

Let r be an regular expression over X.

The marking of r (denoted by r'):

The regular expression over the alphabet ¥’ = {a; | a € X, i € N} obtained by
replacing the i-th occurrence of a by a;.

Example: (a+b)*(ab)* = (a1 +b1)*(azbe)*.
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Deterministic DTD

The intuition: A rule a — r is deterministic
For a given word w € L(r), we can uniquely match each symbol in w
to an occurrence of the same symbol in r
by a single left to right pass without looking ahead in the input.

Deterministic regular expressions (DRE)

A regular expression r over an alphabet X is deterministic
if for all words u,v,w € X' and all symbols x;,y; € X' with
uzv, wy;w € L(r'"), then x; # y; implies x # y.
Example: ab+ ac is not deterministic since a1by,ascy € L(aiby + agey), but
ay # ag. On the other hand, a(b+ ¢) is deterministic.
Remark (DRE < RE). (a+b)*b(a +b) cannot be defined by DREs (A.

Briiggemann-Klein and D. Wood. One-unambiguous regular languages. Information
and Computation, 142(2):182-206, 1998).

A rule a — r is deterministic if r is deterministic.

A DTD is deterministic if all its rules are deterministic.
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From DRE to DFA

Several notations:
Let r be a regular expression, r’ be the marking of r, and a; € ¥'.

sym(r’): the set of symbols from X’ occurring in 77,
first(r") = {b; € £ | Ju. bju e L(r")},

last(r") = {b; € ¥’ | Ju. ub; € L(r")},

follow(r', a;) = {b; € ¥’ | Ju,v. ua;bjv € L(r")}.

Example: Let 1’ = (aq + b1)*(a2b2)",
e sym(r') = {ay1,b1,a0,bs},
o first(r') = {a1,b1,as}, last(r') = {ba},
o follow(r’,ay) = follow(r’,b1) = {a1,b1,as},

o follow(r’,as) = {ba}, follow(r’,b3) = {az}.
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From DRE to DFA

Proposition. Let 7 be a regular expression and r’ be the marking of r. Then
Vw=x1...2, € (X')*, we L(r") iff w satisfies the following three conditions,

xq € first(r'), x, €last(r’), Vi:1<i<n, 2441 € follow(r’, x;).
Observation.
r’ can be defined inductively by the following rules,

r'=clai(a; X)) |ry +ry | rirh | (r])* s.t. sym(r]) nsym(rs) = @.
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From DRE to DFA

Proposition. Let 7 be a regular expression and r’ be the marking of r. Then
Vw=x1...2, € (X')*, we L(r") iff w satisfies the following three conditions,

xq € first(r'), x, €last(r’), Vi:1<i<n, 2441 € follow(r’, x;).

Proof.

“Only if” direction is trivial.
“If” direction: Induction on the structure of r’.

o ' =cor 7’ =a;: trivial,
o 1 =rl +rl:
first(r") = first(r]) U first(r}), similarly for last(r’),
follow (r', a;) = follow(r], a;) or follow(r’,a;) = follow(rj, a;) (since
sym(r}) nsym(r}) = 2),
Suppose 1 ...z, satisfies the three conditions for r’.
Because sym(r]) nsym(r4) = @, we deduce that z; ...z, satisfies the
three conditions for either ] or rj.
By induction hypothesis, x1 ..., € L(r]) u L(ry) = L(r").
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From DRE to DFA

Proposition. Let 7 be a regular expression and r’ be the marking of r. Then
Vw=x1...2, € (X')*, we L(r") iff w satisfies the following three conditions,

xq € first(r'), x, €last(r’), Vi:1<i<n, 2441 € follow(r’, x;).

Proof.

“Only if” direction is trivial.
“If” direction: Induction on the structure of r’.

o ' =g or 7’ = a;: trivial,
o 1’ =rirh:

! / 2 !
first(r') = { first(r]) ufirst(ry) if e € L(r])

, similarly for last(r"),

first(r]) otherwise
follow (71, a;) if a; € sym(ry) \ last(r])
follow (7', a;) =4 follow(r],a;) U first(rs) if a; € last(r])
follow (71, a;) if a; € sym(ry)

We exemplify the proof by considering the case x; € first(r]), z, € last(r}).
Then i < n. z; €last(r]) and ;4 € first(r4), it follows from IH that
X1 ... 2 € L(r]), Tip1 ... xn € L(1}), so we L(ry)L(r}).
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From DRE to DFA

Proposition. Let 7 be a regular expression and r’ be the marking of r. Then
Vw=x1...2, € (X')*, we L(r") iff w satisfies the following three conditions,

xq € first(r'), x, €last(r’), Vi:1<i<n, 2441 € follow(r’, x;).

“Only if” direction is trivial.
“If” direction: Induction on the structure of r’.

o ' =cor 7’ =a;: trivial,

o 7’/ = (r])*: Similar to the case r’' = r{r}.
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From DRE to DFA

Proposition. Let 7 be a regular expression and r’ be the marking of r. Then
Vw=x1...2, € (X')*, we L(r") iff w satisfies the following three conditions,

xq € first(r'), x, €last(r’), Vi:1<i<n, 2441 € follow(r’, x;).
Corollary 1. Let r be a regular expression and 7’ be the marking of r. Then
uav,u'av’ € L(r") implies uav’ € L(r").
Corollary 2. Let r be a regular expression and r’ be the marking of . Then
L(r) is defined by the Glushkov automaton A, = (Q, %, 4, g0, F'), where
° @=sym(r)u{e}, o =¢,
e if e € L(r"), then F =last(r") u{e}, otherwise F =last(r’),

o for every x,y e sym(r'),a € X,
(e,a,z) € iff JieN. x =q; and x € first (1),
(z,a,y) €d iff I eN. y=a; and y € follow(r', z).
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From DRE to DFA

Corollary 2. Let r be a regular expression and 7’ be the marking of r. Then
L(r) is defined by the Glushkov automaton A, = (Q, %, 4, qo, F'), where

o Q=sym(r')u{e}, qo =¢,
e if e € L(r"), then F =last(r") u {e}, otherwise F' = last(r’),

e for every z,y € sym(r'),a € %,
(g;a,2) €6 iff FieN. x =a; and x € first(r'),
(z,a,y) €d iff I eN. y =a; and y € follow(r’, z).

Theorem. Let r be a regular expression. Then r is a DRE iff A, is a DFA.

Lemma. Let r be a regular expression. Then r is deterministic iff the
following two conditions hold,

Q@ Va,,bj efirst(r'), a; # b; implies a # b,

@ Va; esym(r') and Vb;, ¢y € follow (1, a;), bj # ¢; implies b # c.
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Decision problem for (deterministic) DTDs

Theorem. The membership problem, the emptiness problem for DTDs are
solvable in polynomial time.

The membership and emptiness problem for NFHA(NFA) can be solved in
polynomial time. ]
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Decision problem for (deterministic) DTDs

Theorem. The complexity of the inclusion problem:
e PSPACE-complete for DTDs,
@ in polynomial time for deterministic DTDs.

Proof.

Let Dy = (X,s,01) and Dy = (X, s,d2) be two (deterministic) DTDs.
W.lo.g. assume that for every a € X, 3 a tree t = (D', L) s.t.

t= D, L(e) = s and L(z) = a for some node z in t.
Otherwise, redundant symbols can be identified and removed in polynomial

time.
Then L(D1) € L(D>) iff

VaeX, let a —ry €y and a > r9 € §g, then L(ry) € L(rs).

For DTD:
Language inclusions for REs (NFAs) is PSPACE-complete.
For deterministic DTD:
Language inclusions for DREs (DFAs) is in PTIME. O
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Extended DTD

Motivation:
The expressive power of DTD is strictly less than that of NFHA.

DTD only define the local languages:
Ca(ty,...,tn)),C'(a(t],...,t,)) € L implies C(a(ty,...,t,)) € L.

Extended DTD:
V alphabet X, let 3 be another alphabet s.t. 3 a surjective mapping 7 : )I 3
For every a € X, the letters b e 3 s.t. () = a are called the types of a.

An extended DTD (EDTD) a pair (D, ), where D is a DTD over 3. A tree
t € Uy, satisfies an EDTD D if

there is an assignment of types to the labels of t s.t.
the resulting tree over ) satisfies D (as a DTD over E)

Example: {a(b(c,d)),a’(b(d,c))} is defined by the following EDTD

a—bM a" > bV 5 ed, B S dee>e,d—e.
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Extended DTD: Expressibility and complexity
Theorem. Fix the root label, say s, of unranked trees, then EDTD = NFHA.
Proof.

Let (D, ) (where D = (3, 5,4)) be an EDTD over the alphabet .

Then 7(L(D)) is defined by A}, = (£,%,6,{8}) s.t. Vb—red, 7(b)(r) - bed.
On the other hand, Let A = (Q,X,0, F') be a NFHA. W.Lo.g. assume F = {¢;}.
Suppose all the horizontal lang. of A are given by regular expressions (over Q).
Then L(A) can be defined by the EDTD D = (Q x %, (¢s,5),6) with

7((q,a)) = a, where

for every a(r) » q €8, we have (q,a) — 1" €4,
where v’ is obtained from r by replacing each q' with
(q',01) +(¢',b2) + -+ (¢, b)) (Suppose X ={by,...,bn}). Ol

v

Theorem. The membership and emptiness problem of EDTD can be solved
in polynomial time.

Theorem. The inclusion problem for EDTD is EXPTIME-complete.
Remark. Both results follow from those of NFHA(NFA).
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Conditional XPath (CXPath)

Syntax:
Node formulas: a:=a|-a|a;Vvas|{8),
Path formulas: 8 := [a] | axis | axis™ | (axis[a])* | 81/B2 | f1 V Pa.
where axis € {},—>,1,<}.
Semantics:
Given a tree t = (D, L), the CXPath formulas are interpreted as follows.
[a]: ={x e D|L(z) = a} [lal]e = {(z,2) |2 € [al:}
[-a]: = D~ o], [axis]; = {(z,2") | (z,2") € axis}
[or v aslls = [a]: U [as]s [axis*]: = ([axis]:)*
[(B): ={z e D[32" € D.(z,2") € [B]:} [(axis[a])*]. = ([(axis/[a])]:)*
[81/B2]: = [B1]e o [Ba]:
[B1v B2l = [B1] v [Be]:

Abbreviations:
@ root = (- 1 true), ImSibling = (- « true),
e axis® = axis/axis*, /3 = [root]/B, /|8 = [root]] |* |8,
° [1/[B2=p51/ 1" [Ba; ..
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Conditional XPath = FO

First-order logic over (ordered) unranked trees,
Syntax:
p=Po(x) |z=y|z<ylz<y[erVves|-p1| e
Semantics:
Given a tree t = (D,L) and I : Var - D,
o (t,I)rx <y iff I(z) is a strict prefix of I(y) (D € N* is a tree domain),
o (t,)ru<yiff I(z)=wiand I(y) =uj s.t. i <j.
Abbreviations:
e root(x) :=-Jy(y < x),
o child(z,y)=x<yn-3z(x<zAz<y),
o leftMost(x) = -3y(y < z),
e nextSibling(x,y) =x <yAr-Fz(x<zAz<y).
Example:
3 a vertical path from z to some descendant of x, say y, labeled by b
s.t. all the intermediate nodes (except x,y) are labeled by a.

p(x) =Y (Po(y) Az <yAVz(x <zAz<y—> Pu(z))))
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Conditional XPath = FO

Theorem. Node expressions of CXPath = FO formulas with one free variable.

Proof sketch.

Easy direction: From CXPath to FO,
Tr:a->Tr(a)(z),B - Tr(B)(z,y),
o Tr(a) = Py(x), Tr(-a) = -Tr(a)(z), Tr(ar vas) =Tr(ar) vTr(as),
o Tr((B)) =3yIr(B)(z,y),
Tr([a]) = Tr(a)(x) Az =y, Tr(axis) = axis(x,y),
Tr({*) =z <y, Tr(=*)=z=<y, Tr(t*) =y <z, Tr(<*) =y =<z,
Tr(Byv B2)=Tr(B1) v Tr(Bs),
Tr(B1/B2) = 32(Tr(B1)y < 2] ATT(B2)[z « 2]),
Tr((l[a]))=xz=yVv(z<yaVz(z<z<y->Tr(a)[z < z]))

The hard direction: From FO to CXPath
Reference: Maarten Marx, Conditional XPath, PODS 2004. O
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Query automata

A query automaton (QA) Q is a tuple (Q, X%, F,§,Q,), where
o (Q,X,F,0) is a NFHA,
® QQ, € Q (the set of selecting states).

Runs and accepting runs of Q over a tree ¢:
Runs and accepting runs of the NFHA (Q, X, F, ) over t.

Unary query defined by QA

Let Q=(Q,%, F,0,Q,) be a QA.
Let p be a run of Q over t, define O,(t) = {z e D | p(z) € Qo}.
The unary query defined by Q is defined as follows:

o Existential semantics: Q7(t) = U 0,(1),
p: accepting run
o Universal semantics: Q(t) = N O,(t).

p: accepting run
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NFHA = MSO sentences: A Supplement

MSO over unranked trees:
pi=P(z) | X(z) [z=y|z<ylz<y|piVes|-p1|Ize: [ 3X ¢
Abbreviations:
o firstChild(z,y) = child(x,y) A =3z(child(z,2) Az < y),
o lastChild(x,y) = child(x,y) A -Fz(child(x,z) Ay < z).
MSO syntax: Another equivalent definition

_ Fa(2) | X(2) |2 =y [lastChild(z,y) |
nextSibling(x,y) | p1V @2 | =1 | Jxpr | 3X ¢y

The argument for the equivalence:

T<y=
VX (X () AV21V22(X (21) AnextSibling(z1,22) > X (22))) > X (v))

o child(x,y) = 3z(lastChild(x,2) A(y=2zVy<z))
0 x<y=YX((X(x)AV21Y22(X (21) A child(z1,22) > X(22))) > X (v))
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NFHA = MSO sentences: A Supplement

Theorem. NFHA = MSO sentences
Proof.

From NFHA to MSO sentences:
Let A=(Q,%,8,F) be a NFHA(NFA). Let Q = {q1,...,qn}.
Suppose A is normalised:

V(a,q) € X, let Rq 4 defined by Ba,g = (Qa,q; Q,0a,q>P(a,q),00 Fa,q)-
Define a MSO formula ¢ 4 as follows:
0a=3q1..qnI(D(a,q),15 - - 1 P(a,0)sm(a.q) ) (@s0) Pace A Pleaf A PleftMost A Pirans,
Pace = Iz (root(x) > q\E/Fq(w))f Preaf () = Va(leaf (z) - \% q(x)),

q:a(Ra,q )_’qxseRa,q
PleftMost *=

(leftMost(z) A —root(x)) —

i I (Child(y’x) A(V)(Pa(y) ~a(y) A \ q(x) Ap(ﬂf)))

(P(a,q),0:9":P)€a,q
Ptrans = Pvert N\ Phor,
pvert := VeVy(lastChild(z,y) — (V )(Pa(ac) Ag(z) A 1\«*/ p(v))),
a,q P€fa,q

Phor = VzVy(nextSibling(z,y) —
Jz(child(z,y) A V (Pa(2) Aq(2) A V ) (p(z) Aq' (y) AP (1)))-

a,q P,q’,p')€da q
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NFHA = MSO sentences: A Supplement

Theorem. NFHA = MSO sentences
Proof.

From MSO sentences to NFHA.

Normal form for MSO formulas.
_ Sing(X)| XcY |XcP,|P,cX|lastChild(X,Y) |
-~ nextSibling(X,Y) | o1 Voo | ~p1 | 3X o1

From MSO formulas in normal form to NFHA:

Similar to the construction from MSO to BUTA over ranked trees.

For instance, for ¢ = lastChild(X,Y), A, = (Q,% x {0,1}2,6, F) is defined as

follows:

° Q={q,q1,q},F = {q},
@ ¢ includes the following rules for every a € X:

o (a7070)((q0)*) - qo,

° (a,0,0)((q0)"q2(q0)") = g2,
o (a,0,1)((q0)*) = a1,

© (a7170)((q0)*q1) - q2.

Zhilin Wu (SKLCS) Automata for XML
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QA = MSO unary queries

MSO unary queries: MSO formulas with one free first-order variable.
Let p(z) be a MSO unary query and ¢ = (D, L) be a tree, then
the evaluation result of ¢ overt (denoted [¢]:) is {ve D |t = o(v)}.

Theorem. QA with existential semantics = MSO unary queries.

Proof.
From MSO to QA:

Let o(z) be a MSO unary query.
Define (X)) = Va (X (x) — o(x)).
From the equivalence of MSO = NFHA,
an equivalent NFHA A, = (Q,X x {0,1},4, F') can be constructed.
Construct Qy = (Q x {0,1},%,d", F x {0,1},Q x {1}) as follows:
For every (a,i)(r) » q€d, let a(r’) - (q,i) € 6’ (wherei=0,1),
where 1’ is obtained from r by replacing every q' with (¢',0) + (¢’,1).

Claim. [¢]; = U{U | Ay accepts (t,U)} = Q(t). O
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QA = MSO unary queries

MSO unary queries: MSO formulas with one free first-order variable.
Let p(z) be a MSO unary query and ¢ = (D, L) be a tree, then
the evaluation result of ¢ overt (denoted [¢]:) is {ve D |t = o(v)}.

Theorem. QA with existential semantics = MSO unary queries.

Proof.

From QA to MSO:

Let Q=(Q,%,0,F,Q,) be a QA. Let Q = {q1,---,qn}-
Suppose (@, X, d, F) is normalised:

V(a,q) € X, let Ry 4 defined by By g = (Qa,q) @, 0a,>P(a,q),05 Faq)-
Define a MSO formula ¢g(x) as follows:

@Q(‘r) o= HQ1 oo qnzl(p(a,q),] ooo 7p(a,q),n(ayq))Or,fl((tDT’u’ﬂ A \é q(“L))a where
qeo
Prun = Pace N Pleaf N PleftMost A Pirans 38 in the poof of NFHA = MSO.

Claim. [po]; = U 0,=Q°(t).
p: accepting run
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QA = MSO unary queries

MSO unary queries: MSO formulas with one free first-order variable.
Let ¢(z) be a MSO unary query and t = (D, L) be a tree, then

the evaluation result of ¢ over t (denoted [¢]:) is {ve D |t = p(v)}.

Theorem. QA with existential semantics = MSO unary queries.

Corollary. QA with existential semantics = QA with universal semantics.

Proof
Let 9=(Q,%,6,F,Q,) be a QA.
From existential-QA = MSO unary queries,
JaQA Q' =(Q,%,8,F,Q;) st. (Q)(t) = [~val:-
W.lo.g. assume that the NFHA (Q’,X%,4’, F') is complete (3 a run for every

tree).
Define Q" = (Q',%,¢", F',Q'/Q?). Then for every tree t = (D, L),

(Q)"(8) ={z € D| ¥ accepting run p',p'(z) ¢ Q,}
=D~ (Q)3(t) = D\ [~pol: = [¢al:

|
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Single-run query automaton

Single-run query automaton: Query automaton Q s.t.

for every t and every accepting run p1 and ps of Q overt,
Sﬁl (t) = sz (t)

Theorem. For every query automaton, there is an equivalent single-run query
automaton.

Reference: Markus Frick, Martin Grohe, Christoph Koch, Query evaluation on
compressed trees, LICS 2003.

Theorem. The nonemptiness of single-run query automata can be solved in
polynomial time.
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The closure of XPath formulas

Theorem. For every XPath node formula ¢, an equivalent single-run query
automaton A, can be constructed in exponential time.

Corollary. The satisfiability of XPath node formulas can be solved in
exponential time (in fact, EXPTIME-complete).

Let ¢ be a XPath formula, then the closure of ¢, denoted by cl(), is defined
as follows.
e Node formulas:
o cl(a) ={a,-a}, cl(-a) = {-a} ucl(a),
o cl(ar vaz)={a1 vas,-(a1 vaz)}ucl(ar) ucl(az),
o cl((B)) = {(B), ~(B)} L cl(B).
e Path formulas:
cl([a]) = {[a]} ucl(a),cl(axis) = {axis}, cl(axis™) = {axis*},
cl((axis[a])*) = {(axis[a])* } u cl(@),
cl(B1/B2) = {B1/Ba} v cl(Br) Lcl(B2),
cl(Brv B2) ={B1V B2} ucl(Br) ucl(B2).
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An illustration of the intuition

For a XPath node formula ¢,
Construct a QA to attach each node x of a tree t with
all the formulas a € cl(p) s.t. x € [a]; and B ecl(p) s.t. Fa'.(x,2") € [O]:.
cl(p)
_ _ * b A —(—s* a,b, ¢, ~a, —b, e, (=* /[c]), ~(—=* /[c])
o= (B) = (L)) 4 /oA( L)) e b )
L[l (lal)*/ 4 =% [el, =" e, [b A ~(=7 /[eD], B

- - -~

TR g .
L= (L fa))” \y'*\(i[a])*m 6 (6)"
\aj(ﬁ*/j]//

Ha] LA /)
="/ <>—> /le])

~

o ’a_\i\\ a

Ve

L T e ]>. o )
7 bAn(o /Y Gl m(mﬁm /ey

! (Lo A= i Gl 7
1 e ;' * \ \%*/,
\DA(=* /DA LT

~
May 9, 2013

Zhilin Wu (SKLCS) Automata for XML



Elementary set of formulas

Negation normal form (NNF) of CXPath formulas:
All the negations are before a or () formulas.

Remark. All the XPath formulas can be transformed into equivalent NNF's,
by using A.
Let ¢ be a XPath formula in NNF. A set ® ¢ cl(yp) is said to be elementary iff
the following conditions hold,

o thereisaeX s.t. ae ® and Vbe X(b+a — -be D),

o for every oy ) ag € cl(p), ar, ag € @ iff (ag € @ a(l)qrd ag € D),

o for every ¢y = a or (8) ecl(p), ¢ e D iff —) ¢ D,
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Elementary set of formulas

Negation normal form (NNF) of CXPath formulas:

All the negations are before a or () formulas.

Remark. All the XPath formulas can be transformed into equivalent NNF's,
by using A.

Let ¢ be a XPath formula in NNF. A set ® ¢ cl(yp) is said to be elementary iff
the following conditions hold,

thereis a e X s.t. ae€ ® and Voe X(b+a —» -be P),

for every oy Xag ecl(yp), aq Xaz ediff (v €@ a%rd ag € D),
for every ¢ =a or () € cl(p), 1 € @ iff —) ¢ D,

for every (5) e cl(p), (B) e @ iff € D,

for every [a] e cl(yp), [a] € D iff a € D,

for every axis”, (axis[a])* € cl(p), axis®, (axis[a])* € P,
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Elementary set of formulas

Negation normal form (NNF) of CXPath formulas:

All the negations are before a or () formulas.

Remark. All the XPath formulas can be transformed into equivalent NNF's,
by using A.

Let ¢ be a XPath formula in NNF. A set ® ¢ cl(yp) is said to be elementary iff
the following conditions hold,

thereis a e X s.t. ae€ ® and Voe X(b+a —» -be P),
for every OllXOtg e cl(p), OthOéz ediff (v €@ a%rd ag € D),
for every ¢ =a or () € cl(p), 1 € @ iff —) ¢ D,

for every (5) e cl(p), (B) e @ iff € D,

for every [a] e cl(yp), [a] € D iff a € D,

for every axis”, (axis[a])* € cl(p), axis®, (axis[a])* € P,

for every 81 v By ecl(p), 1V B e®iff 51 €D or By € D,

for every [31/82 € cl(p), if 51 does not contain any occurrence of
{407,457 47 €7}, then B1/P2 € @ iff f1 € @ and P2 € D,

for every f31/B2 € cl(y), if f1 = axis™ or 3 = (axis[«])*, then 33 €
implies 31/8 € P.
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The construction

Construct a query automaton A, = (Q,%,6, F,Q,) as follows:
@ (Q: the set of elementary sets of formulas,
@ F': the set of elementary sets of formulas ® s.t.

o ® does not contain formulas of the form axis or axis/f s.t. axis € {1, <, =},
o if axis® /B € ® or (axis[a])*/B € ® s.t. axis € {},«,—}, then S € P,

@ (Q,: the set of elementary sets of formulas ® s.t. p € ®,

o ¢ is the set of all the rules of the form a(Lq ¢) - ®, where a € ® and
La,<I> = Lpor N Lup(q)) n Ldown(av (I))7
o Lpor is the set of strings @ ... P, satisfying the following conditions,
o ®g (resp. Py ) does not contain formulas of the form « /3 (resp. — /B);
o if (« [a])*/B e Do (resp. (— [a])*/B € Pn), then B € Py (resp. B € Py)
(remark: «<* /B,=* /B« = true);
o Vi:0<i<n (resp. i:0<i<n),if »ecl(p) (resp. «<e€cl(yp)), then - ;
(resp. <€ ®;);
o Vi:0<i<mn, %/ﬁé‘bi iff Be®;1;

° ‘v’i:O<iSn,<—/,Be<I>i iff Bed;_q;

e Vi:0<i<n,if (— [a])*/B ecl(¢), then (= [a])*/B € ®; iff either B € ®; or
aeP;yq and (- [a])*/B € Piy1 (remark: —* /B: a = true);

e Vi:0<i<n,if (« [a])*/Becl(d), then (« [a])*/B € ®; iff either B € D; or
ae®, 1 and (« [a])*/B € P;—1 (remark: «* /B: «a =true).
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The construction

Construct a query automaton A, = (Q,%,6, F,Q,) as follows:
@ (Q: the set of elementary sets of formulas,
@ F': the set of elementary sets of formulas ® s.t.
o ® does not contain formulas of the form axis or axis/f s.t. axis € {1, <, =},
o if axis® /B € ® or (axis[a])*/B € ® s.t. axis € {},«,—}, then S € P,
@ (Q,: the set of elementary sets of formulas ® s.t. p € ®,
o ¢ is the set of all the rules of the form a(Lq ¢) - ®, where a € ® and
La,<I> = Lpor N Lup(q)) n Ldown(av (I))7
o L,p(®) is the set of strings Py ... P, satisfying the following conditions,
o if tecl(p), then Vi. te @,
o for every 1 /B ecl(p), then 8 e ® iff for every i:0<i<n, 1 /8 € ®;,

o for every (1 [a])*/B ecl(¢), Vi. (1 [a])*/B € ®; iff either 8 € ®; or o € D and
(1 [a])*/B € ® (remark 1 /B : « = true).
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The construction

Construct a query automaton A, = (Q,%,6, F,Q,) as follows:
@ (Q: the set of elementary sets of formulas,
@ F': the set of elementary sets of formulas ® s.t.
o ® does not contain formulas of the form axis or axis/f s.t. axis € {1, <, =},
o if axis® /B € ® or (axis[a])*/B € ® s.t. axis € {},«,—}, then S € P,
@ (Q,: the set of elementary sets of formulas ® s.t. p € ®,
o ¢ is the set of all the rules of the form a(Lq ¢) - ®, where a € ® and
La,<I> = Lhor n Lup(q)) N Ldown(av (I))7
° Ldown(afy@):
if le cl(p) N @, then Lgown(a, ®) = {e};
if le @, then Lgown(a, ®) is the set of strings @g... D, (n>0) s.t.
o forevery | /[Becl(p), | /[Be®iff 3i:0<i<n, Bed,,
o for every (| [a])*/Becl(d), (I [a])*/B e P iff either BeP or Ji:0<i<n
st. ae®; and (I [@])*/B € ®; (remark: |* /B« =true)
if |¢ cl(p), then Lgown(a,®) is the union of {e} and the set of strings
Dy... By, (n>0) ...
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Next Lecture

Up to you !
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