
Regular path queries on graphs with data:
A rigid approach

Zhilin Wu
Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences
wuzl@ios.ac.cn

ABSTRACT
Regular path queries (RPQ) is a classical navigational query
formalism for graph databases to specify constraints on la-
beled paths. Recently, RPQs have been extended by Libkin
and Vrgoč to incorporate data value comparisons among dif-
ferent nodes on paths, called regular path queries with data
(RDPQ). It has been shown that the evaluation problem of
RDPQs is PSPACE-complete and NLOGSPACE-complete
in data complexity. On the other hand, the containment prob-
lem of RDPQs is in general undecidable. In this paper, we
propose a novel approach to extend regular path queries with
data value comparisons, called rigid regular path queries with
data (RRDPQ). The main ingredient of this approach is an
automata model called nondeterministic rigid register au-
tomata (NRRA), in which the data value comparisons are
rigid, in the sense that if the data value in the current position
x is compared to a data value in some other position y, then
by only using the labels (but not data values), the position y
can be uniquely determined from x. We show that NRRAs
are robust in the sense that nondeterministic, deterministic
and two-way variant of NRRAs, as well as an extension of
regular expressions, are all of the same expressivity. We then
argue that the expressive power of RDPQs are reasonable by
demonstrating that for every graph database, there is a lo-
calized transformation of the graph database so that every
RDPQ in the original graph database can be turned into an
equivalent RRDPQ over the transformed one. Finally, we in-
vestigate the computational properties of RRDPQs and con-
junctive RRDPQs (CRRDPQ). In particular, we show that
the containment of CRRDPQs (and RRDPQs) can be de-
cided in 2EXPSPACE.

1. INTRODUCTION
Graph data management is a classical research field

in database community and has achieved a recent resur-
gence, with the momentums from new application do-
mains, such as online social networks, bioinformatics,
and semantic web. Various query languages have been
proposed for graph databases (see [2, 21, 3] for sur-
veys). Among them, regular path queries (RPQ) are
basic query formalisms to specify path constraints in
graph databases.

Graph databases are usually modelled as edge-labeled
graphs. A RPQ looks for a pair of nodes connected by
a path whose sequence of labels belongs to a regular
language ([9]). For the convenience of specifications,
RPQs can be extended in a natural way, called RPQs
with inverse word symbols (2RPQ), to allow traversing
edges in both directions. Since the availability of inverse
symbols much eases the specifications, we will focus on
path queries with inverse symbols through this paper.

Extensions of RPQs to specify the relationships among
multiple paths have been investigated intensively, e.g.
conjunctive RPQs (CRPQ) which specify the existence
of several paths on the whole ([12, 8, 11]), nested regular
expressions where multiple RPQs are organized into a
tree structure ([19, 6]), extended CRPQs where regular
or rational relations over paths are allowed ([5, 4]).

RPQs have also been extended in another way, called
regular data path queries (RDPQ), to incorporate data
value comparisons between two nodes in a path ([18]).
RDPQs are interpreted over data graphs, which ex-
tend graph databases by assigning a data value to every
node. A RDPQ looks for a pair of nodes connected by
a path whose sequence of data values and labels is ac-
cepted by a nondeterministic register automata (NRA).
NRA is an extension of finite state automata, where a
fixed number of registers are used to store the data val-
ues. Similarly to 2RPQs and CRPQs, RDPQs with in-
verse (2RDPQ), conjunctive RDPQs (CRDPQ), or con-
junctive 2RDPQs (C2RDPQ), can also be defined.

Evaluation and containment are two basic problems
for database query languages. These two problems have
been investigated extensively for RPQs and 2RPQs,
CRPQs and C2RPQs (see [3] for a survey). For RD-
PQs, the evaluation problem is PSPACE-complete, and
NLOGSPACE-complete in data complexity. On the
other hand, the containment problem of RDPQs is un-
decidable, as a result of the undecidability of the inclu-
sion problem of NRAs ([18]). Since the containment and
equivalence problem are essential for the optimization
of queries, this undecidability result of RDPQs seems
to undermine the validity of RDPQs as a fundamental
formalism of path queries that combines the labelling

1

and data constraints.
Our goal in this paper is to propose an alternative ex-

tension of 2RPQs with data value comparisons, called
rigid regular data path queries with inverse (2RRDPQ),
which, we believe, achieves a good balance between the
expressive power and the computational properties (de-
cidability and complexity).

2RRDPQs are based on an automaton model also
proposed in this paper, called nondeterministic rigid
register automata (NRRA), where the data value com-
parisons are “rigid” in the sense that if the data value
in the current position x is compared to a data value
in some other position y, then by only using the labels
(but not data values), the position y can be uniquely
determined from x. With the rigidity constraint, we
are able to show that NRRAs enjoy nice properties as
finite state automata, that is, NRRAs can be deter-
minized, they are closed under all Boolean operations,
the two-way variant of NRRAs is expressively equiv-
alent to (one-way) NRRAs, and they are expressively
equivalent with a natural extension of regular expres-
sions. In addition, while the expressive power of NR-
RAs and NRAs are incomparable, we demonstrate that
the expressive power of NRRAs can be captured by an
extension of NRAs with nondeterministic guessing.

To justify the expressibility of 2RRDPQs, we show
that although the expressive power of 2RRDPQs and
2RDPQs are incomparable, every 2RDPQ can in fact
be turned into a 2RRDPQ if a localized transformation
is applied to graph databases. By “localized transfor-
mation”, we mean that the transformation is obtained
by adding for each node v a new node nv which is only
connected to v and the global topology of the original
graph is preserved (see Section 4).

We then investigate the computational properties of
2RRDPQs. We show that 2RRDPQs can be evalu-
ated over data graphs with the same (data and com-
bined) complexity as RDPQs. In addition, we consider
conjunctive 2RRDPQs (C2RRDPQ) and show that the
containment problem of C2RRDPQs can be decided in
2EXPSPACE. From this, we deduce that the contain-
ment problem of 2RRDPQs can be decided in 2EX-
PSPACE as well. The 2EXPSPACE result is proved by
a nontrivial extension of the proof for the EXPSPACE-
completeness result of C2RPQs in [8], and is the most
technical part of this paper.

Related work. The idea of rigidity is inspired by event
clock automata from the verification community ([1]),
where for every event a, a clock xa is used to record the
time that has been elapsed from the last occurrence of a,
and a clock ya is used to predict the time that will elapse
until the next occurrence of a. Although in spirit sim-
ilarly to event clock automata, NRRAs are defined to
allow much more complicated data value comparisons.
For instance, in NRRAs, the current data value can be

compared to the data value in the position correspond-
ing to the last occurrence of the word symbol a before
the next occurrence of the symbol b. This capability
of data value comparisons is essential for the proof of
the 2EXPSPACE result of the containment problem of
C2RRDPQs (see Section 5). NRAs were introduced in
[13]. A restriction of NRAs, window memory automata,
has been proposed in [7], where only local data value
comparisons are allowed. NRRAs strictly extend win-
dow memory automata, since non-local data value com-
parisons are allowed. Various query formalisms have
been proposed for data graphs to combine the topology
and data constraints, e.g. XPath with data comparisons
[15], TriAL for RDF [16]. Although the containment
problem of data path queries is in general undecidable,
it has been examined in detail for various fragments
with positive data value comparisons ([15]).

Organization of this paper. Definitions are given in the
next section. NRRAs and their variants are presented
in Section 3. 2RRDPQs are investigated in Section 4.
Section 5 deals with the C2RRDPQs.

2. DEFINITIONS
For a natural number k such that k > 0, let [k] denote

{1, . . . , k} and [−k] denote {−k, . . . ,−1}.
Fix a finite alphabet Σ and an infinite set of data

values D. Let Σ± = Σ ∪ {a− ∣ a ∈ Σ}. For a ∈ Σ±, we use
a− to denote the inverse of a. In particular, (a−)− = a
for a ∈ Σ.

A word w over the alphabet Σ is a finite sequence of
elements from Σ. For a word w, ∣w∣ is used to denote
the length of w.

A data path α over Σ is a sequence d0a1d1 . . . andn,
where d0, . . . , dn ∈ D, and a1, . . . , an ∈ Σ. The data
path of the minimum length is a single data value d.
Given two data paths α1 = d0a1d1 . . . andn and α2 =
dnan+1dn+1 . . . amdm, the concatenation of α1 and α2,
denoted by α1 ⋅α2, is defined as the following data path,
d0a1d1 . . . andnan+1dn+1 . . . amdm. Note that α1 ⋅ α2 is
defined only if the last data value of α1 is the same
as the first data value of α2. The definition naturally
extends to the concatenation of multiple data paths.

A language over Σ is a set of words over Σ and a data
language over Σ is a set of data paths over Σ.

Let Σ and Γ be two finite alphabets. Then a letter
projection prj from Σ to Γ is a surjective function from
Σ to Γ. The letter projections of words, data paths,
languages and data languages can be defined in a nat-
ural way. For a letter projection prj ∶ Σ → Γ and γ ∈ Γ,
we use prj−1(γ) to denote the set {a ∈ Σ ∣ prj(a) = γ}.
Note that (prj−1(γ))γ∈Γ forms a partition of Σ. In ad-
dition, for B ⊆ Γ, let prj−1(B) = ⋃

γ∈B
prj−1(γ).

A graph database G is an edge-labeled graph (V,E),
where V is the set of nodes and E ⊆ V ×Σ × V . For e =
(v, a, v′) ∈ E, let λ(e) denote the label a. A semipath π

2

in G is a sequence v0a1v1 . . . vn−1anvn such that for every
i ∶ 1 ≤ i ≤ n, either (vi−1, ai, vi) ∈ E or (vi, a−i , vi−1) ∈ E.
A path π in G is a semipath v0a1v1 . . . vn−1anvn such
that for every i ∶ 1 ≤ i ≤ n, (vi−1, ai, vi) ∈ E. Let λ(π)
denote the sequence of labels on a semipath π, that
is, a1 . . . an. A semipath π is simple if no nodes are
repeated on π.

A regular path query (RPQ) over Σ is a tuple ξ =
(x,L, y), where L is a regular language over the alpha-
bet Σ. The regular language L can be given by a finite
state automaton or a regular expression. Given a graph
database G = (V,E), the evaluation result of ξ over G,
denoted by ξ(G), consists of the set of pairs (v, v′) such
that there is a path π from v to v′ such that λ(π) ∈ L.

A regular path query with inverse (2RPQ) over Σ is
a tuple ξ = (x,L, y), where L is a regular language over
the alphabet Σ±. The semantics of 2RPQs are defined
similarly to RPQs, with paths replaced by semipaths.

The evaluation problem for a RPQ or 2RPQ is de-
fined as follows: Given a RPQ or 2RPQ ξ, a graph
database G = (V,E, η), a node pair (v, v′) in G , decide
whether (v, v′) ∈ ξ(G).

The containment problem of a RPQ or 2RPQ is de-
fined as follows: Let ξ1, ξ2 be two RPQs or 2RPQs.
Then ξ1 is contained in ξ2, denoted by ξ1 ⊆ ξ2, if for
every graph database G , ξ1(G) ⊆ ξ2(G).

A conjunctive regular path query (CRPQ) ξ over Σ is
an expression of the form Ans(z̄)← ⋀

1≤i≤l
(y2i−1, Li, y2i),

where for every i, (y2i−1, Li, y2i) is a RPQ over Σ, and
z̄ is a tuple of variables from {y1, . . . , y2l} (z̄ are called
the distinguished variables of ξ). Note that in the above
definition, yi and yj (i ≠ j) may be the same variable.

Given a graph database G = (V,E), a CRPQ ξ ∶=
Ans(z̄) ← ⋀

1≤i≤l
(y2i−1, Li, y2i), and ν ∶ {y1, . . . , y2l} → V ,

we say (G , ν) ⊧ ξ, if (ν(y2i−1), ν(y2i)) belongs to the
evaluation result of (y2i−1, Li, y2i) over G for every i ∶
1 ≤ i ≤ l. The evaluation result of ξ over G , denoted by
ξ(G), is the set of all tuples ν(z̄) for ν ∶ {y1, . . . , y2l} →
V such that (G , ν) ⊧ ξ. Similarly, C2RPQs can be
defined, with RPQs replaced by 2RPQs.

The evaluation and containment problem of CRPQs
or C2RPQs can be defined similarly to RPQs.

A data graph G is a tuple (V,E, η), where (V,E) is a
graph database and η ∶ V → D assigns each node a data
value. For a semipath π = v0a1v1 . . . vn−1anvn in (V,E),
the data path corresponding to π, denoted by η(π), is
η(v0)a1η(v1) . . . η(vn−1)anη(vn).

Let k be a natural number. A k-register data con-
straint is defined by the following rules:

c ∶= ri ∼ rj ∣ ri ≁ rj ∣ c ∨ c ∣ c ∧ c,

where 0 ≤ i, j ≤ k, i ≠ j, and r0 is a special register
reserved for the current data value. Let Ck denote the
set of data constraints.

Let c be a data constraint, θ ∈ (D ∪ {�})[k] be the
current state of registers (where θ(i) = � denotes the
fact that no data value is stored into the register ri),
and d be a data value, then the semantics of c is defined
over (θ, d) as follows: If c = ri ∼ rj , then (θ, d) ⊧ c iff
θ[0 ← d](i) ≠ �, θ[0 ← d](j) ≠ �, and θ[0 ← d](i) =
θ[0 ← d](j), where θ[0 ← d] is the function extending
θ by assigning d to 0. The semantics of c = ri ≁ rj
can be defined similarly. In addition, the semantics of
c = c1 ∨ c2 and c = c1 ∧ c2 are defined in a natural way.

Let k be a natural number. A nondeterministic k-
register data path automaton (NRA, [18]) A over Σ± is
a tuple (Q,k, δ, I, F), where Q = Qw ∪Qd such that Qw
and Qd are two finite disjoint sets of word states and
data states, k is the number of registers, I ⊆ Qd is the
set of initial states, F ⊆ Qw is the set of final states,
δ = δw ∪ δd such that δw ⊆ Qw × Σ± × Qd is the word
transition relation and δd ⊆ Qd × Ck × Qw × 2[k] is the
data transition relation.

The intuition of the definition of NRAs is that since
data paths alternate between data values and word sym-
bols, when A is in a data (resp. word) state, it is ready
to read a data value (resp. a word symbol). Since data
paths begin and end with data values, an initial state
should be a state before reading a data value, so I is
defined as a subset of Qd, dually, a final state should be
a state after reading a data value, so F is defined as a
subset of Qw.

Given a data path α = d0a1d1 . . . andn and a NRA
A = (Q,k, δ, I, F), a configuration of A on α is a tuple
(q, j, θ), where q ∈ Q, j is the current position (where
j = 0 means the first position) of the symbol that A
reads, and θ ∈ (D∪{�})[k] is the current state of the reg-
isters. An initial configuration of A over α is (q,0, θ�),
where q ∈ I, and θ�(i) = � for every i ∈ [k]. Let
(q, j, θ), (q′, j + 1, θ′) be two configurations (where 0 ≤
j ≤ 2n). Then (q′, j + 1, θ′) is said to be a successor of
(q, j, θ), denoted by (q, j, θ) ⊢α (q′, j + 1, θ′), if one of
the following conditions holds.

● If the j-th symbol of α is a word symbol a, then
(q, a, q′) ∈ δw, θ′ = θ.

● If the j-th symbol of α is a data value d, then
there are c ∈ Ck,X ⊆ [k] such that (q, c, q′,X) ∈ δd,
(θ, d) ⊧ c, and θ′ is obtained from θ by assigning d
to every i ∈X.

A data path α = d0a1d1 . . . andn is accepted by a NRA
A if there are q ∈ I, q′ ∈ F and a data assignment θ such
that (q,0, θ�) ⊢∗α (q′,2n+1, θ), where ⊢∗α is the reflexive
and transitive closure of ⊢α. The set of data paths
accepted by A is denoted by L (A). In addition, for
every θ, θ′ ∈ (D ∪ {�})[k], we use L (A, θ, θ′) to denote
the set of data paths α = d0a1d1 . . . andn such that there
are q ∈ I, q′ ∈ F satisfying (q,0, θ) ⊢∗α (q′,2n + 1, θ′).

Let k be a natural number. Regular expressions with

3

k-memory (REM, [18]) over Σ± are defined by the fol-
lowing rules:

e ∶= ε ∣ ∅ ∣ a ∣ e ⋅ e ∣ e ∪ e ∣ e+ ∣ ↓X e ∣ e[c],

where a ∈ Σ±, c ∈ Ck, and X ⊆ [k].
The semantics of REMs is defined by a relation θ ⊢e,α

θ′, where e is a REM, α is a data path, θ, θ′ ∈ (D ∪
{�})[k]. In the following, due to space constraints, we
only present the semantics for the last two rules above,
that is, e =↓X e1 and e = e1[c], the semantics of the
other rules are obvious and can be found in [18].

● If e =↓X e1, then θ ⊢e,α θ′ if θX=d ⊢e1,α θ′, where
d is the first data value of α, and θX=d is obtained
from θ by assigning d to all the registers in X.

● If e = e1[c], then θ ⊢e,α θ′ if θ ⊢e1,α θ′ and (θ′, d) ⊧
c, where d is the last data value of α.

A data path α is accepted by a REM e if there exists
θ ∈ (D ∪ {�})[k] such that θ� ⊢e,α θ. The set of data
paths accepted by a REM e is denoted by L (e). For
every θ, θ′ ∈ (D ∪ {�})[k], we use L (e, θ, θ′) to denote
the set of data paths α such that θ ⊢e,α θ′.
Theorem 1 ([10, 18, 17]). The following facts hold

for NRAs and REMs.

● NRAs and REMs are expressively equivalent.

● The nonemptiness problem of NRAs and REMs is
PSPACE-complete.

● The universality and equivalence problem of NRAs
and REMs are undecidable.

A regular path query with data(RDPQ) ξ over Σ is a
tuple (x,L, y), where L is a language of data paths de-
fined by a NRA or a REM over the alphabet Σ. Given
a data graph G = (V,E, η), the evaluation result of ξ
over G , denoted by ξ(G), is the set of node pairs (v, v′)
in G such that there is a path π from v to v′ such that
η(π), the data path corresponding to π, belongs to L.

A regular path query with inverse and data (2RDPQ)
ξ over Σ is a tuple (x,L, y), where L is a language of
data paths defined by a NRA or a REM over Σ±. The
semantics of 2RDPQ ξ over a data graph G = (V,E, η) is
defined similarly to that of RDPQ, with paths replaced
by semipaths.

Similarly to 2RPQs, regular path queries with inverse
and data (2RDPQ) can be defined. Moreover, CRD-
PQs and C2RDPQs can be defined in the same way as
CRPQs and C2RPQs. The evaluation and containment
problem of RDPQs, 2RDPQs, CRDPQs, C2RDPQs can
also be defined similarly.

Theorem 2 ([18]). The following results hold for
RDPQs, 2RDPQs, CRDPQs and C2RDPQs.

● The evaluation problem of RDPQs and 2RDPQs is
PSPACE-complete, and NLOGSPACE-complete in
data complexity.

● The evaluation problem of CRDPQs and C2RDPQs
is PSPACE-complete, and NLOGSPACE-complete
in data complexity.

● The containment problem of RDPQs, 2RDPQs,
CRDPQs and C2RDPQs is undecidable.

3. RIGID REGISTER AUTOMATA AND ITS
RELATIVES

In this section, we first define nondeterministic rigid
register automata (NRRA). Then we show the robust-
ness of this model by proving that NRRA can be deter-
minized and their two-way as well as alternating vari-
ants are expressively equivalent to NRRA. We also show
that there is a natural extension of regular expressions
equivalent to NRRA.

3.1 Rigid data constraints
A position term t over the alphabet Σ± is defined by

the following rules,

t ∶= cur ∣ suc(t) ∣ pred(t) ∣ sucA(t) ∣ predA(t),

where A is a nonempty subset of Σ±. Intuitively, the
constant “cur” denotes the position of the current data
value, “suc” and “pred” denote the position of the next
and the previous data value, ‘sucA” denotes the position
of the data value immediately after the next occurrence
of a word symbol from A, dually, “predA” denotes the
position of the data value immediately before the previ-
ous occurrence of a word symbol from A.

Let Tp[Σ±] denote the set of position terms over Σ±.
For briefness, position terms of the form suc{a}(t)

or pred{a}(t) (where a ∈ Σ±) are written as suca(t) or

preda(t). In addition, we use suci to denote the repe-
titions of suc for i times. Similarly, we use the abbrevi-
ations predi, suciA, and prediA.

The set of subterms of t ∈ Tp[Σ±], denoted by sub(t),
are defined in a natural way, e.g. sub(sucA(t1)) =
{sucA(t1)} ∪ sub(t1). We use t′ ⪯ t to denote the fact
that t′ ∈ sub(t), and t′ ≺ t to denote the fact that t′ ⪯ t
and t ≠ t′. Suppose t, t′, t1 ∈ Tp[Σ±] and t′ ⪯ t, let t[t′/t1]
denote the position term obtained from t by replacing
t′ with t1.

The semantics of position terms are defined as fol-
lows: Give a data path α = d0a1d1 . . . andn and a posi-
tion 2i (where 0 ≤ i ≤ n, 2i is the position for the data
value di, and the first position is indexed by 0), the po-
sition represented by t over α and 2i, denoted by tα[2i],
is defined as follows.

● curα[2i] = 2i.

● If i < n, then (suc(cur))α[2i] = 2(i+1). Otherwise,
(suc(cur))α[2i] = �.

● If i > 0, then (pred(cur))α[2i] = 2(i − 1). Other-
wise, (pred(cur))α[2i] = �.

4

● If (t1)α[2i] ≠ �, then

(suc(t1))α[2i] = (suc(cur))α[(t1)α[2i]].

Otherwise, (suc(t1))α[2i] = �.

● If (t1)α[2i] ≠ �, then

(pred(t1))α[2i] = (pred(cur))α[(t1)α[2i]].

Otherwise, pred(t1))α[2i] = �,

● If there exists j ∶ i < j ≤ n such that aj ∈ A and
j is the minimum number satisfying this condi-
tion, that is, for every j′ ∶ i < j′ < j, we have
aj′ ∉ A, then (sucA(cur))α[2i] = 2j. Otherwise,
(sucA(cur))α[2i] = �.

● If there exists j ∶ j ≤ i such that aj ∈ A and j
is the maximum number satisfying this condition,
that is, for every j′ ∶ j < j′ ≤ i, we have aj′ ∉
A, then (predA(cur))α[2i] = 2(j − 1). Otherwise,
(predA(cur))α[2i] = �.

● If (t1)α[2i] ≠ �, then

(sucA(t1))α[2i] = (sucA(cur))α[(t1)α[2i]].

Otherwise, (sucA(t1))α[2i] = �.

● If (t1)α[2i] ≠ �, then

(predA(t1))α[2i] = (predA(cur))α[(t1)α[2i]].

Otherwise, (predA(t1))α[2i] = �.

Example 1. Suppose

α = d0 a d1 b d2 a d3 a d4 b d5

0 1 2 3 4 5 6 7 8 9 10
,

where the second arrow is the sequence of positions. Let
t1 = suca(suc(cur)) and t2 = predb(pred(cur)). Let us
consider (t1)α[0] and (t2)α[10]. At first, (t1)α[0] =
(suca(cur))α[(suc(cur))α[0]]. Since (suc(cur))α[0] =
2, and the first occurrence of a after the position 2 is in
the position 5, we get (t1)α[0] = 6. On the other hand,
(t2)α[10] = (predb(cur))α[(pred(cur))α[10]]. Because
(pred(cur))α[10] = 8 and the last occurrence of b before
the position 8 is in the position 3, we get (t2)α[10] = 2.

A rigid data constraint c over Σ± is defined by the
following rules,

c ∶= t1 ∼ t2 ∣ t1 ≁ t2 ∣ c ∨ c ∣ c ∧ c, where t1, t2 ∈ Tp[Σ±].

We use Crgd[Σ±] to denote the set of rigid data con-
straints over Σ±.

The semantics of rigid data constraints can be de-
fined inductively. In the following, we will define the
semantics for the case c = t1 ∼ t2. The semantics of
c = t1 ≁ t2 can be defined similarly. Moreover, the se-
mantics of c = c1 ∨ c2 and c = c1 ∧ c2 can be defined in
a standard way. Let c ∈ Crgd[Σ±], α = d0a1d1 . . . andn,
and i ∶ 0 ≤ i ≤ n, then (α,2i) is said to satisfy c = t1 ∼ t2,

denoted by (α,2i) ⊧ c, if (t1)α[2i] ≠ �, (t2)α[2i] ≠ �,
and d(t1)α[2i] = d(t2)α[2i].

Given a rigid data constraint c, we use c̄ to denote
the negation of c. More specifically, c̄ is obtained from
c by swapping ∼ for ≁, and ∨ for ∧. For instance, if
c = cur ∼ suca(cur) ∨ cur ≁ pred(cur), then c = cur ≁
suca(cur) ∧ cur ∼ pred(cur).

Proposition 1. The satisfiability problem of rigid
data constraints is NP-complete.

3.2 Nondeterministic and deterministic rigid
register automata

A nondeterministic rigid register automaton (NRRA)
A over the alphabet Σ± is a tuple (Q, δ, I,F), where
Q, I,F are as those in NRA, δ = δw ∪ δd such that δw ⊆
Qw ×Σ± ×Qd and δd ⊆ Qd × Crgd[Σ±] ×Qw.

A run of A over a data path α = d0a1d1 . . . andn is
a state sequence q0c0q1a1q2 . . . q2n−1anq2ncnq2n+1 such
that q0 ∈ I, for every i ∶ 0 ≤ i ≤ n, (q2i, ci, q2i+1) ∈ δd and
(α,2i) ⊧ ci, and for every i ∶ 1 ≤ i ≤ n, (q2i−1, ai, q2i) ∈
δw. A run ρ = q0c0q1a1q2 . . . q2n−1anq2ncnq2n+1 is ac-
cepting if q2n+1 ∈ F .

A deterministic rigid register automaton (DRRA) over
Σ± is a NRRA A = (Q, δ, I,F) such that I is a single-
ton, and δ satisfies that for every q ∈ Qw, a ∈ Σ±, there
is at most one q′ ∈ Qd such that (q, a, q′) ∈ δw, and for
every (q, c1, q1), (q, c2, q2) ∈ δd, if q1 ≠ q2, then c1 ∧ c2 is
unsatisfiable.

Let A be a NRRA. Then TA is used to denote the
minimal set of position terms satisfying that for every
t1 ∼ t2 or t1 ≁ t2 occurring in A, we have t1, t2 ∈ TA;
moreover, if t ∈ TA and t′ ⪯ t, then t′, t[t′/cur] ∈ TA.
In addition, CA is used to denote the set of rigid data
constraints occurring in A.

Example 2. Let Σ = {a, b}. Let L denote the lan-
guage of data paths satisfying that the sequence of word
symbols on the data path belongs to ab∗a, the first data
value occurs in some other position, and the last data
value does not occur elsewhere. Then L is defined by the
NRRA A illustrated in Figure 1, where suca is an ab-
breviation of suca(cur), Qd = {q0, q2, q4, q6} and Qw =
{q1, q3, q5, q7, q9, q11}.

Since NRRAs are able to compare the current data
value with the data values in the future, NRAs and
NRRAs are expressively incomparable.

Proposition 2. NRA and NRRA are expressively
incomparable.

Let A = (Q, δ, I,F) be a NRRA over the alphabet
Σ± and prj a letter projection from Σ± to Γ. Then the
letter projection of A, denoted by prj(A), is obtained
from A by replacing each transition (q, a, q′) ∈ δw with
(q, prj(a), q′), and each sucA (resp. predA) occurring
in δd, where A ⊆ Σ±, with sucprj(A) (resp. predprj(A)).
Note that prj(A) may not define prj(L (A)), as wit-
nessed by the following result.

5

q0 q1 q3

q11

cur 6∼ suc2a
q2

a

cur 6∼ suca

b

q5

cur 6∼ suca ∧ cur ∼ preda

q4b

q6
a true

q7

cur 6∼ suca

b

q9

cur 6∼ suca

Figure 1: An example for NRRA

Proposition 3. The class of languages definable by
NRRAs are not closed under letter projections.

In the following, we will introduce a constraint for a
pair (A, prj), where A is a NRRA and prj is a letter
projection, so that prj(A) does define prj(L (A)).

Let A = (Q, δ, I,F) be a NRRA over Σ±, prj be
a letter projection from Σ± to Γ. Then A is said to
be position-invariant under prj if for every sucA (resp.
predA) occurring in δd, where A ⊆ Σ±, there is B ⊆ Γ
such that A = prj−1(B). It is easy to observe that the
position-invariance guarantees that for every t ∈ TA, ev-
ery data path α and every position 2i of α, it holds
tα[2i] = (prj(t))prj(α)[2i], where prj(t) is obtained
from t by replacing each occurrence of sucA (resp. predA)
in t with sucprj(A) (resp. predprj(A)). From this, we
deduce that if A is position invariant under prj, then
prj does not affect the interpretations of the rigid data
constraints in A. So we have the following result.

Proposition 4. Suppose A is a NRRA over Σ± and
prj is a letter projection from Σ± to Γ. If A is position-
invariant under prj, then L (prj(A)) = prj(L (A)).

For a NRA, in every position, only a bounded number
of data values occurring before this position are stored
into the registers for the future references. On the other
hand, in the first sight, in a NRRA, it is only required
that a bounded number of positions are referenced to
by a data transition in a single position, but it is not
required that only a bounded number of positions are
referenced to by all the data transitions after a posi-
tion. In the following, we show that this is indeed the
case. By utilizing this property, we then show that NR-
RAs can be simulated by an extension of NRAs with
nondeterministic guessing1.

Let A = (Q, δ, I,F) be a NRRA over the alphabet
Σ±, α = d0a1d1 . . . andn be a data path over Σ±, ρ =
q0c0q1a1q2 . . . q2n−1anq2ncnq2n+1 be a run of A over α,
and i ∶ 0 ≤ i ≤ n. Define the set of future positions
of the position 2i of α with respect to ρ, denoted by
Posfρ[α,2i], as

{tα[2j] ∣ j ≤ i, t occurs in cj , tα[2j] ≠ �, tα[2j] > 2i}.
1The idea of nondeterministic guessing, called nondetermin-
istic reassignment, was introduced in [14].

Similarly, define the set of past positions of the position
2i of α with respect to ρ, denoted by Pospρ[α,2i], as

{tα[2j] ∣ i ≤ j, t occurs in cj , tα[2j] ≠ �, tα[2j] < 2i}.

Lemma 1. Let A = (Q, δ, I,F) be a NRRA over the
alphabet Σ± and α = d0a1d1 . . . andn be a data path.
Then for every run ρ of A over α and every i ∶ 0 ≤ i ≤ n,
Posfρ[α,2i] ∪ Pospρ[α,2i] ⊆ {tα[2i] ∣ t ∈ TA}.

Intuitively, Lemma 1 says that for every run ρ over a
data path α and every position 2i of α, only a bounded
number of positions before (resp. after) the position 2i
are referred to by ρ after (resp. before) reaching the
position 2i.

A nondeterministic register data path automaton with
guessing (NRAG) A over Σ± is a tuple (Q,k, δ, I, F),
where Q,k, I,F are as those in the definition of NRA,
δ ⊆ δw ∪ δd such that δw ⊆ Qw × Σ± × Qd and δd ⊆
Qd × Ck × Qw × 2[k] × 2[k] × C2k satisfies that for every
(q, c, q′,X,Y, c′) ∈ δd, it holds that X ∩ Y = ∅, and c′

does not contain rk+i with ri ∉ Y .
The intuition of a transition (q, c, q′,X,Y, c′) ∈ δ is

that if the current state is q, the data values stored
in the registers together with the current data value d
satisfies c, then the state is changed to q′, d is stored into
every register in X. Meanwhile, for each register in Y , a
data value is nondeterministically guessed. In addition,
the guessed data values should satisfy the constraint c′.

The semantics of NRAGs are defined similarly as
those of NRAs, that is, a successor relation of configu-
rations (q, j, θ) ⊢α (q′, j + 1, θ) can be defined, with the
following adjustment for data transitions.

If the j-th symbol is a data value d, then there
exist c, c′ such that (q, c, q′,X,Y, c′) ∈ δd, and
θ′ is obtained from θ as follows,

● for each i ∈ X, d is assigned to i (thus
θ′(i) = d),

● for each i ∈ Y , a data value d′i is guessed
(thus θ′(i) = d′i), so that the guessed
data values satisfy the following cond-
tion: The function θg extending θ by as-
signing d′i to k + i for each i ∈ Y satisfies
that (θg, d) ⊧ c′,

● for each i ∉X ∪ Y , θ′(i) = θ(i).
Note that data values are not allowed to be copied

explicitly among the registers in NRAG. But this can
be achieved by guessing. For instance, if we want to
copy a data value from ri to rj , then we can guess a
data value for rj and add the constraint ri ∼ rk+j for
the guessing. Later on, when we mention copying a
data value from a register to the other, we always mean
the implicit copying by guessing.

Since the nonemptiness of NRAGs can be solved sim-
ilarly to that of NRAs, we have the following result.

6

Proposition 5. The nonemptiness problem of NRAG
is PSPACE-complete.

In the following, we will show that the expressive power
of NRRAs can be captured by NRAGs.

Theorem 3. From a NRRA A = (Q, δ, I,F), an equiv-
alent NRAG B = (Q′, k, δ′, I ′, F ′) can be constructed
such that ∣Q′∣ is polynomial over ∣Q∣ and exponential
over ∣TA∣ and k is polynomial over ∣TA∣.

We will present a proof sketch for Theorem 3 and
illustrate the main ideas. These ideas are also used for
the proof of Theorem 6 in Section 5.

Proof. Let A = (Q, δ, I,F) be a NRRA. In the fol-
lowing, we will construct a NRAG B to simulate A.

We first give an intuitive description of the construc-
tion. Let ρ be a run of A over a data path α. Then in
the position 2i, B simulates ρ as follows: B records the
data values in the positions belonging to Pospρ[α,2i],
guesses the data values in the positions belonging to
Posfρ[α,2i], and records the order for the positions in

Pospρ[α,2i] and Posfρ[α,2i].
We introduce some additional notations.
Let α = d0a1d1 . . . andn be a data path and i ∶ 0 ≤

i ≤ n. The profile of the position 2i in α, denoted by
profα(2i), is defined as a triple (S,χ,∼), where

● S = {t ∈ TA ∣ tα[2i] ≠ �},

● χ is a sequence

(b−m1 , T−m1 , b
′
−m1

, s−m1) . . . (b−1, T−1, b
′
−1, s−1)

(b0, T0, b
′
0, s0)(b1, T1, b

′
1, s1) . . . (bm2 , Tm2 , b

′
m2
, sm2)

where

– for every j ∶ −m1 ≤ j ≤m2, Tj ⊆ S and Tj ≠ ∅,

– the collection T−m1 , . . . , T0, . . . , Tm2 forms a
partition of S, and cur ∈ T0,

– for every t, t′ ∈ S, if t ∈ Tj1 and t′ ∈ Tj2 , then
j1 ≤ j2 iff tα[2i] ≤ t′α[2i] (in particular, j1 = j2
iff tα[2i] = t′α[2i]),

– for every j ∶ −m1 < j ≤ m2, bj = a(tα[2i])/2 for
some t ∈ Tj , and b−m1 = a(tα[2i])/2 if tα[2i] > 0
for some t ∈ T−m1 , otherwise, b−m1 = �,

– for every j ∶ −m1 ≤ j <m2, b′j = a(tα[2i])/2+1 for
some t ∈ Tj , and b′m2

= a(tα[2i])/2+1 if tα[2i] <
2n for some t ∈ Tm2 , otherwise, b′m2

= �,

– sm2 = �, and for every j ∶ −m1 ≤ j < m2, if
t′α(2i) = tα(2i)+1 for some t ∈ Tj and t′ ∈ Tj+1,
then sj = 1, otherwise, sj = 0.

● ∼ is an equivalence relation over S defined as fol-
lows: Let t, t′ ∈ S, then t ∼ t′ iff dtα[2i] = dt′α[2i].

Let Σprof denote the set of all triples (S,χ,∼) such
that S ⊆ TA,

● χ is a sequence

(b−m1 , T−m1 , b
′
−m1

, s−m1) . . . (b−1, T−1, b
′
−1, s−1)

(b0, T0, b
′
0, s0)(b1, T1, b

′
1, s1) . . . (bm2

, Tm2 , b
′
m2
, sm2)

such that

– for every j ∶ −m1 ≤ j ≤m2, Tj ≠ ∅,

– cur ∈ T0, and T−m1 , . . . , Tm2 is a partition of
S,

– b−m1 ∈ Σ± ∪ {�}, and for every j ∶ −m1 < j ≤
m2, bj ∈ Σ±,

– b′m2
∈ Σ±∪{�}, and for every j ∶ −m1 ≤ j <m2,

b′j ∈ Σ±,

– sm2 = �, and for every j ∶ −m1 ≤ j < m2,
sj ∈ {0,1},

● ∼ is an equivalence relation over S such that for
every t, t′ ∈ TA, if t, t′ ∈ Tj for some j, then t ∼ t′.

Note that for (S,χ,∼) ∈ Σprof , there may be no data
paths α and a position in α such that the profile of
the position in α is (S,χ,∼). Nevertheless, we are able
to define a consistency condition on the elements from
Σprof so that a consistent element from Σprof indeed
corresponds to the profile of a position in some data
path. Moreover, for two consistent elements from Σprof ,
say (S1, χ1,∼1), (S2, χ2,∼2), and a ∈ Σ±, we are able

to define a syntactic successor relation (S1, χ1,∼1)
aÐ→

(S2, χ2,∼2), which mimics the changes from profα(2i)
to profα(2(i + 1)) by reading a word symbol a in the
position 2i+1 of a data path. The details of the consis-
tency condition and the successor relation are omitted
due to the space limitation.

We are ready to construct the NRAG B.
There are 2∣TA∣ + 1 registers in B, that is,

r1, . . . , r∣TA∣, r∣TA∣+1, . . . , r2∣TA∣.

Over a data path α = d0a1d1 . . . andn, B does the
following.

● In each position 2i (0 ≤ i ≤ n), B guesses πi =
(Si, χi,∼i) ∈ ProfA (where πi is supposed to be
profα[2i]). In addition,

– if i = 0, then π0 = (S0, χ0,∼0) is an initial
profile, that is, for every t ∈ TA such that
pred(cur) ⪯ t or predA(cur) ⪯ t for some
A ⊆ Σ±, t ∉ S0,

– if i = n, then πn = (Sn, χn,∼n) is a final profile,
that is, for every t ∈ TA such that suc(cur) ⪯ t
or sucA(cur) ⪯ t for some A ⊆ Σ±, t ∉ Sn.

● For every i ∶ 0 ≤ i ≤ n, if

χi =

(bi,−mi,1 , Ti,−mi,1 , b′i,−mi,1 , si,−mi,1) . . .
(bi,−1, Ti,−1, b

′
i,−1, si,−1)(bi,0, Ti,0, b′i,0, si,0)

(bi,1, Ti,1, b′i,1, si,1) . . .
(bi,mi,2 , Ti,mi,2 , b′i,mi,2 , si,mi,2)

,

7

then after the position 2i is visited (that is, the
reading head is in 2i + 1), for each j ∶ −mi,1 ≤ j ≤
mi,2, B stores in the register rj+∣TA∣ the data value
corresponding to Ti,j . In particular, B stores the
data value di in r∣TA∣.

● Over each pair of positions 2i and 2(i + 1) (where

0 ≤ i < n), B checks that πi
ai+1ÐÐ→ πi+1. To do this, B

copies (by guessing) data values between registers
and guesses some data values for a few registers.

● At the same time, B simulates the run of A as
follows.

– If A makes a transition (q, ai, q′) over ai, then
B checks that b′i−1,0 = ai and changes the state
from q to q′.

– If A makes a transition (q, c, q′) over di, then
B checks that πi satisfies c, verifies that di is
equal to the data value stored in rj+∣TA∣ for
each j ∶ −m1 ≤ j ≤m2 such that there is t ∈ Tj
satisfying cur ∼i t (in particular, di should be
equal to the data value in r∣TA∣), and changes
the state from q to q′.

– B accepts if A accepts and a final profile is
reached.

From the above construction, we know that in its states,
B should record the states of A and the guessed profiles.
Therefore, the number of states of B is polynomial over
∣Q∣ and exponential over ∣TA∣.

Proposition 6. The nonemptiness of NRRAs and
DRRAs is PSPACE-complete.

By using a slight extension of the subset construction,
we are able to show that NRRA can be determinized.

Proposition 7. For every NRRA A, there is an equiv-
alent DRRA of exponential size.

Corollary 1. NRRAs are closed under all Boolean
operations.

Corollary 2. The language inclusion problem of NR-
RAs is PSPACE-complete.

3.3 Two-way nondeterministic rigid register au-
tomata

In this subsection, we will show that two-way non-
deterministic rigid register automata are of the same
expressibility as NRRA.

A two-way nondeterministic rigid register automaton
(2NRRA) A over Σ± is a tuple (Q,⊢,⊣, δ, I, F), where
Q, I,F are as those in the definition of NRRAs, ⊢,⊣∉ Σ±

are respectively the left and right endmarkers, δ = δw∪δd
such that

● δw ⊆ Q× (Σ± ∪{⊢,⊣})×Q×{+1,−1} (where +1,−1
denote the direction of the head: “right” and “left”)
satisfies that for every transition (q,⊢, q′, dir) ∈ δw
(resp. (q,⊣, q′, dir) ∈ δw), it holds that dir = +1
(resp. dir = −1),

● δd ⊆ Q × Crgd ×Q × {+1,−1}.

Let α = d0a1d1 . . . andn be a data path and A be a
2NRRA. A run of A over α is a sequence

(q0, i0)θ0(q1, i1)θ1 . . . θm−1(qm, im)

such that q0 ∈ I, i0 = 0, im = 2n + 2,

● for every j ∶ 0 ≤ j <m, if the symbol of ⊢ α ⊣ in the
position ij is a word symbol a ∈ Σ± ∪ {⊢,⊣}, then
there is dir ∈ {+1,−1} such that (qj , a, qj+1, dir) ∈
δw, θj = a, and ij+1 = ij + dir,

● for every j ∶ 0 ≤ j ≤m, if the symbol of ⊢ α ⊣ in the
position ij is a data value d, then there are c ∈ Crgd
and dir ∈ {+1,−1} such that (qj , c, qj+1, dir) ∈ δd,
(α, ij − 1) ⊧ c, θj = c, and ij+1 = ij + dir.

A run is accepting if qm ∈ F . Note that a run of a
2NRRA over α starts at the left endmarker (position 0)
and stops at the right endmarker (position 2n + 2).

Proposition 8. For every 2NRRA, there is an equiv-
alent NRRA of exponential size.

3.4 Rigid regular expressions with memory
Rigid regular expressions with memory (RREM) is

defined by the following rules,

e ∶= ε ∣ a ∣ [c] ∣ e ∪ e ∣ e ⋅ e ∣ e+, where c ∈ Crgd[Σ±].

Let e be a RREM, α = d0a1d1 . . . andn be a data path,
and i, j ∶ 0 ≤ i ≤ j ≤ 2n. The semantics of e is defined by
a relation (α, i) ⊢e (α, j) as follows.

● If e = ε, then (α, i) ⊢e (α, j) if i = j and the symbol
of α at position i is a data value (thus i is even).

● If e = a, then (α, i) ⊢e (α, j) if j = i+2, the symbol
of α at position i + 1 is a.

● If e = [c], then (α, i) ⊢e (α, j) if i = j, the symbol
of α at position i is a data value (thus i is even),
and (α, i) ⊧ c.

● The semantics for the rules e1 ∪ e2, e1 ⋅ e2 and e+1
are defined in a natural way and are omitted.

A data path α = d0a1d1 . . . andn is accepted by a
RREM e if (α,0) ⊢e (α,2n). Let L (e) denote the set
of data paths accepted by a RREM e.

Proposition 9. NRRAs and RREMs have the same
expressive power.

● From a RREM e, a NRRA Ae can be constructed
in LOGSPACE such that L (e) = L (Ae).

8

● From a NRRA A, a RREM eA can be constructed
in EXPTIME such that L (A) = L (eA).

Corollary 3. The nonemptiness problem of RREMs
is PSPACE-complete.

4. RIGID REGULAR PATH QUERIES WITH
DATA

A rigid regular path query with inverse and data
(2RRDPQ) ξ over the alphabet Σ is a tuple (x,L, y)
where L is a language of data paths defined by a NRRA
or a RREM over Σ±.

Given a data graph G = (V,E, η) and a RRDPQ ξ =
(x,L, y), the evaluation result of ξ over G , denoted by
ξ(G), is the set of all pairs (v, v′) such that there is a
semipath π from v to v′ in G such that η(π) ∈ L.

Proposition 10. The evaluation problem of 2RRD-
PQs is PSPACE-complete, and NLOGSPACE-complete
in data complexity.

In the following we will show that every 2RDPQ can
be turned into a 2RRDPQ, if data graphs are trans-
formed in a natural way. Note that the transformation
of data graphs presented in the following is localized in
the sense that for each node, a new node is added and
connected to the node by edges with special labels, and
the relationships between the nodes in the original data
graph are not changed.

Let G = (V,E, η) be a data graph over the alphabet
Σ, k ≥ 1, and {Ai ∣ 1 ≤ i ≤ k} ∩ Σ = ∅. Then the
data-to-node k-transformation of G , denoted by Gdn,k =
(Vdn,k,Edn,k, ηdn,k), is defined as follows.

● Vdn,k is obtained from V by adding a new node nv
for each node v ∈ V ,

● Edn,k is defined as the union of E and the set of
edges (v,Ai, nv) for every v ∈ V and i ∶ 1 ≤ i ≤ k,

● for each v ∈ V , ηdn,k(v) = η(v) and ηdn,k(nv) =
η(v).

The intuition of the above transformation is to copy
the data value of each node v to a new node connected to
v with k edges. Note that the transformation does not
change the edges between nodes in the original graph.

Theorem 4. Let k ≥ 1, ξ = (x,L, y) be a 2RDPQ
over the alphabet Σ such that L is given by a NRA or
REM containing at most k-registers. Then a 2RRDPQ
ξ′ = (x,L′, y) over the alphabet Σ± ∪ {Ai,A−

i ∣ 1 ≤ i ≤
k} can be constructed in polynomial time such that for
every data graph G = (V,E, η), ξ(G) = ξ′(Gdn,k).

Note that in practice, the number k in 2RDPQs are
usually small, e.g. k = 1,2, and can be assumed to be a
constant. Then the above data-to-node transformation
becomes query-independent.

5. CONJUNCTIVE RIGID REGULAR PATH
QUERIES WITH DATA

Conjunctive 2RRDPQs (C2RRDPQ) can be defined
similarly to C2RDPQs, with 2RDPQs replaced by 2RRD-
PQs.

Proposition 11. The evaluation of C2RRDPQs is
PSPACE-complete, and NLOGSPACE-complete in data
complexity.

Theorem 5. The containment of C2RRDPQs is in
2EXPSPACE and EXPSPACE hard.

The rest of this section is devoted to the proof of
Theorem 5. The proof is a nontrivial extension of that
of the EXPSPACE-completeness result for C2RPQs in
[8] and is the most technical part of this paper.

5.1 Canonical data graph
Let ξ ∶= Ans(z̄)← ⋀

1≤i≤l
(y2i−1, Li, y2i) be a C2RRDPQ,

G = (V,E, η) be a data graph, and ν ∶ {y1, . . . , y2l}→ V .
Then G is said to be ν-canonical for ξ if

● G consists of l simple semipaths π1, . . . , πl, one for
each conjunct of ξ, such that only start and end
nodes can be shared among different semipaths.

● for every i ∶ 1 ≤ i ≤ l, πi is a semipath from ν(y2i−1)
to ν(y2i) such that η(πi) belongs to Li.

It is easy to see that if G is ν-canonical for ξ, then
ν(z̄) belongs to ξ(G).

In the rest of this section, we assume that ξ1, ξ2 are
two C2RRDPQs such that

● ξ1 and ξ2 have the same set of distinguished vari-
ables,

● the set of non-distinguished variables of ξ1 and ξ2
are disjoint.

More specifically, for i = 1,2, let

ξi ∶= Ans(z1, . . . , zn)← ⋀
1≤j≤li

(yi,2j−1, Li,j , yi,2j)

such that {y1,1, . . . , y1,2l1}∩ {y2,1, . . . , y2,2l2} is equal to
{z1, . . . , zn}.

Let G = (V,E, η) be a ν-canonical data graph for ξ1.
Then a mapping µ ∶ {y2,1, . . . , y2,l2}→ V is said to be a
(ξ1,G , ν)-mapping for ξ2 if

● for every j ∶ 1 ≤ j ≤ n, ν(zj) = µ(zj),

● for every j ∶ 1 ≤ j ≤ l2, (µ(y2,2j−1), µ(y2,2j)) be-
longs to the evaluation result of (y2,2j−1, L2,j , y2,2j)
over G .

Note that the existence of a (ξ1,G , ν)-mapping for ξ2
implies that ν(z̄) ∈ ξ2(G).

The following result can be shown in the same way as
a corresponding result for C2RPQs (Theorem 2 in [8]).

9

Proposition 12. Let ξ1, ξ2 be two C2RRDPQs. Then
ξ1 /⊆ ξ2 iff there are a data graph G and a mapping ν
from the variables in ξ1 to the nodes in G such that

● G is ν-canonical for ξ1,

● and there are no (ξ1,G , ν)-mappings for ξ2.

5.2 Evaluating 2RRDPQs over canonical data
graphs

Let G = (V,E, η) be a ν-canonical data graph for ξ1
and ξ = (x,L, y) be a 2RRDPQ such that L is defined
by a NRRA A = (Q, δ, I,F) over Σ±. Then G consists
of l1-simple semipaths π1, . . . , πl1 such that for every j ∶
1 ≤ j ≤ l1, πj is a semipath from ν(y1,2j−1) to ν(y1,2j),
and η(πj) ∈ L1,j . Our goal is to evaluate ξ over G .

We use a similar idea to the evaluation of 2RPQs
over canonical graphs in [8]: the data graph G is first
encoded into a data path αG , then a 2NRRA Aξ is
constructed from ξ and ξ1 so that ξ(G) is nonempty iff
⊢ αG ⊣ is accepted by Aξ.

For every i ∶ 1 ≤ i ≤ l1, let reni denote the renaming
function that maps each a ∈ Σ± to (a, i). For a data
path α, let reni(α) denote the data path obtained from
α by replacing each a ∈ Σ± with reni(a).

Let Σξ1 = {#} ∪ ⋃
1≤j≤l1

(Σ± × {j} ∪ {$2j−1,$2j}). We

represent G as a data path αG over the alphabet Σξ1 as
follows.

αG ∶= d1$1ren1(η(π1))$2d2#d3$3ren2(η(π2))$4d4#
. . . d2l1−1$2l1−1renl1(η(πl1))$2l1d2l1

,

where d1, d2, . . . , d2l1 are data values from D not occur-
ring in G such that di = dj iff ν(y1,i) = ν(y1,j). In-
tuitively, for each j ∶ 1 ≤ j ≤ l1, the j-th semipath πj
is represented by a data subpath αG ,πj in αG , where
αG ,πj = d2j−1$2j−1renj(η(πj))$2jd2j , and the symbol
is used to separate those data subpaths. It is easy
to observe that for every pair (πj , v) such that v is a
node in πj , there is a unique position in αG correspond-
ing to (πj , v), denoted by pαG

(πj , v). For instance, if
v = ν(y1,2j) = ν(y1,2j′−1), then pαG

(πj , v) is the posi-
tion immediately before the symbol $2j and pαG

(πj′ , v)
is the position immediately after $2j′−1 in αG .

For the simplicity of presentations, we assume that
for every j ∶ 1 ≤ j ≤ l1, πj contains at least two edges.
All the proofs in the rest of this section can be easily
adapted to deal with the situation that there is j ∶ 1 ≤
j ≤ l1 such that πj contains at most one edge.

Let π′ = v0a1v1 . . . v`−1a`v` be a semipath in G (since
π′ is an arbitrary semipath in G , it may start or end in
the middle of π1, . . . , πl1). Because αG is an encoding
of the data graph G and π′ is a semipath in G , there is
also an encoding of π′ in αG . We call this encoding as
the trace of π′ in αG , denoted by trcαG

(π′). A formal
definition of trcαG

(π′) will be given later.

The intuition of the 2NRRAAξ is that for every semi-
path π′ of G and every run of A over η(π′), Aξ goes
through the trace of π′ in αG to simulate the run of A
over η(π′).
Theorem 6. Let G be a ν-canonical data graph for

ξ1, ξ be a 2RRDPQ. Then a 2NRRA Aξ can be con-
structed from ξ and ξ1 such that ξ(G) is nonempty iff
Aξ accepts ⊢ αG ⊣.

In the following, before giving a proof for Theorem 6,
we first give the definition of traces of semipaths of G
in αG , then state and prove an important lemma.

Let π′ = v0a1v1 . . . v`−1a`v` be a semipath in G . The
π-unraveling (where π = (π1, . . . , πl1)) of π′, denoted
by urvπ(π′), is defined as the sequence π′0#π′1# . . .#π′r
satisfying the following conditions: There are i0, . . . , ir+1

such that

● 0 = i0 < i1 < ⋅ ⋅ ⋅ < ir < ir+1 = `,

● for every 0 ≤ s ≤ r, π′s = visais+1vis+1 . . . ais+1vis+1 ,

● for every s ∶ 0 ≤ s ≤ r, there is js ∶ 1 ≤ js ≤ l1 such
that all the edges on π′s belong to πjs ,

● and for every s ∶ 1 ≤ s ≤ r, either js ≠ js−1, or
js = js−1 and one of the following conditions holds,

– the last edge of π′s−1 is the first edge of πjs
and the first edge of π′s is the last edge of πjs ,

– the last edge of π′s−1 is the last edge of πjs and
the first edge of π′s is the first edge of πjs .

The last two conditions above correspond to the situ-
ation that the two endpoints of πjs are in fact the same
node and a semipath can jump from the first (resp. last)
edge to the last (resp. first) edge of πjs .

For a semipath π′ in G , define trcαG
(π′), the trace

of π′ in αG , as trcαG
(π′0) # . . . # trcαG

(π′r), where
π′0# . . .#π′r is the π-unraveling of π′, and for every s ∶
0 ≤ s ≤ r,

trcαG
(π′s) ∶=

pαG
(πjs , vis) ais+1 pαG

(πjs , vis+1)
. . . ais+1 pαG

(πjs , vis+1)
.

Note that although urvπ(π′) and trcαG
(π′) are not

data paths, they are of a similar structure, that is,
nodes and position indices respectively separated by
word symbols.

For briefness, later on, when αG is obvious from the
context, we abbreviate trcαG

(π′) as trc(π′).
It is easy to see that a run of A over η(π′) for a semi-

path π′ in G can be transformed into a run of a NRRA
A′ over η(urvπ(π′)), if the interpretation of position
terms over η(urvπ(π′)) is adjusted to jump over the
additional # symbols as follows.

Since η(urvπ(π′)) = η(π′0)# . . .#η(π′r), it follows that
η(urvπ(π′)) = d0b1d1 . . . b`+2rd`+2r for d0, . . . , d`+2r ∈ D
and b1, . . . , b`+2r ∈ Σ± ∪ {#}. For a position term t ∈

10

Tp[Σ±] and a position 2i ∶ 0 ≤ i ≤ ` + 2r on η(urvπ(π′)),
define the adjusted position represented by t over η(urvπ(π′))
and 2i, denoted by tadj

urvπ(π′)
[2i], similarly to the se-

mantics of position terms, with the following adjust-
ments for the rules suc(t1) and pred(t1). In the fol-
lowing, we only present the adjustments for suc(t1),
and the adjustments for pred(t1) are symmetric. If

(t1)adjurvπ(π′)[2i] = � or (t1)adjurvπ(π′)[2i] = 2(` + 2r), then

(suc(t1))adjurvπ(π′)[2i] = �; otherwise,

● if (t1)adjurvπ(π′)[2i] is not a position immediately be-

fore #, then

(suc(t1))adjurvπ(π′)[2i] = (t1)adjurvπ(π′)[2i] + 2,

● otherwise,

(suc(t1))adjurvπ(π′)[2i] = (t1)adjurvπ(π′)[2i] + 4.

Lemma 2. Suppose π′ = v0a1v1 . . . a`v` is a semipath
in G such that urvπ(π′) = π′0# . . .#π′r and trc(π′) =
p0b1p1 . . . b`+2rp`+2r (where b1, . . . , b`+2r ∈ Σ± ∪ {#}).
Then for every i ∶ 0 ≤ i ≤ ` + 2r, there exists a func-
tion posi ∈ (Tp[Σξ1]∪{�})TA such that for every t ∈ TA,

posi(t) = � iff tadj
urvπ(π′)

[2i] = �; moreover, if posi(t) ≠ �
and tadj

urvπ(π′)
[2i] = 2i′, then (posi(t))αG

[pi] = pi′ .

Lemma 2 establishes a connection between the po-
sition terms in Tp[Σ] interpreted over η(urvπ(π′)) and
the position terms in Tp[Σξ1] interpreted over αG . With
this connection, a 2NRRA B can be constructed such
that each run of A′ over η(urvπ(π′)) can be simulated
by a run of B over trc(π′) in αG .

Proof. (Theorem 6)
Let π′ be a path in G , the π-unraveling of π be

π′0 . . . π
′
r. In addition, for every s ∶ 0 ≤ s ≤ r, all the

edges on π′s = visais+1vis+1 . . . vis+1 belong to πjs .
Our goal is to construct a 2NRRA B over αG to sim-

ulate the runs of A′ over η(urvπ(π′)).
Similarly to the construction of NRAGs from NR-

RAs in the proof of Theorem 3, the 2NRRA B goes
through trc(π′) in αG and guesses the profile of the
current position of η(urvπ(π′)), in order to simulate A′
over η(urvπ(π′)). The difference is that instead of stor-
ing and guessing the data values, B records and guesses
position terms from Tp[Σξ1] (interpreted over αG) for
position terms occurring in the profile of the current
position in η(urvπ(π′)). The most technical part of the
construction is how to guarantee the consistency of the
guessed position terms from Tp[Σξ1] and how to update
them during the simulation. Since the details of the
consistency conditions and the updating of the guessed
position terms are rather tedious, they are omitted due
to the space limitation.

From the above description, we know that in its states,
B should record the states of A′, the guessed profiles,

and the guessed position terms from Tp[Σξ1]. Because
both the number of profiles and the number of possible
guesses for the position terms from Tp[Σξ1] are expo-
nential over ∣TA∣, it follows that the number of states of
B is polynomial over ∣Q∣ and exponential over ∣TA∣.

5.3 Checking the non-containment
We will construct a NRRA A′ = (Q′, δ′, I ′, F ′) to

check the non-containment of ξ1 over ξ2 as follows.

1. Construct a NRRA A′1 which reads a data path α
over the alphabet Σξ1 and verifies that α encodes
a ν-canonical data graph G for ξ1. In particular,
for every 2RRDPQ (y1,2j−1, L1,j , y1,2j), A′1 checks
that the j-th block of α encodes a data path over
the alphabet Σ± belonging to L1,j .

2. Construct a NRRA A′2 verifying that there are no
(ξ1,G , ν)-mappings for ξ2 as follows.

(a) Construct a 2NRRA B1 to verify a (ξ1,G , ν)-
mapping for ξ2 over αG annotated with sub-
sets of {y2,1, . . . , y2,l2}. The intention is that
the annotations encode an assignment of nodes
in G to the variables from {y2,1, . . . , y2,l2}.

The alphabet of B1 is Σeξ1 = Σξ1×2{y2,1,...,y2,l2}.
If the word symbol immediately before a po-
sition 2i of the annotated αG is (a′, Z), then
this means that each variable in Z is assigned
to the node of G represented by the position
2i. Some consistency constraints for these an-
notations, e.g. the annotations in two distinct
positions are disjoint, should be checked. To
check the 2RRDPQs (y2,2j−1, L2,j , y2,2j) of ξ2
over the annotated αG , the construction in the
proof of Theorem 6 is used. Note that since
all the rigid data constraints in the RRDPQs
of ξ2 are independent from the annotations,
we are able to assume that for every sucB or
predB occurring in B1, there is A ⊆ Σξ1 such

that B = A × 2{y2,1,...,y2,l2}.

(b) Transform B1 into an equivalent NRRA B2

(cf. Proposition 8).

(c) Let prj ∶ Σeξ1 → Σξ1 such that prj((a′, Z)) =
a′. Construct B3 = prj(B2). From the as-
sumption above, we know that B1 and B2 are
position-invariant under prj. Then from Propo-
sition 4, we deduce that L (B3) = L (prj(B2)) =
prj(L (B2)). So the NRRA B3 guesses and
verifies a (ξ1,G , ν)-mapping for ξ2.

(d) Determinize and complement B3 to getA′2 (cf.
Proposition 7).

3. A′ is the intersection of A′1 and A′2.

There is a final remark for the above construction: As
pointed out in [8], letter projections are only meaningful

11

for one-way automata. This explains why we need go
from the 2NRRA B1 to the NRRA B2 before applying
the letter projection prj.
The complexity analysis.

The size of A′1 is polynomial over the size of ξ1. From
Theorem 6, the size of B1 is exponential over the size
of ξ2. From Proposition 8, the size of B2 is exponential
over the size of B1. The size of B3 is the same as the size
of B2. From Proposition 7, the size of A′2 is exponential
over the size of B3. Therefore, the size of A′2 is triple-
exponential over the size of ξ2.

To check the nonemptiness of A′1 ∩A′2, we can guess
“on the fly” an accepting run of A′1∩A′2 in double expo-
nential space. From Savitch’s theorem, we deduce that
the containment of C2RRDPQs is in 2EXPSPACE.

On the other hand, the containment of C2RRDPQs
is EXPSPACE-hard since this is already the case for
C2RPQs ([8]).

6. CONCLUSION
In this paper, a novel approach to extend 2RPQs

with data value comparisons, called rigid regular path
queries with inverse and data (2RRDPQs), was pro-
posed. 2RRDPQs rely on nondeterministic rigid regis-
ter automata (NRRA), also introduced in this paper.
We demonstrated the robustness of NRRAs by showing
that NRRAs can be determinized and the two-way NR-
RAs are expressively equivalent to NRRAs. We then
argued that 2RRDPQs achieve a good balance between
the expressibility and computational properties. On the
one hand, we showed that every 2RDPQ can be turned
into a 2RRDPQ if a localized transformation is applied
to graph databases. On the other hand, we proved that
2RRDPQs enjoy nice computational properties, as wit-
nessed by the decidability (as a matter of fact, 2EX-
PSPACE) of the containment problem of 2RRDPQs
and conjunctive 2RRDPQs (C2RRDPQ), The proof for
the 2EXPSPACE result of the containment problem of
C2RRDPQs is the most technical part of this paper and
can be seen as the main result of this paper.

There are several natural directions for future work.
One direction is to investigate whether the evaluation
and containment problem of acyclic C2RRDPQs have
a lower complexity. Another direction is to investigate
nested rigid regular expressions with memory.

7. REFERENCES
[1] R. Alur, L. Fix, and T. A. Henzinger. Event-clock

automata: A determinizable class of timed
automata. Theor. Comput. Sci., 211(1-2):253–273,
1999.

[2] R. Angles and C. Gutierrez. Survey of graph
database models. ACM Comput. Surv.,
40(1):1:1–1:39, 2008.

[3] P. Barceló. Querying graph databases. In PODS,
pages 175–188, 2013.

[4] P. Barceló, D. Figueira, and L. Libkin. Graph
logics with rational relations and the generalized
intersection problem. In LICS, pages 115–124,
2012.

[5] P. Barcelo, C. Hurtado, L. Libkin, and P. Wood.
Expressive languages for path queries over
graph-structured data. In PODS, pages 3–14,
2010.

[6] P. Barceló, J. Pérez, and J. L. Reutter. Relative
expressiveness of nested regular expressions. In
AMW, pages 180–195, 2012.

[7] M. Benedikt, C. Ley, and G. Puppis. Automata
vs. logics on data words. In CSL, pages 110–124,
2010.

[8] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Containment of conjunctive regular
path queries with inverse. In KR, pages 176–185,
2000.

[9] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A
graphical query language supporting recursion.
SIGMOD Rec., 16(3):323–330, 1987.

[10] S. Demri and R. Lazić. LTL with the freeze
quantifier and register automata. ACM Trans.
Comput. Logic, 10(3):16:1–16:30, 2009.

[11] A. Deutsch and V. Tannen. Optimization
properties for classes of conjunctive regular path
queries. In DBPL, pages 21–39, 2002.

[12] D. Florescu, A. Levy, and D. Suciu. Query
containment for conjunctive queries with regular
expressions. In PODS, pages 139–148, 1998.

[13] M. Kaminski and N. Francez. Finite-memory
automata. Theor. Comput. Sci., 134(2):329–363,
1994.

[14] M. Kaminski and D. Zeitlin. Extending
finite-memory automata with non-deterministic
reassignment (extended abstract). In AFL, pages
195–207, 2008.

[15] E. V. Kostylev, J. L. Reutter, and D. Vrgoč.
Regular path queries on graphs with data. In
ICDT, 2014. To appear.

[16] L. Libkin, J. Reutter, and D. Vrgoč. Trial for rdf:
Adapting graph query languages for rdf data. In
PODS, pages 201–212, 2013.

[17] L. Libkin and D. Vrgoč. Regular expressions for
data words. In LPAR, pages 274–288, 2012.

[18] L. Libkin and D. Vrgoč. Regular path queries on
graphs with data. In ICDT, pages 74–85, 2012.

[19] J. Pérez, M. Arenas, and C. Gutierrez.
nSPARQL: A navigational language for rdf. Web
Semant., 8(4):255–270, 2010.

[20] J. C. Shepherdson. The reduction of two-way
automata to one-way automata. IBM J. Res.
Dev., 3(2):198–200, 1959.

[21] P. T. Wood. Query languages for graph
databases. SIGMOD Rec., 41(1):50–60, 2012.

12

APPENDIX
A. PROOFS IN SECTION 3.1
Proposition 1 The satisfiability problem of rigid data constraints is NP-complete.

Proof. Lower bound: By an easy reduction from the satisfiability of Boolean formulas.
Upper bound: Let c be a rigid data constraint over Σ±.
Let Tc denote the minimal set of position terms satisfying the following conditions.

● for every t1 ∼ t2 or t1 ≁ t2 occurring in c, t1, t2 ∈ Tc,
● for every t ∈ Tc and t′ ∈ Crgd[Σ±] such that t′ ⪯ t, we have t′, t[t′/cur] ∈ Tc.
Similar to the construction of a NRAGs from NRRAs in the proof of Theorem 3, we can define concept of profiles

with respect to Tc. More specifically, a profile is a triple (S,χ,∼) such that S ⊆ Tc, ∼ is an equivalence relation on
S, and

χ = (b−m1 , T−m1 , b
′
−m1

, s−m1) . . . (b−1, T−1, b
′
−1, s−1)(b0, T0, b

′
0, s0)(b1, T1, b

′
1, s1) . . . (bm2 , Tm2 , b

′
m2
, sm2) .

In addition, some consistency conditions can be defined such that c is satisfiable iff there is a consistent profile
(S,χ,∼) with c ∈ T0 in χ.

Since the size of a profile is polynomial over that of c, a profile (S,χ,∼) can be guessed and the consistency
condition as well as c ∈ T0 can be checked in polynomial time. Therefore, the satisfiability of rigid data constraints
is in NP.

B. PROOFS IN SECTION 3.2
Proposition 2 NRAs and NRRAs are expressively incomparable.

Proof. The data language “there are two distinct positions with the same data value” is definable in NRAs, but
not in NRRAs.

On the other hand, the data language “the sequence of word symbols belongs to ab∗a and the last data value does
not occur elsewhere” is definable in NRRAs, but not in NRAs.

Proposition 3 The class of languages definable by NRRAs are not closed under letter projections.

Proof. Let Σ = {(a,0), (a,1)}, Γ = {a}, and prj be a letter projection from Σ to Γ such that prj((a,0)) =
prj((a,1)) = a.

Let L be the data language “there are exactly two distinct positions labeled by (a,1) and the data values before
these two positions are the same”. Then prj(L) is the data language “there are two distinct positions with the same
data value”.

It is easy to see that L can be defined by a NRRA A. On the other hand, prj(L) is not definable by a NRRA.
We would like to remark that over the alphabet {a}, the position terms sucA(t) (resp. predA(t)) in prj(A) are

equal to suc(t) (resp. pred(t)). Therefore, prj(A) does not define prj(L).

Proposition 4 Suppose A is a NRRA over Σ± and prj is a letter projection from Σ± to Γ. If A is position-invariant
under prj, then L (prj(A)) = prj(L (A)).

Proof. Suppose A is a NRRA over Σ± and prj is a letter projection from Σ± to Γ such that A is position-invariant
under prj.

For every position term t ∈ TA, define prj(t) as the position term obtained from t by replacing every occurrence
of sucA with sucprj(A). In addition, for every c ∈ CA, define prj(c) as the rigid data constraint obtained from c by
replacing every position term t with prj(t).

We first prove the following claim.

Claim. Let α = d0a1d1 . . . andn be a data path, c ∈ CA and i ∶ 0 ≤ i ≤ n. Then (α,2i) ⊧ c iff (prj(α),2i) ⊧ prj(c).

Proof. It is sufficient to prove that for every t ∈ TA and i ∶ 0 ≤ i ≤ n, tα[2i] = (prj(t))prj(α)[2i].
This result can be proved by an induction on the structure of the position terms. In the following, we take

t = sucA(cur) as an example to illustrate the proof.
Suppose (sucA(cur))α[2i] = 2j for some j ∶ i < j. Then the first occurrence of word symbols from A in α after the

position 2i is in the position 2j. It follows that the first occurrence of word symbols from prj(A) in prj(α) after the

13

position 2i is in the position 2j. Otherwise, there is j′ ∶ i < j′ < j such that a word symbol from prj(A) occurs in the
position 2j′ of prj(α). From the fact that A is position-invariant under prj, we know that A = prj−1(prj(A)). Thus,
a word symbol from A occurs in the position 2j′ < 2j of α, a contradiction. Therefore, (sucprj(A)(cur))prj(α)[2i] = 2j.

Suppose (sucprj(A)(cur))prj(α)[2i] = 2j for some j ∶ i < j. Then the first occurrence of word symbols from prj(A)
in prj(α) after the position 2i is in the position 2j. It follows that the first occurrence of word symbols from A in α
after the position 2i is in the position 2j. Otherwise, there is j′ ∶ i < j′ < j such that a word symbol from A occurs in
the position 2j′ of α. Thus, a word symbol from prj(A) occurs in the position 2j′ < 2j of prj(α), a contradiction.
Therefore, (sucA(cur))α[2i] = 2j.

L (prj(A)) ⊆ prj(L (A)):
Suppose β = d0γ1d1 . . . γndn ∈ L (prj(A)).
Then there is an accepting run of prj(A) over β, say ρ = q0c0q1γ1q2c1 . . . q2n−1γnq2ncnq2n+1.
From the definition of prj(A), we know that

● for every i ∶ 1 ≤ i ≤ n, there is ai ∈ Σ± such that prj(ai) = γi and (q2i−1, ai, q2i) ∈ δw,

● for every i ∶ 0 ≤ i ≤ n, there is c′i ∈ CA such that (q2i, c
′
i, q2i+1) ∈ δd and ci = prj(c′i).

Let α = d0a1d1 . . . andn. Then β = prj(α).
From the claim, we know that for every i ∶ 0 ≤ i ≤ n, (α,2i) ⊧ c′i iff (prj(α),2i) ⊧ ci.
Therefore, q0c

′
0q1a1q2 . . . q2n−1anq2nc

′
nq2n+1 is an accepting run of A over α. We conclude that α ∈ L (A) and

β = prj(α) ∈ prj(L (A)).

prj(L (A)) ⊆ L (prj(A)):
Let β = d0γ1d1 . . . γndn ∈ prj(L (A)). Then there is α = d0a1d1 . . . andn ∈ L (A) such that β = prj(α). So there is

an accepting run of A over α, say ρ = q0c0q1a1q2c1 . . . q2n−1anq2ncnq2n+1.
From the claim, we know that for every i ∶ 0 ≤ i ≤ n, (α,2i) ⊧ ci iff (prj(α),2i) ⊧ prj(ci). Therefore,

q0 prj(c0) q1 prj(a1) q2 prj(c1) . . . q2n−1 prj(an) q2n prj(cn) q2n+1 is an accepting run of prj(A) over prj(α) = β.
It follows that β ∈ L (prj(A)).

Proposition 5 The nonemptiness problem of NRAGs is PSPACE-complete.

Proof. The upper bound:
Let A = (Q,k, δ, I, F) be a NRAG. Then similar to NRAs ([10, 18]), a NFA B = (Q′, δ′, I ′, F ′) can be constructed

such that L (A) is nonempty iff L (B) is nonempty, and ∣Q′∣ is polynomial over ∣Q∣ and exponential over k. To
decide the nonemptiness of B, an accepting run of B can be guessed nondeterministically in polynomial space. From
Savitch’s theorem, we know that the nonemptiness of A can be decided in PSPACE.

The lower bound: Follows from that of NRAs.

Lemma 1. Let A = (Q, δ, I,F) be a NRRA over the alphabet Σ± and α = d0a1d1 . . . andn be a data path. Then for
every run ρ of A over α and every i ∶ 0 ≤ i ≤ n, Posfρ[α,2i] ∪ Pospρ[α,2i] ⊆ {tα[2i] ∣ t ∈ TA}.

Proof. Let A = (Q, δ, I,F) be a NRRA, α = d0a1d1 . . . andn be a data path, ρ = q0c0q1a1q2 . . . q2n−1anq2ncnq2n+1

be a run of A over α, and i ∶ 0 ≤ i ≤ n.
Let tα[2j] ∈ Posfρ[α,2i] such that j ≤ i, t occurs in cj , tα[2j] ≠ � and tα[2j] > 2i. Then there is t′ ∈ Tp[Σ±] such

that t′ ⪯ t, t′α[2j] ≤ 2i, and for every t′′ ∶ t′ ≺ t′′ ⪯ t, t′′α[2j] > 2i. It follows that suc(t′) ⪯ t or sucA(t′) ⪯ t for some
A ⊆ Σ±.

● If suc(t′) ⪯ t, then t′α[2j] = 2i, since (suc(t′))α[2j] = t′α[2j] + 1 > 2i and t′α[2j] ≤ 2i. Thus, tα[2j] =
(t[t′/cur])α[t′α[2j]] = (t[t′/cur])α[2i].

● If sucA(t′) ⪯ t, then t′α[2j] ≤ 2i and (sucA(t′))α[2j] > 2i. It follows that a((sucA(t′))α[2j])/2 ∈ A, and for every
j′ ∶ i < j′ < ((sucA(t′))α[2j])/2, aj′ ∉ A. From this, it is deduced that (sucA(cur))α[2i] = (sucA(t′))α[2j] =
(sucA(cur))α[t′α[2j]]. Therefore, t′α[2j] = 2i, and tα[2j] = (t[t′/cur])α[t′α[2j]] = (t[t′/cur])α[2i].

From the above argument, it follows that Posfρ[α,2i] ⊆ {tα[2i] ∣ t ∈ TA}. Similarly, we can show that Pospρ[α,2i] ⊆
{tα[2i] ∣ t ∈ TA}.

Theorem 3. From a NRRA A = (Q, δ, I,F), an equivalent NRAG B = (Q′, k, δ′, I ′, F ′) can be constructed such that
∣Q′∣ is polynomial over ∣Q∣ and exponential over ∣TA∣ and k is polynomial over ∣TA∣.

14

Proof. Let A = (Q, δ, I,F) be a NRRA. In the following, we will construct a NRAG B to simulate A.
We first give an intuitive description of the construction. Let ρ be a run of A over a data path α = d0a1d1 . . . andn.

From Lemma 1, we know that for every i ∶ 0 ≤ i ≤ n, Posfρ[α,2i] ∪ Pospρ[α,2i] contains only a bounded number of
positions. It follows that only a bounded number of registers are needed to store them in the position 2i. Therefore,
B can simulate ρ as follows: In the position 2i,

● B records in its registers the data values in the positions belonging to Pospρ[α,2i].

● B guesses in its registers the data values in the positions belonging to Posfρ[α,2i].

● B records the order for the positions in Pospρ[α,2i] and Posfρ[α,2i].
We introduce some additional notations.
Let α = d0a1d1 . . . andn be a data path and i ∶ 0 ≤ i ≤ n. The profile of the position 2i in α, denoted by profα(2i),

is defined as a triple (S,χ,∼), where

● S = {t ∈ TA ∣ tα[2i] ≠ �},

● χ is a sequence

(b−m1 , T−m1 , b
′
−m1

, s−m1) . . . (b−1, T−1, b
′
−1, s−1)(b0, T0, b

′
0, s0)(b1, T1, b

′
1, s1) . . . (bm2 , Tm2 , b

′
m2
, sm2)

where

– for every j ∶ −m1 ≤ j ≤m2, Tj ⊆ S and Tj ≠ ∅,

– the collection T−m1 , . . . , T0, . . . , Tm2 forms a partition of S,

– for every t, t′ ∈ S, if t ∈ Tj1 and t′ ∈ Tj2 , then j1 ≤ j2 iff tα[2i] ≤ t′α[2i] (in particular, j1 = j2 iff tα[2i] = t′α[2i]),
– cur ∈ T0,

– for every j ∶ −m1 < j ≤ m2, bj = a(tα[2i])/2 for some t ∈ Tj , and b−m1 = a(tα[2i])/2 if tα[2i] > 0 for some
t ∈ T−m1 , otherwise, b−m1 = �,

– for every j ∶ −m1 ≤ j < m2, b′j = a(tα[2i])/2+1 for some t ∈ Tj , and b′m2
= a(tα[2i])/2+1 if tα[2i] < 2n for some

t ∈ Tm2 , otherwise, b′m2
= �,

– sm2 = �, and for every j ∶ −m1 ≤ j < m2, if t′α(2i) = tα(2i) + 1 for some t ∈ Tj and t′ ∈ Tj+1, then sj = 1,
otherwise, sj = 0.

● ∼ is an equivalence relation over S defined as follows: Let t, t′ ∈ S, then t ∼ t′ iff dtα[2i] = dt′α[2i].
Let Σprof denote the set of all triples (S,χ,∼) such that

● S ⊆ TA,

● χ is a sequence

(b−m1 , T−m1 , b
′
−m1

, s−m1) . . . (b−1, T−1, b
′
−1, s−1)(b0, T0, b

′
0, s0)(b1, T1, b

′
1, s1) . . . (bm2 , Tm2 , b

′
m2
, sm2)

such that

– for every j ∶ −m1 ≤ j ≤m2, Tj ≠ ∅,

– cur ∈ T0,

– T−m1 , . . . , Tm2 is a partition of S,

– b−m1 ∈ Σ± ∪ {�}, and for every j ∶ −m1 < j ≤m2, bj ∈ Σ±,

– b′m2
∈ Σ± ∪ {�}, and for every j ∶ −m1 ≤ j <m2, b′j ∈ Σ±,

– sm2 = �, and for every j ∶ −m1 ≤ j <m2, sj ∈ {0,1},

● ∼ is an equivalence relation over S such that for every t, t′ ∈ TA, if t, t′ ∈ Tj for some j, then t ∼ t′.
Note that for (S,χ,∼) ∈ Σprof , there may be no data paths α and a position in α such that the profile of the position

in α is (S,χ,∼). Nevertheless, we are able to define a consistency condition on the elements from Σprof so that a
consistent element from Σprof indeed corresponds to the profile of a position in some data path. Moreover, for two
consistent elements from Σprof , say (S1, χ1,∼1), (S2, χ2,∼2), and a ∈ Σ±, we are able to define a syntactic successor

relation (S1, χ1,∼1)
aÐ→ (S2, χ2,∼2), which mimics the changes from profα(2i) to profα(2(i+ 1)) by reading a word

symbol a in the position 2i + 1 of a data path.
For A ⊆ Σ±, a sequence

χ = (b−m1 , T−m1 , b
′
−m1

, s−m1) . . . (b−1, T−1, b
′
−1, s−1)(b0, T0, b

′
0, s0)(b1, T1, b

′
1, s1) . . . (bm2 , Tm2 , b

′
m2
, sm2) ,

15

and j ∶ −m1 ≤ j ≤ m2, A is said to occur after (resp. before) Tj in χ if bj′ ∈ A for some j′ ∶ j < j′ ≤ m2 or b′j′ ∈ A for
some j′ ∶ j ≤ j′ ≤m2 (resp. b′j′ ∈ A for some j′ ∶ −m1 ≤ j′ < j or bj′ ∈ A for some j′ ∶ −m1 ≤ j′ ≤ j).

Let (S,χ,∼) ∈ Σprof and

χ = (b−m1 , T−m1 , b
′
−m1

, s−m1) . . . (b−1, T−1, b
′
−1, s−1)(b0, T0, b

′
0, s0)(b1, T1, b

′
1, s1) . . . (bm2 , Tm2 , b

′
m2
, sm2) .

Then (S,χ,∼) is said to be consistent if χ satisfies the following conditions.

● For every suc(t) ∈ TA (resp. pred(t) ∈ TA), and every j ∶ −m1 ≤ j < m2 (resp. j ∶ −m1 < j ≤ m2), t ∈ Tj iff
suc(t) ∈ Tj+1 (resp. t ∈ Tj iff pred(t) ∈ Tj−1).

● For every suc(t) ∈ TA and every j ∶ −m1 ≤ j <m2, if t ∈ Tj and suc(t) ∈ Tj+1, then b′j = bj+1 and sj = 1.

● For every pred(t) ∈ TA and every j ∶ −m1 < j ≤m2, if t ∈ Tj and pred(t) ∈ Tj−1, then b′j−1 = bj and sj−1 = 1.

● For every sucA(t) ∈ TA, if sucA(t) ∈ Tj for some j ∶ −m1 < j ≤m2, then bj ∈ A.

● For every predA(t) ∈ TA, if predA(t) ∈ Tj for some j ∶ −m1 ≤ j <m2, then b′j ∈ A.

● For every sucA(t) ∈ TA (resp. predA(t) ∈ TA), if sucA(t) ∈ Tj (resp. predA(t) ∈ Tj), then t ∈ Tj′ for some
j′ ∶ j′ < j (resp. j′ ∶ j′ > j).

● For every sucA(t) ∈ TA, if t ∈ Tj1 and sucA(t) ∈ Tj2 (j1 < j2), then for every j3 ∶ j1 < j3 < j2, bj3 ∉ A, and for
every j3 ∶ j1 ≤ j3 < j2 − 1, b′j3 ∉ A; in addition, b′j2−1 ∈ A implies sj2−1 = 1.

● For every predA(t) ∈ TA, if predA(t) ∈ Tj1 and t ∈ Tj2 (j1 < j2), then for every j3 ∶ j1 < j3 < j2, b′j3 ∉ A, and for
every j3 ∶ j1 + 1 < j3 ≤ j2, bj3 ∉ A; in addition, bj1+1 ∈ A implies sj1 = 1.

● For every t, sucA(t) ∈ TA, if t ∈ Tj for j ∶ −m1 ≤ j ≤ m2, and A occurs after Tj , then sucA(t) ∈ Tj′ for some
j′ ∶ j′ > j.

● For every t, predA(t) ∈ TA, if t ∈ Tj for j ∶ −m1 ≤ j ≤ m2, and A occurs before Tj , then predA(t) ∈ Tj′ for some
j′ ∶ j′ < j.

Claim. Suppose (S,χ,∼) ∈ Σprof . Then (S,χ,∼) is consistent iff there is a data path α and a position 2i in α such
that profα(2i) = (S,χ,∼).

Proof. The “if” direction is trivial.
The “only if” direction:
Suppose (S,χ,∼) is consistent. Let

χ = (b−m1 , T−m1 , b
′
−m1

, s−m1) . . . (b−1, T−1, b
′
−1, s−1)(b0, T0, b

′
0, s0)(b1, T1, b

′
1, s1) . . . (bm2 , Tm2 , b

′
m2
, sm2) .

For each Tj , we assign a data value dj , in a way that respects the equivalence relation ∼, that is, if t ∈ Tj , t′ ∈ Tj′ ,
and t ∼ t′, then dj = dj′ . In addition, let d be a data value different from all these dj ’s.

For every j ∶ −m1 ≤ j ≤m2, we define a data path αj as follows.

● For j = −m1,

– if s−m1 = 1 and b−m1 ≠ �, then let α−m1 = db−m1d−m1 ,

– if s−m1 = 1 and b−m1 = �, then let α−m1 = d−m1 ,

– if s−m1 = 0 and b−m1 ≠ �, then let α−m1 = db−m1d−m1b
′
−m1

d,

– if s−m1 = 0 and b−m1 = �, then let α−m1 = d−m1b
′
−m1

d.

● For j ∶ −m1 < j <m2,

– if sj−1 = 1 and sj = 1, then let αj = dj−1bjdj ,

– if sj−1 = 1 and sj = 0, then let αj = dj−1bjdjb
′
jd,

– if sj−1 = 0 and sj = 1, then let αj = dbjdj ,
– if sj−1 = 0 and sj = 0, then let αj = dbjdjb′jd.

● For j =m2,

– if sm2−1 = 1 and b′m2
≠ �, then let αm2 = dm2−1bm2dm2b

′
m2
d,

– if sm2−1 = 1 and b′m2
= �, then let αm2 = dm2−1bm2dm2 ,

– if sm2−1 = 0 and b′m2
≠ �, then let αm2 = dbm2dm2b

′
m2
d,

– if sm2−1 = 0 and b′m2
= �, then let αm2 = dbm2dm2 .

16

Consider the data path α = α−m1 ⋅ α−m1+1 ⋅ . . . ⋅ α−1 ⋅ α0 ⋅ α1 ⋅ . . . ⋅ αm2 .
For every j ∶ −m1 ≤ j ≤m2, let the position of α corresponding to the data value dj be 2ij .
From the construction of α from (S,χ,∼), by an induction on the structure of position terms, we can prove the

following result.

For every t ∈ TA and every j ∶ −m1 ≤ j ≤m2, t ∈ Tj iff tα[2i0] = 2ij. (∗)

Let us take t = sucA(cur) as an example to illustrate the proof.
Suppose sucA(cur) ∈ Tj , then bj ∈ A and for every j′ ∶ 0 < j′ < j, bj′ ∉ A, and for every j′ ∶ 0 ≤ j′ < j − 1, b′j ∉ A; in

addition, b′j−1 ∈ A implies sj−1 = 1. From this, we deduce that (sucA(cur))α[2i0] = 2ij , since all the word symbols
located after the position 2i0 and before the position 2(ij − 1) in α do not belong to A.

On the other hand, suppose (sucA(cur))α[2i0] = 2ij , then the word symbol immediately before the position 2ij ,
that is, bj , belongs to A, and all the word symbols located after the position 2i0 and before the position 2(ij − 1)
in α do not belong to A. From the construction of α, it follows that bj ∈ A and for every j′ ∶ 0 < j′ < j, bj′ ∉ A, and
for every j′ ∶ 0 ≤ j′ < j − 1, b′j ∉ A; in addition, b′j−1 ∈ A implies sj−1 = 1 and b′j−1 = bj . From this, we conclude that
sucA(cur) ∈ Tj .

From the result (∗), we conclude that profα[2i0] = (S,χ,∼).

Let ProfA denote the set of elements of Σprof that are consistent. Suppose (S,χ,∼) ∈ ProfA,

χ = (b−m1 , T−m1 , b
′
−m1

, s−m1) . . . (b−1, T−1, b
′
−1, s−1)(b0, T0, b

′
0, s0)(b1, T1, b

′
1, s1) . . . (bm2 , Tm2 , b

′
m2
, sm2) ,

and c ∈ CA. Then the satisfaction of c over (S,χ,∼), denoted by (S,χ,∼) ⊧ c, can be defined by interpreting c over
(S,χ,∼) in a natural way. For instance, if c = t1 ∼ t2, then (S,χ,∼) ⊧ c if t1, t2 ∈ S and t1 ∼ t2.

Suppose a ∈ Σ±, (S1, χ1,∼1), (S2, χ2,∼2) ∈ ProfA, for i = 1,2,

χi =
(bi,−mi,1 , Ti,−mi,1 , b′i,−mi,1 , si,−mi,1) . . . (bi,−1, Ti,−1, b

′
i,−1, si,−1)

(bi,0, Ti,0, b′i,0, si,0)(bi,1, Ti,1, b′i,1, si,1) . . . (bi,mi,2 , Ti,mi,2 , b′i,mi,2 , si,mi,2)
.

In the following, we will define the concept that (S2, χ2,∼2) is a successor of (S1, χ1,∼1) with respect to a, denoted

by (S2, χ2,∼2)
aÐ→ (S1, χ1,∼1).

For every j ∶ −m1,1 ≤ j ≤m1,2, construct T ′1,j ⊆ TA from T1,j as follows.

● For every t ∈ T1,j such that suc(cur) ⪯ t, let t[suc(cur)/cur] ∈ T ′1,j .
● For every t ∈ T1,j and A ⊆ Σ± such that a ∈ A and sucA(cur) ⪯ t, let t[sucA(cur)/cur] ∈ T ′1,j .
● For every t ∈ T1,j such that t[cur/pred(cur)] ∈ TA, let t[cur/pred(cur)] ∈ T ′1,j .
● For every t ∈ T1,j and A ⊆ Σ± such that a ∈ A and t[cur/predA(cur)] ∈ TA, let t[cur/predA(cur)] ∈ T ′1,j .
● For every t ∈ T1,j such that a ∉ A, sucA(cur) ⪯ t or predA(cur) ⪯ t, let t ∈ T ′1,j .
● If s1,0 = 1, let cur ∈ T ′1,1.

Note that T ′1,j ’s defined above may be empty for some j ∶ −m1 ≤ j ≤m2.

(S1, χ1,∼1)
aÐ→ (S2, χ2,∼2) if the following conditions hold.

● b′1,0 = a.

● Let j1j2 . . . j` ∶ −m1,1 ≤ j1 < j2 < ⋅ ⋅ ⋅ < j` ≤ 0 be the sequence of the non-positive indices such that for every
r ∶ 1 ≤ r ≤ `, T ′1,jr ≠ ∅ (and all the other T ′1,j ’s for non-positive j’s are empty). Then the sequence

(b2,−m2,1 , T2,−m2,1 , b
′
2,−m2,1

, s2,−m2,1) . . . (b2,−1, T2,−1, b
′
2,−1, s2,−1)

is equal to the sequence (b1,j1 , T ′1,j1 , b
′
1,j1

, s1,j1) . . . (b1,j` , T ′1,j` , b
′
1,j`

, s1,j`).
● There is a partial mapping f from {1, . . . ,m1,2} to {0, . . . ,m2,2} such that

– for every j ∶ 1 ≤ j ≤m1,2, f(j) is undefined iff T ′1,j = ∅,

– f is increasing, that is, if j1 < j2 and f(j1), f(j2) are defined, then f(j1) < f(j2),
– for every j ∶ 1 ≤ j ≤m1,2, if f(j) is defined, then T ′1,j ⊆ T2,f(j), b1,j = b2,f(j) and b′1,j = b′2,f(j),
– if f(1) is defined, then f(1) = 0 iff s1,0 = 1,

– for every j ∶ 1 ≤ j < m1,2, if f(j), f(j + 1) are both defined, then s1,j = 1 implies f(j + 1) = f(j) + 1 and
s2,f(j) = 1,

17

– for every j1, j2 ∶ j1 < j2, if f(j1), f(j2) are both defined, then for every t ∈ T2,f(j1), t
′ ∈ T2,f(j2), t ∼2 t

′ iff
there are t1 ∈ T1,j1 , t

′
1 ∈ T1,j2 such that t1 ∼1 t

′
1.

Intuitively, (S1, χ1,∼1) is rotated one-position to the left to get the profile (S2, χ2,∼2). The T ′1,j ’s together with
f above define the information that should be inherited during the rotation.

We are ready to construct the NRAG B.
There are 2∣TA∣ + 1 registers in B, that is,

r1, . . . , r∣TA∣, r∣TA∣+1, . . . , r2∣TA∣.

Over a data path α = d0a1d1 . . . andn, B does the following.

● In each position 2i (0 ≤ i ≤ n), B guesses πi = (Si, χi,∼i) ∈ ProfA (where πi is supposed to be profα[2i]). In
addition,

– if i = 0, then π0 = (S0, χ0,∼0) is an initial profile, that is, for every t ∈ TA such that pred(cur) ⪯ t or
predA(cur) ⪯ t for some A ⊆ Σ±, t ∉ S0,

– if i = n, then πn = (Sn, χn,∼n) is a final profile, that is, for every t ∈ TA such that suc(cur) ⪯ t or sucA(cur) ⪯ t
for some A ⊆ Σ±, t ∉ Sn.

● For every i ∶ 0 ≤ i ≤ n, if

χi =

(bi,−mi,1 , Ti,−mi,1 , b′i,−mi,1 , si,−mi,1) . . .
(bi,−1, Ti,−1, b

′
i,−1, si,−1)(bi,0, Ti,0, b′i,0, si,0)

(bi,1, Ti,1, b′i,1, si,1) . . .
(bi,mi,2 , Ti,mi,2 , b′i,mi,2 , si,mi,2)

,

then after the position 2i is visited (that is, the reading head is in 2i + 1), for each j ∶ −mi,1 ≤ j ≤mi,2, B stores
in the register rj+∣TA∣ the data value corresponding to Ti,j . In particular, B stores the data value di in r∣TA∣.

● Over each pair of positions 2i and 2(i + 1) (where 0 ≤ i < n), B checks that πi
ai+1ÐÐ→ πi+1. To do this, B copies

(by guessing) data values between registers and guesses some data values for a few registers.
● At the same time, B simulates the run of A as follows.

– If A makes a transition (q, ai, q′) over ai, then B checks that b′i−1,0 = ai and changes the state from q to q′.

– If A makes a transition (q, c, q′) over di, then B checks that πi satisfies c, verifies that di is equal to the data
value stored in rj+∣TA∣ for each j ∶ −m1 ≤ j ≤m2 such that there is t ∈ Tj satisfying cur ∼i t (in particular, di
should be equal to the data value in r∣TA∣), and changes the state from q to q′.

– B accepts if A accepts and a final profile is reached.

From the above construction, we know that in its states, B should record the states of A and the guessed profiles.
Therefore, the number of states of B is polynomial over ∣Q∣ and exponential over ∣TA∣.

Proposition 6 The nonemptiness of NRRAs and DRRAs is PSPACE-complete.

Proof. The upper bound:
From Theorem 3, given a NRRA A = (Q, δ, I,F), an equivalent NRAG B = (Q′, k, δ′, I ′, F ′) can be constructed

such that L (A) is nonempty iff L (B) is nonempty. Moreover, B satisfies that ∣Q′∣ is polynomial over ∣Q∣ and
exponential over ∣TA∣, and k is polynomial over ∣TA∣.

From the proof of Proposition 5, we know that a NFA B′ can be constructed from B such that L (B′) is nonempty
iff L (B) is nonempty. Since the number of states of B′ is polynomial over ∣Q′∣ and exponential over k, it follows
that the number of states of B′ is polynomial over ∣Q∣ and exponential over ∣TA∣. To decide the nonemptiness of A,
an accepting run of B′ can be guessed nondeterministically in polynomial space. The PSPACE upper bound then
follows from Savitch’s theorem.

The lower bound:
The reduction from the membership problem of polynomial space Turing machines to the nonemptiness problem

of NRAs or DRAs ([10]) can be adapted to a reduction to the nonemptiness problem of NRRAs or DRRAs.

Proposition 7 For every NRRA A, there is an equivalent DRRA of exponential size.

Proof. Let A = (Q, δ, I,F) be a NRRA. We construct a DRRA A′ = (Q′, δ′, q′0, F
′) as follows:

● Q′ = Q′
w ∪Q′

d, where Q′
w = 2Qw , Q′

d = 2Qd ,

● q′0 = I,F ′ = {S ∈ Q′
w ∣ S ∩ F ≠ ∅},

18

● δ′ = δ′w ∪ δ′d is defined as follows:

– δ′w = {(S, a,S′) ∣ S ∈ Q′
w, S

′ ∈ Q′
d, S

′ = {q′ ∣ ∃q ∈ S.(q, a, q′) ∈ δw}},

– δ′d is defined as follows:
For every S ∈ Q′

d, let C denote the set of rigid data constraints occurring in the tuples (q, c, q′) ∈ δd such that
q ∈ S. Then δ′d contains all tuples (S, c′, S′) such that there exists C ′ ⊆ C satisfying that c′ = ⋀

c∈C′
c∧ ⋀

c∈C∖C′
c̄,

and S′ = {q′ ∣ ∃q ∈ S, c ∈ C ′.(q, c, q′) ∈ δd}.

Note that the transitions (S, c′, S′) may be non-applicable if c′ is unsatisfiable.
If (S, c′1, S′1), (S, c′2, S′2) ∈ δ′d such that S′1 ≠ S′2, then there are C ′

1,C
′
2 such that C ′

1 ≠ C ′
2, c′1 = ⋀

c∈C′
1

c ∧ ⋀
c∈C∖C′

1

c̄ and

c′2 = ⋀
c∈C′

2

c∧ ⋀
c∈C∖C′

2

c̄. It is easy to observe that if C ′
1 ≠ C ′

2, then c′1 ∧ c′2 is unsatisfiable. Therefore, A′ is a DRRA.

Corollary 2 The language inclusion problem for NRRAs is PSPACE-complete.

Proof. The upper bound:
Let A = (Q1, δ1, I1, F1) and B = (Q2, δ2, I2, F2) be two NRRAs. To decide whether L (A) ⊆ L (B), we use the

following procedure.

● Determinize and complement B, let C be the resulting DRRA.

● Construct the product of A and B, say C′, that defines L (A) ∩L (C). Check whether L (C′) ≠ ∅.

From the proof of Proposition 7, we know that the size of C is exponential over ∣Q2∣. Thus, the size of C′ is
polynomial over ∣Q1∣ and exponential over ∣Q2∣. The set of position terms of C′ is the union of TA and TB.

From the proof of Proposition 6, it follows that the nonemptiness of C′ can be reduced to that of a NFA of size
polynomial over ∣Q1∣, exponential over ∣Q2∣, and exponential over ∣TA∣, ∣TB ∣.

From Savitch’s theorem, we conclude that L (A) ⊆ L (B) can be decided in PSPACE.
The lower bound:
The language inclusion of NFAs is already PSPACE-hard.

C. PROOFS IN SECTION 3.3
Proposition 8. For every 2NRRA, there is an equivalent NRRA of exponential size.

Proof. The proof is an adaptation of Shepherdson’s method [20] to construct an equivalent NFA from a two-way
NFA.

Let A = (Q,⊢,⊣, δ, I, F) be a 2NRRA. We construct a NRRA A′ = (Q′, δ′, I ′, F ′) as follows.

● Q′ = Q′
d ∪Q′

w, where

– Q′
d is the set of all tuples (C, f) ∈ 2CA × (Q∪{�})Qd∪{⋅} such that ⋀

c∈C
c is satisfiable, f(⋅) ∈ Qd, and for every

q ∈ Qd, f(q) ∈ Qw ∪ {�},

– Q′
w is the set of all tuples (a, f) ∈ (Σ± ∪ {⊣}) × (Q ∪ {�})Qw∪{⋅} such that f(⋅) ∈ Qw, and for every q ∈ Qw,

f(q) ∈ Qd ∪ {�}.

● I ′ is the set of (C, f) ∈ Q′
d satisfying the following conditions,

– f(⋅) = q such that (q′,⊢, q,+1) ∈ δw for some q′ ∈ I,

– if f(q) = q′, then there exist q0, q1, . . . , qk ∈ Qd and p1, . . . , pk ∈ Qw such that

∗ q0 = q,
∗ for every i ∶ 0 ≤ i < k, there is ci ∈ C such that (qi, ci, pi+1,−1) ∈ δd, and for every i ∶ 1 ≤ i ≤ k,

(pi,⊢, qi,+1) ∈ δw,

∗ there is c ∈ C such that (qk, c, q′,+1) ∈ δd.
● δ′ are defined as follows.

– Let (a, f) ∈ Q′
w, (C, f ′) ∈ Q′

d. Then ((a, f), a, (C, f ′)) ∈ δ′w if for every pair (q, q′) such that q ∈ Qd, q′ ∈ Qw
and f ′(q) = q′, the following condition holds.

There exist q0, q1, . . . , qk ∈ Qd, p1, . . . , pk ∈ Qw such that q0 = q, and the following conditions hold,

1. for every 0 ≤ i < k, there exists c ∈ C such that (qi, c, pi+1,−1) ∈ δd,
2. for every 1 ≤ i ≤ k, f(pi) = qi,

19

3. there is c ∈ C such that (qk, c, q′,+1) ∈ δ.
– Let (C, f) ∈ Q′

d, (a, f ′) ∈ Q′
w. Then ((C, f), ⋀

c∈C
c, (a, f ′)) ∈ δ′d iff the following conditions hold.

For every pair (q, q′) such that q, q′ ∈ Q and f ′(q) = q′, there exist q0, q1, . . . , qk ∈ Qw and p1, . . . , pk ∈ Qd
satisfying that q0 = q, and

1. for every 0 ≤ i < k, (qi, a, pi+1,−1) ∈ δw,

2. for every 1 ≤ i ≤ k, f(pi) = qi,
3. (qk, a, q′,+1) ∈ δw.

● F ′ consists of all (⊣, f) ∈ Q′
w such that

– f(⋅) = q ∈ Qw,

– for every q′ ∈ Qw, f(q′) = �,

– there is (C, f ′) ∈ Q′
d such that ((C, f ′), ⋀

c∈C
c, f) ∈ δ′d, there are p1, . . . , pk ∈ Qd and q0, . . . , qk ∈ Qw satisfying

that q0 = q, for every i ∶ 0 ≤ i < k, (qi,⊣, pi+1,−1) ∈ δw, and for every i ∶ 0 ≤ i ≤ k, f ′(pi) = qi, and qk ∈ F .

Now we prove the correctness of the construction, that is, for every data path α = d0a1d1 . . . andn, A accepts α iff
A′ accepts α.

“Only if direction”:
Suppose A accepts α. Then there is an accepting run of A over α, say (q0, i0)θ0(q1, i1)θ1 . . . θm−1(qm, im), such

that

● q0 ∈ I, qm ∈ F ,

● i0 = 0, im = 2n + 2,

● for every j ∶ 0 ≤ j < m, if ij is even, then there is dir ∈ {+1,−1} such that (qj , aij/2, qj+1, dir) ∈ δw (where
a0 =⊢, an+1 =⊣), θj = aij/2, and ij+1 = ij + dir,

● for every j ∶ 0 ≤ j ≤ m, if ij is odd, then there are c ∈ Crgd and dir ∈ {+1,−1} such that (qj , c, qj+1, dir) ∈ δd,
(α, ij − 1) ⊧ c, θj = c, and ij+1 = ij + dir.

Without loss of generality, we assume that in the accepting run above, no states are repeated when the reading
head moves to the same position, more precisely, the following condition holds.

For every j1, j2 ∶ 0 < j1 < j2 <m such that ij1 = ij2 , it holds that qij1 ≠ qij2 . (∗)

The above assumption is justified by the fact that if a state is repeated in the same position, then the subrun between
the repetitions can be trimmed and the remaining part is still an accepting run.

For each i ∶ 1 ≤ i ≤ 2n + 2, define fi as follows.

1. For every q ∈ Q, if there are j1, j2 ∶ 0 ≤ j1 < j2 <m such that

● qj1 = q, qj2 = q′,
● ij1 = i, ij2 = i + 1, and for every j′ ∶ j1 < j′ < j2, ij′ ≤ i,

then fi(q) = q′, otherwise fi(q) = �.

Note that the assumption (∗) guarantees that for every i, there is at most one pair (j1, j2) satisfying the above
condition. So fi is well-defined.

2. fi(⋅) = q, where q ∈ Q satisfies that there exists j ∶ 0 < j ≤m such that ij = i, q = qij , and for every j′ ∶ 0 ≤ j′ < j,
ij′ < i.

For each i ∶ 0 ≤ i ≤ n, define Ci ⊆ CA as the set of θj ’s such that ij = 2i + 1.
Then

(C0, f1)(⋀
c∈C0

c)(a1, f2)a1(C1, f3) . . . (an, f2n)an(Cn, f2n+1)(⋀
c∈Cn

c)(⊣, f2n+2)

is an accepting run of A′ over α.

“If direction”:
Suppose (C0, f0)c0(a1, f1)a1(C1, f2) . . . (an, f2n−1)an(Cn, f2n)cn(⊣, f2n+1) is an accepting run of A′ over α.
Since f2n+1 ∈ F ′, there exist q0, q1, . . . , qk ∈ Qw and p1, . . . , pk ∈ Qd such that

● f2n+1(⋅) = q0,

● for every i ∶ 0 ≤ i < k, (qi,⊣, pi+1,−1) ∈ δw, and for every i ∶ 1 ≤ i ≤ k, f2n(pi) = qi,

20

● qk ∈ F .

From the fact that f2n+1(⋅) = q0 ≠ �, we deduce from the definition of δ′ in A′ that fi(⋅) ≠ � for every i ∶ 0 ≤ i ≤ 2n.
It follows that for every i ∶ 1 ≤ i ≤ 2n + 1, fi(⋅) = fi−1(fi−1(⋅)).

From the fact that f0(⋅) ≠ �, there is p0 ∈ I such that (p0,⊢, f0(⋅),+1) ∈ δw.
By induction on i ∶ 0 ≤ i ≤ 2n, we can show that if fi(q) = q′, then there is a subrun ρiq,q′ from (q, i+1) to (q′, i+2)

of A over ⊢ α ⊣.
Consider the composition of the following subruns,

(p0,0) ⊢ (f0(⋅),1), ρ1
f0(⋅),f0(f0(⋅)), ρ

2
f1(⋅),f1(f1(⋅)), . . . , ρ

2n
f2n(⋅),f2n(f2n(⋅)), (q0,2n + 2) ⊣ (p1,2n + 1), ρ2n

p1,q1 ,

(q1,2n + 2) ⊣ (p2,2n + 1), ρ2n
p2,q2 , . . . , (qk−1,2n + 2) ⊣ (pk,2n + 1), ρ2n

pk,qk
.

Let ρ denote this composition. Then ρ is an accepting run of A over α.

D. PROOFS IN SECTION 4
Proposition 10 The evaluation for 2RRDPQs is PSPACE-complete, and NLOGSPACE-complete in data complex-
ity.

Proof. The upper bound:
We use the idea to prove the PSPACE upper bound for 2RDPQs in [18].
Let G = (V,E, η) be a data graph,ξ = (x,L, y) be a 2RRDPQ, and (v1, v2) ∈ V ×V . Suppose L is given by a NRRA

A = (Q, δ, I,F) over Σ±.
Let D be the set of data values occurring in G . Then G plus (v1, v2) can be seen as a NFAAG ,(v1,v2) = (Q′, δ′, I ′, F ′)

with initial state (v1)s and final state (v2)t over the alphabet Σ± ∪D as follows.

● Q′ = {vs, vt ∣ v ∈ V },

● δ′ = {(vt, a, v′s), (v′t, a−, vs) ∣ (v, a, v′) ∈ E} ∪ {(vs, d, vt) ∣ v ∈ V, η(v) = d},

● I ′ = {v1}, F ′ = {v2}.

From the proof of Theorem 3, we know that from A, an equivalent NRAG B = (Q′, k, δ′, I ′, F ′) can be constructed
such that ∣Q′∣ is polynomial over ∣Q∣ and exponential over ∣TA∣, and k is polynomial over ∣TA∣.

When restricted to the data paths where all data values are from D, the NRAG B can be seen as a NFA B′ over
the alphabet Σ± ∪D with the state space Q′ ×D[k]. It follows that the size of the state space of B′ is exponential
over the size of A and polynomial over the size of D.

To decide whether (v1, v2) ∈ ξ(G), it is sufficient to check whether L (AG ,(v1,v2) ∩ B′) ≠ ∅. Since an accepting
run of AG ,(v1,v2) ∩ B′ can be guessed in polynomial space, from Savitch’s theorem, we conclude that the evaluation
problem of NRRAs is in PSPACE.

If the size of A is bounded by a constant, then an accepting run of AG ,(v1,v2) ∩ B′ can be guessed in logarithmic
space, it follows that the upper bound of the data complexity of the evaluation problem of NRRAs is NLOGSPACE.

The PSPACE lower bound is obtained by an easy reduction from the nonemptiness of NRRA. The NLOGSPACE
lower bound of data complexity is from that of RPQs.

Theorem 4. Let k ≥ 1, ξ = (x,L, y) be a 2RDPQ over the alphabet Σ such that L is given by a NRA or REM
containing at most k-registers. Then a 2RRDPQ ξ′ = (x,L′, y) over the alphabet Σ± ∪ {Ai,A−

i ∣ 1 ≤ i ≤ k} can be
constructed in polynomial time such that for every data graph G = (V,E, η), ξ(G) = ξ′(Gdn,k).

Proof. Let (x,L, y) be a 2RDPQ. We first consider the situation that L is given by a NRA A = (Q,k, δ, I, F)
over the alphabet Σ±.

In the following, we will construct a NRRA A′ = (Q′, δ′, I ′, F ′) over Σ± ∪ {Ai,A−
i ∣ 1 ≤ i ≤ k} so that ξ′ =

(x,L (A′), y) satisfies that ξ(G) = ξ′(Gdn,k).
The intuition of A′ is to simulate the run of A, by using the following tricks.

Every time a data value d is stored into the i-th register in A, the sequence dAidA
−
i d is read by A′. Later

on, we can refer to the data values stored in the i-th register by using the position terms predA−
i
.

We formally define A′ = (Q′, δ′, I ′, F ′) as follows.

● Q′ = Q′
w ∪Q′

d such that

– Q′
w is the union of Qw and δd × {Ai,A−

i ∣ 1 ≤ i ≤ k},

– Q′
d is the union of Qd and δd × {$i,#i ∣ 1 ≤ i ≤ k}.

21

● I ′ = I,F ′ = F .

● δ′ = δ′w ∪ δ′d is defined as follows.

– δw ⊆ δ′w.

– For every transition (q, c, q′,X) ∈ δd, let c′ ∈ Crgd[Σ±] be obtained from c by replacing every rj (1 ≤ j ≤ k)
with predA−

j
and r0 with cur. If X = ∅, then (q, c′, q′) ∈ δ′d, otherwise, let X = {ri1 , . . . , ri`}, then δ′ includes

the following transitions,

q
c′Ð→ ((q, c, q′,X),Ai1)

Ai1ÐÐ→ ((q, c, q′,X),$1)
trueÐÐ→ ((q, c, q′,X),A−

i1
)

A−
i1ÐÐ→ ((q, c, q′,X),#1)

trueÐÐ→ ((q, c, q′,X),Ai2)
Ai2ÐÐ→ ((q, c, q′,X),$2) . . .

trueÐÐ→ ((q, c, q′,X),Ai`)
Ai`ÐÐ→ ((q, c, q′,X),$`)

trueÐÐ→ ((q, c, q′,X),A−
i`
)

A−
i`ÐÐ→ ((q, c, q′,X),#`)

trueÐÐ→ q′

If L is given by a REM e over the alphabet Σ±, we construct a RREM e′ such that ξ′ = (x,L(e′), y) over the
alphabet Σ± ∪ {Ai,A−

i ∣ 1 ≤ i ≤ k} satisfies that ξ(G) = ξ′(Gdn,k).
From a REM e, we construct a RREM tr(e) by an induction on the structure of REMs. The nontrivial cases are

e =↓X e1 and e = e1[c]. For e =↓X e1, suppose X = {ri1 , . . . , ri`}, then tr(e) = Ai1A−
i1
. . .Ai`A

−
i`
tr(e1). For e = e1[c],

let c′ ∈ Crgd be obtained from c by replacing rj with predA−
j

and r0 with cur, then tr(e) = tr(e1) ⋅ [c′].

E. PROOFS IN SECTION 5
Proposition 11. The evaluation of C2RRDPQs is PSPACE-complete, and NLOGSPACE-complete in data com-
plexity.

Proof. The PSPACE lower bound follows from that of 2RRDPQs. The NLOGSPACE lower bound follows from
that of RPQs.

The upper bound:
Let ξ ∶= Ans(z̄)← ⋀

1≤i≤l
(y2i−1, Li, y2i) be a C2RRDPQ, G = (V,E, η) a data graph, and v is a tuple of nodes of the

same arity as z. Suppose for every i ∶ 1 ≤ i ≤ l, Li is given by a NRRA Ai = (Qi, δi, Ii, Fi) over the alphabet Σ±.
From the proof of Theorem 3, we know that from each Ai, an equivalent NRAG Bi = (Q′

i, ki, δ
′
i, I

′
i, F

′
i) can be

constructed such that ∣Q′
i∣ is polynomial over ∣Qi∣ and exponential over ∣TAi ∣, and k is polynomial over ∣TAi ∣.

When restricted to the data paths where all data values are from D, the NRAG Bi can be seen as a NFA B′i over
the alphabet Σ± ∪D with the state space Q′

i ×D[ki]. It follows that the size of the state space of B′i is exponential
over the size of Ai and polynomial over the size of D.

To check wether v̄ ∈ ξ(G), an assignment ν of nodes in V to {y1, . . . , y2l} is first guessed such that ν(z) = v.
Similarly to the proof of Proposition 10, for every pair (ν(y2i−1), ν(y2i)), the data graph G together with

(ν(y2i−1), ν(y2i)) can be seen as a NFA AG ,i over the alphabet Σ± ∪ D with the initial state (ν(y2i−1))s and
the final state (ν(y2i))t.

Then for every i ∶ 1 ≤ i ≤ l, an accepting run of AG ,i ∩ B′i can be guessed in polynomial space. To check whether
v ∈ ξ(G), the accepting runs of the NFAs AG ,i ∩ B′i can be guessed one by one. From Savitch’s theorem, we deduce
that the nonemptiness of C2RRDPQs is in PSPACE.

Similarly, if the size of ξ is bounded by a constant, then the assignment ν and the accepting runs of AG ,i ∩ B′i
can be guessed in logarithmic space. Therefore, the evaluation problem of C2RRDPQs has the NLOGSPACE data
complexity.

Lemma 2. Suppose π′ = v0a1v1 . . . a`v` is a semipath in G such that urvπ(π′) = π′0# . . .#π′r and trc(π′) =
p0b1p1 . . . b`+2rp`+2r (where b1, . . . , b`+2r ∈ Σ± ∪ {#}). Then for every i ∶ 0 ≤ i ≤ ` + 2r, there exists a function

posi ∈ (Tp[Σξ1] ∪ {�})TA such that for every t ∈ TA, posi(t) = � iff tadj
urvπ(π′)

[2i] = �; moreover, if posi(t) ≠ � and

tadj
urvπ(π′)

[2i] = 2i′, then (posi(t))αG
[pi] = pi′ .

Proof. Let π′ = v0a1v1 . . . a`v` be a semipath in G , unrπ(π′) = π′0# . . .#π′r such that for every s ∶ 0 ≤ s ≤ r, all
the edges on π′s belonging to πjs for some js ∶ 1 ≤ js ≤ l1, and trc(π′) = p0b1p1 . . . b`+2rp`+2r.

We prove the lemma by an induction on the structure of position terms.
Induction base: For every i ∶ 0 ≤ i ≤ ` + 2r, posi(cur) = cur.
Induction step:

22

Let us first consider the case t = suc(t1).
Let i ∶ 0 ≤ i ≤ ` + 2r.
If tadj

urvπ(π′)
[2i] = �, then let posi(t) = �. Otherwise, tadj

urvπ(π′)
[2i] = 2i′ for some i′. From t = suc(t1), it follows that

(t1)adjurvπ(π′)[2i] = 2i′′ for some i′′ such that 2i′ = 2i′′ + 2 or 2i′ = 2i′′ + 4.

According to the induction hypothesis, there exists posi(t1) ∈ Tp[Σξ1] such that (posi(t1))αG
[pi] = pi′′ .

● If 2i′ = 2i′′+2, then let posi(t) = posi(suc(t1)) = suc(posi(t1)) if pi′′ < pi′ , otherwise, let posi(t) = posi(suc(t1)) =
pred(posi(t1)).

● If 2i′ = 2i′′ + 4, then there are j1, j2 ∶ 1 ≤ j1, j2 ≤ l1 such that one of the following conditions holds,

1. pi′′ is the position immediately before $2j1 , pi′ is the third position before $2j2 in αG , and j1 ≠ j2,

2. pi′′ is the position immediately before $2j1 , pi′ is the third position after $2j2−1,

3. pi′′ is the position immediately after $2j1−1, pi′ is the third position before $2j2 ,

4. pi′′ is the position immediately after $2j1−1, pi′ is the third position after $2j2−1, and j1 ≠ j2.

We illustrate the argument by considering the second situation above. The arguments for the other three
situations are similar.

– if j1 < j2, then let posi(suc(t1)) = suc(suc$2j2−1
(posi(t1))),

– if j1 > j2, then let posi(suc(cur)) = suc2(pred$2j2−1
(posi(t1))).

The case t = pred(t1) can be discussed similarly as t = suc(t1).
Now consider the case t = sucA(t1).
Let i ∶ 0 ≤ i ≤ ` + 2r.
If tadj

urvπ(π′)
[2i] = �, let posi(t) = �. Otherwise, let tadj

urvπ(π′)
[2i] = 2i′. From t = sucA(t1), we know that

(t1)adjurvπ(π′)[2i] = 2i′′ for some i′′ such that 2i′′ < 2i′.

From the induction hypothesis, (posi(t1))αG
(pi) = pi′′ .

If there are no # symbols in the subpath of urvπ(π′) from the position 2i′′ to 2i′, then the position 2i′′ and 2i′

both belong to π′s for some s ∶ 0 ≤ s ≤ r. It follows that pi′′ and pi′ are two positions between $2js−1 and $2js in αG .
Define posi(t) as follows.

● If pi′ < pi′′ , let posi(sucA(t1)) = predA×{js}(posi(t1)).
● If pi′′ < pi′ , let posi(sucA(t1)) = sucA×{js}(posi(t1)).
Otherwise (that is, there are # symbols from 2i′′ to 2i′), let 2i′′′ be the position before the position 2i′ on urvπ(π′)

such that 2i′′′ is a position immediately after # and 2i′′′ is the last position before 2i′ satisfying this property. Let
s ∶ 0 ≤ s ≤ r such that 2i′′′ and 2i′ are two positions belonging to π′s. Then p2i′′′ is the position immediately after
$2js−1 or the position immediately before $2js in αG . We illustrate the argument by considering the situation that
p2i′′′ is the position immediately after $2js−1. The discussion for the latter situation is similar. Define posi(t) as
follows.

● If pi′ < pi′′ , let posi(sucA(t1)) = sucA×{js}(pred$2js−1
(posi(t1))).

● If pi′′ < pi′ , let posi(sucA(t1)) = sucA×{js}(suc$2js−1
(posi(t1))).

The case t = predA(t1) can be discussed similarly to t = sucA(t1).
In summary, for every t = op(t1) ∈ Tp[Σ±] such that posi(t) ≠ � (where op = suc, pred, sucA, predA), there is

top ∈ Tp[Σξ1] such that posi(t) = top[cur/posi(t1)].

Theorem 6. Let G be a ν-canonical data graph for ξ1, ξ be a 2RRDPQ. Then a 2NRRA Aξ can be constructed
from ξ and ξ1 such that ξ(G) is nonempty iff Aξ accepts ⊢ αG ⊣.

Proof. Let π′ be a path in G , the π-unraveling of π be π′0 . . . π
′
r, where for every s ∶ 0 ≤ s ≤ r, all the edges on

π′s = visais+1vis+1 . . . vis+1 belong to πjs .
Our goal is to construct a 2NRRA B to simulate the runs of A′ over η(urvπ(π′)).
Similarly to the transformation from NRRAs to NRAGs in Theorem 3, the 2NRRA B goes through trc(π′) in

αG and guesses the profile of the current position of η(urvπ(π′)), in order to simulate A′ over η(urvπ(π′)). The
difference is that instead of storing and guessing the data values, B records and guesses a position term from Tp[Σξ1]
(interpreted over αG) for each position term occurring in the profile of the current position in η(urvπ(π′)). The
intricacy of the construction is how to guarantee the consistency of the guessed position terms Tp[Σξ1] and how to
update them during the simulation.

23

A locating profile loc of A′ over αG , is defined as a pair ((S,χ,∼), pos), where (S,χ,∼) ∈ ProfA (cf. proof of
Theorem 3),

χ = (b−m1 , T−m1 , b
′
−m1

, s−m1) . . . (b−1, T−1, b
′
−1, s−1)

(b0, T0, b
′
0, s0)(b1, T1, b

′
1, s1) . . . (bm2 , Tm2 , b

′
m2
, sm2)

and pos ∶ (Tp[Σξ1] ∪ {�})TA such that

● pos(t) = � for every t ∈ TA ∖ S,

● pos(cur) = cur,
● for every t, t′ ∈ S such that t ⪯ t′, we have pos(t) ⪯ pos(t′),
● for every t1, t2 ∈ S such that there is j ∶ −m1 ≤ j ≤ m2 satisfying that t1, t2 ∈ Tj , if op(t1), op(t2) ∈ S for
op ∈ {suc, pred, sucA, predA ∣ A ⊆ Σ±}, then there is top ∈ Tp[Σξ1] of the form as those in the proof of Lemma 2
(e.g. tsuc = suc(suc$2j2−1

(cur))) such that pos(op(tj)) = top[cur/pos(tj)] for j = 1,2.

Let Σloc denote the set of locating profiles.
Similar to the construction of NRAGs from NRRAs, we define two successor relations between locating profiles.
Let ((S1, χ1,∼1), pos1), ((S2, χ2,∼2), pos2) ∈ Σloc, a ∈ Σ±, j ∶ 1 ≤ j ≤ l1, 1 ≤ k1, k2 ≤ 2l1, and dir ∈ {+1,−1}.

In the following, we will define two relations ((S1, χ1,∼1), pos1)
((a,j),dir)
ÐÐÐÐÐÐ→ ((S2, χ2,∼2), pos2) and ((S1, χ1,∼1

), pos1)
(a,$k1 ,$k2)ÐÐÐÐÐÐ→ ((S2, χ2,∼2), pos2). The latter relation corresponds to the situation that the run of A′ is jumping

over # on urvπ(π′), and the former relation corresponds to the situation that the run of A′ is not.

At first, ((S1, χ1,∼1), pos1)
((a,j)dir)
ÐÐÐÐÐ→ ((S2, χ2,∼2), pos2) if the following conditions hold.

● (S1, χ1,∼1)
aÐ→ (S2, χ2,∼2).

● If suc(cur) ∈ S1, then pos1(suc(cur)) = suc(cur) if dir = +1, and pos1(suc(cur)) = pred(cur) otherwise.

● If a ∈ A and sucA(cur) ∈ S1, then pos1(sucA(cur)) = sucA×{j}(cur) if dir = +1, and pos1(sucA(cur)) =
predA×{j}(cur) otherwise.

● For every t ∈ S1 such that suc(cur) ⪯ t, if dir = +1, then pos2(t[suc(cur)/cur]) = pos1(t)[suc(cur)/cur],
otherwise, pos2(t[suc(cur)/cur]) = pos1(t)[pred(cur)/cur].

● For every t ∈ S1 such that sucA(cur) ⪯ t and a ∈ A, if dir = +1, then

pos2(t[sucA(cur)/cur]) = pos1(t)[sucA×{j}(cur)/cur],

otherwise, pos2(t[sucA(cur)/cur]) = pos1(t)[predA×{j}(cur)/cur].
● For every t ∈ S2 such that pred(cur) ⪯ t, pos2(t) = pos1(t[pred(cur)/cur]).
● For every t ∈ S2 such that predA(cur) ⪯ t and a ∈ A, pos2(t) = pos1(t[predA(cur)/cur]).
● For every t ∈ S1 such that sucA(cur) ⪯ t and a ∉ A, pos2(t) = pos1(t).
● For every t ∈ S1 such that predA(cur) ⪯ t and a ∉ A, pos2(t) = pos1(t).

In the following, we will define ((S1, χ1,∼1), pos1)
(a,$k1 ,$k2)ÐÐÐÐÐÐ→ ((S2, χ2,∼2), pos2) for k1, k2 satisfying that there

are k′1, k
′
2 ∶ 1 ≤ k′1, k′2 ≤ l1 such that one of the following conditions hold.

1. k1 = 2k′1, k2 = 2k′2, and k′1 ≠ k′2,

2. or k1 = 2k′1, k2 = 2k′2 − 1,

3. or k1 = 2k′1 − 1, k2 = 2k′2,

4. k1 = 2k′1 − 1, k2 = 2k′2 − 1, and k′1 ≠ k′2.

We will illustrate the definition for the first case above, the other three cases can be discussed in the same way.

Suppose k1 = 2k′1, k2 = 2k′2, and k′1 ≠ k′2 for some k′1, k
′
2. Then ((S1, χ1,∼1), pos1)

(a,$2k′
1
,$2k′

2
)

ÐÐÐÐÐÐÐ→ ((S2, χ2,∼2), pos2) if
the following conditions hold.

● (S1, χ1,∼1)
aÐ→ (S2, χ2,∼2).

● If suc(cur) ∈ S1, then pos1(suc(cur)) = pred2(suc$k2 (cur)) if k′1 < k′2, and pos1(suc(cur)) = pred(pred$k2
(cur))

otherwise.

24

● If a ∈ A and sucA(cur) ∈ S1, then pos1(sucA(cur)) = predA×{k′2}(suc$k2 (cur)) if k′1 < k′2, and pos1(sucA(cur)) =
predA×[k′2](pred$k2

(cur)) otherwise.

● For every t ∈ S1 such that suc(cur) ⪯ t, if k′1 < k′2, then

pos2(t[suc(cur)/cur]) = pos1(t)[pred2(suc$k2 (cur))/cur] ,

otherwise,

pos2(t[suc(cur)/cur]) = pos1(t)[pred(pred$k2
(cur))/cur] .

● For every t ∈ S1 such that sucA(cur) ⪯ t and a ∈ A, if k′1 < k′2, then

pos2(t[sucA(cur)/cur]) = pos1(t)[predA×{k′2}(suc$k2 (cur))/cur] ,

otherwise,

pos2(t[sucA(cur)/cur]) = pos1(t)[predA×[k′2](pred$k2
(cur))/cur] .

● For every t ∈ S2 such that pred(cur) ⪯ t, pos2(t) = pos1(t[pred(cur)/cur]).
● For every t ∈ S2 such that predA(cur) ⪯ t and a ∈ A, pos2(t) = pos1(t[predA(cur)/cur]).
● For every t ∈ S1 such that sucA(cur) ⪯ t and a ∉ A, pos2(t) = pos1(t).
● For every t ∈ S1 such that predA(cur) ⪯ t and a ∉ A, pos2(t) = pos1(t).
We are ready to construct the 2NRRA B.
Suppose π′ = v0a1v1 . . . a`v` is a semipath in αG , urvπ(π′) = π′0# . . .#π′r, for every s ∶ 0 ≤ s ≤ r, all the edges on π′s

belong to πjs (1 ≤ js ≤ l1), and trc(π′) = d0a
′
1p1 . . . a

′
`+2rp`+2r (where for every j ∶ 1 ≤ j ≤ `+ 2r, a′j ∈ Σ± ∪ {#}). Then

B does the following.

● In each position pi (0 ≤ i ≤ ` + 2r) of αG , B guesses a locating profile loci = ((Si, χi,∼i), posi) ∈ Σloc with

χi =
(bi,−mi,1 , Ti,−mi,1 , b′i,−mi,1 , si,−mi,1) . . . (bi,−1, Ti,−1, b

′
i,−1, si,−1)

(bi,0, Ti,0, b′i,0, si,0)(bi,1, Ti,1, b′i,1, si,1) . . . (bi,mi,2 , Ti,mi,2 , b′i,mi,2 , si,mi,2)
.

In addition,

– if i = 0, then loc0 = (S0, χ0,∼0) is an initial locating profile, that is, for every t ∈ TA such that pred(cur) ⪯ t
or predA(cur) ⪯ t for some A ⊆ Σ±, t ∉ S0,

– if i = `+2r, then loc`+2r = (S`+2r, χ`+2r,∼`+2r) is a final profile, that is, for every t ∈ TA such that suc(cur) ⪯ t
or sucA(cur) ⪯ t for some A ⊆ Σ±, t ∉ S`+2r.

● Over each pair of positions pi and pi+1 (where 0 ≤ i < ` + 2r) of αG ,

– if is + 2s ≤ 2i < is+1 + 2s for some s ∶ 0 ≤ s ≤ r, then B checks that loci
(a′i+1,js),dirÐÐÐÐÐÐÐ→ loci+1, where dir = +1 if

pi+1 = pi + 2, and dir = −1 otherwise,

– if 2i = is + 2(s − 1) for some s ∶ 1 ≤ s ≤ r (that is, 2i is the position immediately before # in urvπ(π′)), then

B jumps from pi to pi+1, then to pi+2, and checks that loci
(a′i+2,$k,$k′)ÐÐÐÐÐÐÐ→ loci+2, where

k = 2js−1 if pαG
(πjs−1 , vis) is the position immediately before $2js−1 , and k = 2js−1−1 if pαG

(πjs−1 , vis)
is the position immediately after $2js−1−1,
k′ = 2js if pαG

(πjs , vis) is the position immediately before $2js , and k′ = 2js − 1 if pαG
(πjs , vis) is the

position immediately after $2js−1.

● At the same time, B simulates the run of A′ over η(urcπ(π′)) as follows.

– If A′ makes a transition (q, ai, q′) over ai, then B checks that b′i−1,0 = ai and changes the state from q to q′.

– If A′ makes a transition (q, c, q′) in the position 2i of η(urcπ(π′)), then B checks that (Si, χi,∼i) satisfies
c, verifies that the data value in the current position is equal to the data value in the position represented
by posi(t) for each t ∈ Si such that cur ∼i t, and changes the state from q to q′.

– B accepts if A′ accepts and a final profile is reached.

From the above construction, we know that in its states, B should record the states of A′ and the guessed locating
profiles. Because both the number of profiles and the number of functions pos in locating profiles are exponential
over ∣TA∣, it follows that the number of states of B is polynomial over ∣Q∣ and exponential over ∣TA∣.

25

	Introduction
	Definitions
	Rigid register automata and its relatives
	Rigid data constraints
	Nondeterministic and deterministic rigid register automata
	Two-way nondeterministic rigid register automata
	Rigid regular expressions with memory

	Rigid regular path queries with data
	Conjunctive rigid regular path queries with data
	Canonical data graph
	Evaluating 2RRDPQs over canonical data graphs
	Checking the non-containment

	Conclusion
	References
	Proofs in Section 3.1
	Proofs in Section 3.2
	Proofs in Section 3.3
	Proofs in Section 4
	Proofs in Section 5

