
A Note on the Characterization of TL[EF] ?

Zhilin Wu

Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, P.O.Box 8718, Beijing, China,

100080 and Graduate School of the Chinese Academy of Sciences, 19 Yuquan Street, Beijing, China, 100049

Abstract

In this note, we give a new proof for Bojańczyk&Walukiewicz’s effective characterization of TL[EF](the fragments of
Computation Tree Logic(CTL), with EF modality only) following the Ehrenfeucht-Fräıssé game approach. Then, we
extend the proof to the effective characterization of TL[EFns](Fns is the non-strict “future” temporal operator, while
F is the strict one).

Key words: formal languages, branching-time temporal logic, tree languages, Ehrenfeucht-Fräıssé game

1. Introduction

The definability problem for logics on trees is to
decide whether a given regular tree language is defin-
able in a logic. This kind of problem has proven to be
rather difficult. For instance, the definability prob-
lem for first order logic on trees (FO[<]) has been a
longstanding open problem since the 80’s of the last
century despite several partial results [6,4,1,2].

In [3], Bojańczyk&Walukiewicz made a break-
through in the definability problem for logics on
trees by giving effective characterizations for sev-
eral sublogics of CTL, namely TL[EX], TL[EF] and
TL[EX,EF]. While the proofs of the characterization
for TL[EX] and TL[EX,EF] in [3] were elegant and
short, the proof for TL[EF] was very intricate.

One of the main reasons for the intricacy of the
proof of TL[EF] in [3] is that the proof was construc-
tive. To avoid the intricacy, in this note, we give an
existential proof for the characterization of TL[EF]

? Supported by the National Natural Science Foundation of
China under Grant No. 60421001 and 60573012, and the Na-
tional Grand Fundamental Research 973 Program of China
under Grant No. 2002cb312200.

Email address: wuzl@ios.ac.cn (Zhilin Wu).

following the Ehrenfeucht-Fräıssé games approach,
similar to the proof of the characterization of the
fragment of LTL that only uses the operator “F”,
“sometimes in the future” [8]. Moreover, we extend
this proof to the characterization of TL[EFns]

1 (Fns

is the non-strict “future” operator, while F is strict),
which was mentioned to be open in [3].

The remaining sections are organized as follows:
in Section 2, the syntax and semantics of TL[EF]
and TL[EFns] are defined; and in Section 3, some
definitions and notations are introduced; in Section
4, a new proof of characterization of TL[EF] is given;
then in Section 5, the effective characterization of
TL[EFns] is established; finally in Section 6, we give
some conclusions and remarks.

2. Syntax and Semantics of TL[EF] and
TL[EFns]

Let Σ be a finite alphabet, then the syntax of
TL[EF] is defined by the following rules.

1 One of the referees pointed out that the characterization
of TL[EFns] has been independently announced by Zoltan
Ésik and Szabolcs Iván at a workshop of CSL’06 on formal
languages: http://www.inf.u-szeged.hu/∼csl06/ws.php.

Preprint submitted to Elsevier 28 November 2006



ϕ := pa(a ∈ Σ)|¬ϕ1|ϕ1 ∨ ϕ2|EFϕ1 (1)

A binary tree domain is a prefix closed nonempty
subset of {0, 1}∗ such that for all v ∈ {0, 1}∗, v0 is
in the domain iff v1 is in the domain, in other words,
each inner node has two sons. Evidently ε is in all
tree domains, which is called the root of the tree.
The prefix relation on the tree domain is denoted by
<.

Let Σ be a finite alphabet. A Σ-labelled finite bi-
nary tree is a function from a binary tree domain
to Σ. If t is a Σ-labelled finite binary tree, then the
tree domain of t is denoted by dom(t). For any v ∈
dom(t), the label of v in t is denoted by t(v). In par-
ticular, t(ε) is the label of the root of t.

If v ∈ dom(t), then t|v denotes the subtree of t
below v (including v).

Let TΣ denote the set of all Σ-labelled finite binary
trees.

The semantics of TL[EF] are defined as follows.
Let t ∈ TΣ, then

– t |= pa if t(ε) = a, where a ∈ Σ.
– t |= ¬ϕ1 if not t |= ϕ1.
– t |= ϕ1 ∨ ϕ2 if t |= ϕ1 or t |= ϕ2.
– t |= EFϕ1 if there is some v ∈ dom(t), v > ε such

that t|v |= ϕ1.
The syntax of TL[EFns] is defined by the same

rules in (1) with EFϕ1 replaced by EFnsϕ1.
The semantics of EFnsϕ1 is defined as follows:
t |= EFnsϕ1 if there is v ∈ dom(t) such that t|v |=

ϕ1 (note that here v may be ε).
Let ϕ be a TL[EF] or TL[EFns] formula. then the

closure of ϕ, denoted by cl(ϕ), is defined to be the
smallest set of formulas containing ϕ and closed un-
der negations and subformulas.

A tree language L is said to be TL[EF] (TL[EFns]
respectively)-definable if there is a formula ϕ in
TL[EF] (TL[EFns] respectively) such that L = {t ∈
TΣ|t |= ϕ}.

Since EFnsϕ ≡ ϕ ∨ EFϕ, TL[EFns] can be seen as
a sublogic of TL[EF]. Moreover, TL[EF] is more ex-
pressive than TL[EFns]. For instance, the property
“the tree has at least depth two and all its nodes are
labelled by a” can be expressed by TL[EF] formula:
pa ∧ EFpa ∧ ¬EF¬pa, which, nevertheless, is not ex-
pressible in TL[EFns].

3. Notations and definitions

Basically, we follow the notations in [3]. But for
the reader’s convenience, we recall the relevant no-
tations and definitions.

Throughout this section, let Σ be a finite alphabet
and L ⊆ TΣ.

A multicontext is a tree in TΣ∪{∗} such that at
least one leaf is labelled by ∗, and no inner nodes are
labelled by ∗. The leaves labelled by ∗ are called holes
of the multicontext. In particular, each a ∈ Σ can
be seen as a multicontext with two holes. A context
is a multicontext with exactly one leaf labelled by ∗.

Let C be a multicontext with holes v1, ..., vn and
t1, ..., tn ∈ TΣ. Then C〈t1, ..., tn〉 denotes the tree
obtained by replacing the v1, ..., vn by t1, ..., tn re-
spectively. In particular, a〈s, t〉 denotes the tree with
the root labelled by a and s, t as the left and right
subtree respectively.

Let s, t ∈ TΣ. Then s ∼L t iff for all contexts C,
(C〈s〉 ∈ L iff C〈t〉 ∈ L).

The equivalence classes of ∼L are called types of
L, denoted by Types(L). The type of a tree s is
denoted by type(s).

A tree language L is regular iff L has only a finite
number of types, namely, Types(L) is a finite set.

As a matter of fact, ∼L is a congruence on TΣ

in the sense that if s ∼L s′ and t ∼L t′, then
a〈s, t〉 ∼L a〈s′, t′〉 for all a ∈ Σ. Then it is easy to
see that for all multicontexts C with holes v1, ..., vn,
if si ∼L ti for all 1 ≤ i ≤ n, then C〈s1, ..., sn〉 ∼L

C〈t1, ..., tn〉. Consequently for multicontext C with
holes v1, ..., vn, α1, ..., αn ∈ Types(L), we can
write C〈α1, ..., αn〉 to denote the type of any tree
C〈s1, ..., sn〉 with type(si) = αi for all 1 ≤ i ≤ n. In
particular, C〈α〉 denotes the type of any tree C〈s〉
with type(s) = α, and a〈α, β〉 denotes the type of
any tree a〈s, t〉 with type(s) = α and type(t) = β.

Let α, β ∈ Types(L). Then α � β if there is a
context C such that C〈α〉 = β. Moreover, if α � β
and β � α, we say that α ≈ β. If α � β and not
α ≈ β, then we say that α ≺ β.

It is easy to see that � is a preorder relation and
≈ is an equivalence relation on Types(L).

The equivalence classes of ≈ are called strongly-
connected-components (SCC’s) of L, denoted by
SCCS(L). For any type α, the SCC (namely equiv-
alence class of ≈) of α is denoted by [α].

Let s be a tree. Then the strongly-connected-
component-set of s, denoted by SCCS(s), is
{[type(s|v)] : v ∈ dom(s)}. And the delayed
strongly-connected-component-set of s, denoted by
DSCCS(s), is {[type(s|v)] : v ∈ dom(s) and v >
ε}. The rank of s, rank(s), is defined to be the
cardinality of SCCS(s), namely |SCCS(s)|. The
delayed rank, drank(s), is defined to be the cardi-
nality of DSCCS(s), namely |DSCCS(s)|.

2



Let s be a tree and a ∈ Σ. Then s[a] denotes the
tree the same as s except that the root of s is labelled
by a now.

Let s be a tree. Then the delayed type of s, de-
noted by dtype(s), is a function from Σ to Types(L)
such that dtype(s)(a) = type(s[a]).

It is evident that dtype(a〈s, t〉) has nothing to do
with a, consequently we can write dtype(s, t) simply.
It is also easy to see that if s ∼L s′ and t ∼L t′,
then dtype(s, t) = dtype(s′, t′). Thus we can write
dtype(α, β) to denote the delayed type dtype(s, t)
with type(s) = α and type(t) = β.

4. New proof of characterization of TL[EF]

Before the proof, we give some definitions, propo-
sitions and lemmas.
Definition 1 (TL[EF] EF-Game) Let s, t be two
trees. Then the k-round Ehrenfeucht-Fräıssé game
on s, t is played by two players spoiler and duplicator
in turn:

0-round game: if s(ε) 6= t(ε), then spoiler wins,
otherwise duplicator wins.

k-round game (k > 0): if s(ε) 6= t(ε), then spoiler
wins.

Otherwise spoiler should select some non-root node
in one of the two trees, say v in s. If he fails to
do so (namely both trees have only one node), then
duplicator wins.

Otherwise duplicator should select some non-root
node in the other tree, say w in t. If she fails to do
so (namely exactly one of the two trees has only one
node), then spoiler wins.

Otherwise spoiler and duplicator play the (k-1)-
round game on s|v and t|w.

We say that spoiler or duplicator has a winning
strategy in the k-round TL[EF] EF-game on s, t if
he or she can win regardless of the moves by the
opponent.

It is not hard to see that if spoiler has a winning
strategy in the k-round TL[EF] EF-game on s, t, then
he has a winning strategy in the (k+1)-round game
as well. Similarly if duplicator has a winning strategy
in the (k + 1)-round TL[EF] EF-game on s, t, then
she has a winning strategy in the k-round game as
well.

Similar to Corollary 2.2 in [5], we have the follow-
ing proposition.
Proposition 1 Let L be a tree language. If there is
some k ≥ 0 such that for all s ∈ L and t /∈ L, spoiler
has a winning strategy in the k-round TL[EF] EF-

game on s, t; then L is TL[EF] definable.
Definition 2 (EF-admissible) L is said to be EF-
admissible if the following three properties are satis-
fied:
[P1] dtype(α, β) = dtype(β, α)
[P2] if α0 ≈ β0 and α1 ≈ β1, then dtype(α0, α1) =

dtype(β0, β1)
[P3] if α � β, then dtype(α, β) = dtype(β, β)

where αi, βi(i = 0, 1), α, β ∈ Types(L).
Definition 3 (DSCCS-dependent) L is said to
be delayed-strongly-connected-component-set depen-
dent (DSCCS-dependent) if for any trees s and t
such that DSCCS(s) = DSCCS(t), we have that
dtype(s) = dtype(t).
Theorem 1 ([3,1]) Let L be a regular tree lan-
guage. Then the following three conditions are
equivalent:

(i) L is TL[EF]-definable.
(ii) L is EF-admissible.
(iii) L is DSCCS-dependent.

Proof.
(i) ⇒ (ii):
Suppose that L is TL[EF]-definable.
[P1] is evident since TL[EF] can’t distinguish be-

tween the left and right sons.
The proof of [P2] is exactly Lemma 3.3.7 in [1].
The proof of [P3] is exactly Lemma 3.3.6 in [1].
(ii) ⇒ (iii):
Essentially the proof has been given in section

3.3.1 of [1].
Suppose that L is EF-admissible.
Let s, t be two trees such that DSCCS(s) =

DSCCS(t).
If DSCCS(s) = DSCCS(t) = ∅, then evidently

dtype(s) = dtype(t).
Now we assume DSCCS(s) = DSCCS(t) 6= ∅.
Let αi = type(s|i) and βi = type(t|i), where i =

0, 1. Then [αi] ∈ DSCCS(t) and [βi] ∈ DSCCS(s),
where i = 0, 1. There are three cases.

Case I: there is i such that [α0], [α1] ∈ SCCS(t|i).
Then α0, α1 � βi and βi � αj , β1−i � αj′ for

some j, j′. Thus αj ≈ βi and α1−j � βi, β1−i � βi.
So

dtype(α0, α1) = dtype(αj, α1−j) = dtype(βi, α1−j)

= dtype(βi, βi) = dtype(βi, β1−i) = dtype(β0, β1)

The first and last equations above are according
to [P1] in the definition 2; the second equation is
according to [P2]; the third and fourth equations
are according to [P3].

Case II: there is i such that [β0], [β1] ∈ SCCS(s|i).

3



Similar to Case I.
Case III: neither I nor II holds.
Then there is i such that [α0] ∈ SCCS(t|i) and

[α1] ∈ SCCS(t|1−i) and there is j such that [β0] ∈
SCCS(s|j) and [β1] ∈ SCCS(s|1−j). There are four
subcases.

Subcase III.I: i = j = 0
Then α0 � β0, α1 � β1, β0 � α0 and β1 � α1. So

we have α0 ≈ β0 and α1 ≈ β1.
Then dtype(α0, α1) = dtype(β0, β1) according to

[P2].
Subcase III.II: i = j = 1
Then α0 � β1, α1 � β0, β0 � α1 and β1 � α0. So

we have α0 ≈ β1 and α1 ≈ β0.
Then according to [P2] and [P1], dtype(α0, α1) =

dtype(β1, β0) = dtype(β0, β1).
Subcase III.III: i = 1 − j = 0
Then α0 � β0, α1 � β1, β0 � α1 and β1 � α0. So

we have α0 ≈ β0 ≈ α1 ≈ β1.
Then dtype(α0, α1) = dtype(β0, β1) according to

[P2].
Subcase III.IV: i = 1 − j = 1
Then α0 � β1, α1 � β0, β0 � α0 and β1 � α1. So

we have α0 ≈ β1 ≈ α1 ≈ β0.
Then dtype(α0, α1) = dtype(β0, β1) according to

[P2].
(iii) ⇒ (i):
Suppose L is DSCCS-dependent.
According to Proposition 1, it suffices to prove

that for all s, t such that type(s) 6= type(t), spoiler
has a winning strategy in the (drank(s)+drank(t))-
round game on s, t (because if this is true, then
spoiler has a winning strategy in the (2 · |SCCS(L)|)-
round game on s, t for all s ∈ L and t /∈ L).

Induction on drank(s) + drank(t).
Let s(ε) = a and t(ε) = b.
Induction base: drank(s) + drank(t) = 0.
Then both s and t have only one node. Since

type(s) 6= type(t), then a 6= b, consequently spoiler
wins in the 0-round game.

Induction step: drank(s) + drank(t) > 0
If a 6= b, then spoiler wins.
Otherwise DSCCS(s) 6= DSCCS(t) since

type(s) 6= type(t) and L is DSCCS-dependent. Con-
sequently there is [γ] ∈ DSCCS(s)\DSCCS(t)
or [γ] ∈ DSCCS(t)\DSCCS(s). Here we consider
the former case, the latter case can be considered
similarly.

Then spoiler selects v > ε in s such that
[type(s|v)] = [γ] and v is maximal in this sense.

If t has only one node, then spoiler wins.
Otherwise duplicator selects w > ε in t.

Since [type(s|v)] = [γ] and v is maximal, [γ] /∈
DSCCS(s|v), so drank(s|v) < drank(s). Then
drank(s|v) + drank(t|w) < drank(s) + drank(t).

We also have that type(s|v) 6= type(t|w) for oth-
erwise [γ] = [type(s|v)] = [type(t|w)] ∈ DSCCS(t),
a contradiction.

Then according to the induction hypothesis,
spoiler has a winning strategy in the (drank(s|v) +
drank(t|w))-round game on s|v and t|w. Con-
sequently spoiler has a winning strategy in the
(drank(s) + drank(t) − 1)-round game on s|v and
t|w.

Thus we conclude that spoiler has a winning strat-
egy in the (drank(s)+drank(t))-round game on s, t.

2

5. Characterization of TL[EFns]

Before giving the characterization of TL[EFns], we
give some definitions, propositions and lemmas.
Definition 4 (TL[EFns] EF-Game) Let s, t be
two trees. Then the k-round Ehrenfeucht-Fräıssé
game on s, t is played by two players spoiler and
duplicator in turn:

0-round game: if s(ε) 6= t(ε), then spoiler wins,
otherwise duplicator wins.

k-round game(k > 0): if s(ε) 6= t(ε), then spoiler
wins.

Otherwise spoiler selects some node in one of the
two trees, say v in s. And duplicator selects some
node in the other tree, say w in t. Then spoiler and
duplicator play the (k-1)-round game on s|v and t|w.

Similar to the TL[EF] EF-game, we have that
if spoiler has a winning strategy in the k-round
TL[EFns] EF-game on s, t, then he has a winning
strategy in the (k + 1)-round game as well. Sim-
ilarly if duplicator has a winning strategy in the
(k + 1)-round TL[EFns] EF-game on s, t, then she
has a winning strategy in the k-round game as well.

Similar to Proposition 1, we have the following
proposition for TL[EFns].
Proposition 2 Let L be a tree language. If there is
some k ≥ 0 such that for all s ∈ L and t /∈ L, spoiler
has a winning strategy in the k-round TL[EFns] EF-
game on s, t; then L is TL[EFns] definable.

Let L be a tree language and α ∈ Types(L). The
root letters of α, denoted by rletters(α), is defined
to be {a ∈ Σ|there is t such that t(ε) = a, type(t) =
α}.
Definition 5 (EFns-admissible) A tree language
L is said to be EFns-admissible if it is EF-admissible

4



and satisfies the following condition [P4].
[P4] if a ∈ rletters(α), then a〈α, α〉 = α, where

α ∈ Types(L).
Lemma 1 Let L be EFns-admissible and s, t be
trees. If SCCS(s) = SCCS(t) and s(ε) = t(ε), then
type(s) = type(t).
Proof.

Let a = s(ε) = t(ε), α = type(s) and β = type(t).
Since L is EFns-admissible, then it is EF-

admissible, so DSCCS-dependent according to The-
orem 1. Consequently dtype(a〈s, s〉) = dtype(a〈t, t〉)
since DSCCS(a〈s, s〉) = SCCS(s) = SCCS(t) =
DSCCS(a〈t, t〉). So type(a〈s, s〉) = type(a〈t, t〉).

Because a ∈ rletters(α) and a ∈ rletters(β),
according to [P4] in Definition 5, α = a〈α, α〉 =
type(a〈s, s〉) = type(a〈t, t〉) = a〈β, β〉 = β. 2

The following lemma is obvious.
Lemma 2 Let L be defined by TL[EFns] formula ϕ
and s, t be two trees. If s and t satisfy the same for-
mulas in cl(ϕ), then type(s) = type(t).
Theorem 2 Let L be a regular tree language. Then
the following two conditions are equivalent:

(i) L is TL[EFns]-definable.
(ii) L is EFns-admissible.
Proof.
(i) ⇒ (ii):
Suppose that L is TL[EFns] definable.
Since TL[EFns] can be seen as a sublogic of TL[EF],

we know that L is EF-admissible from Theorem 1.
Now we consider [P4].
Let s be a tree such that type(s) = α, s(ε) = a.
Let t = a〈s, s〉. We can prove that for all TL[EFns]

formula ϕ, s |= ϕ iff t |= ϕ by induction on the
structure of ϕ.

Because L is TL[EFns] definable, then according
to Lemma 2, we have type(s) = type(t), a〈α, α〉 = α.

(ii) ⇒ (i):
Suppose that L is EFns-admissible.
According to Proposition 2, it suffices to prove

that for all s, t with type(s) 6= type(t), spoiler has
a winning strategy in the (3 · (rank(s) + rank(t)))-
round game on s and t.

Induction on rank(s) + rank(t).
Let type(s) = α, type(t) = β, s(ε) = a, t(ε) = b.
Base case: rank(s) + rank(t) = 2 (because

rank(s), rank(t) ≥ 1).
Then rank(s) = rank(t) = 1, SCCS(s) = {α}

and SCCS(t) = {β}.
Spoiler selects some leaf v in s. And duplicator

selects w in t.
Spoiler selects some leaf w′ in t such that w′ ≥ w.

And duplicator has no choice but to select v in s.

Because type(s|v) = α and type(t|w′) = β, we
have s(v) 6= t(w′), spoiler wins. Consequently
spoiler has a winning strategy in the 2-round game
on s, t. Thus spoiler has a winning strategy in the
(3 · (rank(s) + rank(t)))-round game on s, t.

Induction step: rank(s) + rank(t) > 2.
If a 6= b, then spoiler wins.
Otherwise we have that SCCS(s) 6= SCCS(t)

according to Lemma 1. There are three cases.
Case I: there is [γ] ∈ SCCS(s)\{[α]} and [γ] /∈

SCCS(t).
Evidently γ ≺ α.
Spoiler selects some v > ε in s such that

[type(s|v)] = [γ] and v is maximal in this sense.
Duplicator selects some w in t.
Since [α] /∈ SCCS(s|v), we have rank(s|v) <

rank(s), thus rank(s|v) + rank(tw) < rank(s) +
rank(t).

We also have type(s|v) 6= type(t|w) because oth-
erwise [γ] = [type(s|v)] = [type(t|w)] ∈ SCCS(t), a
contradiction.

Then according to the induction hypothe-
sis, spoiler has a winning strategy in the (3 ·
(rank(s|v) + rank(t|w)))-round game on s|v and
t|w. Thus spoiler has a winning strategy in the
(3 · (rank(s)+ rank(t))− 1)-round game on s|v and
t|w.

We conclude that spoiler has a winning strategy
in the (3 · (rank(s) + rank(t)))-round game on s, t.

Case II: there is [γ] ∈ SCCS(t)\{[β]} and [γ] /∈
SCCS(s).

Similar to Case I.
Case III: neither I nor II holds.
Then SCCS(s)\{[α]} ⊆ SCCS(t) and
SCCS(t)\{[β]} ⊆ SCCS(s).
We must have that [α] /∈ SCCS(t) or [β] /∈

SCCS(s). For otherwise SCCS(s) ⊆ SCCS(t) and
SCCS(t) ⊆ SCCS(s), SCCS(s) = SCCS(t), then
according to Lemma 1, α = β, a contradiction.

Without loss of generality, suppose that [α] 6∈
SCCS(t).

Then spoiler selects some v in s such that
[type(s|v)] = [α] and v is maximal in this sense.

Duplicator selects some w in t.
If s(v) 6= t(w), then spoiler wins.
Otherwise if type(t|w) ≺ type(t), then we

have that rank(t|w) < rank(t), and rank(s|v) +
rank(t|w) < rank(s) + rank(t).

Moreover, type(s|v) 6= type(t|w) because other-
wise [α] = [type(s|v)] = [type(t|w)] ∈ SCCS(t), a
contradiction.

5



Then according to the induction hypothe-
sis, spoiler has a winning strategy in the (3 ·
(rank(s|v) + rank(t|w)))-round game on s|v and
t|w. Thus spoiler has a winning strategy in the
(3 · (rank(s)+ rank(t))− 1)-round game on s|v and
t|w.

So spoiler has a winning strategy in the (3 ·
(rank(s)+rank(t)))-round game on s, t in this case.

Otherwise [type(t|w)] = [type(t)] = [β].
If v is a leaf in s, then spoiler can select some leaf

w′ ≥ w in t, duplicator has to select v in s. Since
[type(s|v)] = [α], we have s(v) 6= t(w′) for otherwise
[α] = [type(s|v)] = [type(t|w′)] ∈ SCCS(t), a con-
tradiction. So spoiler wins in this case.

Otherwise v is an inner node of s. Let a′ =
s(v) = t(w), type(s|v) = α′, type(t|w) = β′ and
αi = type(s|vi) where i = 0, 1 (see Fig. 1).

Because v is maximal, α0, α1 ≺ α. Since
SCCS(s)\{[α]} ⊆ SCCS(t), it must be that
[α0], [α1] ∈ SCCS(t), so α0, α1 � β. In fact, we
must have that α0, α1 ≺ β.

To the contrary, suppose that [α0] = [β] (or [α1] =
[β]).

Because [α0] = [β] and α1 � β, we have that
dtype(α0, α1) = dtype(β, α1) = dtype(β, β) =
dtype(β′, β′) (The first and third equations are by
[P2], second by [P3]). Consequently

α′ = a′〈α0, α1〉= dtype(α0, α1)(a
′) =

dtype(β′, β′)(a′) = a′〈β′, β′〉 = β′

(The last equation above holds because a′ ∈
rletters(β′) and [P4]).

. . .. . . . . .

s

va′ a′α′ ≈ α

v0 v1α0 ≈ β α1 � β

t

w β′ ≈ β

Fig. 1. [α0] = [β]

Then [α] = [α′] = [β′] = [β] ∈ SCCS(t), a con-
tradiction.

So it must be that α0, α1 ≺ β. Then [β] 6∈
SCCS(s|v).

Now spoiler can select w′ ≥ w in t such that
[type(t|w′)] = [β] and w′ is maximal in this sense.

Duplicator selects v′ ≥ v in s.
If s(v′) 6= t(w′), then spoiler wins.
Otherwise if v′ > v, then type(s|v′) ≺ α since v

is maximal. In this case, we can get that rank(s|v′)+
rank(t|w′) < rank(s) + rank(t) and type(s|v′) 6=

type(t|w′) and spoiler has a winning strategy in the
(3 · (rank(s) + rank(t)))-round game on s, t by the
induction hypothesis.

Otherwise v′ = v. In this case type(s|v′) 6=
type(t|w′) for otherwise [α] = [type(s|v′)] =
[type(t|w′)] ∈ SCCS(t), a contradiction.

Since L is DSCCS-dependent according to Theo-
rem 1, we have that DSCCS(s|v′ ) 6= DSCCS(t|w′).

Without loss of generality, suppose that there is
[γ] ∈ DSCCS(s|v′ )\DSCCS(t|w′), the other case
is similar.

We know that [α] 6∈ SCCS(t) and [β] 6∈
SCCS(s|v). Thus we have that [type(s|v′)] = [α] 6∈
SCCS(t|w′) and [type(t|w′)] = [β] 6∈ SCCS(s|v′).

So

[γ] 6∈ DSCCS(t|w′) ∪ {[type(t|w′)]} = SCCS(t|w′).

Then spoiler can select v′′ > v′ in s such that
[type(s|v′′)] = [γ].

Duplicator selects w′′ ≥ w′ in t (see Fig. 2).

. . .

. . .

s

v = v′ [α]

v′′ γ ≺ α

t

w [β]

[β]w′

w′′

Fig. 2. game positions

If s(v′′) 6= t(w′′), then spoiler wins.
Otherwise type(s|v′′) 6= type(t|w′′), for other-

wise

[γ] = [type(s|v′′)] = [type(t|w′′)] ∈ SCCS(t|w′),

a contradiction.
Since v′ is maximal and v′′ > v′, we have that

rank(s|v′′ ) + rank(t|w′′) < rank(s) + rank(t).

Then according to induction hypothesis, spoiler
has a winning strategy in the (3 · (rank(s|v′′ ) +
rank(t|w′′)))-round (thus (3 · (rank(s)+ rank(t))−
3)-round) game on s|v′′ and t|w′′ .

Consequently we conclude that spoiler has a win-
ning strategy in the (3 · (rank(s) + rank(t)))-round
game on s, t. 2

6. Conclusions and Remarks

In this note, we give a new proof of characteri-
zation of TL[EF] following the Ehrenfeucht-Fräıssé

6



games approach and extend this proof to the char-
acterization of TL[EFns].

The property [P4] in the characterization of
TL[EFns](Definition 5) can be seen as one kind of
binary-tree extension of stutter-invariance concept
of words [7].

We define the binary-stutter-invariance as follows:
Let L be a tree language, t be a tree and t′ be a tree

obtained from t by applying the following operation:
replacing subtree t|v (v ∈ dom(t)) by a〈t|v, t|v〉(a =
t(v)) in t (see Fig. 3). If (t ∈ L iff t′ ∈ L for any t
and t′ stated above), then we say that L is binary-
stutter-invariant.

. . . . . .
. . .

t

a av v

t′

t|vt|v

Fig. 3. binary stutter

From Theorem 1 and Theorem 2, it is easy to see
that a TL[EF]-definable tree language L is TL[EFns]-
definable iff L is binary-stutter-invariant.

Acknowledgements I want to thank Prof. Wen-
hui Zhang for his reviews on this paper and dis-
cussions with me. Moreover, I would like to thank
anonymous referees for their valuable comments
and suggestions.

References

[1] M. Bojańczyk, Decidable properties of tree languages,
PHD thesis, Warsaw University, 2004.

[2] M.Benedict, L.Segoufin. Regular tree languages
definable in FO, STACS’05, LNCS 3404, 327-339, 2005.

[3] M. Bojańczyk, I. Walukiewicz. Characterizing EF and
EX tree logics, CONCUR’04, LNCS 3170, 131-145, 2004.

[4] Z. Ésik, P. Weil. On certain logically defined tree
languages. FSTTCS’03, LNCS 2914, 195-207, 2003.

[5] K. Etessami, T. Wilke. An until hierarchy for temporal
logic, LICS’96, 108-117, IEEE Computer Society Press,
1996.

[6] A. Pothoff. First-order logic on finite trees. In Theory
and Practice of Software Development, LNCS 915, 125-

139, 1995.
[7] D. Peled, T. Wilke. Stutter-invariant temporal

properties are expressible without the next-time
operators, Information Processing Letters, V.63(5), 243-
246,1997.

[8] T. Wilke. Classifying discrete temporal properties.
STACS’99, LNCS 1563, 32-46, Springer-Verlag, 1999.

7


