
Extending Temporal Logics with Data Variable
Quantifications∗

Fu Song1 and Zhilin Wu2,3

1 Shanghai Key Laboratory of Trustworthy Computing and National Trusted
Embedded Software Engineering Technology Research Center,
East China Normal University, P.R.China
fsong@sei.ecnu.edu.cn

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, P.R.China
wuzl@ios.ac.cn

3 LIAFA, Université Paris Diderot, France

Abstract
Although data values are available in almost every computer system, reasoning about them is a
challenging task due to the huge data size or even infinite data domains. Temporal logics are
the well-known specification formalisms for reactive and concurrent systems. Various extensions
of temporal logics have been proposed to reason about data values, mostly in the last decade.
Among them, one natural idea is to extend temporal logics with variable quantifications ranging
over an infinite data domain. In this paper, we focus on the variable extensions of two widely used
temporal logics, Linear Temporal Logic (LTL) and Computation Tree Logic (CTL). Grumberg,
Kupferman and Sheinvald recently investigated the extension of LTL with variable quantifications.
They defined the extension as formulas in the prenex normal form, that is, all the variable
quantifications precede the LTL formulas. Our goal in this paper is to do a relatively complete
investigation on this topic. For this purpose, we define the extensions of LTL and CTL by allowing
arbitrary nestings of variable quantifications, Boolean and temporal operators (the resulting
logics are called respectively variable-LTL, in brief VLTL, and variable-CTL, in brief VCTL),
and identify the decidability frontiers of both the satisfiability and model checking problem.
In particular, we obtain the following results: 1) Existential variable quantifiers or one single
universal quantifier in the beginning already entails undecidability for the satisfiability problem
of both VLTL and VCTL, 2) If only existential path quantifiers are used in VCTL, then the
satisfiability problem is decidable, no matter which variable quantifiers are available. 3) For
VLTL formulas with one single universal variable quantifier in the beginning, if the occurrences
of the non-parameterized atomic propositions are guarded by the positive occurrences of the
quantified variable, then its satisfiability problem becomes decidable. Based on these results of
the satisfiability problem, we deduce the (un)decidability results of the model checking problem.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.3.1 Specifying and Verifying and
Reasoning about Programs

Keywords and phrases Temporal logics with variable quantifications, satisfiability and model
checking, alternating register automata, data automata

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

∗ Fu Song is supported by the NSFC under Grant No. 61402179, STCSM Pujiang Talent Project under
Grant No. 14PJ1403200, SHMEC&SHEDF ChenGuang Project under Grant No. 13CG21, the Open
Project of Shanghai Key Laboratory of Trustworthy Computing under Grant No. 07dz22304201301,
and Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No. ZF1213.
Zhilin Wu is supported by the NSFC under Grant No. 61100062, 61272135, and 61472474, and partially
supported by the visiting researcher program of China Scholarship Council.

© Fu Song and Zhilin Wu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Extending Temporal Logics with Data Variable Quantifications

1 Introduction
Context. Data values are ubiquitous in computer systems. To see just the tip of the iceberg,
we have the following scenarios: data variables in sequential programs, process identifiers in
concurrent parameterized systems where an unbounded number of processes interact with
each other, records in relational databases, attributes of elements of XML documents or nodes
of graph databases. On the other hand, reasoning about data values is a very challenging
task. Either their sizes are huge, e.g. one single 4-byte integer variable in C programs may
take values from −2, 147, 483, 64 to 2, 147, 483, 647, or they are even from an infinite domain,
e.g. process identifiers in parameterized systems.

Temporal logics are the widely used specification formalisms. They were originally
introduced to formally specify and reason about the behaviors of concurrent and reactive
systems. But later on, they also became popular in reasoning about the behaviors of sequential
programs. Linear temporal logic (LTL) and computation tree logic (CTL) are the two most
widely used temporal logics. Since temporal logics are targeted to specify the behaviors of
finite state systems, various extensions of temporal logics have been proposed to deal with
the data values, mostly in the last decade. Hodkinson et al. initiated the investigation of
first-order extensions of temporal logics, that is, first-order logic over relational structures
extended with temporal operators ([13, 14]). Their motivation is theoretical and they focused
on the decidability issues. Vianu and his coauthors used the first-order extensions of LTL
to specify and reason about the behaviors of database-driven systems ([22, 3]). Demri and
Lazic extended LTL with freeze quantifiers which can store data values into registers and
compare the data values with those stored in the registers ([6]). Schwentick et al., Demri et
al. , and Decker et al. considered extensions of LTL with navigation mechanisms for data
values or tuples over multi-attributed data words, that is, data words where each position
carries multiple data values ([16, 5, 4]).

Another natural idea is to extend temporal logics with variable quantifications over an
infinite data domain, which is our focus in this paper. There have been some work on this
topic. Grumberg et al. investigated the extension of LTL with variable quantifications.
They defined the extension as the formulas in prenex normal form, that is, all the variable
quantifications are in the beginning and are followed by LTL formulas, and investigated
the decidability of the satisfiability and the model checking problem over Kripke structures
extended with data variables ([10, 11]). Figueira proposed an extension of LTL with freeze
quantifiers of only one register, by quantifications over the set of data values occurring before
or after the current position of data words ([8]).
Contribution. Our goal in this paper is to do a relatively complete investigation on this
topic. For this purpose, we consider the extensions of both LTL and CTL with variable
quantifications (denoted by VLTL and VCTL) where the variable quantifiers can be nested
arbitrarily with temporal and Boolean operators, and the quantifications are not over the set
of data values occurring before or after the current position, but over the full data domain.
In addition, we investigate the decidability and complexity of both the satisfiability and the
model checking problem. More specifically, we obtain the following results.
1. Existential variable quantifiers or one single universal quantifier in the beginning already

entails undecidability for the satisfiability problem of both VLTL and VCTL.
2. If the existential variable quantifiers are not nested, then the satisfiability problem

becomes decidable for both VLTL and VCTL. The proof is obtained by a reduction to
the nonemptiness problem of alternating one register automata ([8]).

3. If only existential path quantifiers are used in VCTL, then the satisfiability problem is
decidable (NEXPTIME), no matter whatever variable quantifiers are available. This

Fu Song and Zhilin Wu 3

result is proved by a small model property.
4. For the fragment of VLTL with one single universal variable quantifier in the beginning,

if the occurrences of the non-parameterized atomic propositions are guarded by the
positive occurrences of the universally quantified variable, then the satisfiability problem
becomes decidable. The proof is obtained by a reduction to the nonemptiness of extended
data automata ([1]). This decidability result is tight in the sense that adding one more
existential variable quantifier before or after the universal one implies undecidability.

5. Based on the above results of the satisfiability problem, we also deduce the (un)decidability
results of the model checking problem.

The results obtained in this paper are summarized into Table 1 (where ∃,∀mean existential
and universal variable quantifier, pnf means prenex normal form, NN means non-nested,
the question mark means that the decidability is open). The reader can refer to Section 2 for
the definitions of the fragments of VLTL and VCTL.

∃∗-VLTL ∀∗-VLTL NN-∃∗-VLTL NN-∀∗-VLTL ∃∗-VLTLpnf

SAT U (T. 3) U (T. 6) D (T. 15) U (T. 6) D (T. 22, [10])
MC U (C. 7) U (C. 4) U (C. 7) D (C. 16) U (C. 7)

∀∗-VLTLpnf ∃-VLTLpnf ∀-VLTLpnf ∃-VLTLgdap
pnf ∀-VLTLgdap

pnf

SAT U (T. 6) D (T. 22, [10]) U (T. 6) D (T. 22, [10]) D (T. 26)
MC D (T. 22, [10]) U (C. 7) D (T. 22, [10]) D (C. 27) D (T. 22, [10])

∃∀-VLTLnoap
pnf ∀∃-VLTLnoap

pnf ∃∃-VLTLnoap
pnf ∀∀–VLTLnoap

pnf

SAT U (T. 10) U (T. 10) D (T. 22, [10]) ?
MC U (C. 12) U (C. 12) U (T. 9) D (T. 22, [10])

∃∗-VCTL ∀∗-VCTL NN-∃∗-VCTL NN-∀∗-VCTL ∃∗-VLTLpnf

SAT U (C. 5) U (C. 8) D (T. 17) U (Cor. 8) D (T. 23)
MC U (T. 9) U (T. 9) U (T. 9) D (Cor. 19) U (T. 9)

∀∗-VCTLpnf ∃-VCTLpnf ∀-VCTLpnf ∃-VCTLgdap
pnf ∀-VCTLgdap

pnf

SAT U (C. 8) D (T. 23) U (C. 8) D (T. 23) ?
MC D (T. 24) ? D (T. 24) ? D (T. 24)

∃∀-VCTLnoap
pnf ∀∃-VCTLnoap

pnf ∃∃-VCTLnoap
pnf ∀∀-VCTLnoap

pnf EVCTL
SAT U (C. 11) U (C. 11) D (T. 23) ? D (T. 20)
MC U (T. 9) U (T. 9) U (T. 9) D (T. 24) U (T. 9)

Table 1 Summary of the results: U: Undecidable, D: Decidable, T: Theorem, C: Corollary

Related Work. Emerson and Namjoshi proposed indexed CTL∗\X to specify and reason
about parameterized systems ([7]). The indexed CTL∗\X formulas they considered are in
prenex normal form and their main goal is to prove the “cutoff” results. Song and Touili
considered some extensions of LTL and CTL to detect the malware where the variable
quantifications can be nested arbitrarily with the other operators, but the variables range
over a finite domain ([20, 19]). The temporal logics extended with variable quantifications
ranging over an infinite data domain are the formalisms over infinite alphabets. Researchers
have proposed many such formalisms. To cite a few, nondeterministic register automata
([15]), first-order logic with two variables ([2]), XPath with data value comparisons ([9]).
Very recently, independently of this work, Sheinvald et al. considered the characterization of
simulation pre-order in VCTL∗ ([18]). VCTL∗ extends CTL∗ by unrestricted data variable
quantifications, thus subsumes VLTL and VCTL considered in this paper. But they have
not investigated the satisfiability and model checking problem for VCTL∗ yet.

4 Extending Temporal Logics with Data Variable Quantifications

The rest of this paper is organized as follows: Preliminaries are given in the next section,
Section 3 and 4 present respectively the undecidability and decidability results. All the
missing proofs will appear in the journal version of this paper.

2 Preliminaries
Let D be an infinite set of data values, AP a finite set of (non-parameterized) atomic
propositions, and T with AP ∩ T = ∅ a finite set of parameterized atomic propositions,
where each of them carries one parameter (data value). Let V ar be a countable set of data
variables which range over D. Let [k] denote the set {0, . . . , k − 1}, for all k ∈ N.

A word (resp. data word) w over AP (resp. AP ∪ T) is a finite sequence from (2AP)∗
(resp. (2AP∪T×D)∗). Given k ≥ 1, a k-ary tree is a set Z ⊆ [k]∗ s.t. for all zi ∈ Z: z ∈ Z
and zj ∈ Z for all j ∈ [i]. The node ε is called the root of the tree. For every z ∈ Z, the
nodes zi ∈ Z for i ∈ [k] are called the successors of z, denoted by suc(z). Let Leaves(Z)
denote the set of leaves of Z. A path π of a tree Z is a set π ⊆ Z s.t. ε ∈ π and ∀z ∈ π,
either z is a leaf, or there is a unique i ∈ [k] s.t. zi ∈ π. A k-ary labeled tree (resp. data
tree) t over AP (resp. AP ∪ T) is a tuple (Z,L), where Z is a k-ary tree and L : Z → 2AP
(resp. L : Z → 2AP∪T×D) is the labeling function. Given a labeled or data tree t = (Z,L),
let z ∈ Z and π be a path of t, then tz denotes the labeled or data subtree t rooted at z,
and wπ denotes the word or data word on the path π of t. For z ∈ Z in a tree or data tree
t = (Z,L), define the tree type of z in t, denoted by typet(z), as the set {l0, . . . , lk−1} s.t. for
every j ∈ [k], if zj ∈ Z, then lj = Oj , otherwise lj = Oj(Oj means the j-th child exists).

A variable Kripke structure1 (VKS) K is a tuple (AP ∪ T,X, S,R, S0, I, L, L
′), where

AP and T are defined as above, X and S are finite sets of variables and states respectively,
R ⊆ S × S is the set of edges, S0 ⊆ S is the set of initial states, I is the invariant function
that assigns to each state a formula which is a positive Boolean combination of xi = xj and
xi 6= xj for xi, xj ∈ X, L : S → 2AP∪T×X is the state labeling function, L′ : R→ 2{reset}×X
is the edge labeling function. Intuitively, if (reset, x) ∈ L′((s, s′)), then the value of the
variable x is reset (to any value) when going from s to s′.

The set of (finite) computation traces and computation trees can be defined similar to
Kripke structures. The difference is that the data values are added to positions or nodes of
computation traces or trees, while respecting the state invariants and the edge labelings. Let
L(K) and T (K) denote the set of computation traces and computation trees of K respectively.

For any VKS K with the set of variables X, it holds that in every computation trace w
or computation tree t of K, the number of data values occurring in each position of w or
each node of t is at most |X|. Since we are interested in reasoning about the computations
of variable Kripke structures, we restrict our attention in this paper to the language of data
words (or data trees) s.t. there is a bound K satisfying that each position or node of data
words or data trees carries at most K data values.

For the convenience of discussions, we represent data words with at most K data values in
each position as K-attributed data words from

(
2AP × (2T ×D)K

)∗ (If the number of data
values at some position is less than K, then we just copy them). For a K-attributed data word
w = (A0, ((B0,0, d0,0), . . . , (B0,K−1, d0,K−1))) . . . (An, ((Bn,0, dn,0), . . . , (Bn,K−1, dn,K−1))),
let prj(w) denote the sequence (A0, (B0,0, . . . , B0,K−1)) . . . (An, (Bn,0, . . . , Bn,K−1)). Simil-
arly, we represent data trees with at most K data values in each node as K-attributed data
trees. From now on, when we say data words or data trees, we always mean K-attributed

1 Variable Kripke structure defined here is the same as that in [10], except that the global invariants are
replaced by local state invariants.

Fu Song and Zhilin Wu 5

data words or data trees. Let η = (A, ((B1, d1), . . . , (BK , dK))) ∈ 2AP × (2T ×D)K , p ∈ AP
and (τ, d) ∈ T ×D. By abuse of notations, we use p ∈ η to mean p ∈ A, and use (τ, d) ∈ η
to denote (τ, d) ∈ ∪1≤i≤KBi × {di}.

The syntax of Variable-LTL (VLTL)2 is defined by the following rules,
ϕ := p | ¬p | τ(x) | ¬τ(x) | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Xϕ | ϕUϕ | ϕRϕ | ∃xϕ | ∀xϕ,

where p ∈ AP, τ ∈ T, x ∈ V ar, and X is the dual operator of X such that Xϕ ≡ ¬X¬ϕ.
Let var(ϕ) and free(ϕ) denote respectively the set of variables occurring in ϕ and the

set of free variables of ϕ. VLTL formulas without free variable are called sentences.
VLTL formulas are interpreted over K-attributed data words. Let w = w0 . . . wn ∈(

2AP × (2T ×D)K
)∗, ϕ a VLTL formula, λ : free(ϕ) → D, and for every i : 0 ≤ i ≤ n,

wi = wi . . . wn. We define the satisfaction relation as w |=λ ϕ in an obvious way. In particular,
w |=λ ∀xϕ1 if for all d ∈ D, w |=λ[d/x] ϕ1, where λ[d/x] is the same as λ, except assigning d
to x; w |=λ ∃xϕ1 if there is d ∈ D s.t. w |=λ[d/x] ϕ1. If ϕ is a VLTL sentence, we will drop λ
from |=λ. Let LK(ϕ) denote the set of K-attributed data words w satisfying ϕ.

Let K be a VKS and ϕ a VLTL sentence. Then K satisfies ϕ, denoted by K |= ϕ, if for
every computation trace w of K, w |= ϕ.

Let ∃∗-VLTL (resp. ∀∗-VLTL) denote the set of VLTL formulas without using ∀ (resp.
∃) quantifier, NN-∃∗-VLTL denote the set of ∃∗-VLTL formulas where no ∃ quantifiers are
nested (in a strict sense), more precisely, for any pair of subformulas ∃xψ1 and ∃yψ2 s.t.
x 6= y, if ∃yψ2 is a subformula of ψ1, then x 6∈ free(ψ2). NN-∀∗-VLTL is defined similarly.
Let VLTLpnf denote the set of VLTL formulas in prenex normal form θ1x1 . . . θkxk ψ, where
θ1, . . . , θk ∈ {∃,∀}, and ψ is a quantifier-free VLTL formula. Suppose θ = θ1 . . . θk ∈ {∀,∃}∗,
let θ-VLTLpnf denote the set of VLTLpnf formulas of the form θ1x1 . . . θkxkψ. Note that in
general VLTL formulas cannot be turned into equivalent prenex normal forms3. Suppose
Θ ⊆ {∀,∃}∗, let Θ-VLTLpnf = ∪θ∈Θ θ-VLTLpnf . For θ ∈ {∃,∀}∗ (resp. Θ ⊆ {∃,∀}∗), let
θ-VLTLnoappnf (resp. Θ-VLTLnoappnf) denote the set of θ-VLTLpnf (resp. Θ-VLTLpnf) formulas
without using atomic propositions from AP . Let θ ∈ {∃,∀}. Then θ-VLTLgdappnf denote the set
of θ-VLTLpnf formulas where each occurrence of the atomic propositions from AP is guarded
by the positive occurrences of the (unique) quantified variable. More specifically, θ-VLTLgdappnf

is the set of θ-VLTLpnf formulas θxψ s.t. for every p ∈ AP , each occurrence of p (resp. ¬p)
in ψ is in the formula p∧ τ(x) (resp. ¬p∧ τ(x)) for some τ ∈ T . For example, ∀x(open(x)→
close(x)) is a ∀-VLTLgdappnf formula, while ∀x(open(x)→ (p ∧ ¬write(x)) U close(x)) is not.

The syntax of variable-CTL (VCTL) is defined similarly to VLTL, by adding the path
quantifiers A and E before every temporal operator in the syntax rules of VLTL.

VCTL formulas are interpreted over K-attributed data trees. The semantics of VCTL are
defined similarly to VLTL. The syntactic fragments of VCTL can also be defined similarly to
VLTL, with the additional distinction between EVCTL and AVCTL, that is, the fragment
of VCTL using only E and A respectively. Let LK(ϕ) denote the set of K-attributed data
trees t satisfying ϕ.

Let K be a VKS and ϕ be a VCTL sentence. Then K satisfies ϕ, denoted by K |= ϕ, if
for every computation tree t of K, t |= ϕ.

For a VLTL or VCTL formula ϕ, let ϕ denote the negation of ϕ, where p = ¬p, ¬p = p,

2 VLTL defined in [10] is a fragment of VLTL defined here. In addition, we disallow explicit data variable
comparisons (e.g. equality and inequality). We believe that VLTL without any data variable comparison
is a kind of first-order extensions of temporal logics of the minimum first-order feature.

3 For instance, we conjecture that there are no VLTLpnf formulas equivalent to the VLTL formula
G(∃xτ(x)). But at present we do not know how to prove this.

6 Extending Temporal Logics with Data Variable Quantifications

τ(x) = ¬τ(x), ¬τ(x) = τ(x), Xϕ1 = Xϕ1, Aϕ1 = Eϕ1, and so on. Let |ϕ| denote the size of
ϕ, that is, the number of symbols in ϕ. We will use ϕ1 → ϕ2 to mean ϕ1 ∨ ϕ2. A VLTL or
VCTL formula that does not contain subformulas of the form ψ1 → ψ2 is called normalized.

We consider the following two decision problems for VLTL and VCTL.
Satisfiability problem: Given a VLTL (resp. VCTL) sentence ϕ, decide whether ϕ is
satisfiable, that is, whether there is a data word w (resp. there are k ≥ 1 and a k-ary
data tree t) s.t. w |= ϕ (resp. t |= ϕ).
Model checking problem: Given a VKS K and a VLTL/VCTL sentence ϕ, decide whether
K |= ϕ.

I Remark. We interpret VLTL and VCTL formulas over finite data words and finite data
trees, and leave the investigations on infinite data words and infinite data trees as future work.
The considerations of temporal logics interpreted over finite words and trees are normally
motivated by the verification of safety properties of concurrent systems (cf. e.g. [17]) as well
as the verification of properties of sequential programs.

We next define alternating register automata over k-ary 1-attributed data trees by
adapting the definition of alternating register automata over unranked data trees in [8].

An alternating register automaton over k-ary 1-attributed data trees (ATRA) is a tuple
A = (AP ∪ T,Q, q0, δ), where AP (resp. T) is a finite set of atomic propositions (resp.
parameterized atomic propositions), Q is a finite set of states, q0 ∈ Q is the initial state,
δ : Q→ Φ is the transition function, where Φ is defined by the following grammar4,

p | ¬p | τ | ¬τ | Oi? | Oi? | eq | eq | q ∨ q′ | q ∧ q′ | store(q) | guess(q) | Oiq,
where p ∈ AP , τ ∈ T , q, q′ ∈ Q, and i ∈ [k]. Intuitively, p,¬p, τ,¬τ are used to detect the
occurrences of (parameterized) atomic propositions. Oi?,Oi? are used to describe the types
of nodes in trees, eq, eq are used to check whether the data value in the register is equal to
the current one, q ∨ q′ makes a nondeterministic choice, q ∧ q′ creates two threads with the
state q and q′ respectively, store(q) stores the current data value to the register and transfers
to the state q, guess(q) guesses a data value for the register and transfers to the state q, Oiq
moves to the i-th child of the current node and transfers to the state q.

An ATRA A = (AP ∪T,Q, q0, δ) is called alternating register automaton over 1-attributed
data words (AWRA) if k = 1.

The semantics of ATRA over k-ary 1-attributed data trees are defined in a completely
analogous way as those of ATRA over unranked trees in [8]. Let L(A) denote the set of all
k-ary 1-attributed data trees accepted by A.

The closure properties of ATRA and the decidability of the nonemptiness of ATRA can
be proved in the same way as the alternating register automata over unranked trees, by
utilizing well-structured transition systems (cf. [8]).

I Theorem 1. ATRAs are closed under intersection and union. The emptiness problem of
ATRAs is decidable and non-primitive recursive.

We also introduce extended data automata ([1]), another automata model over (1-
attributed) data words. Extended data automata is an extension of the seminal model of
data automata ([2]) over 1-attributed data words.

An extended data automaton (EDA) D is a tuple (AP ∪ T,A,B) s.t. AP and T are as
above, A is a nondeterministic letter-to-letter transducer from the alphabet 2AP × 2T to
some output alphabet Σ, and B is a finite automaton over Σ ∪ {0} (where 0 6∈ Σ). Let

4 The spread mechanism in [8] is dropped, since it is not used in this paper.

Fu Song and Zhilin Wu 7

w = (A0, (B0, d0)) . . . (An, (Bn, dn)) be a 1-attributed data word. Then w is accepted by D if
over prj(w), A outputs a word w′ = σ0 . . . σn over the alphabet Σ, s.t. for every data value
d ∈ D, cstrd(w′′) is accepted by B, where w′′ = (σ0, d0) . . . (σn, dn) and cstrd(w′′) is defined
as σ′0 . . . σ′n, satisfying that for every i : 0 ≤ i ≤ n, σ′i = σi if di = d, and σ′i = 0 otherwise.
Note that for every data value d not occurring in w, cstrd(w′′) = 0n+1.
I Theorem 2. ([2, 1]) EDAs are closed under intersection and union. The nonemptiness
problem of EDAs is decidable.

3 Undecidability

This section is devoted to the various undecidability results for the satisfiability and model
checking problem of VLTL and VCTL.

I Theorem 3. The satisfiability problem of ∃∗-VLTL is undecidable.

Proof sketch. We show this by a reduction from the PCP problem. We illustrate the proof
by considering the special case K = 1. Let (ui, vi)1≤i≤n be an instance of the PCP problem
over an alphabet Σ. A solution of the PCP problem is a sequence of indices i1 . . . im s.t.
ui1 . . . uim = vi1 . . . vim .

Let Σ′ = Σ ∪ {a | a ∈ Σ} ∪ {1, . . . , n} ∪ {1, . . . , n} ∪ {#}. Then Σ′ can be encoded by
dlog(|Σ′|)e bits. Let AP be a set of atomic propositions of size dlog(|Σ′|)e. For each σ ∈ Σ′,
let atom(σ) denote the subset of AP corresponding to the binary encoding of σ, and type(σ)
denote the conjunction of atomic propositions or negated atomic propositions from AP

corresponding to the binary encoding of σ. For instance, if the binary encoding of σ is 10,
let AP = {p1, p2}, then atom(σ) = {p1} and type(σ) = p1 ∧ ¬p2. The definition of atom(σ)
can be naturally extended to atom(u) for words u ∈ (Σ′)+. In addition, let T = {τ}. We
use atom′(σ) to denote (atom(σ), {τ}). Similarly, the definition atom′(·) can be extended to
words u ∈ (Σ′)+.

We intend to encode a solution of the PCP problem, say i1 . . . im, as the 1-attributed
data word over 2AP × 2T of the form wi1wi2 . . . wim(atom′(#), d) wi1 . . . wim s.t.

prj(wij) = atom′(ij)atom′(uij) and prj(wij) = atom′(ij)atom′(uij) for every 1 ≤ j ≤ m,
the two sequences of data values corresponding to respectively atom′(i1) . . . atom′(im)
and atom′(i1) . . . atom′(im) are the same,
the two sequences of data values corresponding to respectively atom′(ui1) . . . atom′(uim)
and atom′(ui1) . . . atom′(uim) are the same.
The data word encodings of the solutions of the PCP problem can be expressed by

a ∃∗-VLTL formula ϕ. For instance, during the reduction, we express as the following
∃∗-VLTL formula ϕ1 the fact that for every two consecutive occurrences of letters from
{atom′(σ) | σ ∈ Σ}, there are two consecutive occurrences of letters from {atom′(σ) | σ ∈ Σ}
with the same letters (by viewing atom′(σ) the same as atom′(σ)) and the same data
values, ϕ1 = G ∧σ1,σ2∈Σ [ψ0 → ∃x∃y(ψ1 ∧ Xψ2 ∧ F (ψ3 ∧ Xψ4))], where ψ0 = type(σ1) ∧
X[type(σ2)∨∨1≤j≤n(type(j)∧Xtype(σ2)))], ψ1 = type(σ1)∧ τ(x), ψ2 = (type(σ2)∧ τ(y))∨
∨1≤j≤n[type(j) ∧ X(type(σ2) ∧ τ(y))], ψ3 = type(σ1) ∧ τ(x), ψ4 = (type(σ2) ∧ τ(y)) ∨
∨1≤j≤n[type(j) ∧X(type(σ2) ∧ τ(y))]. J

Since a VKS can be defined to accept the set of all 1-attributed data words, we deduce
the following result.
I Corollary 4. The model checking problem of ∀∗-VLTL is undecidable.

By adding a universal path quantifier A before every temporal operator of ϕ in the proof
of Theorem 3, we get a reduction to the satisfiability problem of ∃∗-AVCTL.

8 Extending Temporal Logics with Data Variable Quantifications

I Corollary 5. The satisfiability problem of ∃∗-AVCTL formulas is undecidable.
By a similar reduction from the nonemptiness of two-counter machines as that in Theorem

4.1 of [8], we can show the following result.
I Theorem 6. The satisfiability problem of ∀-VLTLpnf is undecidable.
I Remark. The above theorem demonstrates that the claim in [11] that the satisfiability
problem of ∃∗∀-VLTLpnf is decidable is incorrect. We confirmed this observation in an e-mail
with Grumberg, Kupferman and Sheinvald ([12]). On the other hand, we will show that the
satisfiability problem of ∀-VLTLgdappnf , that is, ∀-VLTLpnf formulas where all the occurrences
of (negated) atomic propositions are guarded, is decidable (cf. Theorem 26).

I Corollary 7. The model checking problem of ∃-VLTLpnf is undecidable.

I Corollary 8. The satisfiability problem of ∀-AVCTLpnf is undecidable.
I Remark. From the undecidability result of the satisfiability of a fragment of VCTL, we
do not immediately deduce the undecidability of the model checking problem of the dual
fragment. The reason is that there does not exist a VKS to define the set of all K-attributed
computation trees, or define the set of k-ary K-attributed data trees even for a fixed k.
I Theorem 9. The model checking problem is undecidable for the following fragments:
∀∗-AVCTL, ∀∗-EVCTL, ∃∃-VCTLnoappnf , ∃∀-VCTLnoappnf , ∀∃-VCTLnoappnf , NN-∃∗-VCTL.

Proof sketch. We prove the theorem by reductions from the satisfiability problem of ∃∗-VLTL
and ∀-VLTL over 1-attributed data words.

We illustrate the proof by considering the model checking problem of ∀∗-AVCTL and
∃∃-VCTLnoappnf . The arguments for the other cases use the similar idea.

We first consider the model checking problem of ∀∗-AVCTL.
Let ϕ be a ∃∗-VLTL formula over AP ∪ T . We will construct a VKS K and a ∃∗-EVCTL

formula ϕ′ s.t. ϕ is satisfiable iff K 6|= ϕ′. Note that ϕ′ is a ∀∗-AVCTL formula.
The idea of the reduction is as follows: We construct a VKS K which is a single loop

(without branchings). Thus each computation tree of K is in fact a data word. Then we
obtain from ϕ by adding existential path quantifiers E before every temporal operator
occurring in ϕ (plus some other modifications) to obtain ϕ′. Since K is a structure without
branchings, the satisfaction of ϕ′ over the computation trees of K mimics the satisfaction of
ϕ over data words.

Suppose AP = {p1, . . . , pm}, T = {τ1, . . . , τn−m} (where m ≤ n), and τ ′0, τ ′1 6∈ AP ∪ T .
Define the VKS K = (AP ′ ∪ T ′, {x}, S,R, S0, I, L, L

′) as follows: AP ′ = ∅, T ′ = {τ ′0, τ ′1},
S = {s0, s1, . . . , s2n+1}, R = {(si, si+1 mod 2n+2) | 0 ≤ i ≤ 2n + 1}, S0 = {s0}, for every
si ∈ S, I(si) = true, L(s0) = {(τ ′0, x)}, and L(si) = {(τ ′1, x)} for every i : 1 ≤ i ≤ 2n + 1,
L′((si, si+1 mod 2n+2)) = {(reset, x)} for every i : 0 ≤ i ≤ 2n+ 1.

s0 s1 s2n s2n+1· · ·
{(reset, x)} {(reset, x)} {(reset, x)} {(reset, x)}

{(reset, x)}

{τ ′0(x)} {τ ′1(x)} {τ ′1(x)} {τ ′1(x)}

Figure 1 The Variable Kripke Structure.

Notice that in K, T ′ only contains two parameterized atomic propositions. The set of
atomic propositions AP ∪ T will be encoded by equalities and inequalities between the
data values of two adjacent τ ′1-labeled positions in K. Thus each position (A,B, d) in a
1-attributed data word over AP ∪ T will be encoded by a segment of computation traces in

Fu Song and Zhilin Wu 9

K of length 2n+ 2 s.t. the position 0 is labeled by τ ′0, the position (2i− 1) and (2i) encode
the satisfaction on A ∪B of the i-th atomic proposition from AP ∪ T , and the last position
has the data value d. In addition, x is reset on each edge (si, si+1 mod 2n+2) (0 ≤ i ≤ 2n+ 1)
so that an arbitrary data value can be assigned to x on each position s0, s1, . . . , s2n+1.

We use an example to illustrate the construction of the ∃∗-EVCTL formula ϕ′ from ϕ.
Suppose AP = ∅ and T = {τ1, τ2} and n = 2. Then the ∃∗-EVCTL formula corresponding to
the ∃∗-VLTL formula ∃xG(¬τ1(x) ∨XFτ2(x)) is ∃y[τ ′0(y) ∧ ϕ′0 ∧ ∃xEG(ψ1 ∨ (EX)6EFψ2)],
where ϕ′0 = EG(τ ′0(y)→ [(EX)6τ ′0(y)∧EXτ ′1(y)∧ (EX)3τ ′1(y)]) requires that the data value
of the position 0 occurs in all the positions i s.t. i ≡ 0, 1, 3 mod 6, ψ1 = τ ′0(y)→ [EX(τ ′1(y)∧
EX¬τ ′1(y)))∨ (EX)5¬τ ′1(x)], and ψ2 = τ ′0(y)∧ (EX)3(τ ′1(y)∧EXτ ′1(y))∧ (EX)5τ ′1(x). The
formula ψ1 is satisfied in a position if either τ ′0(y) does not occur, or τ ′0(y) occurs and one of
the following conditions holds: the next two positions have different data values, or τ ′1(x)
does not occur in the 5th position after the current position. Similarly for ψ2.

For the model checking problem of ∃∃-VCTLnoappnf , we reduce from the satisfiability problem
of ∀-VLTL over 1-attributed data words. The reduction is similar to that of ∀∗-AVCTL. J

By using the similar idea as in the proof of Theorem 9, we can get the following result.

I Theorem 10. The satisfiability problem of ∃∀-VLTLnoappnf (resp. ∀∃-VLTLnoappnf) is undecid-
able.

I Corollary 11. The satisfiability problem of ∃∀-VCTLnoappnf (resp. ∀∃-VCTLnoappnf) is unde-
cidable.

I Corollary 12. The model checking problem of ∃∀-VLTLnoappnf (resp. ∀∃-VLTLnoappnf) is
undecidable.

4 Decidability

We first present the encodings of K-attributed data words and data trees into 1-attributed
ones, which will be used in the proofs of this section.

Suppose that w = w0 . . . wn is a K-attributed data word over AP ∪ T s.t. for every
i : 0 ≤ i ≤ n, wi = (Ai, ((Bi,0, di,0), . . . , (Bi,K−1, di,K−1))). Let p′ 6∈ AP ∪ T and
AP ′ = AP ∪ {p′}. A 1-attributed encoding of w, denoted by enc(w), is a data word
w′ = w′0,0 . . . w

′
0,K−1 . . . w

′
n,0 . . . w

′
n,K−1 over AP ′ ∪ T s.t. for every i : 0 ≤ i ≤ n, w′i,0 =

(Ai ∪ {p′}, (Bi,0, di,0)), and for every j : 1 ≤ j ≤ K − 1, w′i,j = (Ai, (Bi,j , di,j)). The
1-attributed encoding of K-attributed data trees can be defined similarly. The definition of
enc(·) can be naturally extended to the languages of K-attributed data words and data trees.

Suppose ϕ is a normalized VLTL formula. Then enc(ϕ) = ϕ′1 ∧ ϕ′2, where ϕ′1 and ϕ′2 are
defined as follows.

ϕ′1 is a quantifier free VLTL formula enforcing the following constraints: p′ occurs in
the first position, for every occurrence of p′ in some position, p′ will occur in the K-th
position after it if there is such a position, but does not occur in between, moreover, for
every p ∈ AP , either p occurs in all the positions between two adjacent occurrences of p′,
or occurs in none of them.
ϕ′2 is obtained from ϕ by replacing X(resp. X) by XK(resp. XK), and applying some
proper replacements for the (parameterized) atomic propositions. For instance, the
occurrence of p1 in Fp1 is replaced by p′ ∧ ∨0≤i≤K−1X

ip1.
Here is an example for enc(ϕ): enc(Fp1) = ϕ′1 ∧ F (p′ ∧ ∨0≤i≤K−1X

ip1).
Similarly, enc(ϕ) can be defined for VCTL formulas.

I Proposition 13. For every VLTL (resp. VCTL) formula ϕ, enc(LK(ϕ)) = L1(enc(ϕ)).

10 Extending Temporal Logics with Data Variable Quantifications

4.1 Non-nested existential variable quantifiers
I Proposition 14. Let K be a VKS . Then enc(L(K)) (resp. enc(T (K))) can be defined by
an AWRA (resp. ATRA).
I Theorem 15. The satisfiability problem of NN-∃∗-VLTL is decidable and non-primitive
recursive.
Proof sketch. The decidability proof is by a reduction to the nonemptiness problem of
AWRAs. Since quantifiers are not nested, w.l.o.g. we assume that there is only one variable,
say x, used in ϕ. Note that the variable x may be reused and existentially quantified for many
times. The AWRA Aenc(ϕ) can be constructed by induction on the syntax of NN-∃∗-VLTL
formulas similar to the construction of alternating automata from LTL formulas (cf. [21]),
by using guess(q) to deal with the existential quantifiers ∃x.

The lower bound is obtained by a reduction from the nonemptiness problem of two-counter
machines with incrementing errors (cf. e.g. [6]). The reduction is similar to that in Theorem
6, with all the four conditions, except the last one, expressed in NN-∃∗-VLTL. J

I Corollary 16. The model checking problem of NN-∀∗-VLTL is decidable and non-primitive
recursive.
I Theorem 17. The satisfiability problem of NN-∃∗-VCTL is decidable and non-primitive
recursive.

Theorem 17 is proved in the same way as Theorem 15, by utilizing the following result.

I Lemma 18. For every ∃∗-VCTL sentence ϕ, if ϕ is satisfiable over a 1-attributed data
tree, then there is a (2|ϕ|)-ary 1-attributed data tree satisfying ϕ.

Similar to Corollary 16, we deduce the following result from Theorem 17.

I Corollary 19. The model checking problem of NN-∀∗-VCTL formulas is decidable and
non-primitive recursive.

4.2 Existential path quantifiers for VCTL
I Theorem 20. The satisfiability problem of EVCTL is in NEXPTIME.

Theorem 20 can be deduced from the following lemma.

I Lemma 21. Let ϕ be an EVCTL formula, t be a data tree, and λ : free(ϕ) → D s.t.
t |=λ ϕ. Then a data tree t′ can be constructed from (t, λ) s.t. t′ |=λ ϕ and (t′, λ) contains at
most |ϕ| data values.
Proof sketch. The proof is by induction on the syntax of EVCTL formulas. The induction
base ϕ := p,¬p, τ(x),¬τ(x) is trivial. For induction step, we show the cases ∃xϕ1 and ∀xϕ1.

ϕ := ∃xϕ1: Suppose t |=λ ∃xϕ1. Then there is d ∈ D s.t. t |=λ[d/x] ϕ1. By the induction
hypothesis, t1 can be constructed from (t, λ[d/x]) s.t. t1 |=λ[d/x] ϕ1 and (t1, λ[d/x]) contains
at most |ϕ1| data values. Then (t1, λ) is the desired pair.

ϕ := ∀xϕ1: Suppose t |=λ ∀xϕ1. Then for every d ∈ D, t |=λ[d/x] ϕ1. Suppose the
range of λ is {d1, . . . , dk}. Let d0 be a data value not occurring in t. In addition, if
D(t) \ {d1, . . . , dk} contains at least |ϕ1| − k data values, let dk+1, . . . , d|ϕ1| be a sequence
of |ϕ1| − k distinct data values from D(t) \ {d0, d1, . . . , dk}; otherwise let dk+1, . . . , d|ϕ1| be
a sequence of |ϕ1| − k distinct data values from D \ {d0, d1, . . . , dk} that include all the
data values in D(t) \ {d0, . . . , dk}. Then from t |=λ[di/x] ϕ1 (where i = 0, . . . , |ϕ1|) and the
induction hypothesis, we know that ti can be constructed from (t, λ[di/x]) s.t. ti |=λ[di/x] ϕ1,
(ti, λ[di/x]) contains at most |ϕ1| data values. Since for every i : 0 ≤ i ≤ |ϕ1|, ti contains at
most |ϕ1| data values, we could replace the data values of ti that are from D \ {d0, . . . , d|ϕ1|}

Fu Song and Zhilin Wu 11

by data values in {d1, . . . , d|ϕ1|}, to get t′i s.t. all the data values of t′i are from {d1, . . . , d|ϕ1|}
and t′i |=λ[di/x] ϕ1. Note that d0 does not occur in any of t′0, . . . , t′|ϕ|. Without loss of
generality, we may assume that the roots of t′0, . . . , t′|ϕ1| have the same label. Let t′ be the
data tree obtained from t′0 by adding all the subtrees of the roots of t′1, . . . , t′|ϕ1| as the new
subtrees of the root of t′0 (with the original subtrees of the root of t′0 untouched). We claim
that t′ |=λ ∀xϕ1. At first, for every di with i : 0 ≤ i ≤ |ϕ1|, we have t′i |=λ[di/x] ϕ1, thus
t′ |=λ[di/x] ϕ1 since ϕ1 contains only existential path quantifiers. Let d 6∈ {d0, . . . , d|ϕ1|}.
Since t′0 |=λ[d0/x] ϕ1 and neither d nor d0 occurs in t′0, assigning d to x has the same impact
as assigning d0 to x for the satisfaction of ϕ1 on t′0. Therefore, t′0 |=λ[d/x] ϕ1. We deduce
that t |=λ[d/x] ϕ1, since ϕ1 contains only existential path quantifiers. From the fact that
d is an arbitrary data value not in {d0, . . . , d|ϕ1|}, we conclude that t′ |=λ ∀xϕ1 and (t′, λ)
contains at most |ϕ1|+ 1 ≤ |ϕ| data values. J

4.3 Variable quantifications in the beginning
I Theorem 22. ([10]) The following two problems are PSPACE-complete: The satisfiability
problem of ∃∗-VLTLpnf and the model checking problem of ∀∗-VLTLpnf .5

I Theorem 23. The satisfiability problem of ∃∗-VCTLpnf is EXPTIME-complete.
The proof of the upper bound is similar to the proof of the satisfiability problem of

∃∗-VLTLpnf . The lower bound follows from the satisfiability problem of CTL.
I Theorem 24. The model-checking problem of ∀∗-VCTLpnf is decidable in EXPTIME.

Theorem 24 can be easily deduced from the following lemma.
I Lemma 25. Let K = (AP,X, S,R, S0, I, L, L

′) be a VKS and ∀x1...∀xnψ be a ∀∗-VCTLpnf
sentence. Then there is a computation tree t = (Z,L) of K s.t. t |= ∃x1...∃xnψ iff there is
a computation tree t′ = (Z,L′) of K s.t. t′ |= ∃x1...∃xnψ and t′ contains at most |X| + n

different values.
We next consider the satisfiability and model checking problem of ∀-VLTLgdappnf .

I Theorem 26. The satisfiability problem of ∀-VLTLgdappnf is decidable.
Proof sketch. Suppose ϕ = ∀xψ is a ∀-VLTLgdappnf formula over AP ∪ T .

From the definition of enc(·), we know that enc(ϕ) = ϕ′1 ∧ ϕ′2 and ϕ′2 = ∀xψ′ for
some quantifier free VLTL formula ψ′. Then enc(ϕ) can be rewritten into ∀x(ϕ′1 ∧ ψ′),
since no variables occur in ϕ′1. So enc(ϕ) is a ∀-VLTLpnf formula over AP ′ ∪ T , where
AP ′ = AP ∪ {p′}.

It is not hard to observe that if ϕ is a ∀-VLTLgdappnf formula, then ψ′ can be rewritten into
a quantifier free VLTL formula where all the occurrences of p and ¬p for p ∈ AP are guarded
by the positive occurrences of τ(x) for some τ ∈ T . For instance, an occurrence of p ∧ τ(x)
in ψ s.t. p ∈ AP and τ ∈ T is transformed into (p′ ∧

∨
0≤i≤K−1

Xip) ∧ (p′ ∧
∨

0≤i≤K−1
Xiτ(x)),

which is equivalent to p′ ∧
∨

0≤i≤K−1
Xi(p ∧ τ(x)), since either none of Xip holds or all of

them hold. By abuse of notations, we still denote the resulting formula by ψ′. Note that the
formula ∀x(ϕ′1 ∧ψ′) is not a ∀-VLTLgdappnf formula since the occurrences of p′ are not guarded.

To continue the proof, we introduce the following notation. Suppose w = w0 . . . wn is a
1-attributed data word over AP ′ ∪ T s.t. wi = (Ai, (Bi, di)) for every i : 0 ≤ i ≤ n. Then
prjAP (w) = w0|AP . . . wn|AP , where for every i : 0 ≤ i ≤ n, wi|AP = (Ai∩AP, (Bi, di)). The
definition of prjAP (·) can be naturally generalized to languages of 1-attributed data words.

5 In [10], only model checking problem of ∀∗-VLTLpnf is considered. The result for the satisfiability
problem of ∃∗-VLTLpnf can be shown by following the same idea.

12 Extending Temporal Logics with Data Variable Quantifications

From Proposition 13, we know that the satisfiability of ϕ over K-attributed data words is
reduced to the nonemptiness of the language L1(enc(ϕ)). The nonemptiness of L1(enc(ϕ))
is then reduced to the nonemptiness of prjAP (L1(enc(ϕ))).

In addition, it is not hard to show that an EDA Denc(ϕ) can be constructed from enc(ϕ)
s.t. L(Denc(ϕ)) = prjAP (L1(enc(ϕ))). The decidability then follows from the decidability of
the nonemptiness of EDA. J

I Corollary 27. The model checking problem of ∃-VLTLgdappnf is decidable.

References
1 R. Alur, P. Cerny, and S. Weinstein. Algorithmic analysis of array-accessing programs.

ACM Trans. Comput. Logic, 13(3):27:1–27:29, 2012.
2 M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic

on data words. ACM Trans. Comput. Log., 12(4), 2011.
3 E. Damaggio, A. Deutsch, R. Hull, and V. Vianu. Automatic verification of data-centric

business processes. In BPM, 2011.
4 N. Decker, P. Habermehl, M. Leucker, and D. Thoma. Ordered navigation on multi-

attributed data words. In CONCUR, 2014.
5 S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter

systems. In LICS, 2013.
6 S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Trans.

Comput. Logic, 10(3):16:1–16:30, 2009.
7 E. A. Emerson and K. S. Namjoshi. On reasoning about rings. Int. J. Found. Comput.

Sci., 14(4):527–550, 2003.
8 D. Figueira. Alternating register automata on finite words and trees. Logical Methods in

Computer Science, 8(1), 2012.
9 D. Figueira. Decidability of downward XPath. ACM Trans. Comput. Log., 13(4):34, 2012.
10 O. Grumberg, O. Kupferman, and S. Sheinvald. Model checking systems and specifications

with parameterized atomic propositions. In ATVA, 2012.
11 O. Grumberg, O. Kupferman, and S. Sheinvald. An automata-theoretic approach to reas-

oning about parameterized systems and specifications. In ATVA, 2013.
12 O. Grumberg, O. Kupferman, and S. Sheinvald. Personal communication, June 2014.
13 I. M. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragment of first-order

temporal logics. Ann. Pure Appl. Logic, 106(1-3):85–134, 2000.
14 I. M. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable and undecidable fragments

of first-order branching temporal logics. In LICS, 2002.
15 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–

363, 1994.
16 A. Kara, T. Schwentick, and T. Zeume. Temporal logics on words with multiple data values.

In FSTTCS, 2010.
17 O. Kupferman. Variations on safety. In TACAS, 2014.
18 O. Sheinvald, S. Grumberg and O. Kupferman. A game-theoretic approach to simulation

of data-parameterized systems. In ATVA, 2014.
19 F. Song and T. Touili. LTL model-checking for malware detection. In TACAS, 2013.
20 F. Song and T. Touili. Pushdown model checking for malware detection. STTT, 16(2):147–

173, 2014.
21 M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Conference on

Logics for Concurrency : Structure Versus Automata, pages 238–266, 1996.
22 V. Vianu. Automatic verification of database-driven systems: a new frontier. In ICDT,

2009.

	Introduction
	Preliminaries
	Undecidability
	Decidability
	Non-nested existential variable quantifiers
	Existential path quantifiers for VCTL
	Variable quantifications in the beginning

