> Deterministic Automata for the (F,G)-fragment of LTL Jan Křetinský, Javier Esparza

> > 报告人:谢淼

Fakultät für Informatik, Technische UniversitätMünchen, Germany Faculty of Informatics, Masaryk University, Brno, Czech Republic

2013-5-25

Deterministic Automata for the (F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Complexity

报告人: 谢淼 Deterministic Automata for the (F,G)-fragment of LTL

Outline

Motivation Deterministic Automaton for the (F,G)-fragment Muller accepting condition Rabin accepting condition Complexity Experiments and Conclusion

Outline

- Motivation
 - Related Works
- 2 Deterministic Automaton for the (F,G)-fragment
 - LTL Syntax
 - One-step unfolding definition of LTL
 - Construction of state space
- 3 Muller accepting condition
 - Method
 - Correctness of sound and complete
 - Rabin accepting condition
 - Complexity
- 6 Experiments and Conclusion
 - Experimental Results
 - Conclusion and Future Works

报告人:谢淼

Rabin accepting condition

Complexity

Deterministic Automata for the (F,G)-fragment of LTL

Relat	Outline Motivation Deterministic Automaton for the (F,G)-fragment Muller accepting condition Rabin accepting condition Complexity Experiments and Conclusion
	Experiments and Conclusion

Outline

1	Motivation	(F,G)-fragment of LTL
	Related Works	报告人:谢淼
2	Deterministic Automaton for the (F,G)-fragment	
	• LTL Syntax	Outline
	• One-step unfolding definition of LTL	Motivation Related Works
	 Construction of state space 	Deterministic
3	Muller accepting condition	Automaton for the (F,G)-fragment
	Method	LTL Syntax
	 Orrectness of sound and complete 	One-step unfolding definition of LTL Construction of state
		space
4	Rabin accepting condition	Muller accepting condition
5	Complexity	Method
6	Experiments and Conclusion	Correctness of sound and complete
	 Experimental Results 	Rabin accepting condition
	 Conclusion and Future Works 	Complexity

报告人:谢淼

ed Works

Deterministic Automata for the (F,G)-fragment of LTL

Outline Motivation Deterministic Automaton for the (F,G)-fragment Muller accepting condition Rabin accepting condition Complexity Experiments and Conclusion	Related Works
Motivation	

	(F,G)-fragment of LTL
Problem LTL \Rightarrow deterministic ω – automata	报告人:谢淼
Background Synthesis of reactive modules for LTL	Outline
specifications[PR88].	Motivation
2 Model checking Markov decision	Related Works
processes[BK08].	Deterministic Automaton for the
Previous approach \bigcirc LTL \Rightarrow non-deterministic <i>Büchi</i>	(F,G)-fragment LTL Syntax
automaton(NBW) and then NBW \Rightarrow	One-step unfolding definition of LTL Construction of state
deterministic Rabin automata by Safra's	space
construction[Saf88]	Muller accepting condition
disadvantage Safra's construction is difficult to handle	Method Correctness of sound and complete
algorithmically due to its "messy" state space	Rabin accepting

condition Complexity

Outline

- Motivation
 - Related Works
- 2 Deterministic Automaton for the (F,G)-fragment
 - LTL Syntax
 - One-step unfolding definition of LTL
 - Construction of state space
- 3 Muller accepting condition
 - Method
 - Correctness of sound and complete
- 4 Rabin accepting condition
- 5 Complexity
- 6 Experiments and Conclusion
 - Experimental Results
 - Conclusion and Future Works

报告人:谢淼

Related Works

Rabin accepting condition

Complexity

Deterministic Automata for the (F,G)-fragment of LTL

|--|

Related Works

- How to overcome this difficulty?
 - Heuristics
 - Itl2dstar Tool[KB06,KB07,Kle].
 - ew algorithm
 - Directly generate deterministic automaton from LTL fragments [AT04] for reactivity(1) formulas and ANZU tools[PPS06,JGWB07].
 - Construct a symbolic description of a deterministic parity automaton[MS08] from LTL formulae.

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Outline Motivation Deterministic Automaton for the (F,G)-fragment Muller accepting condition Rabin accepting condition Complexity Experiments and Conclusion	ated Works

Related Works

- Is symbolic approach wonderful?
- What about probabilistic model checking?
 - Requires Linear arithmetic:
 - Can not use sophisticated symbolic representations.
 - Can not use Tree automata.
- So current Prism use:
 - Itl2destar explicitly constructs reduced DRW.

(F,G)-fragment of LTL 报告人:谢淼
Outline
Motivation
Related Works
Deterministic
Automaton for the
(F,G)-fragment LTL Syntax
One-step unfolding definition of LTL
Construction of state space
Muller accepting condition
Method
Correctness of sound and complete

Rabin accepting condition

Complexity

报告人:谢淼 Deterministic Automata for the (F,G)-fragment of LTL

LTL Syntax One-step unfolding definition of LTL Construction of state space

Outline

1 Motivation	(F,G)-fragment of LTL
 Related Works 	报告人:谢淼
2 Deterministic Automaton for the (F,G)-fragment	
• LTL Syntax	Outline
 One-step unfolding definition of LTL 	Motivation Related Works
 Construction of state space 	Deterministic Automaton for the
3 Muller accepting condition	(F,G)-fragment
 Method 	LTL Syntax One-step unfolding definition of LTL
 Correctness of sound and complete 	definition of LTL Construction of state space
4 Rabin accepting condition	Muller accepting
5 Complexity	condition Method
6 Experiments and Conclusion	Method Correctness of sound and complete
 Experimental Results 	Rabin accepting condition
 Conclusion and Future Works 	Complexity

报告人:谢淼

Deterministic Automata for the (F,G)-fragment of LTL

LTL Syntax One-step unfolding definition of LTL Construction of state space

Outline

- 1 Motivation
 - Related Works

2 Deterministic Automaton for the (F,G)-fragment

• LTL Syntax

- One-step unfolding definition of LTI
- Construction of state space
- 3 Muller accepting condition
 - Method
 - Correctness of sound and complete
- 4 Rabin accepting condition
- 5 Complexity
- 6 Experiments and Conclusion
 - Experimental Results
 - Conclusion and Future Works

报告人:谢淼

Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment

(F,G)-fragment of LTL

报告人:谢淼

LTL Syntax

One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Outline Motivation Deterministic Automaton for the (F,G)-fragment Muller accepting condition Rabin accepting condition Complexity Experiments and Conclusion	LTL Syntax One-step unfolding definition Construction of state space

Definition 1 (LTL Syntax). The formulae of the (\mathbf{F}, \mathbf{G}) -fragment of linear temporal logic are given by the following syntax:

 $\varphi ::= a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{F}\varphi \mid \mathbf{G}\varphi$

where a ranges over a finite fixed set Ap of atomic propositions.

LTL Syntax

We use the standard abbreviations $\mathbf{tt} := a \lor \neg a$, $\mathbf{ft} := a \land \neg a$. We only have negations of atomic propositions, as negations can be pushed inside due to the equivalence of $\mathbf{F}\varphi$ and $\neg \mathbf{G}\neg \varphi$.

(F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment

LTL Syntax

One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

LTL Syntax One-step unfolding definition of LTL Construction of state space

Outline

- Motivation
 - Related Works

2 Deterministic Automaton for the (F,G)-fragment

LTL Syntax

• One-step unfolding definition of LTL

- Construction of state space
- 3 Muller accepting condition
 - Method
 - Correctness of sound and complete
- 4 Rabin accepting condition
- 5 Complexity
- 6 Experiments and Conclusion
 - Experimental Results
 - Conclusion and Future Works

Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment LTL Syntax

(F,G)-fragment of LTL

报告人:谢淼

One-step unfolding definition of LTL

Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

LTL Syntax One-step unfolding definition of LTL Construction of state space

One-step unfolding definition of LTL

one-step unfolding U()

•
$$\mho(\neg a) = \neg a$$

•
$$\mho(\varphi \land \psi) = \mho(\varphi) \land \mho(\psi)$$

•
$$\mho(\varphi \lor \psi) = \mho(\varphi) \lor \mho(\psi)$$

•
$$\mho(F\varphi) = \mho(\varphi) \lor XF\psi$$

•
$$\mho(G\varphi) = \mho(\varphi) \land XG\psi$$

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment

LTL Syntax

One-step unfolding definition of LTL

Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Complexity

报告人: 谢淼 Deterministic Automata for the (F,G)-fragment of LTL

LTL Syntax One-step unfolding definition of LTL Construction of state space

One-step unfolding definition of LTL

• Example $\varphi = Fa \wedge GFb$

- $\mho(\varphi) = (a \lor XFa) \land (\mho(Fb) \land XGFb)$
- $\mho(\varphi) = (a \lor XFa) \land ((\mho(b) \lor XFb) \land XGFb)$
- $\mho(\varphi) = (a \lor XFa) \land (b \lor XFb) \land XGFb$

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax

One-step unfolding definition of LTL

Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

LTL Syntax One-step unfolding definition of LTL Construction of state space

Outline

Motivation

 Related Works

 Deterministic Automation

Deterministic Automaton for the (F,G)-fragment

- LTL Syntax
- One-step unfolding definition of LTL
- Construction of state space
- 3 Muller accepting condition
 - Method
 - Correctness of sound and complete
- 4 Rabin accepting condition
- 5 Complexity
- 6 Experiments and Conclusion
 - Experimental Results
 - Conclusion and Future Works

报告人:谢淼

Deterministic Automata for the (F.G)-fragment of LTL

报告人: 谢森 Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

(F,G)-fragment of LTL

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

LTL Syntax One-step unfolding definition of LTL Construction of state space

Construction of state space

- $\bullet\,$ Given a LTL $\varphi,$ output a deterministic automation
- clue: ℧()
 - $\operatorname{closure}(\varphi) = C(\varphi) := Ap \cup \{\neg a | a \in Ap\} \cup X\mathbb{T}.$
 - F and G is the set of all subformulae of the form Fφ and Gφ
 - $\mathbb{T} := \mathbb{F} \cup \mathbb{G}$
 - $X\Psi := \{X\psi|\psi \in \Psi\}$
- $states(\varphi)$ is the set of $2^{2^{|\varphi|}}$.

(F,G)-fragment of LTL 报告人: 谢淼 Outline Motivation

Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax

One-step unfolding definition of LTL

Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

LTL Syntax One-step unfolding definition of LTL Construction of state space

Construction of state space

A(φ) = (Q, i, δ) to be a deterministic finite automaton over Σ = 2^{Ap} given by

- the set of states $Q = \{i\} \cup (states(\varphi) \times 2^{Ap})$
- the initial state i
- the transition function
 - $\delta = \{(i, \alpha, < \mho(\varphi), \alpha >) | \alpha \in \Sigma\} \cup \{(<\psi, \alpha >, \beta, < succ(\psi, \alpha), \beta >) | < \psi, \alpha > \in Q, \beta \in \Sigma\}$
 - $succ(\psi, \alpha) = \mho(next(\psi[\alpha \mapsto tt, Ap \setminus \alpha \mapsto ff]))$
 - $\mathit{next}(\psi)$ removes X's from φ
- $states(\varphi)$ is the set of $2^{2^{|\varphi|}}$.
- Key point: store one-step history.

(F,G)-fragment of LTL 报告人:谢淼

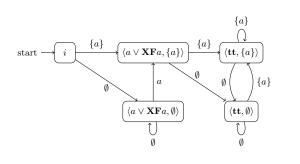
Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL

Construction of state space

Muller accepting condition


Method Correctness of sound and complete

Rabin accepting condition

LTL Syntax One-step unfolding definition of LTL Construction of state space

Construction of state space

Example $\varphi = Fa$

(F,G)-fragment of LTL 报告人:谢淼 Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space Muller accepting condition Method Correctness of sound

and complete Rabin accepting condition

Complexity

报告人: 谢淼 Deterministic Automata for the (F,G)-fragment of LTL

LTL Syntax One-step unfolding definition of LTL Construction of state space

Construction of state space

- Is one-step history very important?
- Example $\varphi = GF(a \wedge Fb)$
 - $\mho(\varphi) = XGF(a \land Fb) \land (XF(a \land Fb) \lor (a \land (b \lor XFb)))$
 - after reading a
 - $GF(a \wedge Fb) \wedge (F(a \wedge Fb) \vee Fb)$
 - after reading b and \emptyset
 - $GF(a \wedge Fb) \wedge (F(a \wedge Fb))$
 - infinitely required (GF(a ∧ Fb))
 - thus, $(\{a\}\{b\})^{\omega}$ and $(\{a\}\emptyset)^{\omega}$ are equal.
- Solution:
 - one-step history.

	Outline
))	Motivation
//	Related Works
	Deterministic
	Automaton for th
	(F,G)-fragment
	LTL Syntax
	One-step unfolding definition of LTL
	Construction of stat
	space
	Muller accepting condition
	Method
	Correctness of sound and complete
	Rabin accepting condition

Complexity

(F,G)-fragment of LTL 报告人:谢淼

Method Correctness of sound and complete

Outline

- Motivation
 - Related Works
- 2 Deterministic Automaton for the (F,G)-fragment
 - LTL Syntax
 - One-step unfolding definition of LTL
 - Construction of state space
- 3 Muller accepting condition
 - Method
 - Correctness of sound and complete
- 4 Rabin accepting condition
- 5 Complexity
- 6 Experiments and Conclusion
 - Experimental Results
 - Conclusion and Future Works

报告人:谢淼

报告人: 谢森 Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

(F,G)-fragment of LTL

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Outline

- Motivation
 - Related Works
- 2 Deterministic Automaton for the (F,G)-fragment
 - LTL Syntax
 - One-step unfolding definition of LTL
 - Construction of state space
- 3 Muller accepting condition
 - Method
 - Correctness of sound and complete
- 4 Rabin accepting condition
- 5 Complexity
- 6 Experiments and Conclusion
 - Experimental Results
 - Conclusion and Future Works

报告人:谢淼

Method Correctness of sound and complete

> (F,G)-fragment of LTL 报告人:谢淼 Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space Muller accepting condition Method Correctness of sound and complete Rabin accepting condition

> > Complexity

Deterministic Automata for the (F,G)-fragment of LTL

Method Correctness of sound and complete

• Muller Accepting Condition

• The set of all states visited infinitely often must be an element of the acceptance set

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL

Construction of state space

Muller accepting condition

Method

Correctness of sound and complete

Rabin accepting condition

Complexity

报告人: 谢淼 Deterministic Automata for the (F,G)-fragment of LTL

	Outline
	Motivation
Deterministic	Automaton for the (F,G)-fragment
	Muller accepting condition
	Rabin accepting condition
	Complexity
	Experiments and Conclusion

Method Correctness of sound and complete

Method

- Until now, we have a formula φ and its corresponding automaton $A(\varphi) = (Q, i, \delta)$
- Consider a formula χ as a Boolean Function over elements of C(φ).
- For sets *T*, *F* ⊆ *C*(φ), let [*T* → *tt*, *F* → *ff*] denote the formula where *tt* is substituted for elements of *T*, and *ff* for *F*.
- $I \models_{\alpha} \chi : \chi[\alpha \cup I \mapsto tt, Ap \setminus \alpha \mapsto ff]$ is equivalent to tt, where $I \subseteq \mathbb{T}$

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method

Correctness of sound and complete

Rabin accepting condition

Method Correctness of sound and complete

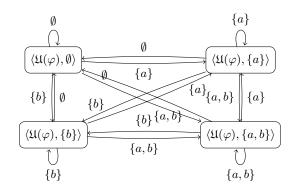
Method

Muller acceptance

A set M ⊆ Q is Muller accepting for a set I ⊆ T if the following is satisfied:

1 for each
$$(\chi, \alpha) \in M$$
, we have $XI \models_{\alpha} \chi$,

- **②** for each $F\psi \in I$ there is $(\chi, \alpha) \in M$ with $I \models_{\alpha} \psi$,
- Solution for each Gψ ∈ I and for each (χ, α) ∈ M we have I ⊨_α ψ.
- A set F ⊆ Q is Muller accepting (for φ) if it is Muller accepting for some I ⊆ T.


(F,G)-fragment of LTL 报告人:谢淼 Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space Muller accepting condition Method

Correctness of sound and complete

Rabin accepting condition

Method

Example $\varphi = F(Ga \lor Gb)$

Method Correctness of sound and complete

(F,G)-fragment of LTL
报告人:谢淼
Outline
Motivation
Related Works
Deterministic
Automaton for the (F,G)-fragment
LTL Syntax
One-step unfolding definition of LTL
Construction of state space
Muller accepting
condition
Method
Correctness of sound and complete

Rabin accepting condition

Complexity

报告人:谢淼 D

Deterministic Automata for the (F,G)-fragment of LTL

Method Correctness of sound and complete

Outline

- Motivation
 - Related Works
- 2 Deterministic Automaton for the (F,G)-fragment
 - LTL Syntax
 - One-step unfolding definition of LTL
 - Construction of state space
- 3 Muller accepting condition
 - Method
 - Correctness of sound and complete
- 4 Rabin accepting condition
- 5 Complexity
- 6 Experiments and Conclusion
 - Experimental Results
 - Conclusion and Future Works

报告人:谢淼

Deterministic Automata for the (F,G)-fragment of LTL

报告人: 谢森 Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

(F,G)-fragment of LTL

Muller accepting condition

Method

Correctness of sound and complete

Rabin accepting condition

Method Correctness of sound and complete

Correctness of sound and complete

Theorem

 Let φ be a formula and w a word. Then w is accepted by the deterministic automaton A(φ) with the Muller condition M(φ) if and only if w ⊨ φ. (F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method

Correctness of sound and complete

Rabin accepting condition

Method Correctness of sound and complete

Correctness of sound and complete

- Proposition Local finitary correctness
- Let w be a word and A(φ)(w) = i(χ₀, α₀)(χ₁, α₁)... the corresponding run. Then for all n ∈ N, we have w ⊨ φ if and only if w_n ⊨ χ_n
- Proof: The one-step unfold produces a temporally equivalent (w.r.t. LTL satisfaction) formula. The unfold is a Boolean function over atomic propositions and elements of XT. Therefore, this unfold is satisfied if and only if the next state satisfied next(φ) where φ is the result of partial application of the Boolean function to the currently read letter of the word. We conclude by induction. Comments: each occurrence of satisfaction of F must happen in limit time.

LTL 报告人:谢森 Outline

(F,G)-fragment of

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method

Correctness of sound and complete

Rabin accepting condition

Comnlevity

Method Correctness of sound and complete

Correctness of sound and complete

- Completeness
- If $w \models \varphi$ then $Inf(A(\varphi)(w))$ is a Muller accepting set.
- Proof:
 - Let us show that M := inf(A(φ)(w)) is a Muller accepting for

 $I := \{ \psi \in \mathbb{F} | w \models G\psi \} \cup \{ \psi \in \mathbb{G} | w \models F\psi \}$

2 Condition 1. Let (χ, β) ∈ M. Since w ⊨ φ by Proposition Local finitary correctness w_i ⊨ χ whenever we enter (χ, α) after reading wⁱ, which happens for infinitely many i ∈ N. Hence we have a recurring set I_{χ,α} modelling χ Since I_{χ,α} ⊨_α χ we get also I ⊨_α χ by I_{χ,α} ⊆ I. (F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method

Correctness of sound and complete

Rabin accepting condition

Method Correctness of sound and complete

Correctness of sound and complete

Condition 2. Let $\mathbf{F}\psi \in I$, then $w \models \mathbf{GF}\psi$. Since there are finitely many states, there is $(\chi, \alpha) \in M$ for which after infinitely many entrances by w^i it holds $w_i \models \psi$ by Proposition 9, hence we have a recurring set $I_{\chi,\alpha}$ modelling ψ and conclude as above.

Condition 3. Let $\mathbf{G}\psi \in I$, then $w \models \mathbf{F}\mathbf{G}\psi$. Hence for every $(\chi, \alpha) \in M$ infinitely many w^i leading to (χ, α) satisfy $w_i \models \psi$ by Proposition 9, hence we have a recurring set $I_{\chi,\alpha}$ modelling ψ and conclude as above. (F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method

Correctness of sound and complete

Rabin accepting condition

Method Correctness of sound and complete

Correctness of sound and complete

Lemma 11. Let ρ be a run. If $Inf(\rho)$ is Muller accepting for I then $Ap(\rho) \models \mathbf{G}\psi$ for each $\psi \in I \cap \mathbb{F}$ and $Ap(\rho) \models \mathbf{F}\psi$ for each $\psi \in I \cap \mathbb{G}$.

Proof. Denote $w = Ap(\rho)$. Let us first assume $\psi \in I \cap \mathbb{F}$ and $w_j \not\models \psi$ for all $j \geq i \in \mathbb{N}$. Since $\psi \in I \cap \mathbb{F}$, for infinitely many j, ρ passes through some $(\chi, \alpha) \in \operatorname{Inf}(\rho)$ for which $I \models_{\alpha} \psi$. Hence, there is $\psi_1 \in I$ which is a subformula of ψ such that for infinitely many $i, w_i \not\models \psi_1$. If $\psi_1 \in \mathbb{F}$, we proceed as above; similarly for $\psi_1 \in \mathbb{G}$. Since we always get a smaller subformula, at some point we obtain either $\psi_n = \mathbf{F}\beta$ or $\psi_n = \mathbf{G}\beta$ with β a Boolean combination over Apand we get a contradiction with the second or the third point of Definition 7, respectively.

In other words, if we have a Muller accepting set for I then all elements of I hold true in w_i for almost all i.

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method

Correctness of sound and complete

Rabin accepting condition

Method Correctness of sound and complete

Correctness of sound and complete

Proposition 12 (Soundness). If $Inf(\mathcal{A}(\varphi)(w))$ is a Muller accepting set then $w \models \varphi$.

Proof. Let $M := \text{Inf}(\mathcal{A}(\varphi)(w))$ be a Muller accepting set for some I. There is $i \in \mathbb{N}$ such that after reading w^i we come to (χ, α) and stay in $\text{Inf}(\mathcal{A}(\varphi)(w))$ from now on and, moreover, $w_i \models \psi$ for all $\psi \in I$ by Lemma 11. For a contradiction, let $w \not\models \varphi$. By Proposition 9 we thus get $w_i \not\models \chi$. By the first condition of Definition 7, we get $I \models_{\alpha} \chi$. Therefore, there is $\psi \in I$ such that $w_i \not\models \psi$, a contradiction.

(F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method

Correctness of sound and complete

Rabin accepting condition

Outline

- Related Works LTL Syntax Construction of state space Method Correctness of sound and complete Rabin accepting condition
 - **Experiments and Conclusion**
 - Experimental Results
 - Conclusion and Future Works

报告人:谢淼

(F,G)-fragment of LTL 报告人:谢淼 Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space Muller accepting condition Method Correctness of sound and complete Rabin accepting

Rabin accepting condition

Deterministic Automata for the (F,G)-fragment of LTL

Rabin accepting condition

Definition 14 (Generalized Rabin Automaton). A generalized Rabin automaton is a (deterministic) ω -automaton $\mathcal{A} = (Q, i, \delta)$ over some alphabet Σ , where Q is a set of states, i is the initial state, $\delta : Q \times \Sigma \to Q$ is a transition function, together with a generalized Rabin condition $\mathcal{GR} \in \mathcal{B}^+(2^Q \times 2^Q)$. A run ρ of \mathcal{A} is accepting if $Inf(\rho) \models \mathcal{GR}$, which is defined inductively as follows:

$$\begin{aligned} & \operatorname{Inf}(\rho) \models \varphi \land \psi & \iff \operatorname{Inf}(\rho) \models \varphi \text{ and } \operatorname{Inf}(\rho) \models \psi \\ & \operatorname{Inf}(\rho) \models \varphi \lor \psi & \iff \operatorname{Inf}(\rho) \models \varphi \text{ or } \operatorname{Inf}(\rho) \models \psi \\ & \operatorname{Inf}(\rho) \models (F, I) & \iff F \cap \operatorname{Inf}(\rho) = \emptyset \text{ and } I \cap \operatorname{Inf}(\rho) \neq \emptyset \end{aligned}$$

(F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Complexity

报告人: 谢淼 Deterministic Automata for the (F,G)-fragment of LTL

Rabin accepting condition

- How to use Rabin Condition by an example
- $\varphi = FGa \lor GFb$
- $\mho(\varphi) = XFGa \lor (XGa \land a) \lor (XGFb \land (XFb \lor b))$
- sub-element: Ga, FGa, GFb, Fb
- require: visit states with ¬a only finitely often, visit b infinitely often.
- Rabin condition: $(\{q|q \models \neg a, Q\} \lor (\emptyset, \{q|q \models b\}))$

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment

LTL Syntax One-step unfolding

^{space} Muller accepting

condition Method Correctness of sound and complete Rabin accepting condition

definition of LTL

Rabin accepting condition

Definition 15 (Generalized Rabin Acceptance). Let φ be a formula. The generalized Rabin condition $\mathcal{GR}(\varphi)$ is

$$\bigvee_{I\subseteq\mathbb{T}} \left(\left(\left\{ (\chi,\alpha) \mid I \not\models_{\alpha} \chi \land \bigwedge_{\mathbf{G}\psi \in I} \psi \right\}, Q \right) \land \bigwedge_{\mathbf{F}\omega \in I} \left(\emptyset, \left\{ (\chi,\alpha) \mid I \models_{\alpha} \omega \right\} \right) \right)$$

By the argumentation above, we get the equivalence of the Muller and the generalized Rabin conditions for φ and thus the following.

Proposition 16. Let φ be a formula and w a word. Then w is accepted by the deterministic automaton $\mathcal{A}(\varphi)$ with the generalized Rabin condition $\mathcal{GR}(\varphi)$ if and only if $w \models \varphi$.

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Complexity

报告人: 谢淼 Deterministic Automata for the (F,G)-fragment of LTL

Rabin accepting condition

- How to obtain a Rabin automaton from A(φ) and the generalized Rabin condition GR(φ)
- For a fixed *I*, the whole conjunction of Definition 15 corresponds to the intersection of automata with different Rabin conditions.

•
$$(G, Q) \land \bigwedge_{f \in F := I \subseteq \mathbb{F}} (\emptyset, F_f)$$

- "counting construction approach" that $Q' = Q \times (1, ..., n)$
- $(G \times F, F_{\overline{f}} \times {\overline{f}})'$ for an arbitrary fixed $\overline{f} \in F$

(F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Complexity

报告人: 谢淼 Deterministic Automata for the (F,G)-fragment of LTL

Rabin accepting condition

State Space

•
$$\varphi = (FGa \lor GFb) \land (FGc \lor GFd) \land (FGe \lor GFf)$$

- FG or GF proposition
- state space of A is $\{i\} \cup 2^{\{abcdef\}}$, the size is $1 + 2^6$
- $((\neg a, Q) \lor (\emptyset, b)) \land ((\neg c, Q) \lor (\emptyset, d)) \land ((\neg e, Q) \lor (\emptyset, f))$
- right of the pairs: $tt, b, d, f, b \land d, b \land f, d \land f, b \land d \land f$

•
$$2 * 2 * 2 * 3 = 24$$

• state space is of the size of $24 * 1 * (1 + 2^6) = 1560$

(F,G)-fragment of LTL 报告人:谢淼 Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space Muller accepting condition Method Correctness of sound and complete

Rabin accepting condition

Outline

(F,G)-fragment of Related Works Outline LTL Syntax Motivation Construction of state space Deterministic Automaton for the (F,G)-fragment Method Correctness of sound and complete Muller accepting condition Complexity Experimental Results Rabin accepting condition Conclusion and Future Works Complexity 报告人:谢淼 Deterministic Automata for the (F.G)-fragment of LTL

LTL

报告人:谢淼

Related Works

LTL Syntax

Method Correctness of sound and complete

One-step unfolding definition of LTL

Construction of state space

Outline
Motivation
Deterministic Automaton for the (F,G)-fragment
Muller accepting condition
Rabin accepting condition
Complexity
Experiments and Conclusion

Complexity

- Safra's complexity is $2^{n*\bigcirc (2_n)=2^{\bigcirc (2^n+logn)}}$
- Our Muller automaton size is $\bigcirc (2^{2^{|\mathbb{T}|}} * 2^{|Ap|}) = \bigcirc (2^{2^n+1}) \subseteq 2^{\bigcirc (2^n)}$
- the number of Rabin pairs is $\bigcirc(m) = \bigcirc(2^n)$

报告人:谢淼 Outline Motivation Related Works Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space Muller accepting condition Method Correctness of sound and complete

(F,G)-fragment of LTL

Rabin accepting condition

Complexity

报告人: 谢淼 Deterministic Automata for the (F,G)-fragment of LTL

Experimental Results Conclusion and Future Works

Outline

- Related Works LTL Syntax One-step unfolding definition of LTL Construction of state space Method Correctness of sound and complete
- 6 Experiments and Conclusion
 - Experimental Results
 - Conclusion and Future Works

报告人:谢淼

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Complexity

Deterministic Automata for the (F,G)-fragment of LTL

Experimental Results Conclusion and Future Works

Outline

- Related Works LTL Syntax Construction of state space Method Correctness of sound and complete 6 Experiments and Conclusion
 - Experimental Results
 - Conclusion and Future Works

(F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax

One-step unfolding definition of LTL

Construction of state space Muller accepting condition Method

Correctness of sound and complete

Rabin accepting condition

Experimental Results

- Aim: Compare the size of produced automaton by our method with the Rabin automaton produced by Itl2dstar.
- Method: Ltl2dstar firstly calls an external translator from LTL to non-deterministic *Büchi* automata by LTL2BA. Then it performs Safra's determinization.
- Ltl2dstar implements several optimizations of Safra's construction.
- our implementation does not perform any ad hoc optimization, since we want to evaluate whether the basic idea of the Safraless construction is already competitive.

Experimental Results Conclusion and Future Works

> (F,G)-fragment of LTL

> > 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Experimental Results Conclusion and Future Works

Experimental Results

- Database: BEEM (BEnchmarks for Explicit Model checkers)[Pel07] and formulae from [SB00] which tests Ltl2dstar.
- Record attributes:
 - **1** $|states(\varphi)|$, the number of the first component.
 - *Muller/GR*, the number of states of the Muller or generalized Rabin automata follows.
 - GR-factor, the complexity of generalized Rabin condition.
 - Q Rabin, the number of copies of the state space that are created to obtain an equivalent Rabin automaton
 - Itl2dstar, the size of the state space of the Rabin automaton generated by Itl2dstar using LTL2BA.

(F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Experimental Results Conclusion and Future Works

Experimental Results

 Table 1. Experimental comparison to ltl2dstar on formulae of [Pel07], [SB00], fairness constraints and some other examples of formulae of the "infinitary" fragment

Formula	states	Muller/GR	\mathcal{GR} -factor	Rabin	ltl2dstar
$\mathbf{G}(a \vee \mathbf{F}b)$	2	5	1	5	4
$\mathbf{FG}a \lor \mathbf{FG}b \lor \mathbf{GF}c$	1	9	1	9	36
$\mathbf{F}(a \lor b)$	2	4	1	4	2
$\mathbf{GF}(a \lor b)$	1	3	1	3	4
$\mathbf{G}(a \lor b \lor c)$	2	4	1	4	3
$\mathbf{G}(a \vee \mathbf{F}b)$	2	5	1	5	4
$\mathbf{G}(a \vee \mathbf{F}(b \vee c))$	2	5	1	5	4
$\mathbf{F}a \vee \mathbf{G}b$	3	7	1	7	5
$\mathbf{G}(a \vee \mathbf{F}(b \wedge c))$	2	5	1	5	4
$(\mathbf{FG}a \lor \mathbf{GF}b)$	1	5	1	5	12
$\mathbf{GF}(a \lor b) \land \mathbf{GF}(b \lor c)$	1	5	2	10	12

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Experimental Results Conclusion and Future Works

Experimental Results

$(\mathbf{FF}a \wedge \mathbf{G} \neg a) \vee (\mathbf{GG} \neg a \wedge \mathbf{F}a)$	2	4	1	4	1
$(\mathbf{GF}a) \wedge \mathbf{FG}b$	1	5	1	5	7
$(\mathbf{GF}a \wedge \mathbf{FG}b) \vee (\mathbf{FG} \neg a \wedge \neg b)$	1	5	1	5	14
$\mathbf{FG}a \wedge \mathbf{GF}a$	1	3	1	3	3
$G(Fa \wedge Fb)$	1	5	2	10	5
$\mathbf{F}a \wedge \mathbf{F}b$	4	8	1	8	4
$ (\mathbf{G}(b \lor \mathbf{GF}a) \land \mathbf{G}(c \lor \mathbf{GF} \neg a)) \lor \mathbf{G}b \lor \mathbf{G}c $	4	18	2	36	26
$ (\mathbf{G}(b \lor \mathbf{FG}a) \land \mathbf{G}(c \lor \mathbf{FG} \neg a)) \lor \mathbf{G}b \lor \mathbf{G}c $	4	18	1	18	29
$(\mathbf{F}(b \wedge \mathbf{FG}a) \vee \mathbf{F}(c \wedge \mathbf{FG} \neg a)) \wedge \mathbf{F}b \wedge \mathbf{F}c$	4	18	1	18	8
$(\mathbf{F}(b \wedge \mathbf{GF}a) \vee \mathbf{F}(c \wedge \mathbf{GF} \neg a)) \wedge \mathbf{F}b \wedge \mathbf{F}c$	4	18	1	18	45
$(\mathbf{FG}a \lor \mathbf{GF}b)$	1	5	1	5	12
$(\mathbf{FG}a \lor \mathbf{GF}b) \land (\mathbf{FG}c \lor \mathbf{GF}d)$	1	17	2	34	17527
$\bigwedge_{i=1}^{3} (\mathbf{GF}a_i \to \mathbf{GF}b_i)$	1	65	24	1560	1304706
$(\bigwedge_{i=1}^{5} \mathbf{GF}a_i) \to \mathbf{GF}b$	1	65	1	65	972
$\mathbf{GF}(\mathbf{F}a\mathbf{GF}b\mathbf{FG}(a \lor b))$	1	5	1	5	159
$\mathbf{FG}(\mathbf{F}a \lor \mathbf{GF}b \lor \mathbf{FG}(a \lor b))$	1	5	1	5	2918
$\mathbf{FG}(\mathbf{F}a \lor \mathbf{GF}b \lor \mathbf{FG}(a \lor b) \lor \mathbf{FG}b)$	1	5	1	5	4516

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Complexity

报告人: 谢淼 Deterministic Automata for the (F,G)-fragment of LTL

Experimental Results

• Advantage: for "infinitary" fragment, fairness constraints, Drawback: for "finitary" behavior.

- Reason: The problem is that some states such as
 < a ∨ XFa, {a} > are only "passed through" and are
 equivalent to some of their successors, here < tt, {a} >.
- Overcome: perform the following collapse:
- For two states, $(\chi, \alpha), (\chi', \alpha)$ satisfy that $\chi[\alpha \mapsto tt, Ap \setminus \alpha \mapsto ff]$ is propositionally equivalent to $\chi'[\alpha \mapsto tt, Ap \setminus \alpha \mapsto ff]$, collapse.
- result: the size as the one produced by ltl2dstar. $(Fa \wedge Fb)$

(F,G)-fragment of LTL 报告人: 谢淼

Outline

Motivation Related Works

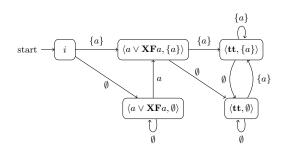
Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Complexity


Experimental Results

Conclusion and Future Works

Experimental Results Conclusion and Future Works

Experimental Results

Example $\varphi = Fa$

(F,G)-fragment of LTL 报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Complexity

报告人: 谢淼 Deterministic Automata for the (F,G)-fragment of LTL

Experimental Results Conclusion and Future Works

Outline

Related Works LTL Syntax Construction of state space Method Correctness of sound and complete Experiments and Conclusion 6 Experimental Results Conclusion and Future Works

报告人:谢淼

Deterministic Automata for the (F,G)-fragment of LTL

(F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax

One-step unfolding definition of LTL

Construction of state space Muller accepting condition Method

Correctness of sound

and complete

Complexity

Rabin accepting condition

Experimental Results Conclusion and Future Works

Conclusion and Future Works

- Conclusion
 - show a direct translation of the LTL fragment with operators F and G to deterministic automata.
 - First of all, in our opinion it is a lot simpler than the determinization and its various non-trivial optimizations.
 - the state space has a clear logical structure.
 - the state space is not much bigger even when compared to already optimized determinization. Very often it is considerably smaller, especially for the "infinitary" formulae; in particular, for fairness conditions.
 - given a very compact deterministic w-automaton with a small and in our opinion reasonably simple generalized Rabin acceptance condition.

(F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Experimental Results Conclusion and Future Works

Conclusion and Future Works

Future works

- Extend to the (X,F,G)-fragment and even to the whole LTL.(may have a n-step look-ahead, for instance, GF(a ∧ Xb))
- On the state of the state of

报告人:谢淼

(F,G)-fragment of LTL

报告人:谢淼

Outline

Motivation Related Works

Deterministic Automaton for the (F,G)-fragment LTL Syntax One-step unfolding definition of LTL Construction of state space

Muller accepting condition

Method Correctness of sound and complete

Rabin accepting condition

Deterministic Automata for the (F,G)-fragment of LTL