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Abstract. In this paper, we propose compositional separation logic with
tree predicates (CSLTP), where properties such as sortedness and height-
balancedness of complex data structures (for instance, AVL trees and
red-black trees) can be fully specified. We show that the satisfiability
problem of CSLTP is decidable. The main technical ingredient of the
decision procedure is to compute the least fixed point of a class of in-
ductively defined predicates that are non-linear and involve dense-order
and difference-bound constraints, which are of independent interests.

1 Introduction

Program verification requires reasoning about complex, size-unbounded data
structures that may carry data ranging over an infinite domain. Examples in-
clude multi-linked lists, nested lists, trees, etc. Programs manipulating these data
structures may modify their shape as well as the data attached to their elements.
Separation Logic (SL) is a well-established approach for deductive verification of
programs that manipulate dynamic data structures [22,30]. Typically, SL is de-
fined in combination with inductive definitions (SLID in short), which supports
user-defined specifications of the data structures manipulated by a program.

Satisfiability is arguably one of the most fundamental questions for logic, and
has certainly been a main focus in the study of SL. The satisfiability of SLID with
data constraints is evidently undecidable in their most general forms. However,
it is important—both in theory and practice—to identify subclasses which are
sufficiently expressive while still being decidable. Within this context, our pre-
vious work [14] gave complete decision procedures for both the satisfiability and
the entailment problem of linearly compositional SLID. This fragment is able
to specify typical shape properties and data/size constraints of data structures,
but is restricted to linear ones such as singly and doubly linked lists.
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ERA project SUCCESS, NSFC grant (61662035). He is also affiliated with Centre for
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An obvious question left over is to handle non-linear structures such as trees.
Notice that most tree-shaped data structures in programming require data/size
constraints of one or another. They together, however, impose great challenges.
For satisfiability, the main difficulty roots at the computation of the least fixed
point of the inductively defined predicates derived from SL formulae. These
predicates are non-linear, meaning that the defined predicate may occur more
than once in the body of the inductive rule. They may also involve data/size
constraints to capture, for instance, sortedness and height-balancedness of trees.

Contributions. We define CSLTP, a compositional fragment of SL with tree pred-
icates, where typical tree structures involving data and size constraints (e.g.,
binary search trees, AVL trees, and red-black trees) can be expressed. The ba-
sic rationale of CSLTP is to focus on the compositional predicates introduced in
[12,13] while restricting to dense-order data constraints and difference-bound size
constraints. We remark that compositionality is vital for (deductive) program
verification without which the entailment checking, an indispensable procedure
for checking assertions in the style of Hoare logic, would otherwise be exceedingly
difficult. (The price is that, instead of trees, one has to consider trees with one
hole to guarantee the compositionality; cf. Section 3.) Our main contribution is
summarised as follows:

(i) We provide algorithms to compute the least fixed point of the inductively
defined predicates involving data/size constraints derived from CSLTP formulae
(see Theorem 2). To this end, we employ a wide range of techniques from closed-
form evaluation of Datalog programs with integer gap-order constraints [28],
computation of reachability sets of alternating one-counter systems [4], and the
decision procedure for the reachability problem of one-counter automata [15]. In
addition, we show that computation of the least fixed point of the inductively
defined predicates beyond CSLTP may be difficult in general. More specifically,
we prove that, for the predicate corresponding to AVL trees with one hole where
all parameters are of the natural number type, its least fixed point is inexpressible
in Presburger arithmetic (see Theorem 1).

(ii) We propose a complete decision procedure for the satisfiability problem of
CSLTP. Namely, from each CSLTP formula ϕ we define Abspϕq as an abstrac-
tion of ϕ such that ϕ and Abspϕq are equisatisfiable. Roughly speaking, Abspϕq
introduces Boolean variables to encode the spatial part of ϕ and encompasses
computed least fixed points from (i) to address the data and size constraints. We
then can resort to the state-of-the-art SMT solvers (e.g., Z3 [34]). We remark
that most decision procedures for satisfiability of SL with inductive definitions
and data/size constraints are incomplete (see the related work for more details).

Satisfiability checking serves as a cornerstone towards a complete procedure
for entailment checking, which requires a separate paper to solve. It can also be
widely used in, e.g., consistency checking of specifications written in SL, symbolic
execution of programs manipulating dynamic data structures (see [2,20]), etc.

Related work. For SLID without data constraints, [6] provides a complete deci-
sion procedure, setting the satisfiability problem (almost) completely. We also
mention some earlier results [2,17] which focus on the symbolic heap fragments
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for list segments and binary trees, providing complete proof systems. [12] pro-
poses a compositional fragment of SLID equipped with an incomplete decision
procedure. In addition, [18,19] provide complete decision procedures for the en-
tailment problem of SLID (without data/size constraints) by reducing to the
language inclusion problem of tree automata.

Towards adding data/size constraints, [29] presents a complete decision pro-
cedure for the quantifier-free fragment of SL (without inductive definitions) inter-
preted over heaplets with data elements ranging over a parametric multi-sorted
(possibly infinite) domain. For SLID with data constraints, [8] provides an in-
complete decision procedure based on invariants of inductive definitions. These
invariants are essentially the fixed points of the inductively defined predicates
involving data/size constraints, and are supposed to be provided by the users.
[3] specifies the data/size constraints by universal quantifiers over the index vari-
ables (and thus is able to express set/multiset constraints), but restricts to the
singly linked lists only. [27,23] reduces the entailment problem of SLID with
data/size constraints to the satisfiability problem in the theory of uninterpreted
functions, though the procedure therein is incomplete and not fully automatic
since it relies on the users to provide lemmas. [24,25,26] encode SLID into a
fragment of first-order logic with reachability predicates (whose satisfiability is
decidable in NP). However, this fragment cannot accommodate the size or mul-
tiset constraints. More recently, [20] considers the data constraints expressible in
Presburger arithmetic. The decision procedure therein is based on cyclic proofs
[5,9] and is incomplete in general and is complete for a syntactic fragment defined
with a specialized well-founded notion, which is incomparable to CSLTP.

With respect to data/size constraints, [33] is closest to our work, where the
data/size constraints are expressed in Presburger arithmetic, and a complete
decision procedure is given for the satisfiability problem. CSLTP differs from the
fragment in [33] in both the shape properties and the data/size constraints: 1)
For the shape properties, CSLTP addresses trees with one hole (which is crucial
for the compositionality), while [33] does not. 2) For the data/size constraints,
the class of data constraints in [33] is incomparable to that of CSLTP: On the
one hand, CSLTP allows only one integer parameter, while [33] may have mul-
tiple ones, although there must be a dominating one. On the other hand, the
order constraints (e.g. sortedness), which require comparing different data pa-
rameters and are covered by CSLTP, are inexpressible in [33]. In addition, even
when restricted to size constraints, CSLTP goes beyond the fragment in [33].
For instance, the height-balancedness of red-black trees can be easily expressed
in CSLTP, whereas it is inexpressible in [33]. This is because the inductive def-
inition in [33] essentially allows only one inductive rule, with the aid of the
max and min functions and (a form of) disjunctions in the data/size constraint.
Nevertheless, the height-balancedness of red-black trees requires multiple induc-
tive rules to specify, even when max, min and disjunctions are present in the
data/size constraint. Furthermore, we employ an automata-theoretic approach
to compute the least fixed point of data predicates, which is quite different from
the arguments ([33]) which are purely based on induction.
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There are methods outside of the SL framework to tackle verification of tree
structures and data constraints. Some of them are based on different extensions
of tree automata, such as forest automata [1], tree automata with size constraints
[16], ree automata with height constraints [11], and visibly tree automata with
memory and constraints [10]. Interestingly, our approach to compute the least
fixed point of data predicates is partially inspired by this line of work, especially
[16]. Even further, [21] takes a logic-based approach to verify balanced trees.
Finally, [31] proposes practical approaches for solving Horn-clause constraints,
which are related to, albeit easier than, computing the least fixed point of data
predicates in this paper. The method therein is based on the construction of
disjunctive interpolants, which are used within an abstraction-refinement loop.
The method therein is incomplete in general.

2 Preliminaries

Throughout the paper, Z and N denote the set of integers and natural numbers
respectively. For each n P N, rns :“ t1, . . . , nu. For each vector α “ pa1, . . . , anq,
|α| denotes the length of α (i.e. n) and αpiq denotes ai for i P rns.

Definition 1 (A1CS and N1CS). An alternating one-counter system (A1CS)
is a pair A “ pQ,Θq, where Q is a finite set of states, and Θ Ď Qˆ 2pInstˆQq is
a finite set of transition rules, where Inst “ to n,`n,´n, resetpnqu with o P t“
,ď,ěu and n P N. A transition pp, tp`1, q1q, ¨ ¨ ¨ , p`k, qkquq P Θ is usually written
as p ãÑ tp`1, q1q, ¨ ¨ ¨ , p`k, qkqu for readability. A nondeterministic one-counter
system (N1CS) is an A1CS where for each p ãÑ tp`1, q1q, ¨ ¨ ¨ , p`k, qkqu, k “ 1.

A configuration of an A1CS A is pp, nq where p P Q and n P N is the value of the
counter. The transition rules induce a transition relation on configurations in
an expected way: for p ãÑ tp`1, q1q, ¨ ¨ ¨ , p`k, qkqu P Θ, we have a hyper-transition
pp, nq Ñ tpq1, n1q, ¨ ¨ ¨ , pqk, nkqu if for each 1 ď i ď k, (1) `i “ o n1 implies that
n o n1 and ni “ n, (2) `i “ `n

1 implies that ni “ n`n1, (3) `i “ ´n
1 implies that

n ´ n1 ě 0 and ni “ n ´ n1, and (4) `i “ resetpn1q implies that ni “ n1. In this
case, we say that pp, nq is the immediate predecessor of tpq1, n1q, ¨ ¨ ¨ , pqk, nkqu.

A computation tree of A is a directed tree whose nodes are labelled by con-
figurations, and where every node is either a leaf or an internal node which is
labelled by a configuration c and has k children labelled by c1, . . . , ck respec-
tively, satisfying that cÑ tc1, . . . , cku is a hyper-transition of A. We define the
reachability relation ñA as cñA C if there exists a computation tree such that
c labels the root and C is the set of labels of the leaves. If cñA C, then we say
that C is reachable from c in A. For q P Q and a set of configurations C, we use
Pre˚Apq, Cq to denote the set of n P N such that pq, nq ñA C 1 for some C 1 Ď C.

The transition relation for an N1CS can be defined similarly, and is simpler
in that the computation tree degenerates to a single path of configurations.

Proposition 1 ([4,7,15,32]). The following facts hold for A1CS and N1CS.

1. Let A “ pQ,Θq be an A1CS, q P Q be a state, C be a finite set of configu-
rations of A. Then a quantifier-free Presburger formula ϕq,Cpxq in disjunc-
tive normal form can be computed in doubly exponential time to represent
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Pre˚Apq, Cq. In addition, if the constants in A and C are encoded in unary,
then the computation is in exponential time.

2. Let A “ pQ,Θq be an N1CS, and p, q P Q. Then a quantifier-free Presburger
formula ϕp,qpx, yq can be computed in triply exponential time to represent
the relation tpm,nq P N2 | pp,mq ñA pq, nqu. In addition, if the constants in
A are encoded in unary, then the computation is in doubly exponential time.

3 Compositional Separation Logic with Tree Predicates

In this section, we introduce the compositional separation logic with tree pred-
icates, denoted by CSLTPrP s, where P is an inductive predicate. We consider
three data types, i.e., location type L, value type D, and size type N. Intu-
itively, D represents the data values stored in the nodes of tree structures, and
N represents the size of tree structures (e.g. height of trees), which we assume
to be natural numbers. As a convention, we use l, l1, ¨ ¨ ¨ P L to denote locations,
d, d1, ¨ ¨ ¨ P D to denote values, and n, n1, ¨ ¨ ¨ P N to denote sizes. Accordingly,
variables in CSLTPrP s comprise location variables LVars ranged over by upper-
case letters E,F,X, Y, ¨ ¨ ¨ , value variables DVars ranged over by x, y, ¨ ¨ ¨ , and
size variables IVars ranged over by h, i, j, ¨ ¨ ¨ .

We consider two kinds of fields, i.e., location fields from F and data fields
from D. Each field f P F (resp. d P D) is associated with L (resp. D). We assume
D is an ordered, countably infinite, dense set. That is, D is equipped with ă such
that for each d ă d1 P D, d2 P D exists with d ă d2 ă d1. Examples of D include
the set of rationals with the natural order relation, and the set of strings with the
lexicographical order relation. Note that any arithmetic over D is disregarded.

CSLTPrP s formulae may contain tree predicates, each of which is of the
form P pE,α;F,βq and has an associated inductive definition. The parameters
of a tree predicate are classified into two groups: source parameters E,α and
destination parameters F,β. We require that the source parameters E,α and
the destination parameters F,β are matched in types, namely, E and F are of
the location type, and two tuples α,β have the same length ` ą 0 and for each
i : 1 ď i ď `, both αi and βi have the natural number type or the value type. The
parameters E,F are called the location parameters of P and α,β are called the
data parameters of P . Intuitively, a tree predicate P pE,α;F,βq defines binary
trees with one hole and data constraints.

The CSLTPrP s formulae comprise three types of formulae: pure formulae Π,
data formulae ∆, and spatial formulae Σ, which are defined as follows,

Π ::“ E “ F | E ‰ F | Π ^Π (pure formulae)
∆ ::“ ∆D ^∆N (data formulae)
∆D ::“ true | x o d | x o x1 | ∆D ^∆D (value formulae)
∆N ::“ true | h o n | h o h1 ` n | ∆N ^∆N (size formulae)
Σ ::“ emp | E ÞÑ ρ | P pE,α;F,βq | Σ ˚Σ (spatial formulae)
ρ ::“ ρf , ρd (field-variable sequences)
ρf ::“ pf, Xq | ρf , ρf (location field-variable sequences)
ρd ::“ pd, xq | ρd, ρd (data field-variable sequences)
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where o P t“,ă,ą,ď,ěu, f P F , and d P D. For spatial formulae Σ, formulae
of the form emp, E ÞÑ ρ, or P pE,α;F,βq are called spatial atoms. In particular,
formulae of the form E ÞÑ ρ and P pE,α;F,βq are called points-to atoms and
predicate atoms respectively.

A tree predicate P (with one hole) is defined by one base rule, and at least
one inductive rule of the form R1 or R2:

– base rule R0: P pE,α;F,βq ::“ E “ F ^α “ β ^ emp,
– left-hole inductive rule R1:

P pE,α;F,βq ::“ DXDY DxDh. ∆^ E ÞÑ ppleft, Xq, pright, Y q, ρdq˚
P pX, δ;F,βq ˚ P pY,γ; nil, εq,

where ∆ is a data formula and ρd is a data field-variable sequence.
– right-hole inductive rule R2:

P pE,α;F,βq ::“ DXDY DxDh. ∆^ E ÞÑ ppleft, Xq, pright, Y q, ρdq˚
P pX,γ; nil, εq ˚ P pY, δ;F,βq,

where ∆ is a data formula and ρd is a data field-variable sequence.

The left-hand (resp. right-hand) side of a rule is called the head (resp. body) of
the rule. We note that the bodies of R1 and R2 do not contain pure formulae.

In the sequel, we specify some constraints on the inductive rules.
The first constraint C1 guarantees that P pE,α;F,βq enjoys the composition

lemma P pE1,α1;E2,α2q˚P pE2,α2;E3,α3q ñ P pE1,α1;E3,α3q, which is vital
for compositionality (cf. [13]). Note that the destination parameter F does not
occur elsewhere in the body of the inductive rules by definition, since X,Y are
two existentially quantified location variables.

C1 Variables from β do not occur elsewhere in the body of the inductive rules.

The second constraint C2 forbids the repeated occurrences of the variables
in γ, δ and requires that no existentially quantified variables occur in the static
parameters ε.

C2 γ, δ Ď αY xY hYDYN, each variable occurs at most once in γ (resp. δ),
and ε Ď αY DY N.

The third constraint C3 forbids the situation that an existentially quantified
variable occurs only in ∆, but not in spatial atoms.

C3 All existentially quantified variables x,h occur in some spatial atom.

The fourth constraint C4 is to avoid the difficulty of dealing with inductive
predicates with more than one size source parameter (cf. Theorem 1).

C4 α contains at most one parameter of the size type, in addition, if αpiq is
of size type, then it must hold that, (i) δpiq,γpiq P h and εpiq P N, and (ii) the
size-formula part of ∆ is of the form αpiq “ δpiq`n^∆N or αpiq “ γpiq`n^∆N
such that αpiq does not occur in ∆N.

For a tree predicate P , let FldspP q (resp. LFldspP q) denote the set of fields
(resp. location fields) occurring in the inductive rules of P . Evidently, LFldspP q “
tleft, rightu. For a spatial atom a, let Fldspaq denote the set of fields that a
refers to: if a “ E ÞÑ ρ, then Fldspaq is the set of fields occurring in ρ; if
a “ P p´q, then Fldspaq “ FldspP q.

6



We write CSLTPrP s for the collection of separation logic formulae ϕ “ Π ^

∆ ^ Σ such that P is the only tree predicate allowed to appear in Σ, and for
each points-to atom occurring in Σ, the set of fields of this atom is FldspP q. For
a CSLTPrP s formula ϕ, let Varspϕq (resp. LVarspϕq, DVarspϕq, IVarspϕq) denote
the set of (resp. location, value, size) variables occurring in ϕ. Moreover, we use
ϕrµ{αs to denote the simultaneous replacement of the variables αj by µj in ϕ.

For the semantics of CSLTPrP s, each formula is interpreted on states. For-
mally, a state is a pair ps, hq, where

– s is an assignment function which is a partial function from LVarsYDVarsY
IVars to LY DY N such that dompsq is finite and s respects the data type,

– h is a heap which is a partial function from Lˆ pF YDq to LYD such that

‚ h respects the data type of fields, that is, for each l P L and f P F (resp.
l P L and d P D), if hpl, fq (resp. hpl, dq) is defined, then hpl, fq P L (resp.
hpl, dq P D); and

‚ h is field-consistent, i.e. every location in h possess the same set of fields.

For a heap h, we use ldomphq to denote the set of locations l P L such that
hpl, fq or hpl, dq is defined for some f P F and d P D. Moreover, we use Fldsphq
to denote the set of fields f P F or d P D such that hpl, fq or hpl, dq is defined for
some l P L.

Two heaps h1 and h2 are said to be field-compatible if Fldsph1q “ Fldsph2q.
We write h1#h2 if ldomph1q X ldomph2q “ H. Moreover, we write h1Z h2 for the
disjoint union of two field-compatible fields h1 and h2 (this implies that h1#h2).

Let ps, hq be a state and ϕ be an CSLTPrP s formula. The semantics of
CSLTPrP s formulae is defined as follows,

– ps, hq ( E “ F (resp. ps, hq ( E ‰ F ) if spEq “ spF q (resp. spEq ‰ spF q),
– ps, hq ( Π1 ^Π2 if ps, hq ( Π1 and ps, hq ( Π2,
– ps, hq ( x o c (resp. ps, hq ( x o x1) if spxq o c (resp. spxq o spx1q),
– ps, hq ( h o c (resp. ps, hq ( h o h1 ` c) if sphq o c (resp. sphq o sph1q ` c),
– ps, hq ( ∆1 ^∆2 if ps, hq ( ∆1 and ps, hq ( ∆2,
– ps, hq ( emp if ldomphq “ H,
– ps, hq ( E ÞÑ ρ if ldomphq “ spEq, and for each pf, Xq P ρ (resp. pd, xq P ρ),

hpspEq, fq “ spXq (resp. hpspEq, dq “ spxq),
– ps, hq ( P pE,α;F,βq if ps, hq P vP pE,α;F,βqw,
– ps, hq ( Σ1 ˚ Σ2 if there are h1, h2 such that h “ h1 Z h2, ps, h1q ( Σ1 and
ps, h2q ( Σ2.

where the semantics of predicates vP pE,α;F,βqw is given by the least fixed point
of a monotone operator constructed from the body of rules for P in a standard
way as in [6].

For a formula ϕ, let vϕw denote the set of states ps, hq such that ps, hq ( ϕ.
We focus on the satisfiability problem, i.e., given a CSLTPrP s formula ϕ, decide
whether vϕw is empty.

Example 1. The first example bsth specifies binary search trees with one hole,
which exemplifies the usage of value variables for the sortedness constraints.
Here x, y represent the lower and upper bounds of the data values from D.
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bsthpE, x, y;F, x1, y1q ::“ E “ F ^ x “ x1 ^ y “ y1 ^ emp,

bsthpE, x, y;F, x1, y1q ::“ DX,Y, z, x2, y2. y2 ă z ă x2 ^

E ÞÑ ppleft, Xq, pright, Y q, pdata, zqq ˚

bsthpX,x, y2;F, x1, y1q ˚ bsthpY, x2, y; nil, y, yq,

bsthpE, x, y;F, x1, y1q ::“ DX,Y, z, x2, y2. y2 ă z ă x2 ^

E ÞÑ ppleft, Xq, pright, Y q, pdata, zqq ˚

bsthpX,x, y2; nil, x, xq ˚ bsthpY, x2, y;F, x1, y1q.

Note that a binary search tree can be simply defined as bsthpE, x, y; nil, x, xq
or bsthpE, x, y; nil, y, yq, where E is the root, and x, y are the lower respective
upper bounds for the data values occurring in the tree nodes.

The second example balthole specifies height-balancedness of AVL-trees with
one hole, which exemplifies the usage of size parameters. Here h P N represents
the height of the tree.

baltholepE, h;F, h1q ::“ E “ F ^ h “ h1 ^ emp,

baltholepE, h;F, h1q ::“ DX,Y, h1, h2. h1 ď h2 ď h1 ` 1^ h “ h2 ` 1 ^

E ÞÑ ppleft, Xq, pright, Y qq ˚ baltholepX,h1;F, h1q ˚ baltholepY, h2; nil, 0q,

baltholepE, h;F, h1q ::“ DX,Y, h1, h2. h “ h1 ` 1^ h1 “ h2 ` 1 ^

E ÞÑ ppleft, Xq, pright, Y qq ˚ baltholepX,h1;F, h1q ˚ baltholepY, h2; nil, 0q,

baltholepE, h;F, h1q ::“ DX,Y, h1, h2. h1 ď h2 ď h1 ` 1^ h “ h2 ` 1 ^

E ÞÑ ppleft, Xq, pright, Y qq ˚ baltholepX,h1; nil, 0q ˚ baltholepY, h2;F, h1q,

baltholepE, h;F, h1q ::“ DX,Y, h1, h2. h “ h1 ` 1^ h1 “ h2 ` 1 ^

E ÞÑ ppleft, Xq, pright, Y qq ˚ baltholepX,h1; nil, 0q ˚ baltholepY, h2;F, h1q.

The definitions of bsth and balthole can be combined to form a tree predicate
avlthpE, x, y, h;F, x1, y1, h1q, which specifies both the sortedness and the height-
balancedness property of AVL-trees with one hole.

4 The least fixed point of data predicates

Let P pE,α;F,βq be a tree predicate. The data predicate induced by P , denoted
by PDpα;βq, is the predicate whose definition is obtained from the rules of P by
ignoring the spatial variables and spatial atoms. Formally, PDpα;βq is defined
by the rules of the following form,

– base rule: PDpα;βq ::“ α “ β,
– for each left-hole inductive rule

P pE,α;F,βq ::“ DX,Y DxDh. ∆^ E ÞÑ ppleft, Xq, pright, Y q, ρdq ˚
P pX, δ;F,βq ˚ P pY,γ; nil, εq,

there is an inductive rule for PD of the form:

PDpα;βq ::“ DxDh. ∆^ PDpδ;βq ^ PDpγ; εq,

– similarly for the right-hole inductive rules.
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Naturally, PDpα;βq induces a monotonic function and we use lfppPDq to
denote its least fixed point.

We start with a “negative” result stating that, if multiple size source param-
eters were allowed in the tree predicates then lfppPDq would be inexpressible in
Presburger arithmetic in general. This result underpins the constraint C4 which
dictates that only one source parameter of type N is allowed.

Theorem 1. If x, y, x1, y1 in avlthpE, x, y, h;F, x1, y1, h1q are assumed to be of
the type N, then lfppavlthDq is inexpressible in Presburger arithmetic.

The intuition of Theorem 1 is explained as follows: If the data values in AVL-
trees are assumed to be natural numbers, then in avlthpE, x, y, h; nil, x, x, 0q, the
predicate atom for AVL trees, y´x correlates with h and is at least exponential
in h. This relationship goes beyond Presburger arithmetic.

Next, for a tree predicate P in CSLTP, we show that a linear arithmetic
formula can be computed to represent lfppPDq.

Theorem 2. A linear arithmetic formula can be computed in 5-fold exponential
time to represent lfppPDq. In addition, if the natural-number constants in the
inductive definition of PD are encoded in unary, then the complexity is reduced
to 4-fold exponential time.

The rest of this section is devoted to the proof of Theorem 2. We start with
two simpler cases, i.e., dense order constraints and single size parameter.

4.1 Dense order constraints

In this subsection, we fix a tree predicate P pE,α;F,βq where all parameters
in α and β are of the type D. As a result, only value formulae ∆D are used in
PDpα;βq. Let CpPDq denote the set of constants occurring in the rules of PD.

Definition 2 (Order graphs). Let V be a finite subset of DVarsYD. An order
graph G on V is an edge-labelled graph pV,Eq, where E Ď V ˆ tď,ău ˆ V .

It is evident that order graphs are simply another representation of value
formulae, which are dense order constraints on D. More specifically, from an order
graph G on V , a dense order constraint ∆DpGq can be naturally defined. On the
other hand, an order graph G∆D can be constructed from a value formula ∆D.
For two order graphs G1, G2, we will use G1 |ù G2 to denote ∆DpG1q |ù ∆DpG2q.

Definition 3 (Saturated order graphs). Assume an order graph G “ pV,Eq.
The saturated graph of G, denoted by SatpGq, is computed from G by the following
procedure:

1. Initially, let SatpGq :“ G.
2. Repeat the following procedure until no more edges can be added to SatpGq.

– If there are two edges pv1, o1, v2q and pv2, o2, v3q in SatrGs such that o1
and o2 are both ď and pv1,ď, v3q is not an edge in SatpGq, then add
pv1,ď, v3q into SatpGq.

– If there are two edges pv1, o1, v2q and pv2, o2, v3q in SatpGq such that at
least one of o1 and o2 is ă and pv1,ă, v3q is not an edge in SatpGq, then
add pv1,ă, v3q into SatpGq.

9



SatpGq is said to be consistent if it does not contain edges of the form pv,ă, vq
for v P V . Otherwise, it is said to be inconsistent.

Proposition 2. Let ∆D be a value formula. Then ∆D is satisfiable iff SatpG∆Dq

is consistent.

For a finite set V Ď DVarsYD, we use GordpV q to denote the set of consistent
saturated order graphs on V . Note that the cardinality of GordpV q is exponential
in the size of V .

To compute lfppPDq, let V “ αYβYCpPDq. We define a monotone function
TPD

: 2GordpV q Ñ 2GordpV q to capture PDpα;βq, and compute lfppTPD
q by a stan-

dard iteration: let G0 “ H, and Gi :“ TPD
pGi´1q until the iteration stabilises.

The algorithm terminates in exponential time, since TPD
is monotone and the

cardinality of GordpV q is exponential in the size of V .
Suppose |α| “ k. For a vector d,d1 P Dk, define an order graph Gd,d1 “

pV,Ed,d1q as as follows: Let η : V Ñ d Y d1 Y CpPDq such that ηpαpiqq “ dpiq
and ηpβpiqq “ d1piq for each i P rks, and ηpd2q “ d2 for each d2 P CpPDq. Then
for each z, z1 P V and o P tă,ďu, pz, o, z1q P Ed,d1 iff ηpzq o ηpz1q holds in D.

Proposition 3. For any two vectors d,d1 P Dk, lfppPDqpd;d1q holds iff there
exists G P lfppTPD

q such that Gd,d1 |ù G.

4.2 Single size parameter

In this subsection, we fix a tree predicate P where all (data) parameters are of
type N. Then according to C4, the parameters of P are of the form pE,α;F, βq,
where α, β are of type N, in addition, each inductive rule of the associated data
predicate PDpα;βq is of the form

PDpα;βq ::“ Dh. ∆N ^ PDpδ;βq ^ PDpγ;nq. (1)

Let N pPDq denote the set of all constants n occurring in the predicate atom
PDpγ;nq of the body PDpα;βq. By C3 and C4, δ and γ are the only existentially
quantified variables, that is, Dh “ DδDγ. For each n P N pPDq, we introduce a
new predicate PD,npαq, the definition of which is as follows:
– base rule: PD,npαq ::“ α “ n,
– inductive rules: PD,npαq ::“ DδDγ. ∆ ^ PD,npδq ^ PD,n1pγq, if there is an

inductive rule PDpα;βq ::“ DδDγ. ∆^ PDpδ;βq ^ PDpγ;n1q.

The general strategy to solve (1) is to first compute lfppPD,nq as a quantifier-
free Presburger formula ϕPD,n

pαq for the predicates PD,n with n P N pPDq. We
then substitute PDpγ, n

1q in the body of the inductive rule of PDpα;βq with
ϕPD,n1 pγq, resulting in a new collection of inductive rules for PDpα;βq. Finally,
we compute the least fixed point of the function induced by this new collection
of rules of PDpα;βq.

Computation of lfppPD,nq. We will reduce the problem to the computation of
the reachability sets of an A1CS APD

“ pQ,Θq, where Q is the union of tPD,n |
n P N pPDqu and a set of auxiliary states (see below), and Θ is defined according
to the inductive rules of the predicates PD,n for n P N pPDq.

Let us fix a predicate PD,n and an inductive rule of PD,n

10



PD,npαq ::“ DδDγ. ∆N ^ PD,npδq ^ PD,n1pγq. (2)

By C4, the size formula ∆N must be of the form α “ δ`m^∆1 or α “ γ`m^∆1

such that α does not occur in ∆1. W.l.o.g., we assume that α “ δ ` m holds.
It follows that ∆1 is a conjunction of difference bound constraints over δ and γ.
Hence, we may constraint γ in terms of α (rather than δ; this is possible because
α “ δ`m). Namely, we may assume that ∆1 “ ∆11pαq^∆

1
2pα, γq^∆

1
3pγq, where

∆11, ∆
1
2, ∆

1
3 are defined by the following rules,

1. ∆11pαq ::“ true | α ě l | α ď u | l ď α ď u, where l, u P N,
2. ∆12pα, γq ::“ true | γ ě α` l | γ ď α` u | α` l ď γ ď α` u, where l, u P Z,
3. ∆13pγq ::“ true | γ ě l | γ ď u | l ď γ ď u, where l, u P N.

Θ comprises the transition rules for each predicate PD,n and each inductive rule
of PD,n as in equation (2), defined as follows:

– the transition rules for ∆11pαq:
‚ if ∆11 “ true, then PD,n ãÑ tp`0, q1qu,
‚ if ∆11 “ α ě l, then PD,n ãÑ tpě l, q1qu,
‚ if ∆11 “ α ď u, then PD,n ãÑ tpď u, q1qu,
‚ if ∆11 “ l ď α ď u, then PD,n ãÑ tpě l, q11qu, q

1
1 ãÑ tpď u, q1qu;

– the transition rules for α “ δ `m^∆12pα, γq:
‚ if ∆12 “ true, then q1 ãÑ tp´m,PD,nq, presetp0q, q12qu, q

1
2 ãÑ tp`1, q12qu,

and q12 ãÑ tp`0, q2qu,
‚ if ∆12 “ γ ě α ` l, then q1 ãÑ tp´m,PD,nq, pl, q

1
2qu, q

1
2 ãÑ tp`1, q12qu,

q12 ãÑ tp`0, q2qu,
‚ if ∆12 “ γ ď α ` u, then q1 ãÑ tp´m,PD,nq, pu, q

1
2qu, q

1
2 ãÑ tp´1, q12qu,

q12 ãÑ tp`0, q2qu,
‚ if ∆12 “ α ` l ď γ ď α ` u, then q1 ãÑ tp´m,PD,nq, pm

1, q2qu for each
l ď m1 ď u;

– the transition rules for ∆13pγq:
‚ if ∆13 “ true, then q2 ãÑ tp`0, PD,n1qu,
‚ if ∆13 “ γ ě l, then q2 ãÑ tpě l, PD,n1qu,
‚ if ∆13 “ γ ď u, then q2 ãÑ tpď u, PD,n1qu,
‚ if ∆13 “ l ď γ ď u, then q2 ãÑ tpě l, q13qu, q

1
3 ãÑ tpď u, PD,n1qu,

where q1, q2, q
1
1, q

1
2, q

1
3 are the auxiliary (control) states.

For each predicate PD,n, we use PpPD,nq to denote the set of predicates PD,n1

such that PD,n1 occurs in the body of some inductive rule of PD,n. In particular,
PD,n P PpPD,nq. Then for each PD,n, we define a set of goal configurations
GConfpPD,nq “ tpPD,n1 , n1q | PD,n1 P PpPD,nqu.
Proposition 4. For each predicate PD,n and m P N, lfppPD,nqpmq holds iff
pPD,n,mq ñAPD

GConfpPD,nq.

Thanks to Proposition 4, we have lfppPD,nq “ Pre˚APD
pPD,n,GConfpPD,nqq.

According to Proposition 1, for each predicate PD,n, a quantifier-free Presburger
formula ϕPD,n

pαq in disjunctive normal form to represent lfppPD,nq, can be com-
puted in doubly exponential time w.r.t. the size of APD

(thus in doubly expo-
nential time w.r.t. the size of the inductive definition of PD as well). In addition,
if the constants in the inductive definition of PD are encoded in unary, then the
complexity is dropped to singly exponential time.
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Computation of lfppPDq. The main idea is to reduce the computation of lfppPDq
to solving the reachability problem of an N1CS.

From the previous step, the solution of PD,npγq is expressed by the formula

ϕPD,n
pγq in disjunctive normal form, say ϕPD,n

pγq “
Ž

1ďiď`n

ϕ
piq
PD,n

pγq, where each

ϕ
piq
PD,n

pγq is of the form γ “ n1 or γ ě n1 ^ γ ” n3 mod n2. Let N P N be the

least common multiplier of the divisors n2 occurring in ϕPD,n
pαq for n P N pPDq.

It follows that PDpα;βq ::“ DδDγ. ∆N^PDpδ;βq^PDpγ;nq ”
Ž

1ďiď`n

DδDγ. ∆N^

ϕ
piq
PD,n

pγq^PDpδ;βq. Namely, it suffices to consider PDpα;βq with multiple rules
of the form

PDpα;βq ::“ DδDγ. p∆N ^ ϕ
piq
PD,n

pγqq ^ PDpδ;βq, (3)

for 1 ď i ď `n, where each ϕ
piq
PD,n

pγq is of the form γ “ n1 or γ ě n1 ^ γ ”
n3 mod N . This new collection of rules is linear in that the predicate PD occurs
at most once in the body of each rule, which is simpler than (2).

lfppPDq can now be computed by appealing to an N1CS BPD
“ pQ1, Θ1q. The

N1CS BPD
is constructed according to the new collection of rules of PD. The

states of BPD
are of the form pq, rq, where q is a location and r P t0, . . . , N ´ 1u.

In BPD
, a special location q0 is used to represent the predicate PD.

Let us fix an inductive rule of PDpα;βq, say

PDpα;βq ::“ DδDγ. p∆N ^ ϕ
piq
PD,n

pγqq ^ PDpδ;βq. (4)

We will demonstrate how to construct the transition rules of BPD
according to

this rule. We will only illustrate the construction for the case that each ϕ
piq
PD,n

pγq
is of the form γ ě n1 ^ γ ” n3 mod N . The construction for the case γ “ n1 is
(much) simpler.

For (4), as before by C4, ∆N must be of the form α “ δ `m ^ ∆1 or α “
γ`m^∆1 such that α does not occur in ∆1. We will illustrate the construction
by considering the former case, that is, α “ δ `m^∆1.

Since δ “ α ´ m, we can assume that ∆1 is a formula involving only α, γ
(instead of δ, γ). As before, ∆1 can be written as ∆11pαq ^ ∆12pα, γq ^ ∆13pγq.
Therefore,

∆1 ^ ϕ
piq
PD,n

pγq “ ∆11pαq ^∆
1
2pα, γq ^ p∆

1
3pγq ^ γ ě n1 ^ γ ” n3 mod Nq.

For each r P t0, . . . , N ´ 1u, Θ1 includes the transition rules defined below. Let
us assume that the formula ∆13pγq^ γ ě n1^ γ ” n3 mod N is satisfiable (since
otherwise, no transition rules should be included into Θ1 in this case).

– The transition rules for ∆11:
‚ if ∆11 “ true, then pq0, rq ãÑ p`0, pq1, rqq,
‚ if ∆11 “ α ě l, then pq0, rq ãÑ pě l, pq1, rqq,
‚ if ∆11 “ α ď u, then pq0, rq ãÑ pď u, pq1, rqq,
‚ if ∆11 “ l ď α ď u, then pq0, rq ãÑ pě l, pq11, rqq, pq

1
1, rq ãÑ pď u, pq1, rqq;
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– the transition rules for

∆2 “ ∆12pα, γq ^ p∆
1
3pγq ^ γ ě n1 ^ γ ” n3 mod Nq :

‚ if ∆12 “ true, then pq1, rq ãÑ p`0, pq2, rqq, since ∆13pγq ^ γ ě n1 ^ γ ”
n3 mod N is satisfiable (by assumption),

‚ if ∆12 “ γ ě α` l, then
∗ if ∆13 “ true or ∆13 “ γ ě l1, then

Dγ. ∆2 “ Dγ. γ ě α` l ^∆13 ^ γ ě n1 ^ γ ” n3 mod N

is satisfiable for every value of α, therefore, we have pq1, rq ãÑ p`0, pq2, rqq,
∗ if ∆13 “ γ ď u1 or ∆13 “ l1 ď γ ď u1, let l2 “ n1 or l2 “ maxpl1, n1q

respectively, then

Dγ. ∆2 “ Dγ. γ ě α` l ^ l2 ď γ ď u1 ^ γ ” n3 mod N,

from this, we have that for each s P N such that l2 ď s ď u1 and
s ” n3 mod N , pq1, rq ãÑ pď s´ l, pq2, rqq,

‚ if ∆12 “ γ ď α` u,
∗ if ∆13 “ true or ∆13 “ γ ě l1, let l2 “ n1 or l2 “ maxpl1, n1q

respectively, then

Dγ. ∆2 “ Dγ. γ ď α` u^ γ ě l2 ^ γ ” n3 mod N,

which is equivalent to α`u ě l2`s, where s is the minimum natural
number satisfying 0 ď s ă N and l2 ` s ” n3 mod N , therefore, we
have pq1, rq ãÑ pě l2 ` s´ u, pq2, rqq,

∗ if ∆13 “ γ ď u1 or ∆13 “ l1 ď γ ď u1, let l2 “ n1 or l2 “ maxpl1, n1q
respectively, then

Dγ. ∆2 “ Dγ. γ ď α` u^ l2 ď γ ď u1 ^ γ ” n3 mod N,

from this, we have that for each s P N such that l2 ď s ď u1 and
s ” n3 mod N , pq1, rq ãÑ pě s´ u, pq2, rqq,

‚ if ∆12 “ α` l ď γ ď α` u, then
∗ if ∆13 “ true or ∆13 “ γ ě l1, let l2 “ n1 or l2 “ maxpl1, n1q

respectively, then

Dγ. ∆2 “ Dγ. α` l ď γ ď α` u^ γ ě l2 ^ γ ” n3 mod N,

which is equivalent to α ` s ě l2, provided that α ” r mod N ,
where s is the maximum natural number such that l ď s ď u and
r ` s ” n3 mod N , therefore, we have pq1, rq ãÑ pě l2 ´ s, pq2, rqq,

∗ if ∆13 “ γ ď u1 or ∆13 “ l1 ď γ ď u1, let l2 “ n1 or l2 “ maxpl1, n1q
respectively, then

Dγ. ∆2 “ Dγ. α` l ď γ ď α` u^ l2 ď γ ď u1 ^ γ ” n3 mod N,

from this, we have that for each s P N such that l2 ď s ď u1 and s ”
n3 mod N , pq1, rq ãÑ pď s´ l, pq12, rqq and pq12, rq ãÑ pě s´u, pq2, rqq,
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– the transition rule for α “ δ `m: pq2, rq ãÑ p´m, pq0, pr ´mq mod Nqq,

where q1, q2, q
1
1, q

1
2 are the freshly introduced locations.

We have the following result:

Proposition 5. For m,n P N, let r “ m mod N and r1 “ n mod N . Then
lfppPDqpm,nq holds iff ppq0, rq,mq ñBPD

ppq0, r
1q, nq.

From Proposition 1, for each r, r1 P t0, . . . , N ´ 1u, a quantifier-free Presburger
formula ϕpq0,rq,pq0,r1qpα, βq can be computed in triply exponential time w.r.t.
the size of BPD

to represent tpm,nq P N2 | ppq0, rq,mq ñBPD
ppq0, r

1q, nqu.
Therefore, from Proposition 5, lfppPDq can be expressed with ϕPD

pα, βq ”
Ž

0ďr,r1ăN

ϕpq0,rq,pq0,r1qpα, βq. Since the size of the new collection of inductive rules

of PD—thus the size of BPD
—is at most doubly exponential in the size of the

(original) inductive definition of PD, we conclude that the size of ϕPD
pα, βq is

5-fold exponential in the size of the (original) inductive definition of PD. In addi-
tion, the size of ϕPD

pα, βq is 4-fold exponential if the constants in the inductive
definition of PD are encoded in unary.

4.3 The general case

In the subsection, we show how to combine the techniques developed in the pre-
ceding sections to tackle the general case. Without loss of generality, we assume
that the data predicate PDpα,βq satisfies that |α| “ k ą 1, αp1q, ¨ ¨ ¨ ,αpk ´ 1q
are of type D, and αpkq is of type N. For convenience, we write α “ pα1, α2q
where α1 “ pαp1q, . . . ,αpk ´ 1qq and α2 “ αpkq. Similarly, β “ pβ1, β2q. Then
each inductive rule for PD is of the form

PDpα
1, α2;β1, β2q ::“ DxDh. ∆D^∆N^PDpδ

1, δ2;β1, β2q^PDpγ
1, γ2; ε1, nq.

We split each inductive rule of PD into two rules,

PD,Dpα
1;β1q ::“ Dx. ∆D ^ PD,Dpδ

1;β1q ^ PD,Dpγ
1; ε1q,

PD,Npα
2;β2q ::“ Dh. ∆N ^ PD,Npδ

2;β2q ^ PD,Npγ
2;nq.

The computation of lfppPDq proceeds as follows. Intuitively, we first deal with
PD,Dpα

1;β1q and PD,Npα
2;β2q separately by the constructions in Section 4.1 and

Section 4.2. More specifically, lfppTPD,Dq, a set of order graphs on V , is computed,
and the A1CS APD,N and the N1CS BPD,N are constructed. We then integrate
the order graphs from lfppTPD,Dq into the states of APD,N and BPD,N .

As the first step, we use the algorithm in Section 4.1 to compute lfppTPD,Dq.
As a result, we obtain a set of order graphs over V “ α1 Y β1 Y CpPD,Dq, where
CpPD,Dq is the set of constants occurring in the body of the rules of PD,Dpα

1;β1q.
Suppose APD,N “ pQ,Θq is the A1CS constructed for PD,Npα

2;β2q as in
Section 4.2. Recall that Q is the union of tPD,N,n | n P N pPD,Nqu and a
set of auxiliary states. We shall construct a new A1CS A1PD

. The state space
of A1PD

is lfppTPD,Dq ˆ Q. As before, for each n P N pPD,Nq, we consider a
predicate PD,npα

1, α2;β1q whose inductive definition is obtained from that of
PDpα

1, α2;β1, β2q by replacing β2 with n. Specifically, each inductive rule of
PD,n is of the form,
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PD,npα
1, α2;β1q ::“ DxDh. ∆D ^∆N ^ PD,npδ

1, δ2;β1q ^ PD,n1pγ1, γ2; ε1q. (5)

Considering the inductive rule of PD,N,npα
2q corresponding to (5),

PD,N,npα
2q ::“ Dh. ∆N ^ PD,N,npδ

2q ^ PD,N,n1pγ2q. (6)

We lift the transition rules of APD,N for the inductive rule (6) of PD,N,npα
2q

to the ones of A1PD
for the rule (5) of PD,npα

1, α2;β1q as follows: For every
G,G1, G2 P lfppTPD,Dq satisfying the proper constraints induced by some induc-
tive rule of PD,D, add G,G1, G2 as the first-component of states. For instance,
the transitions PD,N,n ãÑ p`0, q1q, q1 ãÑ tp´m,PD,N,nq, presetp0q, q12qu, q

1
2 ãÑ

tp`1, q12qu, q
1
2 ãÑ tp`0, q2qu, and q2 ãÑ tp`0, PD,N,n1qu in APD,N are changed

to the following transitions in A1PD
respectively: pG,PD,N,nq ãÑ p`0, pG, q1qq,

pG, q1q ãÑ tp´m, pG1, PD,N,nqq, presetp0q, pG, q12qqu, pG, q
1
2q ãÑ tp`1, pG, q12qqu,

pG, q12q ãÑ tp`0, pG, q2qqu, and pG, q2q ãÑ tp`0, pG2, PD,N,n1qqu.

Recall that PpPD,N,nq is the set of predicates PD,N,n1 occurring in the body of
the inductive rules of PD,N,n. Let GConf 1pPD,nq “ tppG0, PD,N,n1q, n1q | PD,N,n1 P

PpPD,N,nqu, where G0 is the order graph corresponding to the value formula α1 “
β1. Again, from Proposition 1, for each state pG,PD,N,nq of A1PD

, a quantifier-free
Presburger formula ϕpG,PD,N,nq can be computed to represent the set of natural

numbers Pre˚A1
PD

ppG,PD,N,nq,GConf 1pPD,nqq. As a result, lfppPD,nq is given by

ϕPD,n
pα1, α2;β1q “

Ž

GPlfppTPD,Dq

p∆pGq ^ ϕpG,PD,N,nqq.

Next, we replace each predicate atom PDpγ
1, γ2; ε1, nq in the body of each

inductive rule by the formula ϕPD,n
pγ1, γ2; ε1q and rewrite ϕPD,n

pγ1, γ2; ε1q into a
disjunctive normal form, resulting into a new collection of linear inductive rules
for PDpα

1, α2;β1, β2q.

We can then define the N1CS B1PD
by adapting the construction of the N1CS

BPD,N for PD,N. Roughly speaking, this is done by adding the order graphs as
components of the states of BPD,N . Finally, a linear arithmetic formula ϕPD

pα;βq,
which is a mixture of dense order constraints and quantifier-free Presburger
formulae, is computed from B1PD

to represent lfppPDq, by using Proposition 1.

5 Satisfiability

Let ϕ “ Π ^∆^Σ be a CSLTPrP s formula. Suppose Σ “ a1 ˚ ¨ ¨ ¨ ˚ an, where
each ai is either a points-to atom or a predicate atom. Let PDpα;βq be the
data predicate induced by P and ϕPD

pα,βq be the formula constructed in Sec-
tion 4 to represent lfppPDq. For each inductive rule R of P pE,α;F,βq, we define
∆ě1
R pα;βq as follows.

– If R is a left-hole inductive rule

P pE,α;F,βq ::“ DXDY DxDh. ∆^ E ÞÑ ppleft, Xq, pright, Y q, ρdq ˚
P pX, δ;F,βq ˚ P pY,γ; nil, εq,

then ∆ě1
R pα;βq :“ DxDh. ∆^ ϕPD

rδ{αs ^ ϕPD
rpγ, εq{pα,βqs.

– If R is a right-hole inductive rule, then ∆ě1
R pα;βq is defined similarly.
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In addition, we define ∆ě1
P pα;βq :“

Ž

R: inductive rule of P
∆ě1
R pα;βq.

For each predicate atom ai “ P pZ1,µ;Z2,νq, we define the formula Ufldě1
paiq

as ∆ě1
P pµ,νq. Intuitively, Ufldě1

paiq is the data constraint obtained by unfolding
ai at least once (with the inductive rules of P ).

For each location variable E and atom ai in Σ, we introduce a Boolean
variable rE, is to represent whether E is allocated in ai. Let BVarspϕq denote the
set of introduced Boolean variables. We define an abstraction of ϕ [12,14] to be
Abspϕq ::“ Π ^∆^ φΣ ^ φ˚ over BVarspϕq Y Varspϕq, where

– φΣ “
Ź

1ďiďn

Abspaiq is an abstraction of Σ where

‚ if ai “ E ÞÑ ρ, then Abspaiq “ rE, is ^ E ‰ nil,
‚ if ai “ P pZ1,µ;Z2,νq, then

Abspaiq “ p rZ1, is ^Z1 “ Z2^µ “ νq_ prZ1, is ^Z1 ‰ nil^Ufldě1
paiqq.

– φ˚ states the separation constraint of spatial atoms,

φ˚ “
Ź

rZ1,is,rZ1
1,jsPBVarspϕq,i‰j

pZ1 “ Z 11 ^ rZ1, isq Ñ  rZ 11, js.

Proposition 6. For CSLTPrP s formula ϕ, ϕ and Abspϕq are equisatisfiable.

The formula Abspϕq can be turned into a quantifier-free formula Absqfpϕq by
removing all the existential quantifiers in Ufldě1

paiq and replace the existentially
quantified variables with some freshly introduced variables. The formula Absqfpϕq
can be seen as a mixed real and integer linear arithmetic constraint, thus its
satisfiability can be decided in nondeterministic polynomial time in theory, and
can be solved by using the state-of-the-art SMT solvers, e.g. Z3 [34], in practice.

Theorem 3. The satisfiability of CSLTPrP s formulae can be decided in 6-fold
exponential time. In addition, if the natural-number constants in P are encoded
in unary, the satisfiability can be decided in 5-fold exponential time.

Remark 1. The decision procedure for the satisfiability problem can be easily
generalised to n-ary trees, and to separation logic formulae where several induc-
tive predicates, e.g., lsegpE;F q and bsthpE, x, y;F, x1, y1q, occur simultaneously.

6 Conclusion

In this paper, we proposed CSLTP, the compositional separation logic with tree
predicates. We gave a complete decision procedure for the satisfiability problem.
To our best knowledge, this is one of the most expressive fragments of SLID with
data/size constraints that is equipped with a complete decision procedure. The
main ingredient of the decision procedure is to compute the least fixed point
of data predicates involving dense order constraints and difference-bound size
constraints, by utilising an automata-theoretical approach.

For the future work, the decision procedure for the satisfiability problem
paves the way towards a compete decision procedure for the entailment problem
of CSLTP. In addition, we plan to implement the decision procedure and apply
it to the analysis and verification of programs manipulating tree data structures.
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27. X. Qiu, P. Garg, A. Stefănescu, and P. Madhusudan. Natural proofs for structure,
data, and separation. In PLDI, pages 231–242, 2013.

28. P. Z. Revesz. A closed-form evaluation for datalog queries with integer (gap)-order
constraints. Theor. Comput. Sci., 116(1):117–149, 1993.

29. A. Reynolds, R. Iosif, C. Serban, and T. King. A decision procedure for separation
logic in SMT. In ATVA, pages 244–261, 2016.

30. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74, 2002.
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