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Abstract

In this note, we give a new proof for Bojańczyk&Walukiewicz’s effective characterization of TL[EF](the fragments of
Computation Tree Logic(CTL), with EF modality only) following the Ehrenfeucht-Fräıssé game approach. Then, we
extend the proof to the effective characterization of TL[EFns](Fns is the non-strict “future” temporal operator, while
F is the strict one).
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1. Introduction

The definability problem for logics on trees is to
decide whether a given regular tree language is defin-
able in a logic. This kind of problem has proven to be
rather difficult. For instance, the definability prob-
lem for first order logic on trees (FO[<]) has been a
longstanding open problem since the 80’s of the last
century despite several partial results [6,4,1,2].

In [3], Bojańczyk&Walukiewicz made a break-
through in the definability problem for logics on
trees by giving effective characterizations for sev-
eral sublogics of CTL, namely TL[EX], TL[EF] and
TL[EX,EF]. While the proofs of the characterization
for TL[EX] and TL[EX,EF] in [3] were elegant and
short, the proof for TL[EF] was very intricate.

One of the main reasons for the intricacy of the
proof of TL[EF] in [3] is that the proof was construc-
tive. To avoid the intricacy, in this note, we give an
existential proof for the characterization of TL[EF]
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following the Ehrenfeucht-Fräıssé games approach,
similar to the proof of the characterization of the
fragment of LTL that only uses the operator “F”,
“sometimes in the future” [8]. Moreover, we extend
this proof to the characterization of TL[EFns]

1 (Fns

is the non-strict “future” operator, while F is strict),
which was mentioned to be open in [3].

The remaining sections are organized as follows:
in Section 2, the syntax and semantics of TL[EF]
and TL[EFns] are defined; and in Section 3, some
definitions and notations are introduced; in Section
4, a new proof of characterization of TL[EF] is given;
then in Section 5, the effective characterization of
TL[EFns] is established; finally in Section 6, we give
some conclusions and remarks.

2. Syntax and Semantics of TL[EF] and
TL[EFns]

Let Σ be a finite alphabet, then the syntax of
TL[EF] is defined by the following rules.

1 One of the referees pointed out that the characterization
of TL[EFns] has been independently announced by Zoltan
Ésik and Szabolcs Iván at a workshop of CSL’06 on formal
languages: http://www.inf.u-szeged.hu/∼csl06/ws.php.
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ϕ := pa(a ∈ Σ)|¬ϕ1|ϕ1 ∨ ϕ2|EFϕ1 (1)

A binary tree domain is a prefix closed nonempty
subset of {0, 1}∗ such that for all v ∈ {0, 1}∗, v0 is
in the domain iff v1 is in the domain, in other words,
each inner node has two sons. Evidently ε is in all
tree domains, which is called the root of the tree.
The prefix relation on the tree domain is denoted by
<.

Let Σ be a finite alphabet. A Σ-labelled finite bi-
nary tree is a function from a binary tree domain
to Σ. If t is a Σ-labelled finite binary tree, then the
tree domain of t is denoted by dom(t). For any v ∈
dom(t), the label of v in t is denoted by t(v). In par-
ticular, t(ε) is the label of the root of t.

If v ∈ dom(t), then t|v denotes the subtree of t
below v (including v).

Let TΣ denote the set of all Σ-labelled finite binary
trees.

The semantics of TL[EF] are defined as follows.
Let t ∈ TΣ, then

– t |= pa if t(ε) = a, where a ∈ Σ.
– t |= ¬ϕ1 if not t |= ϕ1.
– t |= ϕ1 ∨ ϕ2 if t |= ϕ1 or t |= ϕ2.
– t |= EFϕ1 if there is some v ∈ dom(t), v > ε such

that t|v |= ϕ1.
The syntax of TL[EFns] is defined by the same

rules in (1) with EFϕ1 replaced by EFnsϕ1.
The semantics of EFnsϕ1 is defined as follows:
t |= EFnsϕ1 if there is v ∈ dom(t) such that t|v |=

ϕ1 (note that here v may be ε).
Let ϕ be a TL[EF] or TL[EFns] formula. then the

closure of ϕ, denoted by cl(ϕ), is defined to be the
smallest set of formulas containing ϕ and closed un-
der negations and subformulas.

A tree language L is said to be TL[EF] (TL[EFns]
respectively)-definable if there is a formula ϕ in
TL[EF] (TL[EFns] respectively) such that L = {t ∈
TΣ|t |= ϕ}.

Since EFnsϕ ≡ ϕ ∨ EFϕ, TL[EFns] can be seen as
a sublogic of TL[EF]. Moreover, TL[EF] is more ex-
pressive than TL[EFns]. For instance, the property
“the tree has at least depth two and all its nodes are
labelled by a” can be expressed by TL[EF] formula:
pa ∧ EFpa ∧ ¬EF¬pa, which, nevertheless, is not ex-
pressible in TL[EFns].

3. Notations and definitions

Basically, we follow the notations in [3]. But for
the reader’s convenience, we recall the relevant no-
tations and definitions.

Throughout this section, let Σ be a finite alphabet
and L ⊆ TΣ.

A multicontext is a tree in TΣ∪{∗} such that at
least one leaf is labelled by ∗, and no inner nodes are
labelled by ∗. The leaves labelled by ∗ are called holes
of the multicontext. In particular, each a ∈ Σ can
be seen as a multicontext with two holes. A context
is a multicontext with exactly one leaf labelled by ∗.

Let C be a multicontext with holes v1, ..., vn and
t1, ..., tn ∈ TΣ. Then C〈t1, ..., tn〉 denotes the tree
obtained by replacing the v1, ..., vn by t1, ..., tn re-
spectively. In particular, a〈s, t〉 denotes the tree with
the root labelled by a and s, t as the left and right
subtree respectively.

Let s, t ∈ TΣ. Then s ∼L t iff for all contexts C,
(C〈s〉 ∈ L iff C〈t〉 ∈ L).

The equivalence classes of ∼L are called types of
L, denoted by Types(L). The type of a tree s is
denoted by type(s).

A tree language L is regular iff L has only a finite
number of types, namely, Types(L) is a finite set.

As a matter of fact, ∼L is a congruence on TΣ

in the sense that if s ∼L s′ and t ∼L t′, then
a〈s, t〉 ∼L a〈s′, t′〉 for all a ∈ Σ. Then it is easy to
see that for all multicontexts C with holes v1, ..., vn,
if si ∼L ti for all 1 ≤ i ≤ n, then C〈s1, ..., sn〉 ∼L

C〈t1, ..., tn〉. Consequently for multicontext C with
holes v1, ..., vn, α1, ..., αn ∈ Types(L), we can
write C〈α1, ..., αn〉 to denote the type of any tree
C〈s1, ..., sn〉 with type(si) = αi for all 1 ≤ i ≤ n. In
particular, C〈α〉 denotes the type of any tree C〈s〉
with type(s) = α, and a〈α, β〉 denotes the type of
any tree a〈s, t〉 with type(s) = α and type(t) = β.

Let α, β ∈ Types(L). Then α � β if there is a
context C such that C〈α〉 = β. Moreover, if α � β
and β � α, we say that α ≈ β. If α � β and not
α ≈ β, then we say that α ≺ β.

It is easy to see that � is a preorder relation and
≈ is an equivalence relation on Types(L).

The equivalence classes of ≈ are called strongly-
connected-components (SCC’s) of L, denoted by
SCCS(L). For any type α, the SCC (namely equiv-
alence class of ≈) of α is denoted by [α].

Let s be a tree. Then the strongly-connected-
component-set of s, denoted by SCCS(s), is
{[type(s|v)] : v ∈ dom(s)}. And the delayed
strongly-connected-component-set of s, denoted by
DSCCS(s), is {[type(s|v)] : v ∈ dom(s) and v >
ε}. The rank of s, rank(s), is defined to be the
cardinality of SCCS(s), namely |SCCS(s)|. The
delayed rank, drank(s), is defined to be the cardi-
nality of DSCCS(s), namely |DSCCS(s)|.
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Let s be a tree and a ∈ Σ. Then s[a] denotes the
tree the same as s except that the root of s is labelled
by a now.

Let s be a tree. Then the delayed type of s, de-
noted by dtype(s), is a function from Σ to Types(L)
such that dtype(s)(a) = type(s[a]).

It is evident that dtype(a〈s, t〉) has nothing to do
with a, consequently we can write dtype(s, t) simply.
It is also easy to see that if s ∼L s′ and t ∼L t′,
then dtype(s, t) = dtype(s′, t′). Thus we can write
dtype(α, β) to denote the delayed type dtype(s, t)
with type(s) = α and type(t) = β.

4. New proof of characterization of TL[EF]

Before the proof, we give some definitions, propo-
sitions and lemmas.
Definition 1 (TL[EF] EF-Game) Let s, t be two
trees. Then the k-round Ehrenfeucht-Fräıssé game
on s, t is played by two players spoiler and duplicator
in turn:

0-round game: if s(ε) 6= t(ε), then spoiler wins,
otherwise duplicator wins.

k-round game (k > 0): if s(ε) 6= t(ε), then spoiler
wins.

Otherwise spoiler should select some non-root node
in one of the two trees, say v in s. If he fails to
do so (namely both trees have only one node), then
duplicator wins.

Otherwise duplicator should select some non-root
node in the other tree, say w in t. If she fails to do
so (namely exactly one of the two trees has only one
node), then spoiler wins.

Otherwise spoiler and duplicator play the (k-1)-
round game on s|v and t|w.

We say that spoiler or duplicator has a winning
strategy in the k-round TL[EF] EF-game on s, t if
he or she can win regardless of the moves by the
opponent.

It is not hard to see that if spoiler has a winning
strategy in the k-round TL[EF] EF-game on s, t, then
he has a winning strategy in the (k+1)-round game
as well. Similarly if duplicator has a winning strategy
in the (k + 1)-round TL[EF] EF-game on s, t, then
she has a winning strategy in the k-round game as
well.

Similar to Corollary 2.2 in [5], we have the follow-
ing proposition.
Proposition 1 Let L be a tree language. If there is
some k ≥ 0 such that for all s ∈ L and t /∈ L, spoiler
has a winning strategy in the k-round TL[EF] EF-

game on s, t; then L is TL[EF] definable.
Definition 2 (EF-admissible) L is said to be EF-
admissible if the following three properties are satis-
fied:
[P1] dtype(α, β) = dtype(β, α)
[P2] if α0 ≈ β0 and α1 ≈ β1, then dtype(α0, α1) =

dtype(β0, β1)
[P3] if α � β, then dtype(α, β) = dtype(β, β)

where αi, βi(i = 0, 1), α, β ∈ Types(L).
Definition 3 (DSCCS-dependent) L is said to
be delayed-strongly-connected-component-set depen-
dent (DSCCS-dependent) if for any trees s and t
such that DSCCS(s) = DSCCS(t), we have that
dtype(s) = dtype(t).
Theorem 1 ([3,1]) Let L be a regular tree lan-
guage. Then the following three conditions are
equivalent:

(i) L is TL[EF]-definable.
(ii) L is EF-admissible.
(iii) L is DSCCS-dependent.

Proof.
(i) ⇒ (ii):
Suppose that L is TL[EF]-definable.
[P1] is evident since TL[EF] can’t distinguish be-

tween the left and right sons.
The proof of [P2] is exactly Lemma 3.3.7 in [1].
The proof of [P3] is exactly Lemma 3.3.6 in [1].
(ii) ⇒ (iii):
Essentially the proof has been given in section

3.3.1 of [1].
Suppose that L is EF-admissible.
Let s, t be two trees such that DSCCS(s) =

DSCCS(t).
If DSCCS(s) = DSCCS(t) = ∅, then evidently

dtype(s) = dtype(t).
Now we assume DSCCS(s) = DSCCS(t) 6= ∅.
Let αi = type(s|i) and βi = type(t|i), where i =

0, 1. Then [αi] ∈ DSCCS(t) and [βi] ∈ DSCCS(s),
where i = 0, 1. There are three cases.

Case I: there is i such that [α0], [α1] ∈ SCCS(t|i).
Then α0, α1 � βi and βi � αj , β1−i � αj′ for

some j, j′. Thus αj ≈ βi and α1−j � βi, β1−i � βi.
So

dtype(α0, α1) = dtype(αj, α1−j) = dtype(βi, α1−j)

= dtype(βi, βi) = dtype(βi, β1−i) = dtype(β0, β1)

The first and last equations above are according
to [P1] in the definition 2; the second equation is
according to [P2]; the third and fourth equations
are according to [P3].

Case II: there is i such that [β0], [β1] ∈ SCCS(s|i).
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Similar to Case I.
Case III: neither I nor II holds.
Then there is i such that [α0] ∈ SCCS(t|i) and

[α1] ∈ SCCS(t|1−i) and there is j such that [β0] ∈
SCCS(s|j) and [β1] ∈ SCCS(s|1−j). There are four
subcases.

Subcase III.I: i = j = 0
Then α0 � β0, α1 � β1, β0 � α0 and β1 � α1. So

we have α0 ≈ β0 and α1 ≈ β1.
Then dtype(α0, α1) = dtype(β0, β1) according to

[P2].
Subcase III.II: i = j = 1
Then α0 � β1, α1 � β0, β0 � α1 and β1 � α0. So

we have α0 ≈ β1 and α1 ≈ β0.
Then according to [P2] and [P1], dtype(α0, α1) =

dtype(β1, β0) = dtype(β0, β1).
Subcase III.III: i = 1 − j = 0
Then α0 � β0, α1 � β1, β0 � α1 and β1 � α0. So

we have α0 ≈ β0 ≈ α1 ≈ β1.
Then dtype(α0, α1) = dtype(β0, β1) according to

[P2].
Subcase III.IV: i = 1 − j = 1
Then α0 � β1, α1 � β0, β0 � α0 and β1 � α1. So

we have α0 ≈ β1 ≈ α1 ≈ β0.
Then dtype(α0, α1) = dtype(β0, β1) according to

[P2].
(iii) ⇒ (i):
Suppose L is DSCCS-dependent.
According to Proposition 1, it suffices to prove

that for all s, t such that type(s) 6= type(t), spoiler
has a winning strategy in the (drank(s)+drank(t))-
round game on s, t (because if this is true, then
spoiler has a winning strategy in the (2 · |SCCS(L)|)-
round game on s, t for all s ∈ L and t /∈ L).

Induction on drank(s) + drank(t).
Let s(ε) = a and t(ε) = b.
Induction base: drank(s) + drank(t) = 0.
Then both s and t have only one node. Since

type(s) 6= type(t), then a 6= b, consequently spoiler
wins in the 0-round game.

Induction step: drank(s) + drank(t) > 0
If a 6= b, then spoiler wins.
Otherwise DSCCS(s) 6= DSCCS(t) since

type(s) 6= type(t) and L is DSCCS-dependent. Con-
sequently there is [γ] ∈ DSCCS(s)\DSCCS(t)
or [γ] ∈ DSCCS(t)\DSCCS(s). Here we consider
the former case, the latter case can be considered
similarly.

Then spoiler selects v > ε in s such that
[type(s|v)] = [γ] and v is maximal in this sense.

If t has only one node, then spoiler wins.
Otherwise duplicator selects w > ε in t.

Since [type(s|v)] = [γ] and v is maximal, [γ] /∈
DSCCS(s|v), so drank(s|v) < drank(s). Then
drank(s|v) + drank(t|w) < drank(s) + drank(t).

We also have that type(s|v) 6= type(t|w) for oth-
erwise [γ] = [type(s|v)] = [type(t|w)] ∈ DSCCS(t),
a contradiction.

Then according to the induction hypothesis,
spoiler has a winning strategy in the (drank(s|v) +
drank(t|w))-round game on s|v and t|w. Con-
sequently spoiler has a winning strategy in the
(drank(s) + drank(t) − 1)-round game on s|v and
t|w.

Thus we conclude that spoiler has a winning strat-
egy in the (drank(s)+drank(t))-round game on s, t.

2

5. Characterization of TL[EFns]

Before giving the characterization of TL[EFns], we
give some definitions, propositions and lemmas.
Definition 4 (TL[EFns] EF-Game) Let s, t be
two trees. Then the k-round Ehrenfeucht-Fräıssé
game on s, t is played by two players spoiler and
duplicator in turn:

0-round game: if s(ε) 6= t(ε), then spoiler wins,
otherwise duplicator wins.

k-round game(k > 0): if s(ε) 6= t(ε), then spoiler
wins.

Otherwise spoiler selects some node in one of the
two trees, say v in s. And duplicator selects some
node in the other tree, say w in t. Then spoiler and
duplicator play the (k-1)-round game on s|v and t|w.

Similar to the TL[EF] EF-game, we have that
if spoiler has a winning strategy in the k-round
TL[EFns] EF-game on s, t, then he has a winning
strategy in the (k + 1)-round game as well. Sim-
ilarly if duplicator has a winning strategy in the
(k + 1)-round TL[EFns] EF-game on s, t, then she
has a winning strategy in the k-round game as well.

Similar to Proposition 1, we have the following
proposition for TL[EFns].
Proposition 2 Let L be a tree language. If there is
some k ≥ 0 such that for all s ∈ L and t /∈ L, spoiler
has a winning strategy in the k-round TL[EFns] EF-
game on s, t; then L is TL[EFns] definable.

Let L be a tree language and α ∈ Types(L). The
root letters of α, denoted by rletters(α), is defined
to be {a ∈ Σ|there is t such that t(ε) = a, type(t) =
α}.
Definition 5 (EFns-admissible) A tree language
L is said to be EFns-admissible if it is EF-admissible
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and satisfies the following condition [P4].
[P4] if a ∈ rletters(α), then a〈α, α〉 = α, where

α ∈ Types(L).
Lemma 1 Let L be EFns-admissible and s, t be
trees. If SCCS(s) = SCCS(t) and s(ε) = t(ε), then
type(s) = type(t).
Proof.

Let a = s(ε) = t(ε), α = type(s) and β = type(t).
Since L is EFns-admissible, then it is EF-

admissible, so DSCCS-dependent according to The-
orem 1. Consequently dtype(a〈s, s〉) = dtype(a〈t, t〉)
since DSCCS(a〈s, s〉) = SCCS(s) = SCCS(t) =
DSCCS(a〈t, t〉). So type(a〈s, s〉) = type(a〈t, t〉).

Because a ∈ rletters(α) and a ∈ rletters(β),
according to [P4] in Definition 5, α = a〈α, α〉 =
type(a〈s, s〉) = type(a〈t, t〉) = a〈β, β〉 = β. 2

The following lemma is obvious.
Lemma 2 Let L be defined by TL[EFns] formula ϕ
and s, t be two trees. If s and t satisfy the same for-
mulas in cl(ϕ), then type(s) = type(t).
Theorem 2 Let L be a regular tree language. Then
the following two conditions are equivalent:

(i) L is TL[EFns]-definable.
(ii) L is EFns-admissible.
Proof.
(i) ⇒ (ii):
Suppose that L is TL[EFns] definable.
Since TL[EFns] can be seen as a sublogic of TL[EF],

we know that L is EF-admissible from Theorem 1.
Now we consider [P4].
Let s be a tree such that type(s) = α, s(ε) = a.
Let t = a〈s, s〉. We can prove that for all TL[EFns]

formula ϕ, s |= ϕ iff t |= ϕ by induction on the
structure of ϕ.

Because L is TL[EFns] definable, then according
to Lemma 2, we have type(s) = type(t), a〈α, α〉 = α.

(ii) ⇒ (i):
Suppose that L is EFns-admissible.
According to Proposition 2, it suffices to prove

that for all s, t with type(s) 6= type(t), spoiler has
a winning strategy in the (3 · (rank(s) + rank(t)))-
round game on s and t.

Induction on rank(s) + rank(t).
Let type(s) = α, type(t) = β, s(ε) = a, t(ε) = b.
Base case: rank(s) + rank(t) = 2 (because

rank(s), rank(t) ≥ 1).
Then rank(s) = rank(t) = 1, SCCS(s) = {α}

and SCCS(t) = {β}.
Spoiler selects some leaf v in s. And duplicator

selects w in t.
Spoiler selects some leaf w′ in t such that w′ ≥ w.

And duplicator has no choice but to select v in s.

Because type(s|v) = α and type(t|w′) = β, we
have s(v) 6= t(w′), spoiler wins. Consequently
spoiler has a winning strategy in the 2-round game
on s, t. Thus spoiler has a winning strategy in the
(3 · (rank(s) + rank(t)))-round game on s, t.

Induction step: rank(s) + rank(t) > 2.
If a 6= b, then spoiler wins.
Otherwise we have that SCCS(s) 6= SCCS(t)

according to Lemma 1. There are three cases.
Case I: there is [γ] ∈ SCCS(s)\{[α]} and [γ] /∈

SCCS(t).
Evidently γ ≺ α.
Spoiler selects some v > ε in s such that

[type(s|v)] = [γ] and v is maximal in this sense.
Duplicator selects some w in t.
Since [α] /∈ SCCS(s|v), we have rank(s|v) <

rank(s), thus rank(s|v) + rank(tw) < rank(s) +
rank(t).

We also have type(s|v) 6= type(t|w) because oth-
erwise [γ] = [type(s|v)] = [type(t|w)] ∈ SCCS(t), a
contradiction.

Then according to the induction hypothe-
sis, spoiler has a winning strategy in the (3 ·
(rank(s|v) + rank(t|w)))-round game on s|v and
t|w. Thus spoiler has a winning strategy in the
(3 · (rank(s)+ rank(t))− 1)-round game on s|v and
t|w.

We conclude that spoiler has a winning strategy
in the (3 · (rank(s) + rank(t)))-round game on s, t.

Case II: there is [γ] ∈ SCCS(t)\{[β]} and [γ] /∈
SCCS(s).

Similar to Case I.
Case III: neither I nor II holds.
Then SCCS(s)\{[α]} ⊆ SCCS(t) and
SCCS(t)\{[β]} ⊆ SCCS(s).
We must have that [α] /∈ SCCS(t) or [β] /∈

SCCS(s). For otherwise SCCS(s) ⊆ SCCS(t) and
SCCS(t) ⊆ SCCS(s), SCCS(s) = SCCS(t), then
according to Lemma 1, α = β, a contradiction.

Without loss of generality, suppose that [α] 6∈
SCCS(t).

Then spoiler selects some v in s such that
[type(s|v)] = [α] and v is maximal in this sense.

Duplicator selects some w in t.
If s(v) 6= t(w), then spoiler wins.
Otherwise if type(t|w) ≺ type(t), then we

have that rank(t|w) < rank(t), and rank(s|v) +
rank(t|w) < rank(s) + rank(t).

Moreover, type(s|v) 6= type(t|w) because other-
wise [α] = [type(s|v)] = [type(t|w)] ∈ SCCS(t), a
contradiction.
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Then according to the induction hypothe-
sis, spoiler has a winning strategy in the (3 ·
(rank(s|v) + rank(t|w)))-round game on s|v and
t|w. Thus spoiler has a winning strategy in the
(3 · (rank(s)+ rank(t))− 1)-round game on s|v and
t|w.

So spoiler has a winning strategy in the (3 ·
(rank(s)+rank(t)))-round game on s, t in this case.

Otherwise [type(t|w)] = [type(t)] = [β].
If v is a leaf in s, then spoiler can select some leaf

w′ ≥ w in t, duplicator has to select v in s. Since
[type(s|v)] = [α], we have s(v) 6= t(w′) for otherwise
[α] = [type(s|v)] = [type(t|w′)] ∈ SCCS(t), a con-
tradiction. So spoiler wins in this case.

Otherwise v is an inner node of s. Let a′ =
s(v) = t(w), type(s|v) = α′, type(t|w) = β′ and
αi = type(s|vi) where i = 0, 1 (see Fig. 1).

Because v is maximal, α0, α1 ≺ α. Since
SCCS(s)\{[α]} ⊆ SCCS(t), it must be that
[α0], [α1] ∈ SCCS(t), so α0, α1 � β. In fact, we
must have that α0, α1 ≺ β.

To the contrary, suppose that [α0] = [β] (or [α1] =
[β]).

Because [α0] = [β] and α1 � β, we have that
dtype(α0, α1) = dtype(β, α1) = dtype(β, β) =
dtype(β′, β′) (The first and third equations are by
[P2], second by [P3]). Consequently

α′ = a′〈α0, α1〉= dtype(α0, α1)(a
′) =

dtype(β′, β′)(a′) = a′〈β′, β′〉 = β′

(The last equation above holds because a′ ∈
rletters(β′) and [P4]).

. . .. . . . . .

s

va′ a′α′ ≈ α

v0 v1α0 ≈ β α1 � β

t

w β′ ≈ β

Fig. 1. [α0] = [β]

Then [α] = [α′] = [β′] = [β] ∈ SCCS(t), a con-
tradiction.

So it must be that α0, α1 ≺ β. Then [β] 6∈
SCCS(s|v).

Now spoiler can select w′ ≥ w in t such that
[type(t|w′)] = [β] and w′ is maximal in this sense.

Duplicator selects v′ ≥ v in s.
If s(v′) 6= t(w′), then spoiler wins.
Otherwise if v′ > v, then type(s|v′) ≺ α since v

is maximal. In this case, we can get that rank(s|v′)+
rank(t|w′) < rank(s) + rank(t) and type(s|v′) 6=

type(t|w′) and spoiler has a winning strategy in the
(3 · (rank(s) + rank(t)))-round game on s, t by the
induction hypothesis.

Otherwise v′ = v. In this case type(s|v′) 6=
type(t|w′) for otherwise [α] = [type(s|v′)] =
[type(t|w′)] ∈ SCCS(t), a contradiction.

Since L is DSCCS-dependent according to Theo-
rem 1, we have that DSCCS(s|v′ ) 6= DSCCS(t|w′).

Without loss of generality, suppose that there is
[γ] ∈ DSCCS(s|v′ )\DSCCS(t|w′), the other case
is similar.

We know that [α] 6∈ SCCS(t) and [β] 6∈
SCCS(s|v). Thus we have that [type(s|v′)] = [α] 6∈
SCCS(t|w′) and [type(t|w′)] = [β] 6∈ SCCS(s|v′).

So

[γ] 6∈ DSCCS(t|w′) ∪ {[type(t|w′)]} = SCCS(t|w′).

Then spoiler can select v′′ > v′ in s such that
[type(s|v′′)] = [γ].

Duplicator selects w′′ ≥ w′ in t (see Fig. 2).

. . .

. . .

s

v = v′ [α]

v′′ γ ≺ α

t

w [β]

[β]w′

w′′

Fig. 2. game positions

If s(v′′) 6= t(w′′), then spoiler wins.
Otherwise type(s|v′′) 6= type(t|w′′), for other-

wise

[γ] = [type(s|v′′)] = [type(t|w′′)] ∈ SCCS(t|w′),

a contradiction.
Since v′ is maximal and v′′ > v′, we have that

rank(s|v′′ ) + rank(t|w′′) < rank(s) + rank(t).

Then according to induction hypothesis, spoiler
has a winning strategy in the (3 · (rank(s|v′′ ) +
rank(t|w′′)))-round (thus (3 · (rank(s)+ rank(t))−
3)-round) game on s|v′′ and t|w′′ .

Consequently we conclude that spoiler has a win-
ning strategy in the (3 · (rank(s) + rank(t)))-round
game on s, t. 2

6. Conclusions and Remarks

In this note, we give a new proof of characteri-
zation of TL[EF] following the Ehrenfeucht-Fräıssé
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games approach and extend this proof to the char-
acterization of TL[EFns].

The property [P4] in the characterization of
TL[EFns](Definition 5) can be seen as one kind of
binary-tree extension of stutter-invariance concept
of words [7].

We define the binary-stutter-invariance as follows:
Let L be a tree language, t be a tree and t′ be a tree

obtained from t by applying the following operation:
replacing subtree t|v (v ∈ dom(t)) by a〈t|v, t|v〉(a =
t(v)) in t (see Fig. 3). If (t ∈ L iff t′ ∈ L for any t
and t′ stated above), then we say that L is binary-
stutter-invariant.

. . . . . .
. . .

t

a av v

t′

t|vt|v

Fig. 3. binary stutter

From Theorem 1 and Theorem 2, it is easy to see
that a TL[EF]-definable tree language L is TL[EFns]-
definable iff L is binary-stutter-invariant.
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