
Feasibility of Motion Planning on Directed
Graphs

Zhilin Wu1 and Stéphane Grumbach2

1 CASIA-LIAMA, zlwu@liama.ia.ac.cn
2 INRIA-LIAMA, stephane.grumbach@inria.fr

Abstract. Because of irreversibility of movements, motion planning on
directed graphs is much more intricate than that on graphs. Recently we
showed that the feasibility of motion planning on acyclic and strongly
connected directed graphs can be decided in time O(nm) (n, m are re-
spectively the number of vertices and arcs of the directed graph), but
left the feasibility of motion planning on (general) directed graphs open.
In this paper, we complete the solution by showing that the feasibility
of motion planning on directed graphs can be decided in time O(n2m).

1 Introduction

Motion planning is a fundamental problem of robotics. It has been extensively
studied [LaV06], and has numerous practical applications beyond robotics, such
as in manufacturing, animation, games [MPG] as well as in computational bi-
ology [SA01,FK99]. The study of motion planning on graphs was proposed by
Papadimitriou et al. [PRST94] to strip away the geometric considerations of the
general motion planning problem and concentrate on the combinatorial aspects.

Motion planning on graphs is defined as follows. Suppose a graph G = (V,E)
is given. There is one robot at a source vertex s and some of the other vertices
contain a movable obstacle. The objective is to move the robot from s to a
destination vertex t with the smallest number of moves, where a move consists
in moving an object (robot or obstacle) from one vertex to an adjacent vertex
that contains a hole (if a vertex does not contain an object, then it is said to
contain a hole; if an object is moved from v to w, we can also say that a hole is
moved from w to v).

If there are too many obstacles, it may be impossible to move the robot from
the source to the destination. So before considering the optimization problem,
the decision problem whether a given instance of the problem of motion planning
on graphs is feasible or not, should be considered first.

Motion planning on graphs is an abstraction of the practical problems, such
as track transportation systems [Per88] and packet transfer in communication
buffers of networks.

In practice, for the above two examples, tracks or links might be asymmet-
ric. For instance, there may be unidirectional links in networks, especially in
wireless networks, due to the heterogeneity of receiver and transmitter hardware

[MD02,JJ06]. This motivates the study of motion planning on directed versus
undirected graphs.

Directed graphs (abbreviated as digraphs from now on) differ from undirected
graphs mainly in that movements in digraphs are irreversible. In [WG08], we pro-
posed two algorithms to decide the feasibility of motion planning on acyclic and
strongly-connected digraphs in time O(nm) (n, m are respectively the number
of vertices and arcs).

For digraphs which are neither acyclic nor strongly connected, the motion
planning problem may become much more tricky. For instance, the motion plan-
ning problem given in Fig. 1.(a) is feasible. Let Cs denote the strongly connected
component of s, then if initially the hole in v7 is moved into Cs through v2 (see
Fig. 1.(b)), the problem will become infeasible, which the reader can easily verify.

Fig. 1. Motion planning on digraphs

In this paper, we give a complete solution to the feasibility of motion planning
on digraphs and show that it can be decided in time O(n2m). We distinguish
between the cases whether Cs, the strongly connected component containing
s, is trivial or not, and whether s and t belong to the same strongly connected
component or not. If Cs is trivial, then the feasibility can be solved by combining
the two algorithms for feasibility of motion planning on acyclic and strongly
connected digraphs in [WG08]. Otherwise, a greedy strategy to move the outside
holes into Cs can be designed to solve the feasibility problem.

Without loss of generality, we assume in this paper that in the motion plan-
ning problem, the source vertex s and the target vertex t of the robot are differ-
ent, and there is at least one path from s to t.

The paper is organized as follows: In Section 2, some preliminaries are given.
The structure of digraphs is discussed in Section 3. Then in Section 4, feasibility
of motion planing on digraphs is solved case by case.

2 Preliminaries

The notations of this paper follow those in [Wes00,BJG00].
Let D = (V,E) (resp. G = (V,E)) be a digraph (resp. graph), X ⊆ V . The

sub-digraph (resp. subgraph) induced by X, denoted D[X] (resp. G[X]), is the

sub-digraph (resp. subgraph) containing all the vertices in X and all the arcs
(resp. edges) between the vertices in X. And the sub-digraph (resp. subgraph)
obtained from D (resp. G) by deleting all the vertices in X and all the arcs
(resp. edges) with at least one of its endpoints in X, is denoted as D−X (resp.
G−X).

The underlying graph of a digraph D = (V,E), denoted G(D), is the graph
obtained from D by ignoring the directions of the arcs.

Let G = (V,E) be a graph. The biconnected-component graph of G, denoted
by Gbc(G), is a bipartite graph (Vbc,Wbc, Ebc) defined by

– Vbc contains the biconnected components of G;
– Wbc contains all v ∈ V such that v is shared by at least two distinct bicon-

nected components of G;
– Ebc is defined as follows: let B ∈ Vbc and w ∈ Wbc, then {B,w} ∈ Ebc iff

w ∈ V (B).

In [WG08], strongly biconnected digraphs were introduced to decide the feasi-
bility of motion planning on strongly connected digraphs.

Definition 1. Let D be a digraph. D is said to be strongly biconnected if D
is strongly connected and G(D) is biconnected. The strongly biconnected compo-
nents of D are the maximal strongly biconnected sub-digraphs of D.

With regard to the feasibility of the motion planning problem, strongly bicon-
nected digraphs have the following nice property.

Theorem 1 ([WG08]). The motion planning problem on a strongly bicon-
nected digraph D is feasible iff there is at least one hole in D.

Strongly connected digraphs admit the following decomposition.

Theorem 2 ([WG08]). Let D = (V,E) be a nontrivial strongly connected di-
graph. Then the strongly biconnected components of D are those D[V (B)], the
sub-digraph of D induced by V (B), where B is a biconnected component of G(D).

Let D = (V,E) be a strongly connected digraph, the strongly-biconnected-
component graph of D, denoted Gsbc(D) = (Vsbc,Wsbc, Esbc), is the biconnected-
component graph of G(D). Let v ∈ V , v is called a branching vertex if v ∈ Wsbc

and the degree of v is greater than 2 in Gsbc(D). A chain of Gsbc(D) is a path
B0v1B1 · · ·Bk−1vkBk (k ≥ 1) in Gsbc(D) such that |V (Bi)| = 2 for all 1 ≤ i ≤
k − 1, and vi is not a branching vertex for all 1 < i < k.

The length of a chain is the number of vertices in Wsbc on the chain.
Since the biconnected-component graph of a graph is a tree [Wes00], it follows

that Gsbc(D) is a tree as well.

Theorem 3 ([WG08]). Feasibility of motion planning on acyclic and strongly
connected digraphs can be decided in time O(nm), where n, m are respectively
the number of vertices and arcs of the digraph.

3 Structure of digraphs

Let D = (V,E) be a digraph. Then the vertex sets of strongly connected com-
ponents of D form a partition of V .

Definition 2. Let D = (V,E) be a digraph. The strongly-connected-component
digraph of D, Dscc(D) = (Vscc, Escc), is defined as follows:

– Vscc = Vtr ∪ Vnt ∪ Vpt, where
• Vtr contains all v ∈ V such that v is a trivial strongly connected compo-

nent of D;
• Vnt contains all nontrivial strongly connected components of D;
• Vpt contains all v ∈ V such that v belongs to some nontrivial strongly

connected component of D (say C) and there is some w 6∈ V (C) such
that (v, w) ∈ E or (w, v) ∈ E. Those v’s are called the ports of C.

– Escc is defined by the following two rules:
• If C ∈ Vnt, v ∈ Vpt, and v ∈ V (C), then (C, v) ∈ Escc and (v, C) ∈ Escc;
• If v, w ∈ Vtr∪Vpt, (v, w) ∈ E, and v, w do not belong to the same strongly

connected component, then (v, w) ∈ Escc.

Remark 1. If for each nontrivial strongly connected component C, we contract
the set of vertices of Dscc(D) related to C, including C ∈ Vnt and all v ∈
Vpt∩V (C), into one single vertex, and delete the resulted self-loops, then Dscc(D)
will become the same as the classical definition of strongly-connected-component
digraph in [BJG00]. ut

4 Motion planning on digraphs

Throughout this section, let D = (V,E) be a digraph, and Dscc(D) = (Vscc, Escc)
(Vscc = Vtr ∪ Vnt ∪ Vpt) be the strongly-connected-component digraph of D.

Theorem 4. Feasibility of motion planning on D can be decided in time O(n2m)
where n, m are resp. the number of vertices and arcs of D.

In the following, we design an algorithm to prove the theorem. We illustrate
the main idea of the algorithm, but leave the correctness proof and the detailed
complexity analysis to the full paper. We first introduce some notations.

Let Cs and Ct be the strongly connected components which s and t belong
to respectively.

For each v ∈ V , let h(v) denote the number of holes that are reachable from
v, namely, to which there is a path from v in D.

Let Vcr denote the set of vertices v ∈ Vtr∪Vpt such that t is reachable from v,
and v is reachable from s in D. The vertices in Vcr are called the critical vertices
of the motion planning problem on D.
We consider motion planning on digraphs case by case:

Case I: Cs is trivial;
Case II: Cs is nontrivial and Cs = Ct;
Case III: Cs is nontrivial and Cs 6= Ct.

Note that since we assume that s 6= t, if Cs is trivial, then Cs 6= Ct.

4.1 Case I: Cs is trivial

We introduce some additional notations.
Let C be a nontrivial strongly connected component of D, In(C) (resp.

Out(C)) are used to denote the set of ports of C, i.e. vertices v ∈ Vpt ∩ V (C),
such that there is some w ∈ (Vtr ∪ Vpt) \V (C) satisfying that (w, v) ∈ E (resp.
(v, w) ∈ E). Vertices in In(C) (resp. Out(C)) are called inward ports (resp.
outward ports) of C. Note that In(C) ∩Out(C) may be nonempty.

Let V in
cr denote the set of vertices v ∈ Vcr such that either v ∈ Vtr and

v 6= s, or v ∈ In(C) for some nontrivial strongly connected component C. And
let V out

cr denote the set of vertices v ∈ Vcr such that either v ∈ Vtr and v 6= t,
or v ∈ Out(C) for some nontrivial strongly connected component C such that
C 6= Ct.
For v ∈ V in

cr , define hin(v) as follows:

Let w ∈ Vcr such that (w, v) ∈ Escc, imagine that the robot is in w. If
the robot can be moved from w to t under the restriction that the first
move of the robot is from w to v, then hin(v) is the minimal number
of (distinct) holes used during the movement of the robot from w to t;
otherwise, hin(v) := ∞.

For v ∈ V out
cr , define hout(v) as follows:

Imagine that the robot is in v. If the robot can be moved from v to t
under the restriction that the first move of the robot is from v to some
w ∈ Vcr such that (v, w) ∈ Escc, then hout(v) is the minimal number
of holes used during the movement of the robot from v to t; otherwise,
hout(v) := ∞.

The algorithm for deciding the feasibility of motion planning on digraphs in
Case I goes as follows: Starting from the vertices in Vcr ∩ V (Ct), compute
hin(v) and hout(v) for all v ∈ Vcr inductively in a backward way. When these
computations are finished, the algorithm reports “yes” (the motion planning
problem is feasible) iff hout(s) < ∞.
Initial step: For vertices in Vcr ∩ V (Ct),

– If Ct is trivial, then t ∈ V in
cr and t 6∈ V out

cr : if h(t) ≥ 1, then hin(t) := 1,
otherwise hin(t) := ∞;

– If Ct is nontrivial, then In(Ct) ⊆ V in
cr and Out(Ct)∩V out

cr = ∅: for v ∈ In(Ct),
if h(v) ≥ MinNum(Ct, v, t) + 1, then hin(v) := MinNum(Ct, v, t) + 1,
otherwise, hin(v) := ∞.

Remark 2. MinNum(D, v,w) is used in [WG08] to compute the minimal num-
ber of holes used to move the robot from v to w in a strongly connected digraph
D over all instances of the motion planning on D such that v, w are respectively
the source and the destination. MinNum(D, v,w) works as follows:

– If v = w, then return 0;

– Otherwise if v, w belong to the same strongly biconnected component of D,
then return 1 (according to Theorem 1);

– Otherwise, let P = B0v1B1...Br−1vrBr (r ≥ 1) be the path in Gsbc(D) such
that v ∈ B0, w ∈ Br, v 6= v1 and w 6= vr, and l be the maximal length of
the chains of Gsbc(D) such that they are contained in P . Return l + 1. ut

Induction step: For v ∈ Vcr ∩ Vtr, if for each w ∈ Vcr such that (v, w) ∈ Escc,
the computation of hin(w) has been finished, then

– hout(v) := min{hin(w)|w ∈ Vcr, (v, w) ∈ Escc};
– if v 6= s: if h(v) ≥ hout(v)+1, then hin(v) := hout(v)+1, otherwise hin(v) :=
∞.

For each nontrivial strongly connected component C such that C 6= Ct and
In(C)∪Out(C) ⊆ Vcr, if for each v ∈ Vcr ∩Out(C) and each w ∈ Vcr such that
(v, w) ∈ Escc, the computation of hin(w) has been finished, then

– for each v ∈ Vcr ∩Out(C), hout(v) := min{hin(w)|w ∈ Vcr, (v, w) ∈ Escc};
– for each v ∈ Vcr∩In(C), if h(v) ≥ min{MinNum(C, v, v′)+hout(v′)+1|v′ ∈

Out(C)}, then hin(v) := min{MinNum(C, v, v′)+hout(v′)+1|v′ ∈ Out(C)},
otherwise hin(v) := ∞.

Example 1 (Case I: Cs is trivial). The digraph D is given in Fig.2.(a), Cs is
trivial, and Dscc(D), the strongly-connected-component digraph of D, is given in
Fig.2.(b). The critical vertices, Vcr, are those within the dashed cycle in Fig.2.(b),
V in

cr = {v1, v4, t, v8, v9} and V out
cr = {s, v2, v3, v4, v7, v11}. The h(v)’s are given in

Fig.2.(a) and pairs (hin(v), hout(v)) for v ∈ Vcr are given in Fig.2.(b). Because
hout(s) = 4, the motion planning problem is feasible. Four holes can be moved
to v8, v9, v11 and t before moving the robot, then the robot can be moved from
s to v8, and moved to v9 by rotating around the cycle v8v9v10, then to v11, and
finally to t. ut

4.2 Case II: Cs is nontrivial and Cs = Ct

Let inside (outside) holes denote the holes in some v ∈ V (Cs) (v 6∈ V (Cs)).
We first use the algorithm for feasibility of motion planning on strongly

connected digraphs in [WG08] to decide whether the inside holes are sufficient
to move the robot from s to t. If it is, then report “yes”; otherwise, the motion
planning problem may still be feasible since the outside holes can be moved into
Cs and used to move the robot from s to t.

For each outside hole, there may be multiple ports of Cs through which the
hole can be moved into Cs, we should choose carefully those ports, otherwise, the
feasibility may be destroyed, which has been illustrated in Fig.1. We introduce
a greedy strategy to move the outside holes into Cs to avoid this.

Before presenting the greedy strategy, we recall a definition about the relative
positions of the vertices in [WG08].

Fig. 2. Case I: Cs is trivial

Definition 3. Let D = (V,E) be a strongly connected digraph, Gsbc(D) =
(Vsbc,Wsbc, Esbc) be the strongly-biconnected-component graph of D, u, v, w ∈ V
and v 6= w. Then u is said to be on the w-side of v, if u 6= v and one of the
following two conditions holds:

1. v ∈ Wsbc (v is shared by at least two strongly biconnected components of D),
and u, w are in the same connected component of G(D − v).

2. v 6∈ Wsbc, and either u, w are in the same connected component of G(D −
V (B)), or u ∈ V (B), where B is the unique strongly biconnected component
of D to which v belongs.

Otherwise, u is said to be not on the w-side of v. And u is said to be on the
non-w-side of v if u is not on the w-side of v and u 6= v.

In Cs, when we say that an inside hole is on the w-side of the robot, or on
the non-w-side of the robot, and so on, we are talking about the positions of the
inside hole and the robot.

An outside hole of Cs is said to be on the w-side (resp. non-w-side) of v if
it can be moved into Cs through some port of Cs which is on the w-side (resp.
non-w-side) of v. Note that an outside hole can be both on the w-side of v and
on the non-w-side of v, since it can be moved into Cs both through some port on
the w-side of v and through some other port on the non-w-side of v. An outside
hole is said to be not on the w-side of v if it cannot be moved into Cs through
some port on the w-side of v.

Let hw−side(v), hnot−w−side(v), hnon−w−side(v) denote respectively the num-
ber of (inside or outside) holes on the w-side of v, not on the w-side of v, and
on the non-w-side of v.

Now we introduce the greedy strategy. The intuition of the strategy is that when
it is necessary to move the robot away from t, first use the inside holes not on
the t-side of the robot, then use the outside holes not on the t-side of the robot

and farthest from t (the distance between an outside hole and t is the minimal
distance between a port, through which the hole can be moved into Cs, and t).

If s, t do not belong to the same strongly biconnected component of Cs, then
let P := B0v1B1 · · · vpBp(p ≥ 1) be a path in Gsbc(Cs) = (Vsbc,Wsbc, Esbc) such
that s ∈ V (B0), s 6= v1, t ∈ V (Bp), t 6= vp; otherwise, let P := B0 and p := 0,
where B0 is the strongly biconnected component such that s, t ∈ V (B0).

We distinguish the following five cases,

1. s 6∈ Wsbc;
2. s ∈ Wsbc and ht−side(s) ≥ MinNum(Cs, s, t);
3. s ∈ Wsbc, ht−side(s) < MinNum(Cs, s, t) and |V (B0)| ≥ 3;
4. s ∈ Wsbc, ht−side(s) < MinNum(Cs, s, t), |V (B0)| = 2 and s is a branching

vertex;
5. s ∈ Wsbc, ht−side(s) < MinNum(Cs, s, t), |V (B0)| = 2 and s is not a branch-

ing vertex.

In the following, we illustrate the greedy strategy by considering the 5th case.
The discussions of the other cases are similar and they are omitted due to space
limitation.

Since s ∈ Wsbc and s is not a branching vertex, there is a unique strongly
biconnected component B such that B 6= B0 and s ∈ V (B).

If t ∈ V (B0), let i0 := 0, otherwise, let
i0 := min ({p} ∪ {i : |V (Bi)| ≥ 3, or vi is a branching vertex}).
We further distinguish the following four subcases,

Subcase 5.1. ht−side(s) ≥ i0 + 1;
Subcase 5.2. ht−side(s) ≤ i0 and |V (B)| ≥ 3;
Subcase 5.3. ht−side(s) ≤ i0, |V (B)| = 2 and B is a leaf of Gsbc(Cs);
Subcase 5.4. ht−side(s) ≤ i0, |V (B)| = 2 and B is not a leaf of Gsbc(Cs).

Due to space limitation, we consider only Subcase 5.4. in the following.
Subcase 5.4. Because ht−side(s) ≤ i0, it is necessary to move the robot away
from t to move more holes to the t-side of the robot.

Let v′ ∈ V (B) such that (s, v′) ∈ E, and Q := B′
0v

′
1B

′
1 . . . v′qB

′
q (q ≥ 1) be a

path in Gsbc(Cs) such that

1. B′
0 = B;

2. either |V (B′
q)| ≥ 3, or v′q is a branching vertex, or B′

q is a leaf of Gsbc(Cs);
3. ∀i : 1 ≤ i < q, |V (B′

i)| = 2, and v′i is not a branching vertex.

Now we move the outside holes into Cs as follows:
Let v′0 = s, then from i = 1 to i = q, do the following,

– If there are inside holes not on the t-side of v′i, then move one such hole to v′i,
move the robot from v′i−1 to v′i, and move the outside holes into Cs through
v′i−1 as much as we can;

– If there are no inside holes not on the t-side of v′i, but there are outside holes
not on the t-side of v′i, let k be the largest index such that there is at least
one outside hole not on the t-side of v′k, move one outside hole not on the
t-side of v′k into Cs, then to v′i, move the robot from v′i−1 to v′i, and move
the outside holes into Cs through v′i−1 as much as we can.

Suppose the robot is in v′r (0 ≤ r ≤ q) after the above loop.
If during the above loop, when the robot is in v′i (1 ≤ i ≤ r), and the number

of holes on the t-side of v′i is ≥ i + i0 + 1, then: if h(v′i) ≥ MinNum(Cs, v
′
i, t),

then report “yes”, otherwise report “no”.
Otherwise, there are two situations: r < q or r = q.
In case of r < q: We must have hnot−t−side(v′r+1) = 0. If ht−side(v′r) > 0

and hnot−t−side(v′r) > 0, then move one hole on the t-side of v′r to v′r−1, move
the robot from v′r to v′r−1, move one outside hole not on the t-side of v′r into Cs

through v′r, then to v′r+1, move the robot from v′r−1 to v′r+1, now all the holes
are on the t-side of v′r+1, report “yes” iff h(v′r+1) ≥ MinNum(Cs, v

′
r+1, t). If

ht−side(v′r) = 0, hnot−t−side(v′r) > 0 and hnon−t−side(v′r) > 0, then one outside
hole not on the t-side of v′r can be moved into Cs and to v′r+1 without moving
the robot, move the robot to v′r+1, now all the holes are on the t-side of v′r+1,
report “yes” iff h(v′r+1) ≥ MinNum(Cs, v

′
r+1, t).

In case of r = q: then there are the following three possibilities:

– |V (B′
q)| ≥ 3;

– |V (B′
q)| = 2 and v′q is a branching vertex;

– |V (B′
q)| = 2, v′q is not a branching vertex, and B′

q is a leaf.

The first possibility above is reduced to Subcase 5.2., the second possibility
above is reduced to Case 4., and the third possibility above is reduced to Subcase
5.3.

In all the other situations of Subcase 5.4., report “no”.

Example 2. The motion planning problem is given in Fig.1.(a). To preserve the
feasibility, we need first move the holes not on the t-side of v2, i.e. the hole in
v1, to v2, then move the robot to v2 and move the outside holes into Cs through
s as much as we can. So we move the two holes at v7 and v8 into Cs through s.
Then all the holes are on the t-side of the robot, the problem is feasible iff the
total number of holes is ≥ MinNum(Cs, v2, t) = 3. Thus the motion planning
problem is feasible.

4.3 Case III: Cs is nontrivial and Cs 6= Ct

We can decide the feasibility in this case by combining the algorithms for Case
I and Case II.

First, hin(v) and hout(v)’s are computed just like in Case I. Then, holes
outside Cs are moved into Cs by following the strategy similar to that in Case
II, while preserving the enough holes outside Cs for moving the robot to t.

The details of the algorithm are omitted and they will appear in the full
version of this paper.

5 Conclusions

In this paper, based on the work in [WG08] for motion planning on acyclic and
strongly connected digraphs, we gave a complete solution to the feasibility of
motion planning on digraphs. The most intricate part of this solution is to design
a strategy to move the outside holes into Cs, the strongly connected component
containing s, while not destroying the feasibility of the motion planning problem.

It would be interesting in the future to consider the optimization of motion
planning on digraphs as well as the other variations of motion planning problem
on digraphs, e.g. the reconfiguration problem that was considered on graphs in
[KMS84].

References

[BJG00] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applica-
tions, Springer Monographs in Mathematics. Springer-Verlag, 2000.

[FK99] P. W. Finn and L. E. Kavmkit. Computational approaches to drug design.
Algorithmica, 25:347–371, 1999.

[JJ06] Jorjeta G. Jetcheva and David B. Johnson. Routing characteristics of ad hoc
networks with unidirectional links. Ad Hoc Networks, 4(3):303–325, 2006.

[KMS84] D. Kornhauser, G. Miller, and P. Spirakis. Coordinating pebble motion on
graphs, the diameter of permutation groups, and applications. In FOCS’84,
pages 241–250, 1984.

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[MD02] Mahesh K. Marina and Samir R. Das. Routing performance in the presence

of unidirectional links in multihop wireless networks. In in Proc. of ACM
MobiHoc, pages 12–23, 2002.

[MPG] Motion planning game. website. http://www.download-game.com/Motion
Planning Game.htm.

[Per88] Yvonne Perrott. Track transportation systems. European patent, 1988.
http://www.freepatentsonline.com/EP0284316.html.

[PRST94] C. H. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki. Motion
planning on a graph. In FOCS’94, pages 511–520, 1994.

[SA01] Guang Song and Nancy M. Amato. Using motion planning to study protein
folding pathways. In RECOMB ’01: Proceedings of the fifth annual interna-
tional conference on Computational biology, pages 287–296, New York, NY,
USA, 2001. ACM.

[Wes00] Douglas B. West. Introduction to Graph Theory, second edition. Prentice
Hall, 2000.

[WG08] Zhilin Wu and Stéphane Grumbach. Feasibility of motion planning on acyclic
and strongly connected directed graphs. manuscript, 2008.

