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Abstract. LTL cannot express the whole class of ω-regular languages
and several extensions have been proposed. Among them, Quantified
propositional Linear Temporal Logic (QLTL), proposed by Sistla, ex-
tends LTL by quantifications over the atomic propositions. The expres-
sive power of LTL and its fragments have been made relatively clear by
numerous researchers. However, there are few results on the expressive
power of QLTL and its fragments (besides those of LTL). In this pa-
per we get some initial results on the expressive power of QLTL. First,
we show that both Q(U) (the fragment of QLTL in which “Until” is the
only temporal operator used, without restriction on the use of quantifiers)
and Q(F ) (similar to Q(U), with temporal operator “Until” replaced by
“Future”) can express the whole class of ω-regular languages. Then we
compare the expressive power of various fragments of QLTL in detail
and get a panorama of the expressive power of fragments of QLTL. Fi-
nally, we consider the quantifier hierarchy of Q(U) and Q(F ), and show
that one alternation of existential and universal quantifiers is necessary
and sufficient to express the whole class of ω-regular languages.

1 Introduction

Linear Temporal Logic (LTL) was first defined by the philosopher A. Prior in
1957 [9] as a tool to reason about the temporal information. Later, in 1977, A.
Pnueli introduced LTL into computer science to reason about the behaviors of
reactive systems [8]. Since then, it has become one of the most popular temporal
logics used in the specification and verification of reactive systems.

Expressive power is one of the main concerns of temporal logics. Perhaps
because of their popularity, the expressive power of LTL and its fragments have
been made relatively clear by numerous researchers. A well-known result is that
an ω-regular language is LTL-definable iff it is first order definable iff it is ω-
star free iff its syntactic monoid is aperiodic [5, 4, 14, 15, 7]. Since the class of
ω-star-free languages is a strict subclass of the class of ω-regular languages,
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some natural temporal properties such as the property that the proposition
p holds at all even positions cannot be expressed in LTL [18]. Consequently
several extensions of LTL have been proposed to define the whole class of ω-
regular languages. Among them we mention Extended Temporal Logic (ETL)
[19], linear µ-calculus (νTL)[17] and Quantified propositional Linear Temporal
Logic (QLTL, also known as QPTL) [11].

QLTL extends LTL by quantifications over atomic propositions. While the
expressive power of LTL and its fragments have been made relatively clear, there
are few results on the expressive power ofQLTL and its fragments (besides those
of LTL). A well-known result is that ω-regular languages can be expressed by
X , F operators and existential quantifiers in QLTL [2, 12], which, nevertheless,
is almost all we know about the expressive power of QLTL and its fragments
besides those of LTL. We do not even know whether several natural fragments of
QLTL, e.g. Q(U) (the fragment of QLTL in which “Until” is the only temporal
operator used, without restriction on the use of quantifiers) and Q(F ) (similar
to Q(U), with temporal operator “Until” replaced by “Future”), are expressively
equivalent to QLTL or not. Consequently we believe that the expressive power
of QLTL could be made clearer, which is the main theme of this paper.

In this paper, we first give a positive answer to the question whether Q(U)
and Q(F ) can define the whole class of ω-regular languages. Then we compare
the expressive power of various fragments of QLTL in detail and get a panorama
of the expressive power of fragments of QLTL. In particular, we show that the
expressive power of EQ(F )(the fragments of QLTL containing formulas of the
form ∃q1...∃qkψ, where ψ is the LTL formula in which “Future” is the only
temporal operator used) is strictly weaker than that of LTL; and the expres-
sive power of EQ(U) (the fragments of QLTL containing formulas of the form
∃q1...∃qkψ, where ψ is the LTL formula in which “Until” is the only temporal
operator used) is incompatible with that of LTL. Finally, we consider the quan-
tifier hierarchy of Q(U) and Q(F ), and show that one alternation of existential
and universal quantifiers is necessary and sufficient to express the whole class of
ω-regular languages.

Compared to ETL and νTL, QLTL is more natural and easier to use for
those people already familiar with LTL. As it was pointed out in [6, 3],QLTL has
important applications in the verification of complex systems because quantifi-
cations have the ability to reason about refinement relations between programs.

However, the complexity of QLTL is very high: QLTL is not elementarily
decidable [12]. So from a practical point of view, it seems that it is unnecessary
to bother to clarify the expressive power of QLTL. Our main motivation of the
exploration of the expressive power of QLTL is from a theoretical point of view,
that is, the analogy between QLTL and S1S [16], monadic second order logic
over words.

The formulas of S1S are constructed from atomic propositions x = y, x < y
and Pσ(x) (Pσ is the unary relation symbol for each letter σ in the alphabet
of words) by boolean combinations, first and second order quantifications. S1S
defines exactly the class of ω-regular languages. QLTL can be seen as a vari-
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ant of S1S because the quantifications over atomic propositions in QLTL are
essentially second order quantifications over positions of the ω-words.

In S1S, second order quantifications are so powerful that the first order
vocabulary can be suppressed into the single successor relation (“S(x, y)”) since
the linear order relation (“<”) can be defined by the successor relation with the
help of second order quantifications:

x < y ≡ ¬(x = y) ∧ ∀X((X(x) ∧ ∀z∀z′(X(z) ∧ S(z, z′) → X(z′))) → X(y)).

Then, analogously we may think that in QLTL the LTL part (the first order
part) can also be suppressed to the temporal operator X (“Next”), the coun-
terpart of successor relation S(x, y). However, because in S1S the positions of
words can be referred to directly by first order variables while in QLTL they
cannot, it turns out that in QLTL the LTL part cannot be suppressed into the
single temporal operator X (As a matter of fact, the fragment of QLTL with
only X operators used has the same expressive power as the fragment of LTL
with only X operator used). However, we still want to know to what extent
the LTL part of QLTL can be suppressed. So we consider Q(U) and Q(F ),
the fragment of QLTL with only U and F operator used respectively, to see
whether they can still express the whole class of ω-regular languages. When we
find out that they can do so, we then want to know whether they can also do so
when only the existential quantifiers are available. The answer is negative, and
naturally, we then consider the quantifier hierarchy of Q(U) and Q(F ) to see
how many alternations of existential and universal quantifiers are necessary and
sufficient to express the whole class of ω-regular languages.

The rest of the paper is organized as follows: in Section 2, we give some
notation and definitions; then in Section 3, we recall some relevant results on
the expressive power of QLTL and its fragments; in Section 4, we establish the
main results of this paper; finally in Section 5, we give some conclusions.

2 Notation and definitions

2.1 Syntax of QLTL

Let P denote the set of propositional variables {p1, p2, ...}. Formulas of QLTL
are defined by the following rules:

ϕ := q(q ∈ P) | ϕ1 ∨ ϕ2 | ¬ϕ1 | Xϕ1 | ϕ1Uϕ2 | ∃qϕ1(q ∈ P)

Let ϕ be a QLTL formula, the subformulas of ϕ is denoted by Sub(ϕ), and
the closure of ϕ, denoted by Cl(ϕ), is Sub(ϕ) ∪ {¬ψ|ψ ∈ Sub(ϕ)}.

Let ϕ be a QLTL formula. The free-variables-set and bound-variables-set of
ϕ, denoted by Free(ϕ) and Bound(ϕ) respectively, are defined similar to that
of first order logic.

The set of variables occurring in a formula ϕ, denoted by V ar(ϕ), is Free(ϕ)∪
Bound(ϕ).
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In the remaining part of this paper, we assume that all QLTL formulas ϕ are
well-named: i.e., for all ϕ, Free(ϕ)∩Bound(ϕ) = ∅, and for any q ∈ Bound(ϕ),
there is a unique quantified formula ∃qψ in Cl(ϕ).

We define several abbreviations of QLTL formulas as follows: true = q ∨
¬q(q ∈ P), false = ¬true, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2

Fϕ1 = trueUϕ1, Gϕ1 = ¬F¬ϕ1, ∀qϕ1 = ¬ (∃q(¬ϕ1)).
Moreover, we introduce the following abbreviations. Let AP be a given non-

empty finite subset of P . Then, for a ∈ 2AP ,

B(a)AP =

(

∧
p∈a

p

)

∧

(

∧
p∈AP\a

¬p

)

;

and for A ⊆ 2AP ,

B(A)AP =
∨

a∈A

B(a)AP .

2.2 Semantics of QLTL

QLTL formulas are interpreted as follows. Let u ∈
(

2P
)ω

. Denote the suffix of
u starting from the i-th position (the first position is 0) as ui and the letter in
the i-th position of u as ui.

– u |= q if q ∈ u0.
– u |= ϕ1 ∨ ϕ2 if u |= ϕ1 or u |= ϕ2.
– u |= ¬ϕ1 if u 6|= ϕ1.
– u |= Xϕ1 if u1 |= ϕ1.
– u |= ϕ1Uϕ2 if there is i ≥ 0 such that ui |= ϕ2 and for all 0 ≤ j < i, uj |= ϕ1.
– u |= ∃qϕ1 if there is some v ∈

(

2P
)ω

such that v differs from u only in the
assignments of q (namely for all i ≥ 0 and for all q′ ∈ P\{q}, q′ ∈ vi iff
q′ ∈ ui) and v |= ϕ1.

Let AP ⊆ AP ′ ⊆ P . If a ∈ 2AP , a′ ∈ 2AP ′

, and a′ ∩ AP = a, then we
say that the restriction of a′ to AP is a, denoted by a′|AP = a. If A ⊆ 2AP ,
A′ ⊆ 2AP ′

, and A = {a′|AP

∣

∣ a′ ∈ A′}, then we say that the restriction of A′

to AP is A, denoted by A′|AP = A. If u ∈
(

2AP
)ω

, u′ ∈
(

2AP ′

)ω

and for all

i ≥ 0, u′i|AP = ui, then we say that the restriction of u′ to AP is u, denoted by

u′|AP = u. Let L ⊆
(

2AP
)ω

and L′ ⊆
(

2AP ′

)ω

, we say that the restriction of L′

to AP is L, denoted by L′|AP = L, if L =
{

u ∈
(

2AP
)ω

|∃u′ ∈ L′, u′|AP = u
}

.

Proposition 1. Let AP be a nonempty finite subset of P and ϕ be a QLTL
formula such that Free(ϕ) ⊆ AP . Then, for any u, v ∈

(

2P
)ω

with u|AP = v|AP ,
we have that u |= ϕ iff v |= ϕ.

Let ϕ1, ϕ2 be two QLTL formulas. ϕ1 and ϕ2 are said to be equivalent,
denoted by ϕ1 ≡ ϕ2, if for all u ∈

(

2P
)ω

, u |= ϕ1 iff u |= ϕ2.
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Proposition 2. Let AP be a nonempty finite subset of P, ϕ1 and ϕ2 be two
formulas such that Free(ϕ1), F ree(ϕ2) ⊆ AP . Then ϕ1 ≡ ϕ2 iff (for all u ∈
(

2AP
)ω

, u |= ϕ1 iff u |= ϕ2).

For a QLTL formula, the bound variables are usually seen as auxiliary vari-
ables. Consequently if AP is the set of propositional variables that we are con-
cerned about, and if we want to use QLTL formula ϕ to define a language of
(

2AP
)ω

, naturally we may require that Free(ϕ) ⊆ AP and Bound(ϕ)∩AP = ∅.
So we introduce the following definition.

Definition 1 (Compatibility of AP and ϕ). Let AP be a given nonempty
finite subset of P and ϕ be a formula of QLTL. AP and ϕ are said to be com-
patible if Free(ϕ) ⊆ AP and Bound(ϕ) ∩AP = ∅.

Let AP be a nonempty finite subset of P and ϕ be a formula such that AP and
ϕ are compatible. The language of

(

2AP
)ω

defined by ϕ, denoted by L(ϕ)AP , is
{

u ∈
(

2AP
)ω

|u |= ϕ
}

.

Proposition 3. Let AP be a nonempty finite subset of P and ϕ = ∃q1...∃qkψ
be a formula such that AP and ϕ are compatible. Let AP ′ = AP ∪ {q1, ..., qk},
then AP ′ and ψ are compatible and L(ϕ)AP = L(ψ)AP ′

|AP .

2.3 Fragments of QLTL and expressive power of logics

Let O1, O2, ... ∈ {X,F,G,U}. We use L(O1, O2, ...) to denote the fragment of
QLTL containing temporal operators {O1, O2, ...} but containing no quantifiers,
and use Q(O1, O2, ...) to denote the fragment of QLTL containing both tempo-
ral operators {O1, O2, ...} and quantifiers. Moreover we denote the fragment of
QLTL containing exactly formulas of the form ∃q1...∃qkψ (or ∀q1...∀qkψ), where
ψ ∈ L(O1, O2, ...), as EQ(O1, O2, ...) (or AQ(O1, O2, ...)).

For instance, LTL is L(X,U) and QLTL is Q(X,U).
Let ϕ be a formula in QLTL and SL be one fragment of QLTL. We say that

ϕ is expressible in SL iff there is a formula ψ in SL such that ϕ ≡ ψ.
Let AP be a nonempty finite subset of P , L ⊆

(

2AP
)ω

, and SL be one
fragment of QLTL (e.g., Q(F )). We say that L is expressible in SL if there is a
formula ϕ in SL such that AP and ϕ are compatible and L(ϕ)AP = L.

Let SL1 and SL2 be two fragments of QLTL. We say that SL1 is less expres-
sive than SL2, denoted by SL1 ≤ SL2, if for any formula ϕ1 ∈ SL1, there exists
a formula ϕ2 ∈ SL2 such that ϕ1 ≡ ϕ2, and we say that SL1 and SL2 are expres-
sively equivalent, denoted by SL1 ≡ SL2, if SL1 ≤ SL2 and SL2 ≤ SL1. More-
over we say that SL1 is strictly less expressive than SL2, denoted by SL1 < SL2,
if SL1 ≤ SL2 but not SL2 ≤ SL1. Finally we say that the expressive power of
SL1 and SL2 are incompatible, denoted by SL1 ⊥ SL2, if neither SL1 ≤ SL2

nor SL2 ≤ SL1, namely there are two formulas ϕ1 ∈ SL1 and ϕ2 ∈ SL2 such
that there exists no formula in SL2 equivalent to ϕ1 and there exists no formula
in SL1 equivalent to ϕ2.
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2.4 B
..

uchi automaton and ω-languages

A B
..
uchi automaton B is a quintuple (Q,Σ, δ, q0, T ), where Q is the finite state

set, Σ is the finite set of letters, δ ⊆ Q × Σ × Q is the transition relation,
q0 ∈ Q is the initial state, and T ⊆ Q is the accepting state set. Let u ∈ Σω, a
run of B on u is an infinite state sequence s0s1... ∈ Qω such that s0 = q0 and
(si, ui, si+1) ∈ δ for all i ≥ 0. A run of B on u is accepting if some accepting
state occurs in it infinitely often. u is accepted by B if B has an accepting run on
u. The language defined by B, denoted by L(B), is the set of ω-words accepted
by B.

An ω-language is said to be ω-regular if it can be defined by some B
..
uchi

automaton.
An ω-language L ⊆ Σω is said to be stutter invariant if for all u ∈ Σω and

function f : N → N\{0} (N is the set of natural numbers), we have that u ∈ L
iff uf(0)uf(1)... ∈ L.

Let L ⊆ Σω be ω-regular. The syntactic congruence of L, denoted by ≈L,
is a congruence on Σ∗ defined as follows: let u, v ∈ Σ∗, then, u ≈L v if for all
x, y, z ∈ Σ∗, (xuyzω ∈ L iff xvyzω ∈ L) and (x(yuz)ω ∈ L iff x(yvz)ω ∈ L). The
syntactic monoid of L, denoted by M(L), is the division monoid Σ∗/ ≈L.

An ω-language L ⊆ Σω is said to be non-counting if there is n ≥ 0 such that
for all x, y, z, u ∈ Σ∗, (xunyzω ∈ L iff xun+1yzω ∈ L) and (x(yunz)ω ∈ L iff
x(yun+1z)ω ∈ L).

A monoid M is said to be aperiodic if there is k ≥ 0 such that for all m ∈M ,
mk = mk+1.

Let L ⊆ Σω. It is not hard to show that M(L) is aperiodic iff L is non-
counting.

3 Known results on the expressive power of QLTL and

LTL

In the remaining part of this paper, we always assume that AP is a nonempty
finite subset of P .

Proposition 4 ([2, 12]). An ω-language is ω-regular iff it is expressible in
QLTL.

Corollary 1. Q(X,U) ≡ EQ(X,F ).

Proposition 5 ([1]).

(i) Xp1 is not expressible in L(U);
(ii) Fp1 is not expressible in L(X);
(iii) p1Up2 is not expressible in L(X,F ).

In the following we recall three propositions characterizing the expressive power
of LTL(namely L(X,U)), L(U) and L(F ) respectively.

In the remaining part of this subsection, we assume that L ⊆ (2AP )ω.
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Proposition 6 (Characterization of LTL, [5, 4, 14, 15, 7]). Suppose that L
is ω-regular, then the following two conditions are equivalent:

– L is expressible in LTL;
– The syntactic monoid of L, M(L), is aperiodic.

Proposition 7 (Characterization of L(U), [10]). Let ϕ be a formula in
L(X,U) and Free(ϕ) ⊆ AP . Then ϕ is expressible in L(U) iff L(ϕ)AP is stutter
invariant.

Definition 2 (Restricted ω-regular set). L is said to be a restricted ω-
regular set if it is of the form

S∗
1s1S

∗
2s2...S

∗
m−1sm−1S

ω
m, (1)

where Si ⊆ 2AP (1 ≤ i ≤ m), and si ∈ Si\Si+1 (1 ≤ i < m).

For instance, let AP = {p1}, then,
(

2AP
)ω

and
(

2AP
)∗

{p1}∅ω are both
restricted ω-regular sets.

Definition 3. Let s0 ∈ 2AP and S′ ⊆ 2AP . We define L
init(s0)
inf(S′) as follows:

L
init(s0)
inf(S′) = {u ∈ L|u0 = s0, each element of S′ occurs infinitely often in u}

Proposition 8 (Characterization of L(F ), [13]). Let L be nonempty. Then,
L is expressible in L(F ) iff L is a finite union of nonempty languages of the

form M
init(s0)
inf(S′) , where M ⊆

(

2AP
)ω

is a restricted ω-regular set, s0 ∈ 2AP and

S′ ⊆ 2AP .

For instance, let AP = {p1}, then, L(Fp1)
AP ⊆

(

2AP
)ω

is exactly the union

of languages (L1)
init({p1})
inf(∅) , (L1)

init(∅)
inf({{p1}})

, and (L2)
init(∅)
inf(∅) , where L1 =

(

2AP
)ω

and L2 =
(

2AP
)∗

{p1}∅ω.

4 Our results on the expressive power of QLTL and its

fragments

According to Proposition 4, Q(X,U), Q(X,F ), EQ(X,U) and EQ(X,F ) are
all expressively equivalent, which, nevertheless, is almost all we know about the
expressive power of QLTL besides those of LTL. For instance, we do not know
whether several natural fragments of QLTL, e.g., Q(U) and Q(F ), can define
the whole class of ω-regular languages or not.

In this section, we first give a positive answer to the above question, namely,
we show that Q(U) and Q(F ) can define the whole class of ω-regular languages.
Then, since EQ(X,U) and EQ(X,F ) can also do so, analogously, we want to
know whether EQ(U) and EQ(F ) can do so or not. However, the answer is
negative. As a matter of fact, we show that EQ(F ) < LTL and EQ(U) ⊥
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LTL. Furthermore, we compare the expressive power of EQ(U) and EQ(F )
with that of other fragments of QLTL and get a panorama of the expressive
power of various fragments of QLTL (Fig. 1). Since neither EQ(U) nor EQ(F )
can express the whole class of ω-regular languages, we want to know how many
alternations of existential and universal quantifiers are necessary and sufficient
to do that. The answer is one, which will be shown in the end of this section.

Q(U)

EQ(U)

L(U)L(F)

EQ(F)

Q(F)

L(X,F)

L(X,U)

Q(X,U)

Fig. 1. Expressive power of QLTL and its fragments

Remark 1 (Notation in Fig. 1). Let L1 and L2 be two nodes in Fig. 1. If L2

is reachable from L1 but not vice versa, then L1 < L2, e.g. EQ(F ) < EQ(U).
If neither L2 is reachable from L1 nor L1 is reachable from L2, then L1 ⊥ L2,
e.g. EQ(F ) ⊥ L(U). If L1 and L2 are reachable from each other (namely, in the
same Strongly Connected Component), then L1 ≡ L2, e.g. Q(U) ≡ Q(F ). 2

4.1 Expressive power of Q(U) and Q(F )

In the following we will show that, with the help of quantifiers, the operator X
can be expressed by the operator U and the operator U can be expressed by the
operator F .

Lemma 1. Let ϕ ∈ QLTL, q1, q2 ∈ P\V ar(ϕ) and q1 6= q2. Then

Xϕ ≡
(

ϕ ∧ ∃q1 (¬q1 ∧ (ϕ ∧ ¬q1) U (ϕ ∧ q1))
)

∨
(

¬ϕ ∧ ¬∃q2 (¬q2 ∧ (¬ϕ ∧ ¬q2) U (¬ϕ ∧ q2))
)

.

Lemma 2. Let ϕ1 and ϕ2 be two formulas of QLTL and q ∈ P\(V ar(ϕ1) ∪
V ar(ϕ2)) . Then

ϕ1Uϕ2 ≡ ∃q (F (ϕ2 ∧ q) ∧G(¬q → G¬q) ∧G(ϕ1 ∨ ϕ2 ∨ ¬q)) .

From Lemma 1 and Lemma 2, we have the following theorem.

Theorem 1. Q(X,U) ≡ Q(U) ≡ Q(F ).

8



4.2 Expressive power of EQ(F ) and EQ(U)

Both EQ(X,U) and EQ(X,F ) can define the whole class of ω-regular languages
(Corollary 1). Then a natural question to ask is whether this is true for EQ(U)
and EQ(F ) as well. We will give a negative answer to this question in this
subsection. Moreover, in this subsection, we will compare the expressive power
of EQ(F ) and EQ(U) with that of other fragments of QLTL.

We first show that EQ(F ) cannot define the whole class of ω-regular lan-
guages. In fact we show that EQ(F ) is strictly less expressive than LTL.

Lemma 3. Let AP ⊆ AP ′ ⊆ P and L ⊆
(

2AP ′

)ω

. If L is a restricted ω-

regular set, s0 ∈ 2AP ′

, S′ ⊆ 2AP ′

and L
init(s0)
inf(S′) 6= ∅, then,

(

L
init(s0)
inf(S′)

)
∣

∣

∣

AP
=

(L|AP )
init(s0|AP )
inf(S′|AP ) .

Lemma 4. For any formula ϕ = ∃q1...∃qkψ ∈ EQ(F ), there exists some for-
mula θ ∈ L(X,U) such that ϕ ≡ θ.

Proof of Lemma 4.
Suppose that ϕ = ∃q1...∃qkψ ∈ EQ(F ), where ψ ∈ L(F ).
Suppose that ϕ and AP are compatible and AP ′ = AP ∪ {q1, ..., qk}.
Then, according to Proposition 3, we have that ψ and AP ′ are compatible,

and L(ϕ)AP = L(ψ)AP ′

|AP .
If L(ψ)AP ′

= ∅, then ϕ ≡ false. So we assume that L(ψ)AP ′

6= ∅.
According to Proposition 8, L(ψ)AP ′

is a finite union of nonempty languages

of the form L
init(s0)
inf(S′) , where L ⊆

(

2AP ′

)ω

is a restricted ω-regular set, s0 ∈ 2AP ′

and S′ ⊆ 2AP ′

.
In the remaining part of the proof of this lemma, we always suppose that L is

a restricted ω-regular set, specifically, S∗
1s1S

∗
2s2...S

∗
m−1sm−1S

ω
m, where Si ⊆ 2AP

(1 ≤ i ≤ m), and si ∈ Si\Si+1 (1 ≤ i < m).
From Lemma 3, we know that L(ϕ)AP = L(ψ)AP ′

|AP is a finite union of

nonempty languages of the form (L|AP )
init(s0|AP )
inf(S′|AP ) .

In the following we will show that there is a formula ξ in L(X,U) such

that V ar(ξ) = Free(ξ) ⊆ AP and L(ξ)AP = (L|AP )
init(s0|AP )
inf(S′|AP ) . Let θ be the

disjunction of all these ξ’s. Then L(ϕ)AP = L(θ)AP . Because Free(ϕ) ⊆ AP
and Free(θ) ⊆ AP , according to Proposition 2, we conclude that ϕ and θ are
equivalent.

In order to define ξ, we define a sequence of formulas ηi (1 ≤ i ≤ m) as
follows:

ηi =

{

G
(

B (Sm|AP )AP
)

if i = m

B (Si|AP )
AP

U
(

B(si|AP )AP ∧Xηi+1

)

if 1 ≤ i < m

It is not hard to show that for all 1 ≤ i ≤ m,

L(ηi)
AP = (Si|AP )∗ (si|AP ) ... (Sm|AP )ω .
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Thus, L|AP = L(η1)
AP .

We can define ξ by the formula

B (s0|AP )
AP ∧ η1 ∧

∧

a∈(S′|AP )

GF
(

B(a)AP
)

.

2

Lemma 5. Let ϕ be a formula in EQ(U) and AP be compatible with ϕ. Then for

any u ∈ (2AP )ω, any function f : N → N\{0}, if u |= ϕ, then, u
f(0)
0 ...u

f(i)
i ... |=

ϕ.

Lemma 6. Let AP = {p1}. Then Xp1 is not expressible in EQ(U).

Proof of Lemma 6.
To the contrary, suppose that Xp1 is expressible in EQ(U).
We know that ∅{p1}ω |= Xp1, then according to Lemma 5, we have that

∅2{p1}ω |= Xp1, a contradiction. 2

Theorem 2. EQ(F ) < LTL.

Proof.
It follows directly from Lemma 4 and Lemma 6. 2

Theorem 3. EQ(F ) ⊥ L(X,F ).

Proof.
From Lemma 2, we know that p1Up2 is expressible in EQ(F ). While it is not

expressible in L(X,F ) according to Proposition 5.
Xp1 is not expressible in EQ(F ) according to Lemma 6.
So, EQ(F ) ⊥ L(X,F ). 2

From Lemma 6, we already know that EQ(U) cannot define the whole class
of ω-regular languages. In the following, we will show that the expressive power
of EQ(U) and LTL are incompatible.

Lemma 7. Let AP = {p1} and

L = {u ∈
(

2AP
)ω

|(∅{p1}) occurs an odd number of times in u}.

L is expressible in EQ(U), while it is not expressible in LTL.

Remark 2. A language similar to L in Lemma 7 is used in Proposition 2 of [2].

2

Theorem 4. EQ(U) ⊥ LTL.

Proof.
It follows from Lemma 6 and Lemma 7. 2

Now we compare the expressive power of EQ(F ) and EQ(U) with that of L(F )
and L(U).

10



Lemma 8. Let AP = {p1}. Then

L = {∅, {p1}}
∗ {p1}{p1} {∅, {p1}}

∗ ∅ω ⊆
(

2AP
)ω

is expressible in EQ(F ), while it is not expressible in L(U).

The following theorem can be derived from Lemma 8 easily.

Theorem 5. L(F ) < EQ(F ) and L(U) < EQ(U).

But how about the expressive power of EQ(F ) and L(U)? In Lemma 8, we
have shown that there is a language expressible in EQ(F ), but not expressible
in L(U). In the following we will show that there is a language expressible in
L(U), but not expressible in EQ(F ).

Lemma 9. Let AP = {p1, p2, p3} and

L = ({p1}{p1}
∗{p2}{p2}

∗{p3}{p3}
∗)

ω
.

Then L is expressible in L(U), while it is not expressible in EQ(F ).

Proof of Lemma 9.
We first define the formula ϕ in L(U) such that AP and ϕ are compatible

and L(ϕ)AP = L:

ϕ ≡ B({p1})
AP ∧G

(

B({p1})
AP → B({p1})

AP U B({p2})
AP

)

∧

G
(

B({p2})
AP → B({p2})

AP U B({p3})
AP

)

∧

G
(

B({p3})
AP → B({p3})

AP U B({p1})
AP

)

.

Now we show that L is not expressible in EQ(F ).
To the contrary, suppose that there is an EQ(F ) formula ψ = ∃q1...∃qkξ such

that ψ and AP are compatible and L = L(ψ)AP .
Let AP ′ = AP ∪ {q1, ..., qk}. Then, according to Proposition 3, we have that

ξ and AP ′ are compatible, L(ψ)AP = L(ξ)AP ′

|AP .
According to Proposition 8, L(ξ)AP ′

is a finite union of nonempty languages

of the formM
init(s0)
inf(S′) , whereM is a restricted ω-regular set, s0 ∈ 2AP ′

, S′ ⊆ 2AP ′

.

From Lemma 3, we know that L = L(ξ)AP ′

|AP is a finite union of nonempty

languages of the form (M |AP )
init(s0|AP )
inf(S′|AP ) .

Let u = ({p1}{p2}{p3})
ω ∈ L. Then, u ∈ (M |AP )

init(s0|AP )
inf(S′|AP ) for some re-

stricted ω-regular set M , s0 ∈
(

2AP ′

)ω

and S′ ⊆
(

2AP ′

)ω

.

Suppose that M = S∗
1s1...S

∗
m−1sm−1S

ω
m, where Si ⊆ 2AP (1 ≤ i ≤ m), and

si ∈ Si\Si+1 (1 ≤ i < m). Then,

M |AP = (S1|AP )
∗
(s1|AP ) ... (Sm−1|AP )

∗
(sm−1|AP ) (Sm|AP )

ω
.

Since {p1}, {p2} and {p3} occur infinitely often in u ∈ M |AP , we have that
{{p1}, {p2}, {p3}} ⊆ Sm|AP .

11



If m = 1, then M |AP = (Sm|AP )ω. In this case, let

u′ = {p1}{p2}{p3}({p2}{p1}{p3})
ω.

Evidently u′ ∈ M |AP . Moreover, u0 = u′0, and the elements of 2AP occurring

infinitely often in u and u′ are the same. So, u′ ∈ (M |AP )
init(s0)
init(S′) ⊆ L, a contra-

diction.
Now we assume that m > 1.
Since u ∈MAP , we have that u = x(sm−1|AP )y ({p1}{p2}{p3})

ω
, where

x ∈ (S1|AP )
∗
(s1|AP ) ... (Sm−1|AP )

∗
and y ({p1}{p2}{p3})

ω ∈ (Sm|AP )
ω
.

Let u′ = x(sm−1|AP )y ({p2}{p1}{p3})
ω.

Then, u′ ∈ (S1|AP )
∗
(s1|AP ) ... (sm−1|AP ) (Sm|AP )

ω
. Moreover, u′0 = u0 and

the elements of 2AP occurring infinitely often in u and u′ are the same. So,

u′ ∈ (M |AP )
init(s0)
inf(S′) ⊆ L, a contradiction as well.

So, we conclude that L is not expressible in EQ(F ). 2

Theorem 6. L(U) ⊥ EQ(F ).

Proof.
It follows from Lemma 8 and Lemma 9. 2

Also we have the following theorem according to Lemma 9.

Theorem 7. EQ(F ) < EQ(U).

The expressive power of QLTL and its fragments are summarized into Fig. 1.

4.3 Quantifier hierarchy of Q(U) and Q(F )

In Subsection 4.2, we have known that EQ(F ) and EQ(U) can not define the
whole class of ω-regular languages. It follows easily that AQ(F ) and AQ(U) can
not define the whole class of ω-regular languages as well. Moreover since ¬Xp1 ≡
X(¬p1) is not expressible in EQ(U) (similar to the proof of Lemma 6),Xp1 is not
expressible in AQ(U) or in AQ(F ). Consequently Xp1 is expressible in neither
EQ(U) ∪ AQ(U) nor in EQ(F ) ∪ AQ(F ). Thus we conclude that alternations
of existential and universal quantifiers are necessary to define the whole class
of ω-regular languages in Q(U) and Q(F ). A natural question then occurs: how
many alternations of existential and universal quantifiers are sufficient to define
the whole class of ω-regular languages? The answer is one.

Now we define the quantifier hierarchy in Q(U) and Q(F ).
The definitions of hierarchy of Σk, Πk and △k in Q(U) and Q(F ) are similar

to the quantifier hierarchy of first order logic.Σk (Πk resp.) contains the formulas
of the prenex normal form such that there are k-blocks of quantifiers and the
quantifiers in each block are of the same type (all existential or all universal); the
consecutive blocks are of different types; the first block is existential (universal
resp.). △k = Σk ∩ Πk, namely △k contains those formulas both equivalent to
some Σk formula and to some Πk formula. In addition, we define ▽k = Σk∪Πk.

12



Lemma 10. ΣU
2 and ΣF

2 define the whole class of ω-regular languages.

Proof of Lemma 10.
Let B = (Q, 2AP , δ, q0, T ) be a B

..
uchi automaton. Suppose thatQ = {q0, ..., qn},

L(B) can be defined by the following formula ϕ.

ϕ := ∃q0...∃qn

(

q0 ∧G

(

∧
i6=j

¬(qi ∧ qj)

)

∧

G

(

∨
(qi,a,qj)∈δ

(

qi ∧ B(a)AP ∧Xqj
)

)

∧

(

∨
qi∈T

GFqi

))

Let AP ′ = AP ∪Q. If we can find a formula ψ in ΠU
1 (ΠF

1 , resp.) such that
ψ and AP ′ are compatible and

ψ ≡ G

(

∨
(qi,a,qj)∈δ

(qi ∧ B(a)AP ∧Xqj)

)

,

then, we are done.
We first show that such a ψ in ΠU

1 exists.
We observe that ∨

(qi,a,qj)∈δ
(qi ∧ B(a)AP ∧Xqj) can be rewritten into its con-

junctive normal form and the conjunctions can be moved to the outside of “G”:

G

(

∨
(qi,a,qj)∈δ

(qi ∧ B(a)AP ∧Xqj)

)

≡ ∧
i1, ..., ik
a1, ..., al

j1, ..., jm

G
(

qi1 ∨ ... ∨ qik
∨ B(a1)

AP ∨ ... ∨ B(al)
AP ∨Xqj1 ∨ ... ∨Xqjm

)

It is sufficient to show that there is a ΠU
1 formula such that the formula and

AP ′ are compatible and the formula is equivalent to

G
(

qi1 ∨ ... ∨ qik
∨ B(a1)

AP ∨ ... ∨ B(al)
AP ∨Xqj1 ∨ ... ∨Xqjm

)

. (2)

The negation of the formula (2) is of the form F (ϕ1 ∧ Xϕ2), where ϕ1, ϕ2

are boolean combinations of propositional variables in AP ′. If we can prove that
for any formula of the form F (ϕ1 ∧Xϕ2), there is a formula ξ in ΣU

1 such that
ξ and AP ′ are compatible, and ξ ≡ F (ϕ1 ∧Xϕ2), then, we are done.

Let

Si =
{

a ∈ 2AP ′

∣

∣

∣
a satisfies the boolean formula ϕi

}

, where i = 1, 2.

Then, for any u ∈
(

2AP ′

)ω

,

u |= F (ϕ1 ∧Xϕ2) iff u |= F
(

B(S1)
AP ′

∧XB(S2)
AP ′

)

.
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From Proposition 2, we know that

F (ϕ1 ∧Xϕ2) ≡ F
(

B(S1)
AP ′

∧XB(S2)
AP ′

)

.

Let q′ ∈ P\AP ′, and AP ′′ = AP ′∪{q′}, S′
1 = S1, and S′

2 = {a∪{q′}
∣

∣a ∈ S2}.
We have that S′

i|AP ′ = Si (i = 1, 2) and S′
1 ∩ S

′
2 = ∅.

Then, ΣU
1 formula

χ := ∃q′F
(

B(S′
1)

AP ′′

∧ B(S′
1)

AP ′′

U B(S′
2)

AP ′′

)

satisfies that χ and AP ′ are compatible, and

χ ≡ F
(

B(S1)
AP ′

∧XB(S2)
AP ′

)

≡ F (ϕ1 ∧Xϕ2) .

Now we show that there is also a formula χ′ ∈ ΣF
1 equivalent to F (ϕ1∧Xϕ2).

According to Lemma 2, there are q′′ ∈ P\AP ′′ and ξ ∈ L(F ) such that
∃q′′ξ ≡ B(S′

1)
AP ′′

U B(S′
2)

AP ′′

.
Let

χ′ := ∃q′∃q′′F
(

B(S′
1)

AP ′′

∧ ξ
)

.

Then χ′ ∈ ΣF
1 , χ′ and AP ′ are compatible and

χ′ ≡ χ ≡ F (ϕ1 ∧Xϕ2) .

2

The following theorem is a direct consequence of Lemma 10.

Theorem 8. Q(U) ≡ ΣU
2 ≡ ΠU

2 ≡ △U
2 ≡ ▽U

2 and Q(F ) ≡ ΣF
2 ≡ ΠF

2 ≡ △F
2 ≡

▽F
2 .

5 Conclusions

In this paper, we first showed that Q(U) and Q(F ) can define the whole class of
ω-regular languages. Then we compared the expressive power of EQ(F ), EQ(U)
and other fragments of QLTL in detail and got a panorama of the expressive
power of fragments of QLTL. In particular, we showed that EQ(F ) is strictly
less expressive than LTL and that the expressive power of EQ(U) and LTL
are incompatible. Furthermore, we showed that one alternation of existential
and universal quantifiers is necessary and sufficient to express the whole class of
ω-regular languages.

The results established in this paper can be easily adapted to the regular
languages on finite words.

There are several open problems. For instance, since we discovered that nei-
ther EQ(U) nor EQ(F ) can define the whole class of ω-regular languages, a
natural problem is to find (effective) characterizations for those languages ex-
pressible in EQ(U) and EQ(F ) respectively.
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We can also consider similar problems for the other temporal operators, such
as the strict “Until” and “Future” operators.

Acknowledgements. I want to thank Prof. Wenhui Zhang for his reviews on
this paper and discussions with me.
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A Proof of Lemma 1

Denote the right part formula of the equation in the lemma as ψ.

Let AP = Free(Xϕ) = Free(ϕ). It is sufficient to prove that for all u ∈
(

2AP
)ω

, u |= Xϕ iff u |= ψ according to Proposition 2.

“⇒”: Let u ∈
(

2AP
)ω

and u |= Xϕ.

Then u1 |= ϕ.There are the following two cases:

Case I: u |= ϕ. Define v as follows:

vi =

{

ui ∪ {q1} if i = 1
ui if otherwise

It is obvious that v |= ϕ∧¬q1, v1 |= ϕ∧q1. Consequently v |= (ϕ∧¬q1) U (ϕ∧q1).
Then u |= ∃q1 (¬q1 ∧ (ϕ ∧ ¬q1) U (ϕ ∧ q1)).

As a result we conclude that u |= ϕ∧∃q1 (¬q1 ∧ (ϕ ∧ ¬q1) U (ϕ ∧ q1)). Then
u |= ψ.

Case II: u |= ¬ϕ.

Now we show that u |= ¬∃q2 (¬q2 ∧ (¬ϕ ∧ ¬q2)U(¬ϕ ∧ q2)).

To the contrary, suppose that u |= ∃q2 (¬q2 ∧ (¬ϕ ∧ ¬q2)U(¬ϕ ∧ q2)).

Then there is a v ∈
(

2AP∪{q2}
)ω

such that v|AP = u and v |= ¬q2 ∧ (¬ϕ ∧
¬q2)U(¬ϕ ∧ q2).

There is i ≥ 0 such that vi |= ¬ϕ ∧ q2 and for all 0 ≤ j < i, vj |= ¬ϕ ∧ ¬q2.
Then vi |= q2 and for all 0 ≤ j < i, vj |= ¬q2, thus i ≥ 1 since v |= ¬q2. But
then vj |= ¬ϕ for all 0 ≤ j ≤ i, and consequently v1 |= ¬ϕ, as a result u1 |= ¬ϕ,
a contradiction.

Finally we conclude that u |= ¬ϕ∧¬∃q2 (¬q2 ∧ (¬ϕ ∧ ¬q2)U(¬ϕ ∧ q2)), u |=
ψ.

“⇐”: Suppose that u ∈
(

2AP
)ω

and u |= ψ.

There are two cases:

Case I: u |= ϕ ∧ ∃q1 (¬q1 ∧ (ϕ ∧ ¬q1)U(ϕ ∧ q1)).

Then there is a v ∈
(

2AP∪{q1}
)ω

such that v|AP = u and v |= ¬q1 ∧ (ϕ ∧
¬q1)U(ϕ ∧ q1).

There is i ≥ 0, vi |= ϕ ∧ q1 and for all 0 ≤ j < i, vj |= ϕ ∧ ¬q1. It is evident
that i > 0, thus v1 |= ϕ, v |= Xϕ. Consequently we conclude that u |= Xϕ.

Case II: u |= ¬ϕ ∧ ¬∃q2 (¬q2 ∧ (¬ϕ ∧ ¬q2)U(¬ϕ ∧ q2)).

Now we show that u |= Xϕ, namely u1 |= ϕ.

To the contrary suppose that u1 |= ¬ϕ. Define v as follows:

vi =

{

ui ∪ {q2} if i = 1
ui if otherwise

Then v |= ¬ϕ ∧ ¬q2 and v1 |= ¬ϕ ∧ q2. Consequently v |= ¬q2 ∧ (¬ϕ ∧
¬q2) U (¬ϕ ∧ q2), u |= ∃q2 (¬q2 ∧ (¬ϕ ∧ ¬q2) U (¬ϕ ∧ q2)), a contradiction.
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B Proof of Lemma 2

Let ψ denote F (ϕ2 ∧ q) ∧G(ϕ1 ∨ ϕ2 ∨ ¬q) ∧G(¬q → G¬q).
Let AP = Free(ϕ1) ∪ Free(ϕ2). It is sufficient to prove that for all u ∈

(

2AP
)ω

, u |= ϕ1Uϕ2 iff u |= ∃qψ according to Proposition 2.

”⇒”: Suppose that u ∈
(

2AP
)ω

and u |= ϕ1Uϕ2.
There is i ≥ 0 such that ui |= ϕ2 and for all 0 ≤ j < i, uj |= ϕ1.
Define v as follows:

vj =

{

uj ∪ {q} if 0 ≤ j ≤ i
uj if j > i

Then for all j ≤ i, q ∈ vj , and for all j > i, q 6∈ vj since q 6∈ AP and
u ∈

(

2AP
)ω

.
Thus v |= G(¬q → G¬q), and vi |= ϕ2 ∧ q, as a consequence v |= F (ϕ2 ∧ q).
For all 0 ≤ j ≤ i, vj |= ϕ1 ∨ϕ2 since u|Free(ϕ1) = v|Free(ϕ1) and u|Free(ϕ2) =

v|Free(ϕ2). And for all j > i, vj |= ¬q. Consequently v |= G(ϕ1 ∨ ϕ2 ∨ ¬q).
As a result we conclude that v |= ψ. Then u |= ∃qψ according to the definition

of semantics of “∃” quantifier.
“⇐”: Suppose that u ∈

(

2AP
)ω

and u |= ∃qψ.

There is some v ∈
(

2P
)ω

such that v differs from u only in the assignments
of q, and v |= ψ.

Then there is i ≥ 0 such that vi |= ϕ2 ∧ q.
Because vi |= q and v |= G(¬q → G¬q), then for all 0 ≤ j < i, vj |= q as

well.
It is also true that v |= G(ϕ1 ∨ϕ2 ∨¬p), then for all 0 ≤ j < i, vj |= ϕ1 ∨ϕ2.
Consequently we have vi |= ϕ2, and for all 0 ≤ j < i, vj |= ϕ1 ∨ϕ2. Then we

conclude that v |= ϕ1Uϕ2.
u |= ϕ1Uϕ2 follows from the fact that u|2F ree(ϕ1Uϕ2) = v|2F ree(ϕ1Uϕ2) because u

and v only differs from each other in the assignments of q and q /∈ Free(ϕ1Uϕ2).

C Proof of Lemma 3

Suppose that L is S∗
1s1S

∗
2s2...S

∗
m−1sm−1S

ω
m, where Si ⊆ 2AP (1 ≤ i ≤ m), and

si ∈ Si\Si+1 (1 ≤ i < m).

Since L
init(s0)
inf(S′) 6= ∅, we have that s0 ∈ S1 and S′ ⊆ Sm.

(

L
init(s0)
inf(S′)

)∣

∣

∣

AP
⊆ (L|AP )

init(s0|AP )
inf(S′|AP ) :

Suppose that u ∈
(

L
init(s0)
inf(S′)

)∣

∣

∣

AP
. Then, there is v ∈ L

init(s0)
inf(S′) such that

v|AP = u. So, v ∈ L, v0 = s0 and each element of S′ occurs infinitely often in v.
Then, we know that u ∈ L|AP , u0 = s0|AP , and each element of S′|AP occurs

infinitely often in u. Consequently, u ∈ (L|AP )
init(s0|AP )
inf(S′|AP ) .

(L|AP )
init(s0|AP )
inf(S′|AP ) ⊆

(

L
init(s0)
inf(S′)

)
∣

∣

∣

AP
:
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Suppose that u ∈ (L|AP )
init(s0 |AP )
inf(S′|AP ) . Then, u ∈ L|AP , u0 = s0|AP and each

element in S′|AP occurs infinitely often in u.
Since

L|AP = (S1|AP )
∗
(s1|AP )... (Sm−1|AP )

∗
(sm−1|AP ) (Sm|AP )

ω
,

we have that u = x1(s1|AP )...xm−1(sm−1|AP )xm, where xi ∈ (Si|AP )
∗

(1 ≤ i <
m) and xm ∈ (Sm|AP )

ω
.

Because s0 ∈ S1 and S′ ⊆ Sm, we can change the assignment of q1, ..., qk on
u to get a v = x′1s1...x

′
m−1sm−1x

′
m such that v|AP = u, x′i ∈ S∗

i (1 ≤ i < m),
x′m ∈ Sω

m, v0 = s0 and each element of S′ occurs infinitely often on v. So,

v ∈ L
init(s0)
inf(S′) and u ∈

(

L
init(s0)
inf(S′)

)∣

∣

∣

AP
.

D Proof of Lemma 5

Suppose that ϕ = ∃q1...∃qk(ψ), where ψ is a formula in L(U).
Let AP ′ = AP ∪ {q1, ..., qk}. Then, L(ϕ)AP = L(ψ)AP ′

|AP according to
Proposition 3.

Let u ∈ (2AP )ω, f : N → N\{0}, and u |= ϕ. Then, there is v ∈
(

2AP ′

)ω

such that v |= ψ and v|AP = u. The languages defined by L(U) formulas are

stutter invariant according to Proposition 5. So, v
f(0)
0 ...v

f(i)
i ... |= ψ. Evidently

u
f(0)
0 ...u

f(i)
i ... =

(

v
f(0)
0 ...v

f(i)
i ...

)∣

∣

∣

AP
. We conclude that u

f(0)
0 ...u

f(i)
i ... |= ϕ.

E Proof of Lemma 7

We first show that L is not non-counting. Since L is non-counting iff its syntactic
monoid is aperiodic, according to Proposition 6, we know that L is not expressible
in LTL.

To the contrary, suppose that L is non-counting. Then there is n ≥ 0 such
that for all x, y, z, u ∈

(

2AP
)∗

, (xunyzω ∈ L iff xun+1yzω ∈ L) and (x (yunz)
ω ∈

L iff x
(

yun+1z
)ω

∈ L). Let x = y = z = ∅ and u = ∅{p1}. Then,

xunyzω = ∅ (∅{p1})
n ∅∅ω ∈ L iff xun+1yzω = ∅ (∅{p1})

n+1 ∅∅ω ∈ L,

contradicting to definition of L.
Now we show that L is expressible in EQ(U).
Let u ∈ L. Then, (∅{p1}) occurs an odd number of times in u. There are

three cases.

Case 1: ∅ occurs in the first position of u and (∅{p1}) occurs at least three times
in u,

Case 2: {p1} occurs in the first position of u,
Case 3: ∅ occurs in the first position of u and (∅{p1}) occurs ony once in u.
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Let Li = {u ∈ L|u satisfies the condition of the Case i above}, where i =
1, 2, 3.

Let
x = ∅∅∗{p1}{p1}

∗∅∅∗{p1}{p1}
∗,

y = ∅∅∗{p1}{p1}
∗ ({p1}

ω ∪ ∅ω) .

Then L1 = xx∗y, L2 = {p1}{p1}∗x∗y and L3 = y.
We introduce new variables p2, p3, p4 and let AP ′ = AP ∪ {p2, p3, p4}.

Define L′
i ⊆

(

2AP ′

)ω

such that L′
i|AP = Li (i = 1, 2, 3) as follows.

L′
1 = x′(x′)∗y′, L′

2 = {p1, p2}{p1, p2}∗(x′)∗y′ and L′
3 = y′, where

x′ = ∅∅∗{p1}{p1}
∗{p2}{p2}

∗{p1, p2}{p1, p2}
∗,

y′ = {p3}{p3}
∗{p1, p3}{p1, p3}

∗ ({p1, p3}
ω ∪ {p4}

ω) .

It is easy to verify that L′
i|AP = Li (i = 1, 2, 3) since x′|AP = x and y′|AP = y.

Let L′ = L′
1 ∪ L′

2 ∪ L′
3. Then L′ is accepted by the B

..
uchi automaton B

illustrated in Fig. 2.

∅

∅

∅

{p1, p2}

{p1, p2}
{p1, p2}

{p1, p3}

{p1, p3}
{p1}

{p1}

{p2}

{p2}

{p3}

{p3}

{p3}

{p4}

{p4}

q0

q1

q2 q3

q4 q5 q6 q7

Fig. 2. B
..

uchi automaton B for L′

There are eight states in B, q0 is the initial state, q6, q7 are the accepting
states.

q0 has three out-edges labeled by ∅, {p1, p2} and {p3} respectively, corre-
sponding to the three distinct letters occurring in the first position of ω-words
in L′

1, L
′
2, L

′
3 respectively.

When the run of B on an ω-word u ∈
(

2AP ′

)ω

reaches q4 or q5, (∅{p1}) must

have occurred even number of times in u|AP .
When a run of B reaches q4, it has two choices: one is to stay in the square

cycle (containing states q1, q2, q3, q4), the other is to leave the square cycle and
visit q5. If we want a run to be accepting, then eventually we must visit q5
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since the accepting states are q6, q7. So, along an ω-word accepted by B, p3 will
eventually become true.

When a run of B reaches q6, we have two choices to make the run accepting:
either stay in q6 forever or eventually visit q7 and stay in q7 forever.

Now we define formula ψ in L(U) such that L(ψ)AP ′

= L′. Then, L =
L′|AP = L(ψ)AP ′

|AP = L(∃p2∃p3∃p4ψ)AP according to Proposition 3. Conse-
quently, we conclude that L is expressible in EQ(U).

We define the formula ψ in L(U) as follows:

ψ :=
(

B(∅)AP ′

∨ B({p1, p2})
AP ′

∨ B({p3})
AP ′

)

∧ Fp3 ∧

G
(

B(∅)AP ′

→ B(∅)AP ′

U B({p1})
AP ′

)

∧

G
(

B({p1})
AP ′

→ B({p1})
AP ′

U B({p2})
AP ′

)

∧

G
(

B({p2})
AP ′

→ B({p2})
AP ′

U B({p1, p2})
AP ′

)

∧

G
(

B({p1, p2})
AP ′

→ B({p1, p2})
AP ′

U
(

B(∅)AP ′

∨ B({p3})
AP ′

))

∧

G
(

B({p3})
AP ′

→ B({p3})
AP ′

U
(

G
(

B({p1, p3})
AP ′

)

∨
(

B({p1, p3})
AP ′

∧ B({p1, p3})
AP ′

U G
(

B({p4})
AP ′

))))

.

F Proof of Lemma 8

Since L is not stutter invariant, it follows that L is not expressible in L(U)
according to Proposition 5.

Let AP ′ = AP ∪ {p2},

L′ = ({{p2}, {p1, p2}})
∗ {p1, p2} ({p1})

∗ {p1} ({{p2}, {p1, p2}})
∗ {p2}∅

ω.

It is easy to see that L′ is a restricted ω-regular set and L′|AP = L.

Let S′ = {∅}. Then, L′ = (L′)
init({p2})
inf(S′)

⋃

(L′)
init({p1,p2})
inf(S′) . So, L′ is expressible

in L(F ) according to Proposition 5. We conclude that L is expressible in EQ(F )
according to Proposition 3.
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