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Abstract. In a recent work by Demri and Deters (CSL-LICS 2014), first-order
separation logic restricted to two variables and separating implication was shown
undecidable, where it was shown that even with only two variables, if the use of
negations is unrestricted, then they can be nested with separating implication in a
complex way to get the undecidability result. In this paper, we revisit the decid-
ability and complexity issues of first-order separation logic with two variables,
and proposes semi-positive separation logic with two-variables (SPSL2), where
the use of negations is restricted in the sense that negations can only occur in front
of atomic formulae. We prove that satisfiability of the fragment of SPSL2 where
neither separating conjunction nor septraction (the dual operator of separating
implication) occurs in the scope of universal quantifiers, is NEXPTIME-complete.
As a byproduct of the proof, we show that the finite satisfiability problem of
first-order logic with two variables and a bounded number of function symbols is
NEXPTIME-complete (the lower bound holds even with only one function sym-
bol and without unary predicates), which may be of independent interest beyond
separation logic community.

1 Introduction
Decidability and Separation Logics. Separation logic is a prominent logical formal-
ism to verify programs with pointers and it comes in different flavours and many frag-
ments and extensions exist. The decidability status of first-order separation logic with
two record fields has been answered negatively quite early in [5] thanks to Trakhten-
brot’s Theorem [23]: finitary satisfiability for predicate logic restricted to a single binary
predicate symbol is undecidable and not recursively enumerable. The undecidability of
first-order separation logic with a single record field was then established in [4] and a bit
later in [8] with the further restriction that only two individual variables are permitted.
Undecidability can be established in various ways: in [9] by reduction from the halting
problem for Minsky machines [15] or from the satisfiability problem for FO2 on data
words with a linear ordering on data [3]. Despite these negative results, many fragments
of separation logic are known to be decidable and used in practice, mainly thanks to the
absence of the separation implication, see e.g. [20, 7, 17, 1]. For instance, the symbolic-
heap fragment is free of separating implication and the propositional fragment of sep-
aration logic can be decided in polynomial space [5]. Semi-decision procedures for
fragments with separating implication can be found in [22]. First-order separation logic
with all separating connectives but with a single variable is shown in PSPACE in [10].
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Our Motivations. Undecidable fragments of separation logic allow still too much free-
dom whereas the decidable fragments with relatively low complexity are still poorly
expressive. The real question is how to reduce this gap by introducing restrictions based
on negations (see also the related work [21] about restrictions on negations). In this pa-
per, we consider semi-positive separation logic with two variables, denoted by SPSL2,
where negation symbols only occur in front of the atomic formulae. Our goal is to un-
derstand the influence of the restricted use of negations on the decidability/complexity
of the satisfiability problem.

We know that SPSL2
(

(
f
↪→)f∈F, ∗

)
(where F is a finite set of fields,

f
↪→ and ∗ repre-

sent the “points-to” and “separating conjunction” modality respectively), the fragment
of SPSL2 where separating implication does not occur, admits a decidable satisfiabil-

ity problem if F = {f} (that is, there is exactly one field), since SL2
(

f
↪→, ∗

)
, the

smallest extension of SPSL2
(

f
↪→, ∗

)
closed under negations, is decidable with a non-

elementary computational complexity (cf. [4], the lower bound with only two variables
was shown in [9]). Nevertheless, to the best of our knowledge, the decidability and
complexity of various fragments of SPSL2 are still largely open.
Our contributions.

As a starting point towards a complete decidability/complexity charaterization of
SPSL2, we show that the satisfiability of the following fragments of SPSL2 is NEXPTIME-
complete (cf. Section 2 for the definition of these fragments).

1. SPSL2
(

(
f
↪→)f∈F

)
and SPSL2

(
(

f
↪→)f∈F,P

)
, where separating operators do not

occur, and P denotes a finite set of unary predicates. The NEXPTIME lower bound
holds even if there is only one field, that is, F = {f}. The upper bound proof is ob-
tained by a reduction to the finite satisfiability of first-order logic with two variables
and counting quantifiers, which is NEXPTIME-complete [18, 19]. The lower bound
is shown by encoding the solutions of a given exponential-size tiling problem into

a formula in SPSL2
(

f
↪→
)

, where only one function symbol f is used and no unary

predicates are needed.

2. ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
, the extension of SPSL2

(
(

f
↪→)f∈F

)
with separating con-

junction ∗ and septraction ¬−∗ (the dual operator of magic wand −∗), where neither
∗ nor ¬−∗ occurs in the scope of universal quantifiers. The result is obtained by a

reduction to the satisfiability of SPSL2
(

(
f
↪→)f∈F,P

)
formulae.

Related work. Logics with two variables are a classical topic in mathematical logic
and theoretical computer science. Over arbitrary relational structures, first-order logic
with two variables and its extensions have been investigated intensively, see [13, 14, 12,
16, 18, 19] (to cite a few). In [18, 19], it is well-known that the satisfiability and finite
satisfiability problem of C2, first-order logic with two variables and counting quan-
tifiers, are NEXPTIME-complete. Since function symbols can be encoded by relation



Semipositivity in SL2 3

symbols with the help of counting quantifiers, it follows that the satisfiability problem

of SPSL2
(

(
f
↪→)f∈F,P

)
is in NEXPTIME. In addition, it was shown that the (finite) sat-

isfiability problem of first-order logic with two variables and unary predicates is already
NEXPTIME-hard. The NEXPTIME lower bound we obtained is novel in the sense that in
our reduction, only one function symbol but no unary predicates is used. First-order
logic with two variables on special classes of structures, e.g. words and trees, has also
been investigated [11, 2]. In [6], first-order logic with two variables and determinis-
tic transitive closure over one binary relation was considered and its the satisfiability
problem was shown to be EXPSPACE-complete.

Outline of the paper. Preliminaries are given in Section 2. In Section 3, the satis-

fiability of SPSL2
(

(
f
↪→)f∈F

)
and SPSL2

(
(

f
↪→)f∈F,P

)
is shown to be NEXPTIME-

complete. Section 4 is devoted to ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
.

2 Preliminaries

For n ∈ N, let [n] denote the set {0, . . . , n − 1}. For n,m ∈ N such that n ≤ m,
let [n,m] = {n, n + 1, . . . ,m}. Let F denote a finite set of fields. A heap h over F
is a collection of partial functions (hf)f∈F : N ⇀ N such that each of them has a
finite domain. We write dom(hf) to denote the domain of hf and ran(hf) to denote its
range. In addition, we use loc(hf) to denote dom(hf) ∪ ran(hf). We also use dom(h)
to denote

⋃
f∈F

dom(hf), ran(h) to denote
⋃
f∈F

ran(hf), and loc(h) to denote
⋃
f∈F

loc(hf).

Two heaps h1 = (h1,f)f∈F and h2 = (h2,f)f∈F are said to be disjoint, denoted h1 ⊥ h2,
if dom(h1) ∩ dom(h2) = ∅; when this holds, we write h1 ] h2 to denote the collection
of partial functions (hf)f∈F such that hf is obtained from h1,f and h2,f by taking their
disjoint union.

We introduce some graph-theoretical notations for heaps. Let h = (hf)f∈F and f ∈
F.

– Let l and l′ be two locations. If hf(l) = l′, then l′ is said to be the f-successor of l
(resp. l is said to be an f-predecessor of l′) in h.

– An f-path in h is a sequence of locations, say l0l1 . . . lk (where k ≥ 0), such that
for each j : 0 ≤ j < k, lj+1 is the f-successor of lj . The location l0 and lk are
called the start location and end location of the f-path respectively. In addition, k
is called the length of the f-path. An f-path l0l1 . . . lk is called an f-cycle if k ≥ 1
and l0 = lk. If l ∈ N is the end location of an f-path, then we also call the f-path as
a backward f-path of l.

– Let G[hf] be the directed graph corresponding to hf, that is, the graph where the set
of nodes is loc(hf), and for each pair of locations l, l′ ∈ loc(hf), there is an arc
from l to l′ iff hf(l) = l′. Note that G[hf] has a special structure in the sense that each
node has at most one successor (as a result of the fact that hf is a partial function).
Suppose that C is a connected component of G[hf], then the partial function h′f such
that G[h′f] = C (this means that loc(h′f) is the set of nodes in C, and h′f(l) = l′ iff
there is an arc from l to l′ in C iff hf(l) = l′), is called a connected component of h.
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Formulae in SPSL2
(

(
f
↪→)f∈F, ∗,−∗

)
, semi-positive separation logic with two vari-

ables, are defined by the following rules:

v ::= x | y,
α ::= v = v | v f

↪→ v,
φ ::= α | ¬α | φ ∨ φ | φ ∧ φ | ∃v.φ | ∀v.φ | φ ∗ φ | φ−∗φ,

where x and y are two distinguished first-order variables, and f ∈ F.

We write SPSL2
(

(
f
↪→)f∈F

)
to denote the fragment of SPSL2

(
(

f
↪→)f∈F, ∗,−∗

)
with-

out separating connectives (remove the last two rules in the definition of φ). Note that

SPSL2
(

(
f
↪→)f∈F

)
can be seen as first-order logic with two variables and |F| function

symbols (where |F| denote the cardinality of F). Similarly, we write SPSL2
(

(
f
↪→)f∈F, ∗

)
to denote the fragment of SPSL2

(
(

f
↪→)f∈F, ∗,−∗

)
without separating implication (re-

move the last rule in the definition of φ). We use |φ| to denote the size of φ. In addition,
the set of subformulae of φ, denoted by Sub(φ), can be defined in a standard way.

An assignment is a map m : {x, y} → N. For an assignment m and l ∈ N, we use
m[v 7→ l] denote the assignment that is the same as m, except that it maps v to l (where
v = x, y). The satisfaction relation |= is parameterised by assignments and defined as
follows (clauses are omitted when these can be obtained by permuting the two variables
below):

– h |=m v1 = v2
def⇔ m(v1) = m(v2).

– h |=m ¬(v1 = v2)
def⇔ m(v1) 6= m(v2).

– h |=m v1
f
↪→ v2

def⇔ m(v1) ∈ dom(hf) and hf(m(v1)) = m(v2).

– h |=m ¬(v1
f
↪→ v2)

def⇔ m(v1) 6∈ dom(hf) or otherwise hf(m(v1)) 6= m(v2).
– h |=m φ1 ∧ φ2 def⇔ h |=m φ1 and h |=m φ2.
– h |=m φ1 ∨ φ2 def⇔ h |=m φ1 or h |=m φ2.
– h |=m φ1 ∗ φ2 def⇔ there exist h1, h2 such that h1 ⊥ h2, h = h1 ] h2, h1 |=m φ1

and h2 |=m φ2.
– h |=m φ1−∗φ2 def⇔ for all h′, if h ⊥ h′ and h′ |=m φ1 then h ] h′ |=m φ2.
– h |=m ∃v.φ def⇔ there is l ∈ N such that h |=m[v7→l] φ.

– h |=m ∀v.φ def⇔ for every l ∈ N, h |=m[v7→l] φ.

If φ is a sentence, we also omit m and we write h |= φ since m is irrelevant in this case.
A formula φ is satisfiable if there is a pair (h,m) such that h |=m φ. The satisfiability
problem asks whether φ is satisfiable, given a formula φ.

We are also interested another separating operator ¬−∗, called “septraction”, which
is the dual operator of −∗, that is, φ1

¬−∗ φ2 ≡ ¬(φ1−∗¬φ2). More specifically, h |=m

φ1
¬−∗ φ2 def⇔ there is h′ such that h ⊥ h′, h′ |=m φ1, and h ] h′ |=m φ2. Then we can

define the logic SPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
by replacing the rule φ−∗φ in the definition of
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SPSL2
(

(
f
↪→)f∈F, ∗,−∗

)
with φ ¬−∗ φ. Note that if the rule φ ¬−∗ φ was added to the def-

inition of SPSL2
(

(
f
↪→)f∈F, ∗,−∗

)
, then the resulting logic would become undecidable

([8]).

In this paper, we also consider an additional fragment whose definition is presented

below. Let ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
denote existential SPSL2

(
(

f
↪→)f∈F, ∗, ¬−∗

)
, which

is the extension of SPSL2
(

(
f
↪→)f∈F

)
with ∗ and ¬−∗ such that no occurrences of ∗ and

¬−∗ are in the scope of universal quantifiers. More precisely, ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
formulae ψ are defined by the following rules,

ψ ::= φ | ψ ∨ ψ | ψ ∧ ψ | ∃v. ψ | ψ ∗ ψ | ψ ¬−∗ ψ,
where φ is an SPSL2

(
(

f
↪→)f∈F

)
formula. Note that since SPSL2

(
(

f
↪→)f∈F

)
formulae

may contain universal quantifiers, we notice that universal quantifiers may still occur in

the ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
formulae.

Example 1. Let ψ def
= (¬ x = y) ∧ (ψ′1

¬−∗ ψ′2) ¬−∗ (ψ′3
¬−∗ ψ′4), where

– ψ′1
def
= x

f
↪→ y expresses that y is the f-successor of x,

– ψ′2
def
= (∃y. x f

↪→ y) ∧ (∃y. y f
↪→ x) expresses that the f-successor of x exists and

there is an f-predecessor of x,

– ψ′3
def
= ¬ x f

↪→ y∧∃y. (x f
↪→ y∧∀x. ¬y f

↪→ x) expresses that y is not the f-successor
of x, but the f-successor of x exists, and the f-successor of x has no f-successor, and

– ψ′4
def
= ((∃y. y f

↪→ x) ∗ (∃y. y f
↪→ x)) ∧ ∃y. (x

f
↪→ y ∧ ∃x. (y

f
↪→ x)) expresses that

there are two distinct f-predecessors of x and a path of length at least two starting
from x.

Thenψ is an ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
formula. It is not hard to see that h |=m ψ′1

¬−∗ ψ′2
iff m(x) has an f-predecessor in h, and h |=m ψ′3

¬−∗ ψ′4 iff m(x) has two f-predecessors
in h and there is a location l 6= m(y) such that the f-successor of l exists in h. Therefore,
h |=m ψ iff m(x) 6= m(y), there is an f-predecessor of m(x) in h, and there is a location
l 6= m(y) such that the f-successor of l exists in h. ut

For the presentation of the decision procedure for ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
in Sec-

tion 4, the extension of SPSL2
(

(
f
↪→)f∈F

)
with unary predicates is also relevant.
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Let P be a finite set of unary predicates. The extension of SPSL2
(

(
f
↪→)f∈F

)
with

unary predicates from P , denoted by SPSL2
(

(
f
↪→)f∈F,P

)
, is defined by the syntax

rules of SPSL2
(

(
f
↪→)f∈F

)
, plus two new rules φ ::= P (v) | ¬P (v), where P ∈ P .

The semantics of SPSL2
(

(
f
↪→)f∈F,P

)
formulae are defined as a relation (h, I) |=m

φ, where h,m are as before, and I : N → 2P is a function such that dom(I) = {l ∈
N | I(l) 6= ∅} is finite. The relation (h, I) |=m φ is a natural extension of the relation
h |=m φ defined above, where (h, I) |=m P (v)

def⇔ P ∈ I(m(v)), and (h, I) |=m

¬P (v)
def⇔ P /∈ I(m(v)). The function I can also be seen in another way: It assigns

each P ∈ P a finite subset of N, that is, the set {l ∈ N | P ∈ I(l)}. The pairs (h, I)
are called labeled heaps. Note that in a labeled heap (h, I), there may exist l /∈ loc(h)
such that I(l) 6= ∅, in other words, dom(I) may not necessarily be a subset of loc(h).

3 SPSL2
(
(

f
↪→)f∈F

)
and SPSL2

(
(

f
↪→)f∈F,P

)
This section is devoted to the proof of the following result.

Theorem 1. The satisfiability of SPSL2
(

(
f
↪→)f∈F

)
and SPSL2

(
(

f
↪→)f∈F,P

)
is NEXPTIME-

complete.

The rest of this section is devoted to the proof of Theorem 1. We consider the lower
bound first, then the upper bound.

3.1 Lower bound

We show the lower bound for the special case that F = {f} and SPSL2(
f
↪→), that is, the

satisfiability problem is NEXPTIME-hard even if there is only one field and there are no
unary predicates. Since F = {f}, in the following, for brevity, we will omit f in the proof
of the lower bound. The lower bound is obtained by a reduction from the exponential-
size tiling problem. The problem is defined as follows: Given a tuple (D,H, V, u),
where D = {d1, . . . , ds} is a finite set of tiles, H,V ⊆ D×D, u = u0 . . . un−1 ∈ Dn,
decide whether there is a tiling t : [2n]× [2n]→ D such that

– horizontal constraint: for all i, j ∈ [2n], if t(i, j) = d and t(i + 1, j) = d′, then
(d, d′) ∈ H ,

– vertical constraint: for all i, j ∈ [2n], if t(i, j) = d and t(i, j + 1) = d′, then
(d, d′) ∈ V ,

– initial condition: for every i ∈ [n], t(i, 0) = ui.

A tiling t is equivalent to the set Xt = {(i, j, t(i, j)) : i, j ∈ [2n]} and therefore we
explain below how to encode such a set by a heap. Given a heap h, we say that a location
l has a backward path of length exactly i ≥ 1 iff there are locations l0, . . . , li such that
li = l, l0 has no predecessor and for every j ∈ [1, i], h(lj−1) = lj . A triple (i, j, d) in
Xt is encoded by a connected component C satisfying the following constraints.
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– There is a location l in C without successor and with at least one predecessor, which
is identified by the following formula tile(x)

def
= (∃y. (y ↪→ x)) ∧ ∀y. ¬(x ↪→ y).

– For every k ∈ [1, s], d = dk iff l has a backward path of length exactly 2n+ k. It is
not hard to construct an SPSL2(↪→) formula dk to describe this property.

– For every k ∈ [1, n], the kth bit in the binary representation of i (here the left-
most bit is the first bit) is equal to 1 iff l has a backward path of length exactly k.
Similarly, this property can be described by an SPSL2(↪→) formula hk.

– For every k ∈ [1, n], the kth bit in the binary representation of j is equal to 1
iff l has a backward path of length exactly n + k. Similarly, this property can be
described by an SPSL2(↪→) formula vk.
Then an SPSL2(↪→) formula φ can be constructed so that φ is satisfiable iff the tiling

problem instance has a solution.
In the following, we first define the formulae in SPSL2(↪→) with a unique free vari-

able, say h1(x), . . . , hn(x), v1(x), . . . , vn(x), d1(x), . . . , ds(x), then φ. By swapping x

and y, we also get the formulae h1(y), . . . , hn(y), v1(y), . . . , vn(y), d1(y), . . . , ds(y).
Let us start by defining some auxiliary formulae.

1. ψ1(x)
def
= ∃ y (y ↪→ x∧∀ x (¬x ↪→ y)). The formula ψ1(x) simply states that x has

a predecessor with no predecessors (but x may have other arbitrary predecessors).
2. ψi(x)

def
= ∃ y (y ↪→ x ∧ ∧ψi−1(y)) for every i ≥ 2. Assuming that x is interpreted

by l, the formula ψi(x) simply states that l has a backward path of length exactly i.

Now let us define the formulae hi(x), vi(x) and di(x).

– For every i ∈ [1, n], hi(x)
def
= ψi(x).

– For every i ∈ [1, n], vi(x)
def
= ψn+i(x).

– For every i ∈ [1, s], di(x)
def
= ψ2n+i(x).

The three types of formulae are therefore only distinguished by path lengths.
Let φ be defined as the conjunction of the following formulae.

– Two locations encoding a position in the arena satisfy exactly the same formulae
among h1(x), . . . , hn(x), v1(x), . . . , vn(x) are necessarily identical:

φ1
def
= ∀ x.∀y.

([
tile(x) ∧ tile(y) ∧∧
i∈[1,n]

((hi(x)↔ hi(y)) ∧ (vi(x)↔ vi(y)))

]
→ x = y

)
.

– There is a location that corresponds to the bottom left position:

φ2
def
= ∃ x.

tile(x) ∧
∧

i∈[1,n]
(¬hi(x) ∧ ¬vi(x))

 .

– Each location encoding a position in the arena satisfies a unique tile:

φ3
def
= ∀ x.

tile(x)→
∨

i∈[1,s]

di(x) ∧
∧

j∈[1,s]\{i}
¬dj(x)

 .
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– Horizontal constraint for two consecutive positions within the same row:

φ4
def
= ∀ x.



[
tile(x) ∧ ∧

i∈[1,n]

(
¬hi(x) ∧ ∧

i<j≤n
hj(x)

)]
→

∃ y.


tile(y) ∧ ∨

(dl,dm)∈H
(dl(x) ∧ dm(y)) ∧∧

j∈[1,n]
(vj(x)↔ vj(y)) ∧ ∧

1≤j<i
(hj(x)↔ hj(y)) ∧

hi(y) ∧ ∧
i<j≤n

¬hj(y)




.

– The end of a row is immediately followed by the beginning of the next row, if any:

φ5
def
= ∀ x.

∧
i∈[1,n]



[
tile(x) ∧

( ∧
j∈[1,n]

hj(x)

)
∧ ¬vi(x) ∧ ∧

i<j≤n
vj(x)

]
→

∃ y.


tile(y) ∧

( ∧
j∈[1,n]

¬hj(y)

)
∧( ∧

1≤j<i
vj(x)↔ vj(y)

)
∧ vi(y) ∧ ∧

i<j≤n
¬vj(y)




.

Satisfaction of the formulae φ2, φ3, φ4 and φ5 guarantees that all the positions in the
arena are encoded. Unicity of such an encoding is a consequence of the satisfaction
of φ1.

– Vertical constraint between two consecutive vertical positions:

φ6
def
= ∀ x.

∧
i∈[1,n]



[
tile(x) ∧ (¬vi(x)) ∧ ∧

i<j≤n
vj(x)

]
→

∃ y.


tile(y) ∧ ∨

(dl,dm)∈V
(dl(x) ∧ dm(y)) ∧∧

j∈[1,n]
(hj(x)↔ hj(y)) ∧ ∧

1≤j<i
(vj(x)↔ vj(y)) ∧

vi(y) ∧ ∧
i<j≤n

(¬vj(y))




.

– Suppose u0 . . . un−1 = dj0 . . . djn−1 , then the initial condition is specified as fol-
lows:

φ7
def
=

∧
i∈[0,n−1]

∃ x.


tile(x) ∧ ∧

j′∈[1,n]
(¬vj′(x)) ∧ dji(x) ∧∧

j′∈[1,n], j′-th bit of i is 1

hj′(x) ∧∧
j′∈[1,n], j′-th bit of i is 0

¬hj′(x)

 .

Note that for readability, we choose to write the formulae φ1, . . . , φ7 above not in nega-
tion normal form as required in the definition of the logic SPSL2(↪→) (cf. Section 2).
Nevertheless, since the logic SPSL2(↪→) is closed under negations, those formulae can
be easily rewritten into the required form.
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Lemma 1. The formula φ is satisfiable iff the tiling problem instance has a solution.
Proof. First, suppose the tiling problem instance has a solution t. Then we construct a
heap h from t such that

– t comprises 2n × 2n connected components, one for each (i, j) ∈ [2n] × [2n]
(denoted by Ci,j),

– each Ci,j is a tree, which comprises the following backward paths from the root l,
• for each k ∈ [1, n], l has a backward path of length exactly k (resp. n + k) iff

the kth bit of the binary representation of i (resp. j) is equal to 1,
• let t(i, j) = dk, then l has a backward path of length exactly 2n+ k.

Since t satisfies the horizontal and vertical constraint, as well as the initial condition,
h |= φ4 ∧ φ5 ∧ φ6 ∧ φ7. Moreover, from the construction of h, we know that h |=
φ1 ∧ φ2 ∧ φ3. Therefore, we conclude that h |= φ.

Let us establish the other direction. Suppose that φ is satisfiable. Then there is a
heap h satisfying φ. From the fact that h |= φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ5, we know that for
each (i, j) ∈ [2n] × [2n], there is exactly one connected component Ci,j such that for
each k ∈ [1, n], the root of Ci,j has a backward path of length exactly k (resp. n + k)
iff the kth bit of the binary representation of i (resp. j) is equal to 1. We construct a
tiling t : [2n] × [2n] → D as follows: For each (i, j) ∈ [2n] × [2n], suppose k ∈ [1, s]
satisfies that the root of Ci,j has a backward path of length exactly 2n + k (such a k
exists since h |= φ3), let t(i, j) = dk. Because h |= φ4 ∧ φ6 ∧ φ7, we know that t
satisfies the horizontal and vertical constraint as well as the initial condition. Therefore,
t is a solution of the tiling problem instance. ut

3.2 Upper bound

The upper bound is obtained by a linear time reduction to the finite satisfiability problem
of first-order logic with two-variables and counting quantifiers (denoted by C2), which
can be decided in NEXPTIME [18, 19]. Before presenting the reduction, we first recall
the definition of C2. A purely relational vocabulary V comprises relational symbols, but
no function symbols, nor constants. The logic C2 over a purely relational vocabulary V
is defined by the following rules,

v ::= x | y,
ϕ ::= v = v | R(v̄) | ¬ϕ | ϕ ∨ ϕ | ∃�Cv. ϕ,

whereR ∈ V is of arity k, v̄ ∈ {x, y}k,� ∈ {<,>,≤,≥,=}, and C ∈ N is a constant.
We assume that all the constants in C2 are encoded in binary. For a formula ϕ ∈ C2, let
|ϕ| denote the number of symbols occurring in ϕ. The formulae in C2 are interpreted
on a triple (A, I,m), where A is a domain, I is called an interpretation function, which
assigns each k-ary relation symbol R ∈ V a subset of Ak, and m is an assignment that
maps x and y toA. The semantics of C2 formulae are defined by a relation (A, I) |=m ϕ.
The semantics of the atomic formulae, the Boolean combination, the quantifiers are
standard. For the C2 formulae ϕ = ∃=Cx. ϕ1, (A, I) |=m ϕ iff there are exactly
C elements of A, say a1, . . . , aC , such that for each i ∈ [C], (A, I) |=m[x7→ai] ϕ1.
The semantics of the formulae ∃=Cy. ϕ1, ∃>Cx. ϕ1, ∃<Cx. ϕ1, etc. can be defined
similarly. Let ϕ be a C2 formula. If (A, I) |=m ϕ, then (A, I,m) is called a model of
ϕ. Then ϕ is satisfiable if ϕ has a model, and ϕ is finitely satisfiable if ϕ has a model
(A, I,m) such that A is finite.
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Lemma 2 ([18, 19]). The satisfiability and finite satisfiability problem of C2 are NEXPTIME-
complete.

We are ready to present the reduction.
For each f ∈ F, introduce a fresh binary relation symbol Rf. Let V = P ∪ {Rf |

f ∈ F}. In the following, for each formula φ in SPSL2
(

(
f
↪→)f∈F,P

)
, we construct a C2

formula trs(φ) = φfun∧∃x.∃y. (¬x = y∧φrel(x)∧φrel(y))∧φ′ over the vocabulary
V , where

– φfun =
∧
f∈F
∀x.∃≤1y. Rf(x, y) expresses that each relation symbol Rf is the image

of a partial function,

– φrel(v) =

( ∧
P∈P
¬P (v)

)
∧ ∀v′. ∧

f∈F
(¬Rf(v, v

′) ∧ ¬Rf(v
′, v)), where v = x and

v′ = y, or vice versa, expresses that there is an element represented by v which
does not occur in any tuple from the union of the relations P ∈ P and Rf for f ∈ F,

– φ′ is obtained from φ by replacing each atomic formula of the form v1
f
↪→ v2 with

Rf(v1, v2).

The formula ∃x.∃y. (¬x = y ∧ φrel(x) ∧ φrel(y)) expresses that there are two distinct
elements satisfying the formula φrel.

The correctness of the reduction is guaranteed by the following result.

Proposition 1. For each SPSL2
(

(
f
↪→)f∈F,P

)
formula φ, φ is satisfiable iff trs(φ) is

finitely satisfiable.

Proof. Suppose that φ is an SPSL2
(

(
f
↪→)f∈F,P

)
formula.

“Only if” direction: Suppose that φ is satisfiable. Then there are a labeled heap (h, I)
and m such that (h, I) |=m φ.

We construct a finite set A = loc(h) ∪ (
⋃
P∈P I(P )) ∪ {l1, l2}, where

– if m(x),m(y) 6∈ loc(h)∪(
⋃
P∈P I(P )) such that m(x) 6= m(y), then let l1 = m(x)

and l2 = m(y),
– if m(x),m(y) 6∈ loc(h)∪(

⋃
P∈P I(P )) such that m(x) = m(y), then let l1 = m(x)

and l2 be a location in N \
(
loc(h) ∪ (

⋃
P∈P I(P )) ∪ {m(x)}

)
,

– if m(v) 6∈ loc(h) ∪ (
⋃
P∈P I(P )) and m(v′) ∈ loc(h) ∪ (

⋃
P∈P I(P )), then let

l1 = m(v) and l2 be a location in N \
(
loc(h) ∪ (

⋃
P∈P I(P )) ∪ {m(v)}

)
, where

v = x and v′ = y, or vice versa,
– if m(x) ∈ loc(h)∪ (

⋃
P∈P I(P )) and m(y) ∈ loc(h)∪ (

⋃
P∈P I(P )), then let l1

and l2 be two distinct locations in N \
(
loc(h) ∪ (

⋃
P∈P I(P ))

)
.

Consider the triple (A, I,m), where I(P ) = I(P ) for each P ∈ P , and I(Rf) =
{(l, l′) ∈ loc(h) × loc(h) | hf(l) = l′}. We claim that (A, I) |=m trs(φ). Since
evidently (A, I) |=m ψfun ∧∃x.∃y. (¬x = y∧φrel(x)∧φrel(y)), is sufficient to show
that (A, I) |=m φ′. In the following, we show (A, I) |=m φ′ by proving that for each
assignment m′ such that ran(m′) ⊆ A and each subformula φ1 of φ, (h, I) |=m′ φ1
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iff (A, I) |=m′ φ
′
1, where φ′1 is obtained from φ1 by replacing each atomic formula of

the form v1
f
↪→ v2 with Rf(v1, v2). We show this fact by induction on the syntax of

formulae.

– The cases φ1
def
= v1 = v2 and φ1

def
= ¬v1 = v2 are trivial.

– Case φ1
def
= v1

f
↪→ v2: Since ran(m′) ⊆ A, (h, I) |=m′ v1

f
↪→ v2 iff hf(m′(v1)) =

m′(v2) iff (m′(v1),m′(v2)) ∈ I(Rf). Similarly for φ1
def
= ¬v1

f
↪→ v2.

– Case φ1
def
= P (v): (h, I) |=m′ P (v) iff m′(v) ∈ I(P ) iff m′(v) ∈ I(P ) iff

(A, I) |=m′ P (v). Similarly for φ1
def
= ¬P (v).

– Case φ1
def
= φ2 ∧ φ3 or φ1

def
= φ2 ∨ φ3: The arguments are standard.

– Case φ1
def
= ∃x. φ2: Our goal is to show (h, I) |=m′ φ1 iff (A, I) |=m′ φ

′
1.

Since the “if” direction is easy, we focus on the “only if” direction below. Sup-
pose (h, I) |=m′ ∃x. φ2. Then there is l′ ∈ N such that (h, I) |=m′[x7→l′] φ2.
• If l′ ∈ A, then according to the induction hypothesis, (h, I) |=m′[x7→l′] φ2 iff

(A, I) |=m′[x7→l′] φ
′
2.

• If l′ 6∈ A, then l′ 6= m′(y) since m′(y) ∈ A. Evidently, l1 6= m′(y) or l2 6=
m′(y). Without loss of generality, we assume that l1 6= m′(y). Because neither
l1 nor l′ belongs to loc(h)∪ ⋃

P∈P
I(P ), we deduce that (h, I) |=m′[x7→l′] φ2 iff

(h, I) |=m′[x7→l1] φ2. From the induction hypothesis, (h, I) |=m′[x7→l1] φ2 iff
(A, I) |=m′[x7→l1] φ

′
2. Therefore, (A, I) |=m′[x7→l1] φ

′
2 and (A, I) |=m′ ∃x. φ′2.

– Case φ1
def
= ∃y. φ2: Similarly to the previous case.

– Case φ1
def
= ∀x. φ2: Suppose that (h, I) |=m′ ∀x. φ2. Then for each l′ ∈ N,

(h, I) |=m′[x7→l′] φ2. For each l′ ∈ A, according to the induction hypothesis,
(h, I) |=m′[x7→l′] φ2 iff (A, I) |=m′[x7→l′] φ

′
2. Therefore, for each l′ ∈ A, we

have (A, I) |=m′[x7→l′] φ
′
2. We conclude that (A, I) |=m′ ∀x. φ′2 = φ′1. On

the other hand, suppose that (A, I) |=m′ φ
′
1 = ∀x. φ′2. Then for each l′ ∈ A,

(A, I) |=m′[x7→l′] φ
′
2. By the induction hypothesis, for each l′ ∈ A, (h, I) |=m′[x7→l′]

φ2 iff (A, I) |=m′[x7→l′] φ
′
2. Therefore, for each l′ ∈ A, (h, I) |=m′[x7→l′] φ2.

Now suppose l′ ∈ N \ A. Without loss of generality, suppose that l1 6= m′(y).
Because neither l1 nor l′ belongs to loc(h) ∪ ⋃

P∈P
I(P ), (h, I) |=m′[x7→l′] φ2 iff

(h, I) |=m′[x7→l1] φ2. From this, we deduce that for each l′ ∈ N\A, (h, I) |=m′[x7→l′]

φ2. Thus for each l′ ∈ N, (h, I) |=m′[x7→l′] φ2, that is, (h, I) |=m′[x7→l′] ∀x. φ2 =
φ1.

– Case φ1
def
= ∀y. φ2: Similarly to the previous case.

“If” direction: Suppose that trs(φ) is finitely satisfiable. Then there is a model (A, I,m)
of trs(φ) such that A is finite. Without loss of generality, we assume that A is a subset
of N.

We construct (h, I) such that hf(l) = l′ iff (l, l′) ∈ I(Rf) for each f ∈ F, and
l ∈ I(P ) iff l ∈ I(P ) for each P ∈ P . Since (A, I) |=m ψfun ∧ ∃x.∃y. (¬x =
y ∧ φrel(x) ∧ φrel(y)), we know that each hf for f ∈ F is a partial function, and

there are two distinct locations l1, l2 ∈ A \
(
loc(h) ∪ ⋃

P∈P
I(P )

)
. Similarly to the
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arguments in the “Only if” direction, we can show that for each assignment m′ such
that ran(m′) ⊆ A and each subformula φ1 of φ, (h, I) |=m′ φ1 iff (A, I) |=m′ φ

′
1.

From this, we deduce that (h, I) |=m φ iff (A, I) |=m φ′. We then conclude that
(h, I) |=m φ. ut

4 ESPSL2
(
(

f
↪→)f∈F, ∗,

¬−∗
)

In this section, we present the main result of this paper.

Theorem 2. The satisfiability problem of ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
is NEXPTIME-complete.

The rest of this section is devoted to the proof of Theorem 2. The basic idea of

the proof is to reduce in polynomial time the satisfiability of ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
formulae to that of SPSL2

(
(

f
↪→)f∈F,P ′

)
formulae (for some P ′), which is NEXPTIME-

complete (cf. Theorem 1). The main idea of the reduction is as follows: For a heap h, an

assignment m, and an ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
formula ψ such that h |=m ψ, in order

to witness the fact h |=m ψ, some other heaps should be added to h. Nevertheless, these
additional heaps may conflict with each other. For instance, in Example 1, two heaps
corresponding to ψ′1 and ψ′3 should be added, but these two heaps conflict with each
other, since ψ′1 says that y is the f-successor of x, while ψ′3 says that the f-successor of
x exists but is different from y. In the reduction from the satisfiability of ψ to that of

a SPSL2
(

(
f
↪→)f∈F,P ′

)
formula below, the fields in the subformulae of ψ conflicting

with each other are renamed, so that after the renaming, these subformulae refer to dif-
ferent fields. In addition, to guarantee the correctness of the reduction, some necessary
constraints should be added to these fields as well as the unary predicates from P ′.

We introduce a concept of syntax trees which will be used in the reduction. Let ψ be

an ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
formula. A syntax tree Tψ = (T,E,L) can be constructed

inductively as follows, where T is a set of nodes, E is the child-parent relation, and
L : T → Sub(ψ) is a labeling function.

– Case ψ def
= φ, where φ is a SPSL2

(
(

f
↪→)f∈F

)
formula: Then Tψ = ({t}, ∅, L) such

that L(t) = ψ,
– Case ψ def

= ψ1 � ψ2 (where � = ∨,∧, ∗, ¬−∗): Suppose two syntax trees Tψ1 =
(T1, E1, L1) and Tψ2

= (T2, E2, L2) have been constructed for ψ1 and ψ2 re-
spectively. Without loss of generality, suppose T1 ∩ T2 = ∅ and the roots of
Tψ1

and Tψ2
are t1 and t2 respectively. Then Tψ = (T1 ∪ T2 ∪ {t}, E1 ∪ E2 ∪

{(t1, l, t), (t2, r, t)}, L1 ∪ L2 ∪ {t 7→ ψ}), where t is a new node not in T1 or T2,
and the label sl, r denote the left and right child respectively.

– Case ψ def
= ∃v. ψ1: Suppose a syntax tree Tψ1

= (T1, E1, L1) has been constructed
for ψ1. Then Tψ = (T1 ∪ {t}, E1 ∪ {(t1, l, t)}, L1 ∪ {t 7→ ψ}), where t is a new
node not in T1.
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Let ψ be an ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
formula and Tψ = (T,E,L). For each t ∈ T ,

we introduce a fresh unary predicate P ′t . In addition, for each node t ∈ T and f ∈ F,
introduce a fresh field f′t. Let P ′ be the set of freshly introduced unary predicates,
and F′ be the set of freshly introduced fields. Our goal is to use Tψ to construct an

SPSL2
(

(
f′t
↪→)f′t∈F′ ,P ′

)
formula trs(ψ) so that ψ is satisfiable iff trs(ψ) is satisfiable.

Toward this purpose, for each node t ∈ T , we construct an SPSL2
(

(
f
↪→)f∈F,P ′

)
for-

mula φt. Then let trs(ψ)
def
=
∧
t∈T

(
∀x. P ′t (x)↔ ∨

f∈F
∃y. x f′t

↪→ y

)
∧ φt0 , where t0 is the

root of Tψ . The formulae φt for t ∈ T are computed inductively as follows.

– If L(t) = φ for some SPSL2
(

(
f
↪→)f∈F

)
formula φ, then φt

def
= φ′, where φ′ is

obtained from φ by replacing each occurrence of f ∈ F with f′t.
– If L(t) = ψ1 � ψ2 (where � ∈ {∨,∧}) and t1, t2 are two children of t such that
L(t1) = ψ1 and L(t2) = ψ2, suppose φt1 and φt2 have been computed from t1 and
t2 respectively, then

φt
def
= P ′t = P ′t1 = P ′t2 ∧

∧
f∈F

f′t = f′t1 = f′t2 ∧ (φt1 � φt2),

where P ′t = P ′t1 = P ′t2 is an abbreviation of ∀x. (P ′t (x) ↔ P ′t1(x)) ∧ (P ′t (x) ↔

P ′t2(x)) and f′t = f′t1 = f′t2 is an abbreviation of ∀x.∀y.
(
x

f′t
↪→ y↔ x

f′t1
↪→ y

)
∧(

x
f′t
↪→ y↔ x

f′t2
↪→ y

)
.

– If L(t) = ∃v. ψ1 and t1 is the only child of t, suppose φt1 has been computed,
then φt

def
= P ′t = P ′t1 ∧

∧
f∈F

f′t = f′t1 ∧ ∃v. φt1 , where P ′t = P ′t1 and f′t = f′t1 are

abbreviations of formulae defined similarly to the previous case.
– If L(t) = ψ1 ∗ ψ2 and t1, t2 are two children of t such that L(t1) = ψ1 and
L(t2) = ψ2, suppose φt1 and φt2 have been computed, then

φt
def
= P ′t = P ′t1 ] P ′t2 ∧

∧
f∈F

f′t = f′t1 ] f′t2 ∧ φt1 ∧ φt2 ,

where P ′t = P ′t1 ] P ′t2 is an abbreviation of ∀x. (P ′t (x) ↔ (P ′t1(x) ∨ P ′t2(x))) ∧
∀x. (¬P ′t1(x)∨¬P ′t2(x)) and f′t = f′t1 ] f′t2 is an abbreviation of ∀x. ∀y. x f′t

↪→ y↔(
x

f′t1
↪→ y ∨ x

f′t2
↪→ y

)
∧ ∀x. ∀y.

(
¬x

f′t1
↪→ y ∨ ¬x

f′t2
↪→ y

)
.

– If L(t) = ψ1
¬−∗ ψ2 and t1, t2 are two children of t such that L(t1) = ψ1 and

L(t2) = ψ2, suppose φt1 and φt2 have been computed, then

φt
def
= P ′t2 = P ′t ] P ′t1 ∧

∧
f∈F

f′t2 = f′t ] f′t1 ∧ φt1 ∧ φt2 ,
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ψ

¬x = y

ψ′
3

¬−∗ ψ′
4ψ′

1
¬−∗ ψ′

2

ψ′
1 ψ′

2
ψ′
3 ψ′

4

(ψ′
1

¬−∗ ψ′
2)

¬−∗ (ψ′
3

¬−∗ ψ′
4)

∃y. y f
↪→ x ∃y. y f

↪→ x

∃y. (x f
↪→ y ∧ ∃x. y f

↪→ x)(∃y. y f
↪→ x) ∗ (∃y. y f

↪→ x)

t

t1
t2

t3 t4

t5 t6 t7
t8

t9 t10

t11 t12

Fig. 1. The syntax tree Tψ: An example

where P ′t = P ′t1 ] P ′t2 and f′t2 = f′t ] f′t1 are abbreviations of the formulae that can
be defined similarly to the previous case.

Example 2. Let ψ def
= (¬ x = y) ∧ (ψ′1

¬−∗ ψ′2) ¬−∗ (ψ′3
¬−∗ ψ′4) be the formula in

Example 1. Then Tψ is illustrated in Fig. 1. By a bottom-up computation, we get φt5
def
=

x
f′t5
↪→ y,

φt3
def
= P ′t6 = P ′t5 ] P ′t3 ∧ f′t6 = f′t5 ] f′t3 ∧ x

f′t5
↪→ y ∧ ∧∃y. x

f′t6
↪→ y ∧ ∃y. y

f′t6
↪→ x,

φt9
def
= P ′t9 = P ′t11 ] P ′t12 ∧ f′t9 = f′t11 ] f′t12 ∧ ∃y. y

f′t11
↪→ x ∧ ∃y. y

f′t12
↪→ x,

and φt8
def
= P ′t8 = P ′t9 = P ′t10 ∧

∧
f∈F

f′t8 = f′t9 = f′t10 ∧ φt9 ∧ φt10 , where φt10 is the

formula corresponding to t10, and φt7
def
= ¬x

f′t7
↪→ y ∧ ∃y.

(
x

f′t7
↪→ y ∧ ∀x. ¬y

f′t7
↪→ x

)
,

in addition, φt4 can be constructed from φt7 and φt8 , similarly to the construction of
φt3 , and φt2

def
= P ′t4 = P ′t3 ] P ′t2 ∧ f′t4 = f′t3 ] f′t2 ∧ φt3 ∧ φt4 . The formula φt3

contains a conjunct φt5 = x
f′t5
↪→ y, while φt4 contains a conjunct φt7 = ¬x

f′t7
↪→ y ∧

∃y.
(
x

f′t7
↪→ y ∧ ∀x. ¬y

f′t7
↪→ x

)
. Thus the conflict between ψ′1 and ψ′3 is resolved. ut

Proposition 2. For each ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
formula ψ, ψ is satisfiable iff trs(ψ)

is satisfiable.

Proof. Suppose ψ is an ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
formula.

“Only if” direction: Suppose that ψ is satisfiable, that is, there is a pair (h,m) such that
h |=m ψ.

Let Leaves(Tψ) denote the set of leaves of Tψ . Then {L(t) | t ∈ Leaves(Tψ)}
is a subset of SPSL2

(
(

f
↪→)f∈F

)
formulae. Since h |=m ψ, we know that there is a
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subset of Leaves(Tψ), say T ′, such that each t′ ∈ T ′ can be assigned a heap ht′ with a
nonempty-domain, in order to witness the fact h |=m ψ. Then we construct a heap h′ to
satisfy trs(ψ) as follows:
1. For each t′ ∈ T ′, let (h′t′ , I

′
t′) be the labeled heap such that for each f ∈ F,

(h′t′)f′t′ (l) = l′ iff (ht′)f(l) = l′, in addition, I′t′(P
′
t′) = dom(h′t′) and I′t′(P

′) = ∅
for each other unary predicate P ′ ∈ P ′. Moreover, for each leaf t′ 6∈ T ′, let
(ht′ , I

′
t′) be the labeled heap such that ht′ has an empty domain and I′t′(P

′) = ∅
for each P ′ ∈ P ′.

2. By induction on the structure of Tψ , we can construct bottom-up a labeled heap
(h′t, I

′
t) for each node t ∈ T . In the construction, we need trace the relationship

between unary predicates in P ′ and the relationship between the fields in F′ which
are enforced by the nodes in Tψ . For instance, if t is a node such that L(t) =
ψ1 ∗ ψ2 and t has two children t1 and t2, suppose (h′t1 , I

′
t1) and (h′t2 , I

′
t2) have

been computed, then h′t is computed as the domain-disjoint union of h′t1 and h′t2 ,
in addition, for each f ∈ F and each pair of locations (l, l′), (h′t)f′t(l) = l′ iff
(h′t1)f′t1

(l) = l′ or (h′t2)f′t2
(l) = l′ (here (h′t)f′t is well-defined since (h′t1)f′t1

and
(h′t2)f′t2

are domain-disjoint). Moreover, I′t(P
′
t ) = I′t1(P ′t1) ∪ I′t2(P ′t2), and for

each other unary predicate P ′ ∈ P ′, I′t(P ′) = I′t1(P ′) ∪ I′t2(P ′).

“If” direction: Suppose that trs(ψ) is satisfiable. Then there is a labeled heap (h, I)
and an assignment m such that (h, I) |=m trs(ψ). The by induction on the structure
of Tψ , we can compute bottom-up a heap h′ such that h′ |=m ψ. The construction is
essentially just a renaming of the fields. ut

5 Conclusion
In this paper, we proposed SPSL2, semi-positive first-order logic with two variables,
and investigated the complexity of the satisfiability problem of several fragments of

SPSL2. Our main result is that the satisfiability of ESPSL2
(

(
f
↪→)f∈F, ∗, ¬−∗

)
, the frag-

ment of SPSL2 where separating conjunction ∗ and septraction ¬−∗ (the dual operator of
magic wand−∗) may occur, but none of them occurs in the scope of universal quantifiers,
is NEXPTIME-complete. The proof of this result relies on the NEXPTIME-completeness

result of SPSL2
(

(
f
↪→)f∈F,P

)
, the fragment of SPSL2 where separating operators do

not occur, but unary predicates are available. A byproduct of this work is that the finite
satisfiability of first order logic with two variables and one function symbol (without
unary predicates) is NEXPTIME-complete. Although some interesting questions, e.g.

the decidability of SPSL2
(

(
f
↪→)f∈F, ∗,−∗

)
, are left open in this paper, we believe that

this work can be seen as a substantial step towards solving them in the future.
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My great thanks go to Stéphane Demri for the numerous discussions with him when I
did this work. At last, I would like to thank the reviewers for their valuable comments.



16 Zhilin Wu

References

1. T. Antonopoulos, N. Gorogiannis, C. Haase, M. I. Kanovich, and J. Ouaknine. Foundations
for decision problems in separation logic with general inductive predicates. In FoSSaCS,
pages 411–425, 2014.

2. S. Benaim, M. Benedikt, W. Charatonik, E. Kieronski, R. Lenhardt, F. Mazowiecki, and
J. Worrell. Complexity of two-variable logic on finite trees. In ICALP, pages 74–88, 2013.
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