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Abstract. LTL cannot express the whole class of w-regular languages
and several extensions have been proposed. Among them, Quantified
propositional Linear Temporal Logic (QLTL), proposed by Sistla, ex-
tends LT L by quantifications over the atomic propositions. The expres-
sive power of LT L and its fragments have been made relatively clear by
numerous researchers. However, there are few results on the expressive
power of QLTL and its fragments (besides those of LT'L). In this pa-
per we get some initial results on the expressive power of QLT L. First,
we show that both Q(U) (the fragment of QLT L in which “Until” is the
only temporal operator used, without restriction on the use of quantifiers)
and Q(F) (similar to Q(U), with temporal operator “Until” replaced by
“Future”) can express the whole class of w-regular languages. Then we
compare the expressive power of various fragments of QLT L in detail
and get a panorama of the expressive power of fragments of QLT L. Fi-
nally, we consider the quantifier hierarchy of Q(U) and Q(F'), and show
that one alternation of existential and universal quantifiers is necessary
and sufficient to express the whole class of w-regular languages.

1 Introduction

Linear Temporal Logic (LTL) was first defined by the philosopher A. Prior in
1957 [9] as a tool to reason about the temporal information. Later, in 1977, A.
Pnueli introduced LT L into computer science to reason about the behaviors of
reactive systems [8]. Since then, it has become one of the most popular temporal
logics used in the specification and verification of reactive systems.

Expressive power is one of the main concerns of temporal logics. Perhaps
because of their popularity, the expressive power of LT L and its fragments have
been made relatively clear by numerous researchers. A well-known result is that
an w-regular language is LT L-definable iff it is first order definable iff it is w-
star free iff its syntactic monoid is aperiodic [5,4,14,15,7]. Since the class of
w-star-free languages is a strict subclass of the class of w-regular languages,
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some natural temporal properties such as the property that the proposition
p holds at all even positions cannot be expressed in LTL [18]. Consequently
several extensions of LT L have been proposed to define the whole class of w-
regular languages. Among them we mention Extended Temporal Logic (ETL)
[19], linear p-calculus (¢¥TL)[17] and Quantified propositional Linear Temporal
Logic (QLTL, also known as QPTL) [11].

QLTL extends LTL by quantifications over atomic propositions. While the
expressive power of LT L and its fragments have been made relatively clear, there
are few results on the expressive power of QLT L and its fragments (besides those
of LTL). A well-known result is that w-regular languages can be expressed by
X, F operators and existential quantifiers in QLTL [2,12], which, nevertheless,
is almost all we know about the expressive power of QLT L and its fragments
besides those of LT'L. We do not even know whether several natural fragments of
QLTL,e.g. Q(U) (the fragment of QLT L in which “Until” is the only temporal
operator used, without restriction on the use of quantifiers) and Q(F) (similar
to Q(U), with temporal operator “Until” replaced by “Future”), are expressively
equivalent to QLT L or not. Consequently we believe that the expressive power
of QLT L could be made clearer, which is the main theme of this paper.

In this paper, we first give a positive answer to the question whether Q(U)
and Q(F) can define the whole class of w-regular languages. Then we compare
the expressive power of various fragments of QLT L in detail and get a panorama
of the expressive power of fragments of QLT L. In particular, we show that the
expressive power of EQ(F)(the fragments of QLT L containing formulas of the
form dqi...3qx, where 1 is the LTL formula in which “Future” is the only
temporal operator used) is strictly weaker than that of LTL; and the expres-
sive power of EQ(U) (the fragments of QLT L containing formulas of the form
Jq1...3qx, where ¢ is the LT L formula in which “Until” is the only temporal
operator used) is incompatible with that of LT L. Finally, we consider the quan-
tifier hierarchy of Q(U) and Q(F), and show that one alternation of existential
and universal quantifiers is necessary and sufficient to express the whole class of
w-regular languages.

Compared to ETL and vT'L, QLTL is more natural and easier to use for
those people already familiar with LT L. As it was pointed out in [6, 3], QLT L has
important applications in the verification of complex systems because quantifi-
cations have the ability to reason about refinement relations between programs.

However, the complexity of QLTL is very high: QLT L is not elementarily
decidable [12]. So from a practical point of view, it seems that it is unnecessary
to bother to clarify the expressive power of QLT L. Our main motivation of the
exploration of the expressive power of QLT L is from a theoretical point of view,
that is, the analogy between QLT L and S1S5 [16], monadic second order logic
over words.

The formulas of S15 are constructed from atomic propositions x =y, x < y
and P,(z) (P, is the unary relation symbol for each letter o in the alphabet
of words) by boolean combinations, first and second order quantifications. S15
defines exactly the class of w-regular languages. QLT L can be seen as a vari-



ant of S1.S because the quantifications over atomic propositions in QLT L are
essentially second order quantifications over positions of the w-words.

In S1S, second order quantifications are so powerful that the first order
vocabulary can be suppressed into the single successor relation (“S(z,y)”) since
the linear order relation (“<”) can be defined by the successor relation with the
help of second order quantifications:

r<y=-(z=y) AVX((X(2) AV2V2'"(X(2) AS(2,2") = X(2'))) — X(v)).

Then, analogously we may think that in QLTL the LTL part (the first order
part) can also be suppressed to the temporal operator X (“Next”), the coun-
terpart of successor relation S(z,y). However, because in S1S the positions of
words can be referred to directly by first order variables while in QLT L they
cannot, it turns out that in QLT L the LT L part cannot be suppressed into the
single temporal operator X (As a matter of fact, the fragment of QLT L with
only X operators used has the same expressive power as the fragment of LT L
with only X operator used). However, we still want to know to what extent
the LTL part of QLTL can be suppressed. So we consider Q(U) and Q(F),
the fragment of QLT L with only U and F operator used respectively, to see
whether they can still express the whole class of w-regular languages. When we
find out that they can do so, we then want to know whether they can also do so
when only the existential quantifiers are available. The answer is negative, and
naturally, we then consider the quantifier hierarchy of Q(U) and Q(F) to see
how many alternations of existential and universal quantifiers are necessary and
sufficient to express the whole class of w-regular languages.

The rest of the paper is organized as follows: in Section 2, we give some
notation and definitions; then in Section 3, we recall some relevant results on
the expressive power of QLT L and its fragments; in Section 4, we establish the
main results of this paper; finally in Section 5, we give some conclusions.

2 Notation and definitions

2.1 Syntax of QLTL

Let P denote the set of propositional variables {p1, ps, ...}. Formulas of QLTL
are defined by the following rules:

0:=qlq€P) | o1V | 1| X1 | prUps | Igp1(q € P)

Let ¢ be a QLTL formula, the subformulas of ¢ is denoted by Sub(y), and
the closure of ¢, denoted by Cl(y), is Sub(yp) U {—|p € Sub(p)}.

Let ¢ be a QLTL formula. The free-variables-set and bound-variables-set of
¢, denoted by Free(yp) and Bound(yp) respectively, are defined similar to that
of first order logic.

The set of variables occurring in a formula ¢, denoted by Var(y), is Free(p)U
Bound(p).



In the remaining part of this paper, we assume that all QLT L formulas ¢ are
well-named: i.e., for all ¢, Free(¢) N Bound(yp) = 0, and for any ¢ € Bound(yp),
there is a unique quantified formula 3¢ in Cl(y).

We define several abbreviations of QLT L formulas as follows: true = q V
~q(q € P), false = —true, o1 A w2 = =(—p1 V —p2), 1 — w2 = 71 V @2
For =trueUep:, Gp1 = ~F=p1, Yap1 = = (3q(—¢p1)).

Moreover, we introduce the following abbreviations. Let AP be a given non-
empty finite subset of P. Then, for a € 247,

AP _ )
Bla)*? = (pgap> A ( - p) ,

B(A)*F = \/ B(a)*".

a€A

and for A C 24F,

2.2 Semantics of QLTL

QLTL formulas are interpreted as follows. Let u € (27))w. Denote the suffix of
u starting from the i-th position (the first position is 0) as u* and the letter in
the ¢-th position of u as u;.

—u = qif ¢ € ugp.

—ulE 1 Ve iful e orul @

— u = e if u b .

—ukE X iful .

— u = 1Upy if there is i > 0 such that u® = @9 and for all 0 < j < 4, v’ |= 1.

— u | Jqp; if there is some v € (27))w such that v differs from « only in the
assignments of ¢ (namely for all i > 0 and for all ¢ € P\{q}, ¢ € v; iff
¢ € u;) and v = 1.

Let AP C AP’ C P. If a € 247, ' € 247" and o/ N AP = q, then we
say that the restriction of a’ to AP is a, denoted by a'|4ap = a. If A C 247,
A" C 247 and A = {d'|ap| o’ € A’}, then we say that the restriction of A’

to AP is A, denoted by A'|ap = A. If u € (2AP)W, u € (2APl)w and for all
i >0, ui|ap = u;, then we say that the restriction of v’ to AP is u, denoted by
w'lap =wu.Let L C (2Ap)w and L' C (2API)W, we say that the restriction of L’
to AP is L, denoted by L'|ap = L, if L = {u € (247)" |3/ € L', w/|ap = u}.

Proposition 1. Let AP be a nonempty finite subset of P and ¢ be a QLTL
formula such that Free(p) C AP. Then, for any u,v € (27)° with u|ap = v|ap,

we have that v = ¢ iff v = .

Let 1,92 be two QLT L formulas. 1 and ¢- are said to be equivalent,
denoted by @1 = s, if for all u € (2P)w, u = 1 iff u = .



Proposition 2. Let AP be a nonempty finite subset of P, p1 and w2 be two
formulas such that Free(p), Free(ps) C AP. Then o1 = o iff (for all u €

247)%, u = o1 iff u b= @2).

For a QLT L formula, the bound variables are usually seen as auxiliary vari-
ables. Consequently if AP is the set of propositional variables that we are con-
cerned about, and if we want to use QLT L formula ¢ to define a language of
(2Ap)w, naturally we may require that Free(¢) C AP and Bound(p)NAP = (.
So we introduce the following definition.

Definition 1 (Compatibility of AP and ¢). Let AP be a given nonempty
finite subset of P and ¢ be a formula of QLTL. AP and ¢ are said to be com-
patible if Free(p) C AP and Bound(p) N AP = (.

Let AP be a nonempty finite subset of P and ¢ be a formula such that AP and
¢ are compatible. The language of (2AP)W defined by ¢, denoted by L(¢)4F, is

{ue (2AP)W lul= @}

Proposition 3. Let AP be a nonempty finite subset of P and ¢ = Iqq...Iqptp
be a formula such that AP and ¢ are compatible. Let AP' = AP U {q1, ..., qx },
then AP' and v are compatible and L(p)*" = L()AF | ap.

2.3 Fragments of QLTL and expressive power of logics

Let 01,09, ... € {X,F,G,U}. We use L(O1,03,...) to denote the fragment of
QLTL containing temporal operators {O1, Oa, ...} but containing no quantifiers,
and use Q(O1, O, ...) to denote the fragment of QLT L containing both tempo-
ral operators {O1,Oa, ...} and quantifiers. Moreover we denote the fragment of
QLTL containing exactly formulas of the form J¢;...3gxy (or V¢i...Vqx1)), where
P e L(Ol, 02, ), as EQ(Ol, 02, ) (OI‘ AQ(Ol, 02, ))

For instance, LTL is L(X,U) and QLTL is Q(X,U).

Let ¢ be a formula in QLT L and SL be one fragment of QLT L. We say that
@ is expressible in SL iff there is a formula ¥ in SL such that ¢ = 1.

Let AP be a nonempty finite subset of P, L C (2Ap)w, and SL be one
fragment of QLTL (e.g., Q(F)). We say that L is expressible in SL if there is a
formula ¢ in S£ such that AP and ¢ are compatible and £(p)4" = L.

Let S£; and SL2 be two fragments of QLT L. We say that SL; is less expres-
sive than SLo, denoted by SL£1 < SLo, if for any formula 1 € SL4, there exists
a formula g € SLy such that ¢ = @9, and we say that SL£; and SL, are expres-
sively equivalent, denoted by SL£; = SLo, if SL1 < SLs and SLs < SL;. More-
over we say that SL; is strictly less expressive than SLo, denoted by S£1 < SL,,
if S£; < SL; but not SL; < SL4. Finally we say that the expressive power of
SLq and SL, are incompatible, denoted by SL£1 1 SL,, if neither S£; < SLo
nor SLo < SL4, namely there are two formulas ¢1 € S£q and ¢y € SLy such
that there exists no formula in S£4 equivalent to 7 and there exists no formula
in S£; equivalent to ¢s.



2.4 Buchi automaton and w-languages

A Buchi automaton B is a quintuple (@, X, 0, qo,T), where @ is the finite state
set, X' is the finite set of letters, § C @Q x X x @ is the transition relation,
qo € @ is the initial state, and T" C @ is the accepting state set. Let u € X¥| a
run of B on u is an infinite state sequence sgs1... € Q¥ such that sg = gg and
(8i,uiy Sit+1) € § for all @ > 0. A run of B on u is accepting if some accepting
state occurs in it infinitely often. u is accepted by B if B has an accepting run on
u. The language defined by B, denoted by L£(B), is the set of w-words accepted
by B.

An w-language is said to be w-regular if it can be defined by some Buchi
automaton.

An w-language L C X* is said to be stutter invariant if for all v € X“ and
function f: N — N\{0} (N is the set of natural numbers), we have that v € L
iff u/ /M. e L.

Let L C X be w-regular. The syntactic congruence of L, denoted by =,
is a congruence on X* defined as follows: let u,v € X*, then, u =~ v if for all
x,y,z € X%, (zuyz¥ € L iff zvyz* € L) and (z(yuz)® € L iff z(yvz)® € L). The
syntactic monoid of L, denoted by M (L), is the division monoid X*/ ~ .

An w-language L C X“ is said to be non-counting if there is n > 0 such that
for all x,y,z,u € X*, (zu"yz* € L iff zu"Tlyz¥ € L) and (z(yu"z)” € L iff
z(yu"t2)¥ € L).

A monoid M is said to be aperiodic if there is k > 0 such that for all m € M,
mbF = mht+1,

Let L C X“. It is not hard to show that M (L) is aperiodic iff L is non-
counting.

3 Known results on the expressive power of QLT L and
LTL

In the remaining part of this paper, we always assume that AP is a nonempty
finite subset of P.

Proposition 4 ([2,12]). An w-language is w-regular iff it is expressible in
QLTL.

Corollary 1. Q(X,U) = EQ(X, F).
Proposition 5 ([1]).

(i) Xp1 is not expressible in L(U);
(i) Fp1 is not expressible in L(X);
(iii) p1Ups2 is not expressible in L(X, F).

In the following we recall three propositions characterizing the expressive power
of LT L(namely L(X,U)), L(U) and L(F) respectively.
In the remaining part of this subsection, we assume that L C (247)~.



Proposition 6 (Characterization of LTL, [5,4,14,15,7]). Suppose that L
is w-reqular, then the following two conditions are equivalent:

— L is expressible in LTL;
— The syntactic monoid of L, M (L), is aperiodic.

Proposition 7 (Characterization of L(U), [10]). Let ¢ be a formula in
L(X,U) and Free(p) C AP. Then ¢ is expressible in L(U) iff L(p)AF is stutter
tmvariant.

Definition 2 (Restricted w-regular set). L is said to be a restricted w-
reqular set if it is of the form

stl‘S’;Sg...S;_lSm_lS%, (1)
where S; C 24F (1 <i<m), and s; € S;\Siy1 (1 <i<m).

For instance, let AP = {p;}, then, (2AP)W and (ZAP)*{pl}(/)‘“ are both
restricted w-regular sets.

Definition 3. Let sy € 247 and S' C 247, We define LEZ?((?)) as follows:
Linit(SQ

mf(s,)) = {u € Llug = so, each element of S’ occurs infinitely often in u}

Proposition 8 (Characterization of L(F'), [13]). Let L be nonempty. Then,
L is expressible in L(F) iff L is a finite union of nonempty languages of the
form M;:;t((;?))7 where M C (2Ap)w is a restricted w-reqular set, sg € 24P and
S C 24P,

For instance, let AP = {p;}, then, £(Fp;)4" C (247)* is exactly the union

of languages (Ll)i::?((é)pl}), (Ll):Z?((?zpl}})’ and (LQ)EZ?((S)), where Ly = (247)”

and Ly = (247)7 {p1 }0~.

4 Our results on the expressive power of QLT L and its
fragments

According to Proposition 4, Q(X,U), Q(X,F), EQ(X,U) and EQ(X,F) are
all expressively equivalent, which, nevertheless, is almost all we know about the
expressive power of QLT L besides those of LT L. For instance, we do not know
whether several natural fragments of QLTL, e.g., Q(U) and Q(F), can define
the whole class of w-regular languages or not.

In this section, we first give a positive answer to the above question, namely,
we show that Q(U) and Q(F') can define the whole class of w-regular languages.
Then, since EQ(X,U) and EQ(X, F) can also do so, analogously, we want to
know whether EQ(U) and EQ(F) can do so or not. However, the answer is
negative. As a matter of fact, we show that FQ(F) < LTL and EQ(U) L



LTL. Furthermore, we compare the expressive power of EQ(U) and EQ(F)
with that of other fragments of QLT L and get a panorama of the expressive
power of various fragments of QLT L (Fig. 1). Since neither EQ(U) nor EQ(F)
can express the whole class of w-regular languages, we want to know how many
alternations of existential and universal quantifiers are necessary and sufficient
to do that. The answer is one, which will be shown in the end of this section.

Q(X.V) Q(F) €«—>»Q(L)

L(X,U) €«—EQ(F) — > EQ(U)

I

L(X,F) <€ L(F) > L(U)

Fig. 1. Expressive power of QLT L and its fragments

Remark 1 (Notation in Fig. 1). Let £1 and Lo be two nodes in Fig. 1. If £o
is reachable from £; but not vice versa, then £y < Ls, e.g. EQ(F) < EQ(U).
If neither £y is reachable from £; nor £ is reachable from Ly, then £; L Lo,
e.g. EQ(F) L L(U). If £; and L are reachable from each other (namely, in the
same Strongly Connected Component), then £1 = Lo, e.g. Q(U) = Q(F). a

4.1 Expressive power of Q(U) and Q(F)

In the following we will show that, with the help of quantifiers, the operator X
can be expressed by the operator U and the operator U can be expressed by the
operator F'.

Lemma 1. Let ¢ € QLTL, q1,q2 € P\Var(y) and g1 # q2. Then
Xo= (A3 (A A=q1) U (e Aqr))) V
(m A=3g2 (mq2 A (= A=g2) U (o A ga)) ).

Lemma 2. Let p1 and po be two formulas of QLTL and ¢ € P\(Var(pi) U
Var(ez)) . Then

©1Upa = 3q (F(p2 A q) NG(=q — G=q) ANG(p1 V 92V q)) .

From Lemma 1 and Lemma 2, we have the following theorem.

Theorem 1. Q(X,U) =Q(U) = Q(F).



4.2 Expressive power of EQ(F) and EQ(U)

Both EQ(X,U) and EQ(X, F) can define the whole class of w-regular languages
(Corollary 1). Then a natural question to ask is whether this is true for EQ(U)
and EQ(F) as well. We will give a negative answer to this question in this
subsection. Moreover, in this subsection, we will compare the expressive power
of EQ(F) and EQ(U) with that of other fragments of QLT L.

We first show that FQ(F) cannot define the whole class of w-regular lan-
guages. In fact we show that EQ(F) is strictly less expressive than LT L.

Lemma 3. Let AP C AP’ C P and L C (2Apl> If L is a restricted w-

reqular set, sy € 247", 8" C 24P" gnd Lm”(;f,’ £ (), then, (LEZ?((;?))NAP =
init(s

(Elar)iny&in-

Lemma 4. For any formula ¢ = 3¢1..3qx¢0 € EQ(F), there exists some for-

mula 0 € L(X,U) such that ¢ = 6.

Proof of Lemma 4.

Suppose that ¢ = 3q1...3qx € EQ(F), where ¢ € L(F).

Suppose that ¢ and AP are compatible and AP = AP U{q1,...,qx}-

Then, according to Proposition 3, we have that ¢ and AP’ are compatible,
and L(p)*" = L) | ap.

If L()AP" =0, then ¢ = false. So we assume that £(1))AF" £ (.

According to Proposition 8, £(1)4F P i5 a finite union of nonempty languages

w ’

of the form Lzzzf((;?)) where L C (2AP ) is a restricted w-regular set, sg € 247
and S’ C 2AF"

In the remaining part of the proof of this lemma, we always suppose that L is
a restricted w-regular set, specifically, S7s15552...57%, _1Sm—15%,, where S; C QAP
(1<i<m),ands; € S\Sit+1 (1 <i<m).

From Lemma 3, we know that £(p)A" = L(4)AF'|sp is a finite union of
nonempty languages of the form (L] p)zzz;((;?l‘ o )) )

In the following we will show that there is a formula ¢ in L(X,U) such

that Var(§) = Free(§) € AP and L(E)AT = (L|ap)jryio/*5). Let 6 be the
disjunction of all these &’s. Then L(p)4" = L(0)4F. Because Free(p) C AP
and Free(§) C AP, according to Proposition 2, we conclude that ¢ and 6 are
equivalent.

In order to define £, we define a sequence of formulas 7; (1 < i < m) as

follows:
- { G (B(Sm|Ap)AP) if i=m
C L B(Siap)AT U (Bsilap)A T A Xnisr) it 1<i<m
It is not hard to show that for all 1 < i <m,

L) = (Silap)" (silap) - (Smlap)”



Thus, L|ap = L(m)4F.
We can define £ by the formula

B(solap)" Am A N\ GF(B)”").
a€(S’'|ap)
Oa

Lemma 5. Let ¢ be a formula in EQ(U) and AP be compatible with ¢. Then for
any u € (247 any function f : N — N\{0}, if u |= ¢, then, ug(o)...u{(i)... =
©.

Lemma 6. Let AP = {p1}. Then Xp is not expressible in EQ(U).

Proof of Lemma 6.

To the contrary, suppose that Xp; is expressible in EQ(U).

We know that ({p1}* = Xpi1, then according to Lemma 5, we have that
0%{p1}* | Xp1, a contradiction. O

Theorem 2. FQ(F) < LTL.

Proof.
It follows directly from Lemma 4 and Lemma 6. a

Theorem 3. FQ(F) L L(X,F).

Proof.

From Lemma 2, we know that p;Upa is expressible in EQ(F'). While it is not
expressible in L(X, F') according to Proposition 5.

Xp1 is not expressible in EQ(F') according to Lemma 6.

So, FQ(F) L L(X, F). a

From Lemma 6, we already know that EQ(U) cannot define the whole class
of w-regular languages. In the following, we will show that the expressive power
of EQ(U) and LTL are incompatible.

Lemma 7. Let AP = {p1} and
L={ue (ZAP)W [(0{p1}) occurs an odd number of times in u}.
L is expressible in EQ(U), while it is not expressible in LTL.

Remark 2. A language similar to L in Lemma 7 is used in Proposition 2 of [2].

O
Theorem 4. EQ(U) L LTL.
Proof.
It follows from Lemma 6 and Lemma 7. O

Now we compare the expressive power of EFQ(F) and EQ(U) with that of L(F)
and L(U).

10



Lemma 8. Let AP = {p1}. Then

L={0.{p}}" {pi}{pa} 0. {m}}" 0% € (2*7)°
is expressible in EQ(F), while it is not expressible in L(U).

The following theorem can be derived from Lemma 8 easily.
Theorem 5. L(F) < EQ(F) and L(U) < EQ(U).

But how about the expressive power of EQ(F) and L(U)? In Lemma 8, we
have shown that there is a language expressible in EQ(F), but not expressible

in L(U). In the following we will show that there is a language expressible in
L(U), but not expressible in EQ(F).

Lemma 9. Let AP = {p1,p2,p3} and

L= ({piH{pr} {p2H{p2} {psHps}")" -
Then L is expressible in L(U), while it is not expressible in EQ(F).

Proof of Lemma 9.
We first define the formula ¢ in L(U) such that AP and ¢ are compatible
and L(¢)AF = L:

v =B{p " NG (B — B{p ) U B({p22)*") A
G (BUp22™ — B{p22)*" U B({psh ") A
G (B{ps)™" — B({psH*" U BUp NT).

Now we show that L is not expressible in EQ(F).

To the contrary, suppose that there is an FQ(F') formula ¢) = 3¢;...3¢x€ such
that ¢ and AP are compatible and L = L£(1))4F.

Let AP = APU{q1, ..., qr}. Then, according to Proposition 3, we have that
¢ and AP’ are compatible, L(¢)4F = L(€)AF'| 4p.

According to Proposition 8, £(£)AF" is a finite union of nonempty languages

of the form M;:;.t((ssf’)), where M is a restricted w-regular set, sg € 2AP/, S C 24P,

From Lemma 3, we know that L = £(€)AF| 4p is a finite union of nonempty
init(sc ‘AP)
inf(S'IAP) )

Let uw = ({p1}H{p2H{ps})* € L. Then, u € (M|Ap)2:2?((;?l‘j§)) for some re-

stricted w-regular set M, sg € (2AP/) and S’ C (2API) .
Suppose that M = S§s1...S%,_18m_15%, where S; C 247 (1 < i < m), and

m

S; € Si\Si—i-l (1 << m) Then,

languages of the form (M|ap)

M|ap = (Silap)” (s1lap) .. (Sm-1]aP)” (Sm—1]ap) (Sm|ar)”.

Since {p1}, {p2} and {ps} occur infinitely often in u € M|ap, we have that
{{p1}.{p2} {ps}} € Smlap.
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If m =1, then M|ap = (Sin|ap)®. In this case, let

u' = {p1 H{p2H{ps} {p2Hp1 Hps})*.

Evidently u' € M|4p. Moreover, ug = uj, and the elements of 247 occurring
infinitely often in w and «’ are the same. So, v’ € (M|Ap)zzzzgsso,; C L, a contra-
diction.

Now we assume that m > 1.

Since u € Map, we have that u = z(sym—1]|ap)y ({p1}{p2}{ps})*, where
x € (S1lap)” (s1lap) . (Sm-1]ap)” and y ({p1Hp2H{ps})” € (Smlar)”.

Let u' = (sm—1]ap)y ({p2aH{p1 H{ps})"

Then, v’ € (S1]ap)” (s1]ap) - (Sm—1]ap) (Sm|ap)“. Moreover, uj = ug and
the elements of 247 occurring infinitely often in u and u’ are the same. So,
u € (M|Ap):zzf((§?)) C L, a contradiction as well.

So, we conclude that L is not expressible in EQ(F). ad

Theorem 6. L(U) L EQ(F).

Proof.
It follows from Lemma 8 and Lemma 9. O

Also we have the following theorem according to Lemma 9.
Theorem 7. EQ(F) < EQ(U).

The expressive power of QLT L and its fragments are summarized into Fig. 1.

4.3 Quantifier hierarchy of Q(U) and Q(F)

In Subsection 4.2, we have known that EQ(F) and FQ(U) can not define the
whole class of w-regular languages. It follows easily that AQ(F') and AQ(U) can
not define the whole class of w-regular languages as well. Moreover since ~Xp; =
X (—p1) is not expressible in EQ(U) (similar to the proof of Lemma 6), Xp; is not
expressible in AQ(U) or in AQ(F). Consequently Xp; is expressible in neither
EQ(U)UAQ(U) nor in EQ(F) U AQ(F). Thus we conclude that alternations
of existential and universal quantifiers are necessary to define the whole class
of w-regular languages in Q(U) and Q(F'). A natural question then occurs: how
many alternations of existential and universal quantifiers are sufficient to define
the whole class of w-regular languages? The answer is one.

Now we define the quantifier hierarchy in Q(U) and Q(F).

The definitions of hierarchy of Xy, IT and Ay in Q(U) and Q(F) are similar
to the quantifier hierarchy of first order logic. X'k (II) resp.) contains the formulas
of the prenex normal form such that there are k-blocks of quantifiers and the
quantifiers in each block are of the same type (all existential or all universal); the
consecutive blocks are of different types; the first block is existential (universal
resp.). Ar = Xy N I, namely Ay contains those formulas both equivalent to
some X formula and to some I formula. In addition, we define 7 = Xy U Il}.
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Lemma 10. XY and X define the whole class of w-regular languages.

Proof of Lemma 10.
Let B = (Q, 2476, o, T) be a Biichi automaton. Suppose that Q = {qo, .-, ¢n },
L(B) can be defined by the following formula ¢.

¢ = dqo...3qn (qo NG (EQJ (g N qj)) A

el < Vo (g A B(a) A an‘)) A <qi\éT GFQi>>

(gi,a,q;)€8

Let AP’ = AP UQ. If we can find a formula ¢ in ITV (II{, resp.) such that
1) and AP’ are compatible and

¢EG< Vv (qi/\B(a)AP/\qu)>,

(gi,a,q5)€3

then, we are done.
We first show that such a ¢ in ITV exists.
We observe that Y 6(qi A B(a)AF A Xg;) can be rewritten into its con-

(¢i,a,q5)€
junctive normal form and the conjunctions can be moved to the outside of “G”:

6,0 L AB@ A Xa))

(gi,a,q;)€8

A Glgy VeV VBa)* Vv Bla)*T Vv Xqj, V... v Xg;,,)

i1, s
aj,...,ap
J1y -5 Jm

It is sufficient to show that there is a ITV formula such that the formula and
AP’ are compatible and the formula is equivalent to

G (g, V.V @i, VBla)*T VvV Ba)* Vv Xq; V.oV Xg;) . (2)

The negation of the formula (2) is of the form F'(¢1 A X¢2), where ¢1, 2
are boolean combinations of propositional variables in AP’. If we can prove that
for any formula of the form F(p1 A X¢3), there is a formula ¢ in £V such that
& and AP’ are compatible, and £ = F(p1 A Xp2), then, we are done.

Let

S, = {a € 24P ’a satisfies the boolean formula goi} , where 1 =1, 2.
Then, for any u € (2Apl)w,
u e Flor A Xgo) iff ul= F (3(51)AP’ A XB(SQ)AP’) .
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From Proposition 2, we know that
(o1 A X2) = F (BS)M A XB(S2)M).

Let ¢ € P\AP', and AP" = AP'U{¢'}, S] = S1, and S5 = {aU{q'}|a € S>}.
We have that S/|ap = S; (i =1,2) and S; NS, = 0.
Then, £V formula

x = 30'F (BT AB(S)AT U B(sy)A )
satisfies that x and AP’ are compatible, and
Y=F (3(51)AP’ A XB(SQ)AP’) = F (o1 A Xgo).

Now we show that there is also a formula x’ € ¥ equivalent to F(p1 A X p2).
According to Lemma 2, there are ¢’ € P\AP"” and £ € L(F') such that
3¢"¢ = B(S)AT" U B(SH)AT.
Let ,
Y = 3¢3'F (B(S{)AP A 5) :

Then x’ € X, ¥’ and AP’ are compatible and

X' =x=F(p1 AXpo).

The following theorem is a direct consequence of Lemma 10.

Theorem 8. QU) =XV =10V =AY =Y and Q(F) =X =10F = A1 =
F
Va -

5 Conclusions

In this paper, we first showed that Q(U) and Q(F') can define the whole class of
w-regular languages. Then we compared the expressive power of EQ(F), EQ(U)
and other fragments of QLT L in detail and got a panorama of the expressive
power of fragments of QLT L. In particular, we showed that EQ(F) is strictly
less expressive than LTL and that the expressive power of EQ(U) and LTL
are incompatible. Furthermore, we showed that one alternation of existential
and universal quantifiers is necessary and sufficient to express the whole class of
w-regular languages.

The results established in this paper can be easily adapted to the regular
languages on finite words.

There are several open problems. For instance, since we discovered that nei-
ther FQ(U) nor EQ(F) can define the whole class of w-regular languages, a
natural problem is to find (effective) characterizations for those languages ex-
pressible in EQ(U) and EQ(F') respectively.
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We can also consider similar problems for the other temporal operators, such
as the strict “Until” and “Future” operators.

Acknowledgements. I want to thank Prof. Wenhui Zhang for his reviews on
this paper and discussions with me.
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A  Proof of Lemma 1

Denote the right part formula of the equation in the lemma as .

Let AP = Free(Xy) = Free(p). It is sufficient to prove that for all u €
(2Ap)w, u = X iff u =4 according to Proposition 2.

“=": Let u € (247)" and u = Xo.

Then u' = ¢.There are the following two cases:

Case I u = ¢. Define v as follows:

v — {uiU{ql} if =1
v U; if otherwise
It is obvious that v = pA—q, v = @Aq. Consequently v = (9A—q1) U (pAqr).
Then v =31 (m1 A (@ A—q1) U (o Aqa)).

As a result we conclude that u = p AJq1 (-1 A (@ A—q1) U (¢ Aqr)). Then
u = 1.

Case II: u = —p.

Now we show that u = —3g2 (—g2 A (m@ A =q2)U (¢ A ¢2)).

To the contrary, suppose that u = g2 (g2 A (m@ A =g2)U (= A g2)).

Then there is a v € (2APU{‘12})W such that v[ap = v and v = =g2 A (- A
—q2)U (=9 A g2). _ .

There is ¢ > 0 such that v* = ¢ A g2 and for all 0 < j <4, v/ | —p A —qa.
Then v* = g2 and for all 0 < j < 4, v/ = —gq, thus ¢ > 1 since v | —¢go. But
then v/ |= = for all 0 < j < i, and consequently v! = =, as a result u! = -,
a contradiction.

Finally we conclude that u = = A =3g2 (mg2 A (mp A =g2)U (=@ A q2)), u =
.

“<": Suppose that u € (QAP)W and u = 1.

There are two cases:

Case I u = o Adgr (1 A (p A—q)U (e A qr)).

Then there is a v € (2APU{‘11})w such that v|ap = w and v &= —g1 A (¢ A
U Aq). ‘

Thereis i >0, v* E @ Aq and for all 0 < j < i, v | o A —gy. Tt is evident
that i > 0, thus v! = ¢, v = X . Consequently we conclude that u = X .

Case II: u = = A =3q2 (mg2 A (e A =q2)U (o A ¢2)).

Now we show that u = X¢, namely u! = ¢.

To the contrary suppose that u! = =¢. Define v as follows:

vi_{uiU{QQ} if 1=1

U if  otherwise

Then v | —p A =gz and v! | —p A g2. Consequently v = —ga A (—p A
=q2) U (mp A g2), u |E Jg2 (mg2 A (mp A —g2) U (—¢ A g2)), a contradiction.
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B Proof of Lemma 2

Let 1 denote F(p2 A q) A G(p1 V @2V —q) A G(=g — Gq).

Let AP = Free(p1) U Free(pz). It is sufficient to prove that for all u €
(QAP)W, u = o1Ups iff u = Jqip according to Proposition 2.

7=": Suppose that u € (2Ap)w and u | ©1Ups.

There is i > 0 such that u* = @9 and for all 0 < j < ¢, v = ¢1.

Define v as follows:

_Juju{q} if 0<5<i
YT w0 j>i

Then for all j < 4, ¢ € v, and for all j > i, ¢ € v; since ¢ € AP and
u € (2AP)W.

Thus v | G(—q — G—q), and v; = @2 A g, as a consequence v = F(pa A q).

For all 0 < j <, v7 |= 1 V 2 since ulpree(pr) = VlFree(er) a0d U] pree(pn) =
V] Free(py)- And for all j >4, v/ |= —~q. Consequently v |= G(p1 V 2 V ).

As aresult we conclude that v |= . Then v = Jgv according to the definition
of semantics of “3” quantifier.

“<": Suppose that u € (2Ap)w and u | Jqv.

There is some v € (2P)w such that v differs from u only in the assignments
of ¢, and v = 1.

Then there is i > 0 such that v’ E vl g

Because v' = q and v = G(—g — G—q), then for all 0 < j < i, v/ = q as
well.

It is also true that v = G(p1 V 2 V —p), then for all 0 < j < i, v7 = 1 V2.

Consequently we have v’ = o, and for all 0 < j < 4, v? |= @1 V 2. Then we
conclude that v | 1 Ups.

u = p1Upg follows from the fact that w|orree(p vps) = U]grree(oyves) because u
and v only differs from each other in the assignments of ¢ and ¢ ¢ Free(o1Up2).

C Proof of Lemma 3

Suppose that L is S}s15%82...5%, 15m-15%, where S; C 247 (1 <i < m), and
S; € Si\Si—i-l (1 <t < m)

Since LiZ}t((;?)) # ), we have that sg € S; and S’ C S,,.

init(so) init(solap).
(me(S’)) ’AP S (L|AP)i"f(5’\AP)'
init(so)

init(so)
Suppose that u € (me(s[/))) inf(s")
v|ap =wu. So, v € L, vg = 59 and each element of S” occurs infinitely often in v.

Then, we know that u € L|ap, up = so|ap, and each element of S’|4p occurs
init(SOIAP)
inf(S'\ap)"

such that

. Then, there is v € L
AP

infinitely often in u. Consequently, u € (L|ap)

init(solap) init(so)
(LIAP)ing(s/|arm © (Lmﬂs(')))

AP’
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init(sc IAP)

inf(S’|ap)

element in S’|4p occurs infinitely often in w.
Since

Suppose that u € (L|ap) . Then, u € L|ap, up = solap and each

Llap = (Silap)” (s1]ap)- (Sm-1]ar)” (sm—-1]ap) (Sm|ar)”,

we have that u = z1(s1]ap)--ZTm—1(Sm—1]|ap)Tm, where 2; € (S;|ap)” (1 <i <
m) and @, € (Sm|ap)”.

Because sg € S1 and S’ C S,,,, we can change the assignment of ¢, ..., g, on
u to get a v = xs1..2), 1 Sm—12), such that v|ap = u, z, € S (1 <i < m),

x,, € 8¢, vy = so and each element of S’ occurs infinitely often on v. So,
init(so) init(so)
vE me(s,) and u € (me(s’)) ‘AP.

D Proof of Lemma 5

Suppose that ¢ = Jq1...3¢x (1)), where 1 is a formula in L(U).

Let AP = AP U {qi,...,qx}. Then, L(©)*P = L()*P'|ap according to
Proposition 3.

Let u € (247)%, f : N — N\{0}, and u = ¢. Then, there is v € (QAPI)
such that v = ¢ and v|ap = u. The languages defined by L(U) formulas are
stutter invariant according to Proposition 5. So, vg(o)...vzf(l)... E . Evidently
ug(o)...uif(i)... = (vg(o)...v-f(i)...) s We conclude that ug(o)...uif(i)... E .

P

2

E Proof of Lemma 7

We first show that L is not non-counting. Since L is non-counting iff its syntactic
monoid is aperiodic, according to Proposition 6, we know that L is not expressible
in LTL.

To the contrary, suppose that L is non-counting. Then there is n > 0 such
that for all x,y, z,u € (2AP)*, (zumyz¥ € Liff xu™yz¥ € L) and (x (yu"2)” €
Liffz (yu"Jrlz)w €L). Let t =y =2z=0 and u = 0{p;}. Then,

zuyz? = 0 (0{p )" 00% € L iff zu"yz* = 0 (O{p )" 00% € L,

contradicting to definition of L.

Now we show that L is expressible in EQ(U).

Let w € L. Then, (#{p1}) occurs an odd number of times in w. There are
three cases.

Case 1: () occurs in the first position of u and (B{p1}) occurs at least three times
in u,

Case 2: {p1} occurs in the first position of u,

Case 3: () occurs in the first position of v and (#{p1}) occurs ony once in .
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Let L; = {u € L|u satisfies the condition of the Case ¢ above}, where i =
1,2,3.
Let
z = 00" {p1 H{p1} 00" {pr H{p1}",
y = 00"{p1H{p:}* ({pr}* U ¥).

Then Ly = zaz*y, Lo = {p1 }{p1}*2*y and L3z = y.
We introduce new variables pa, ps, ps and let AP’ = AP U {pa, p3, p4}-

Define L C (2AP/) such that Li|ap = L; (i = 1,2,3) as follows.
Ly =2'(2")"y’, Ly = {p1, p2H{p1, p2}"(2')"y" and Lj =y, where
x' = 00" {pr H{p1} {p2Hp2} {p1, p2}H{p1, P2},

y' = {psH{ps} {pr. p3H{p1, p3}* ({p1,p3}* U {pa}®).

It is easy to verify that L|ap = L; (i = 1,2,3) since 2’| ap = x and ¢/ |ap = v.
Let L/ = L} ULy U LL. Then L’ is accepted by the Buchi automaton B
illustrated in Fig. 2.

{p1,p2} (ps} {p1,p3} {pa}

75 {phps} g6 {p4} qr

{ps}

Fig. 2. Biichi automaton B for L’

There are eight states in B, qo is the initial state, gg, g7 are the accepting
states.

go has three out-edges labeled by 0, {p1,p2} and {p3} respectively, corre-
sponding to the three distinct letters occurring in the first position of w-words
in L}, L, L% respectively. .

When the run of B on an w-word u € (QAP/) reaches g4 or g5, (0{p1}) must

have occurred even number of times in u|4p.

When a run of B reaches g4, it has two choices: one is to stay in the square
cycle (containing states g1, gz, 3, q4), the other is to leave the square cycle and
visit g5. If we want a run to be accepting, then eventually we must visit g5
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since the accepting states are gg, ¢7. So, along an w-word accepted by B, ps will
eventually become true.

When a run of B reaches g, we have two choices to make the run accepting:
either stay in ¢g forever or eventually visit ¢; and stay in g; forever.

Now we define formula ¢ in L(U) such that £(1))AF" = L’. Then, L =
L'|ap = L) |ap = L(3paTpsTpath)*F according to Proposition 3. Conse-
quently, we conclude that L is expressible in EQ(U).

We define the formula ¢ in L(U) as follows:

vi= (B0 V B{p1,p) A7V BUps ) A Fps

BO — BOM U B{ph)*"") A

(BUPHAT = BUmH ™ U B{p2})"") A

(Bp2pA” = BUp2))*™ U B{p1p2p)*" )

B({pr.p2 )™ = Bl{pr,p )™ U (BO v B{psh ) ) A
B{ps)™ — Bl{psh™ U (G (B({prps) ™) v
B({p1.ps )™ AB({p1.ps})* U G (BUpH)))).-

Q
—

F Proof of Lemma 8

Since L is not stutter invariant, it follows that L is not expressible in L(U)
according to Proposition 5.
Let AP" = AP U {p2},

= ({{p=2}, {P17p2}})* {p1,p2} ({pl})* {p1} ({{p2}, {P17p2}})* {p2}0%.

It is easy to see that L’ is a restricted w-regular set and L'|4p = L.

Let S" = {0}. Then, L' = (L' )iz;t(g,”}) U(L')zzy(g)l 21 Qo I/ is expressible
in L(F') according to Proposition 5. We conclude that L is expressible in EQ(F)

according to Proposition 3.
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