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Abstract
Daily monitoring of Parkinson’s disease is important since clinical assessments can only provide a brief and limited view 
of a patient’s condition. However, traditional approaches rely heavily on patients’ self-reports or diaries, which are subjec-
tive and often lack of necessary details. In this work, we instrument a handle that can be attached to cutlery with inertial 
sensors to collect motion data unobtrusively. By analyzing the data of patients and normal people collected in the clinic, 
we demonstrated that our machine learning based model can not only distinguish between patients and normal people, but 
also identify the disease levels in a fine-grained manner. To further understand how the self-tracking data is used in clinic, 
we conducted a semi-structured interview with several clinicians. Through the interpretation from the perspective of both 
physicians and patients, we found that our handle can help the physicians better understand disease progression and promote 
patients’ engagement in tackling the disease.
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1 Introduction

Parkinson’s disease (PD) is the second-most common neu-
rodegenerative disorder which is accompanied by a wide 
variety of motor [e.g. tremor, bradykinesia, rigidity, and 
impaired postural balance (Patel et al. 2009)] and non-motor 

symptoms [e.g. hyposmia, sleep disorders, depression and 
constipation (Schapira et al. 2017)]. Based on United States 
Census Bureau projections, it is estimated that the frequency 
of PD will increase fourfold by the year 2040, making it an 
even larger burden on patients, their families and the whole 
society (Obeso et al. 2000). Levodopa is the most effective 
medication for PD treatment and almost all patients require 
levodopa therapy during the course of the disease (Jankovic 
2008). However, the use of high-dose levodopa in early stage 
of treatment can result in the emergence of motor compli-
cations such as motor fluctuations (Obeso et al. 2000). It 
seriously limits the patient’s mobility, and there are approxi-
mately 40% of the PD patients experience motor fluctuations 
by 4–6 years of treatment (Kikuchi 2007). Worse still, peo-
ple with PD are commonly assessed every 6 months (Vega 
et al. 2018), which makes it difficult for clinicians to take 
control of the disease progression and response to emergen-
cies timely. Thus unobtrusive and long-term monitoring of 
PD in daily life is likely to contribute to the patient’s treat-
ment process.

Typically, traditional clinical scales such as the Unified 
Parkinson’s Disease Rating Scale (UPDRS) (Goetz et al. 
2008) and Hoehn–Yahr Scale (Hoehn and Yahr 1998) can be 
used to distinguish the severity and impact of the PD symp-
toms. The assessment of long-term medication response in 
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clinical environment usually take the form of self-report 
(Patel et al. 2009, 2010) and patient diaries (Reimer et al. 
2004; Marinus et al. 2002; Hauser et al. 2000, 2004; Lyons 
and Pahwa 2007; Vega et al. 2018). In the form of self-
report, information about motor fluctuations is obtained by 
asking patients to recall the number of hours of ON (i.e., 
where medications effectively attenuate tremor) and OFF 
time (i.e., when medications are not effective) (Patel et al. 
2009). The process is time consuming and the results are 
subject to the perceptual bias and recall bias of patients. The 
use of patient diaries requires patients to record their motor 
status on the paper or electronic device in daily life as the 
symptoms occur. Although it can improve the reliability, 
subjective bias still exists especially in those PD patients 
who are cognitively impaired (Goetz et al. 1997) and many 
features captured are useless for clinical decision making 
(Group 2001).

Recent advances in sensor and wireless technologies, 
signal processing methods, and pattern recognition algo-
rithms have resulted in quantitative assessments of motor 
fluctuations (Bonato et al. 2004). Wearable sensors utiliz-
ing gyroscopes and accelerometers are the most commonly 
used (Patel et al. 2009; Salarian et al. 2007a, b; Bonato et al. 
2004; Moore et al. 2007; Saito et al. 2004) as they can col-
lect the data from daily activity of patients. However, wear-
ing these devices for a long time can bring discomfort to 
the patient, and patients must have good compliance with 
the wearable devices. In addition, after collecting the daily 
motor fluctuations data of patients, most of the existing 
research only uses machine learning methods (Patel et al. 
2009) or simple functions (Salarian et al. 2007b) to establish 
a mapping relationship with the traditional clinical scales, 
few studies on how the final analysis results are interpreted 
by both the clinician and patient. One cannot simply fold 
self-tracking data into established clinical practices without 
some work on the part of both the patient and the clinician 
(Mentis et al. 2017).

Our work explores the feasibility to monitor motor symp-
toms in PD via instrumenting daily artifacts with dedicated 
sensors. Specifically, we designed a handle with the inertia 
sensor and it can be attached to daily cutlery such as spoon 
and fork to collect the patient’s motion data during meals. 
Compared to the wearable devices, the way of interacting 
is less obtrusive and the need for user compliance can be 
lower. Patients don’t have any extra burden and the motion 
data is collected while they are eating. An evaluation study 
was conducted to validate that our device were able to dis-
tinguish between the patients and normal people, as well as 
identifying the disease levels in a fine-grained manner. Two 
types of motion features including tremor and bradykinesia 
were extracted and machine learning algorithms were used. 
By comparing different classifier, we found that using SVM 
classifier worked best with an average accuracy rate of 92% 

and the Pearson correlation coefficient of the fine-grained 
regression by using random forest regression algorithm is 
0.97. In order to understand whether our device can really 
help the clinicians and patients and how the analysis results 
are interpreted by them, we further conducted a semi-struc-
tured interview with several clinicians at a local hospital. 
Then we found that the clinicians are eager to learn about 
the abnormality of the patient’s motor fluctuations. By pre-
senting the visual charts of participating patients’ tremor 
characteristics over 1 week, we also found our device can 
better help the clinicians guide the patient to adjust the dose 
of drugs. And patient’s engagement will be improved if 
they receive a positive feedback. More interesting is that we 
found that patients may have mental illness if their complaint 
is not the same as the actual measurement value.

Thus, our contributions in this paper are two folds: first, 
we explored to monitor the motor symptoms in PD via 
daily artifacts. We designed a handle with an inertia sen-
sors, which can be attached to the daily cutlery to collect 
the patient’s motion data unobtrusively during meals. We 
proved that the data from patient’s meal can be used for 
quantitative assessment of motor fluctuations. Second, we 
showed the interpretation of the daily self-tracking data from 
the perspective of both clinicians and patients. We found 
that our device can help clinicians gain understanding about 
patients’ fine-grained condition and can promote patients’ 
engagement in tackling the disease.

2  Related work

2.1  Task‑based assessment of PD

Traditional diagnosis for PD depends mainly on the medi-
cal history and neurological examination by a physician 
(Jankovic 2008). A number of rating scales were proposed 
to distinguish the severity and impact of the PD symptoms. 
Hoehn and Yahr scale (Hoehn and Yahr 1998) is commonly 
used to compare groups of patients and to provide gross 
assessment of disease progression, ranging from stage 0 (no 
signs of disease) to stage 5 (wheelchair bound or bedridden 
unless assisted) (Jankovic 2008). Then stages 1.5 and 2.5 
were later added to help describe the intermediate course of 
the disease. The Unified Parkinson’s Disease Rating scale 
(UPDRS) (Goetz et al. 2008) is the most well established 
scale for assessing disability and impairment (Ebersbach 
et al. 2006). Since motor impairment is the most dominant 
symptom of PD, which include tremor, bradykinesia (i.e., 
slowness of movement), rigidity (i.e., resistance to exter-
nally imposed movements), and impaired postural balance 
(Patel et al. 2009), patients were usually asked to complete 
specified actions to diagnosis or assess the severity of the 
disease. For example, the finger-tapping (FT) test requires 
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the subjects to repetitively tap the pad of the index finger 
against the pad of the thumb (Agostino et al. 1998), which 
is more difficult for the Parkinson’s patients. In the gait 
study conducted by Schaafsma et al. (2003), subjects were 
instructed to stand up from a chair, walk at their normal 
pace on level ground for 20 m, turn and walk the same route 
back, ending with a half turn and return to a seated position. 
Patients with PD have higher variability of stride and the 
risk of falling. Voice-related tests have also been used for PD 
assessment, Fox and Ramig (1997) instructed the subjects 
to take a deep breath and say “ah” for as long as they can. 
Results revealed that subjects with PD were lower in vocal 
SPL (2.0–4.0 dB SPL; 30 cm). In the clinician-scored motor 
section of UPDRS (UPDRS Part III) (Goetz et al. 2008), 
there are more task-based motor impairment assessment 
such as hands opening and closing (items 24), heel tapping 
(items 26), and arising from chair (items 27). However, task-
based assessment of PD only works when patients come to 
the hospital for outpatient visits, and relies on experience of 
the clinician to make a diagnosis. The patient cannot self-
assess at home, and it is not conductive to long-term monitor 
the disease progression in daily life.

2.2  Daily monitoring of PD

Daily monitoring of PD has received much attention recently 
(Mcnaney et al. 2014, 2015; Krause et al. 2013; Salivia and 
Hourcade 2011), both subjective and quantitative methods 
for daily motor symptoms assessment have been widely 
explored. In clinical practice, one of the common used 
methods is self-report (Patel et al. 2009, 2010). Informa-
tion about motor fluctuations is obtained by asking patients 
to recall the number of hours of ON (i.e., where medica-
tions effectively attenuate tremor) and OFF time (i.e., when 
medications are not effective). However, patients often have 
difficulty distinguishing the symptoms, which results in 
perceptual bias and recall bias (Patel et al. 2009). And the 
information is not always representative since the clinical 
environment is unfamiliar and sometimes rather stressful 
to the patient (Zwartjes et al. 2010). Another approach is 
the use of patient diaries (Reimer et al. 2004; Marinus et al. 
2002; Hauser et al. 2000, 2004; Lyons and Pahwa 2007; 
Vega et al. 2018; Nyholm et al. 2004), which allow patients 
to stay in their home environment. Patients are required to 
log their motor status choosing among 3, 4, or 5 different 
states, every 30 min for 2–7 days (Hauser et al. 2004; Reimer 
et al. 2004). Whereas the traditional paper diaries may not 
reflect reality because of a lack in compliance or retrospec-
tive data entries, electronic diaries were used in Lyons and 
Pahwa (2007) and Nyholm et al. (2004). Recently, Vega 
et al. (2018) went back to analogue and found out that pen 
and paper are a suitable method to collect longitudinal day-
to-day fluctuations. Although the patient diaries can record 

in time when the patient’s symptoms occur, many features 
captured are useless for clinical decision making (Group 
2001), and the results can be troublesome (Golbe and Pae 
1988; Brown et al. 1989). For example, Goetz et al. (1997) 
tested the efficiency of a patient-training videotape on motor 
fluctuations for on-off diaries, they found the ratings by 12 
of 32 PD patients differed by more than 80% from those of 
a trained observer.

The need for quantitatively monitoring the motor symp-
toms in daily life has resulted in growing interest in sensor 
technology. Inertial sensors including accelerometer and 
gyroscope (Patel et al. 2009; Salarian et al. 2007b; Ghika 
et al. 1993; Moore et al. 2007; Saito et al. 2004; Spieker 
et al. 1995; Mazilu et al. 2014) are the most common used 
due to their portability and wearability. Ghika et al. (1993) 
and Spieker et al. (1995) were among the first investigators 
to explore the use of accelerometers and other sensing tech-
nology to monitor patients over extended periods of time. 
Recent advances in sensor features, wireless communica-
tion, signal processing, and pattern recognition have resulted 
in quantitative assessments of motor fluctuations (Bonato 
et al. 2004). Moore et al. (2007) explored to mount inertial 
sensor around the shank (just above the ankle) and analysis 
the variable stride length for long-term monitoring of gait 
in PD. Saito et al. (2004) quantitatively evaluated motor 
activity through Lifecorder, which contains an acceleration 
sensor and can be attached to the waist belt. They found 
that data obtained with the device correlated well with the 
UPDRS and Hoehn–Yahr grading. Gyroscopes were used 
by Salarian et al. in study (Salarian et al. 2007b), they pro-
posed an algorithm to quantify the tremor and bradykinesia 
through the gyroscopes fixed to each of the forearms. They 
also found the tremor amplitude showed a high correlation 
to the UPDRS tremor subscore, which can be described lev-
eraging a logarithmic function. Patel et al. (2009) worked on 
developing a wearable system that positioned on both upper 
and lower limbs. In their study, SVM classifier was used to 
estimate the severity of symptoms and motor complications.

However, wearing these wearable sensors for a long time 
will bring discomfort to the patients and require high user 
compliance. Besides, we still have little understanding of 
what kind of help does these systems bring to clinicians and 
how to contribute to patients’ treatment.

2.3  Self‑tracking data in clinic

Self-tracking can help chronic illness patients take more 
control over their health, but the participation of doctors 
is important for interpreting tracked data accurately (Cook 
2014). Within CSCW and HCI, researchers have regularly 
addressed the need for clear and frequent communication 
and engagement between patients and clinicians (Coovert 
et al. 2012; Liu et al. 2011). The existing work that is most 
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closely related to our work is Mentis et al. (2015), which 
presented evidence that assessing a patient’s motor func-
tion, the level of disability, and the efficacy of treatments 
are iterative and constructive acts reliant on an alignment of 
shared perceptions between clinician, patient, and lay car-
egiver—that which they termed co-interpretation. In their 
follow-up work (Mentis et al. 2016), they further showed 
the changes that occur in clinical co-interpretive practice 
by the use of a simple movement sensing system in clinical 
practice. For example, the patient’s felt experience can be 
validated by the sensor and clinicians can use the data as 
prompts for patients to further reflect and share their per-
ceptions. However, their research is still in the outpatient 
setting, patient’s movements can be directly observed by the 
clinicians, which will have a preconceived effect on the data 
interpretation. A more recent study conducted by Mentis 
et al. (2017) explored how the presentation and shaping of 
self-tracking data is enacted via talk and actions. The data 
was collected from a Fitbit Zip activity tracker worn by the 
patients of PD for 4 weeks. Compared to their work, the data 
used in our research is directly related to the disease charac-
teristics, which is closer to the patient’s condition. Besides, 
we also extracted multidimensional features from the raw 
motion data and mined more information for the clinicians.

3  Design

Inspired by the previous work, we finally decided to combine 
the Inertial Measurement Unit (IMU) with the artifacts com-
monly used in our daily life instead of wearable devices to 
monitor the motor fluctuation. While these household items 
are used, the sensor records user’s motion information unob-
trusively and assess their motor function quantitatively. But 
what kind of daily necessities should we choose is an import 
issue. Considering that our equipment is used by the elderly 
in their daily lives, the following design guidelines must be 
followed.

– Availability Enabled to reflect motor symptoms, its 
actions can basically correspond to the clinical exami-
nation scale.

– Necessity Used commonly in daily life even multiple 
times per day, for real-time monitoring the motor fluc-
tuation.

– Universality User actions should not be too complicated 
for elderly, best to meet various cultures including East 
and West.

Based on the above design guidelines, we initially chose 
the spoon as the carrier for sensor implantation. Firstly, 
by holding discussions with clinicians at a local hospital, 

users have the functions of grasping, gripping, pinching, 
and moving in accordance with the provisions of the clini-
cal medical scale when using a spoon. Secondly, spoons 
are very common used in daily life, especially for elderly 
to use spoons for three meals a day. This is related to the 
time they take the medicine (i.e., dopaminergic medica-
tions), which helps to better observe the efficacy of drugs. 
Finally, spoons are accepted globally not limited to Chi-
nese and using actions is also very simple.

The design was implemented as an initial prototype 
by attaching an IMU and a battery on the handle of the 
spoon. The IMU module contains a tri-axis accelerometer 
(MMA7455L by Freescale Semiconductor, range: ±16 g , 
sensitivity: 6.1e–5g) measuring the accelerated veloc-
ity in three-dimensional space and a tri-axis gyroscope 
(ITG-3200 by InvenSense, range: ± 2000◦∕s) , sensitivity: 
7.6e–3◦/s) measuring the angular velocity of hands move-
ment in roll, yaw and pitch direction. The weight of IMU 
module is 4g and dimensions are 15.24 × 15.24 × 2 mm 
( W × H × D ). All data is recorded with a sampling rate of 
40 Hz, which can detect movements of up to 20 Hz accord-
ing to the Nyquist Theorem. The data is transmitted to a 
laptop via Bluetooth (RN-41) at 9600 Bd. The battery we 
used is a 3.7-V 800 mAh lithium polymer battery.

We presented our initial spoon prototype to clinicians 
and patients at the hospital, which underwent three distinct 
iterations to refine its appearance and technical infrastruc-
tures. The first iteration was pilot tested by three clinicians 
and two ward nurses, they suggested that we should add 
a shell to the spoon handle to avoid the safety hazard that 
patients may spill the soup on the sensor. Then we made 
a handle shell that fit people’s grips through 3D print-
ing technology, and ensured that the sensor is well sealed 
except a gap for Bluetooth communication. After refining, 
later iterations were given to five patients for feedback, 
they were concerned about the cleaning and replacement 
of the spoon. Consider this issue and to make our device 
more versatile, we attached the senor directly to the handle 
of the shell, which separates the sensor from the spoon. 
That makes it easy to remove the spoon for cleaning or 
replacement, and the handle with sensor can be used on 
other cutlery such as forks. The patient’s family also sug-
gested us to add a battery charging interface and an on/off 
switch to control the device, both of which were presented 
in our final prototype.

Figure 1 shows the final prototype and we attached it on 
a spoon. The IMU sensor and battery used in the device 
are the same as in our initial prototype. The acceleration 
sensor reflects the speed of the movement of the user in 
the three-dimensional space (x, y, z-axis) during the use 
of the spoon; the gyroscope sensor reflects the deflection 
rate of the three-axis tilt (Roll, Yaw, Pitch) change speed.
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4  Evaluation

Our first study explored the feasibility of using our device 
for PD assessment by analyzing data from patients and 
normal people collected at the outpatient clinic of a local 
hospital. We extracted physically meaningful features, not 
only distinguished between patients and normal people 
through the classification algorithms, but also identified 
the disease levels in a fine-grained manner through regres-
sion algorithms.

4.1  Patient and procedure

We collected 25 subjects data from hospital clinic com-
posed of 13 people diagnosed with PD and 12 healthy con-
trols. All of them are right-handed. Table 1 summarizes 
the demographic and clinical information of these sub-
jects. During the consultation time, a clinical evaluation 

including the Hoehn–Yahr scale and UPDRS-III test con-
ducted by a disorder expert. After the clinical assessment, 
subjects were asked to drink a bowl of water (345 ml) 
using the spoon with our designed handle (Fig. 2). IMU 
data was collected at the same time and it took about a 
minute for each subject to drink the water. PD subjects 
were tested during their ’ON’ state.

The study procedure was approved by a local hospital. 
All participants in the study gave informed consent prior to 
enrollment.

4.2  Data analysis

The original sensor data contains three-axis acceleration 
data three-axis gyroscope data. In order to enable the com-
puter to accurately distinguish between patients and normal 
people, even to identify the disease levels in a fine-grained 
manner, we processed the original data and extract the rel-
evant features of the PD. Finally, the machine learning clas-
sifier and regression methods were used to obtain the ideal 
results.

Fig. 1  The 3D printed handle 
attached on the spoon (a) and 
the the coordinate system estab-
lished on the handle (b)

Table 1  Summary of the demographic and clinical information of the 
study cohort (25 subjects)

With the exception of clinical characteristics (UPDRS-III score), the 
two groups are reasonable matched in terms of demographics as no 
significant difference was observed (two-side Mann–Whitney U test)
n/a not applicable, sig. significant, n.s. non-significant

n (total n = 25) PDs CNTs Signifcance
13 12 n/a

Demographics
 Women (%) 7 (53.85%) 5 (41.67%) n/a
 Men (%) 6 (46.15%) 7 (58.33%) n/a
 Age #avg (std) 57.46 (12.77) 56.08 (7.85) n.s. ( p = 0.35)
 Education #avg 

(std)
10.77 (3.35) 11 (3.46) n.s. ( p = 0.85)

Clinical characteristics
 UPDRS part III 

#avg (std)
7.15 (3.48) 0.0 (0.0) sig. ( p < 0.001)

 Hoehn and Yahr 
#avg (std)

1.77 (0.93) n/a n/a

Fig. 2  The subject drunk water with our spoon in clinic
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4.2.1  Signal filter and integration

We analyzed the data from the two characteristics of 
PD: tremor and bradykinesia. Thus two infinite impulse 
response (IIR) filters based on an elliptic design were 
used. One of them is a high-pass filtered with a cutoff 
frequency of 1 Hz to remove the effect of gross changes in 
the orientation of body segments (Hoff et al. 2001), and 
the other is a low-pass filtered with a cutoff frequency 
of 3 Hz to remove the effect of tremor for the analysis of 
bradykinesia (Patel et al. 2009).

In order to integrate the axis data and reduce the 
dimension, two one-dimensional “signals” are computed 
from the raw accelerometer and gyroscope axes.

– MAG The magnitude (Euclidean norm) of the signal 
around the x-, y-, and z-axes. This is to minimize errors 
resulting from slight variations in the orientation of sen-
sors (Espay et al. 2011).

– PC The projection of the three-dimensional accelerom-
eter signal onto its first principal component. This is the 
movement along the axis that demonstrates the most vari-
ance within this window (Morris et al. 2014).

4.2.2  Sliding window

It has been proved that the error values appear to plateau 
with a window of 5 s or longer for tremors, but a longer 
window is needed for bradykinesia because it is marked 
by lower frequency components than tremor (Hoff et al. 
2001). Thus we windowed the data into 6-s windows slid-
ing at 5 s (i.e., each window shares 1 s of data with previ-
ous window).

4.2.3  Feature extraction

Our feature set aims to capture the symptom of PD including 
tremor and bradykinesia. Tremor in PD is generally charac-
terized by a frequency of approximately 4–7 Hz for rest and 
6–13 Hz for postural/kinetic (Bhavana et al. 2016), hence 
we anticipate to distinguish tremor based on the frequency 
characteristics of the signal (e.g. the dominant frequency, 
median frequency, and power distribution). Approximate 
entropy is used to quantifies the degree of irregularity and 
the unpredictability of fluctuations in time series data (Abhi-
naya and Thanaraj 2016), the more complex the time series, 
the larger the approximate entropy. We anticipate the Par-
kinson’s patients to have higher irregularities due to tremor. 
On the other hand, the normal subjects commonly move with 
higher accelerations and energy than bradykinetic subjects 
(Griffiths et al. 2012), thus the peak value and mean spectral 
power were calculated as part of the bradykinesia features. 
Moreover, we calculated the speed by integrating the accel-
erometer and gyroscope data via the trapezoidal method 
with unit spacing. The range and the root mean square of 
the speed were used as the remaining bradykinesia features. 
Table 2 shows the features explored in this study. Each 6-s 
window is transformed into eight features. Note that there 
are four signals, thus in total we have 32 dimensions in the 
feature vector.

4.2.4  Classification

Every 6-s window in our training data was labeled “healthy” 
or “unhealthy” from the ground truth information of the par-
ticipants given by the specialist. For each window, we com-
puted these 32 features, and compared four classifiers includ-
ing K-Nearest Neighbor (KNN), Adaboost, Random Forest 
and Support Vector Machine (SVM) with linear kernel. The 

Table 2  Features explored in the study

Feature name Description

Tremor features
 Dominant frequency (DF) The frequency at which the maximum power of spectrum occurs (Patel et al. 2009; Salarian 

et al. 2007b)
 Median frequency (MF) The point where the power is equally divided between the upper and lower parts of the 

spectrum (Perumal and Sankar 2016)
 Power distribution (PD) The amount of power distributed in the 4–13 Hz range around the total power in the spec-

trum (Perumal and Sankar 2016)
 Approximated entropy (AE) Approximate entropy estimates the effect of PD on the complexity of the tremor time series 

(Lukšys et al. 2018; Gil et al. 2010)
Bradykinesia features
 Peak (PK) mean spectral power (MSP) The maximum amplitude of the signal and the mean of power spectral density between 

0.2–4 Hz are calculated to reflect the motion energy (Griffiths et al. 2012)
 Speed range (RG) speed root mean square (RMS) The range and RMS are calculated to reflect the difference in speed (Dai and D’Angelo 

2013; Kim et al. 2011; Dai et al. 2015)
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probability of either “healthy” or “unhealthy” for each 6-s 
window is predicted and the final prediction of a participant 
depends on the normalized results of all the windows in his 
data. The machine learning models were built in Python 
using scikit-learn package. We are also very interested in the 
role of different sensors in classification, so based on the best 
classifier, we further analyze the classification results using 
only acceleration sensor or gyroscope sensor.

4.2.5  Regression

In order to identify the PD levels in a fine-grained manner, 
we further established a random forest regression model (Ho 
1995) to fit the data. The random forest regression learns 
shallower, more isolated trees instead, reducing the possi-
bility of nonsensical interactions between features across 
tasks (Mariakakis et al. 2018). We still used the 6-s sliding 
window data, and the corresponding label of the data is the 
Hoehn–Yahr scale. However, there is a problem with sample 
imbalance in our data, especially fewer samples with high 
disease severity. So we oversampled the patient data so that 
the number of samples per disease level is almost the same. 
And to prevent overfitting, we used the SMOTE algorithm 
(Chawla et al. 2002) instead of simple copy of the sample 
for oversampling. The idea of SMOTE algorithm is to uses 
the similarity of niche samples in special spaces to generate 
new samples. The total number of final samples is 72, with 
an average of about ten samples per level.

4.3  Results

4.3.1  Feature analysis

This study mainly adopted two types of features including 
tremor features and bradykinesia features. To illustrate the 
identifying ability of our features and provide some prelimi-
nary insight into the statistical properties, we used one-way 
analysis of variance (ANOVA) test to determine if there are 
any significant differences between the mean values of the 
two groups (PD and healthy controls), and plotted the box 
diagram, which show the likely range of variation (the inter-
quartile range or IQR) of a distribution. The green box repre-
sents the Parkinson’s patients and the yellow box represents 
the healthy control group. Results indicate that these features 
can provide powerful identifying capability.

For tremor features, it can be seen from Fig. 3 that the 
patients’ frequency value, high frequency ratio and irreg-
ularity are generally higher than normal people. Among 
these features, the number of signals with significant dif-
ference in the AE feature was the most, all signals showed 
significant differeces (F1,23 = 20.105,F1,23 = 17.6,F1,23 =

27.267,F1,23 = 20.154, p < 0.001) . But for DF feature,  

only two signals have the significant differences 
( F1,23 = 8.245, p = 0.009;F1,23 = 4.497, p = 0.045) . This 
may because in our study, we analyzed the frequency when 
a patient was drinking water, the maximum energy will 
appear in the low frequency part at many times. Note that 
the domain frequency of patients and normal people is con-
centrated below 4 Hz, which happens to be the frequency 
range of voluntary activities (Perumal and Sankar 2016), 
the distinction in DF feature is not obvious enough. And the 
MF feature is better than DF feature because it reflects the 
overall center of the energy distribution. We also found that 
features performed on the PC signal are better overall than 
MAG because all the four features have significant differ-
ences among the data except for DF feature on GYRO_PC 
( F1,23 = 3.672, p = 0.068 ). This may because the action 
of smashing with a spoon itself will bring about dramatic 
changes, the MAG signal integrates three directions by sim-
ply squared and superimposed will contain a lot of noise 
interface, while the PC signal can reflect the more repre-
sentative information of the three signals.

For bradykinesia features, to plot signals of different 
magnitudes together, we used the min–max normalization 
methods. The formula is given as:

Then according to Fig. 4, the moving speed and energy 
values of the PD patients are generally lower than normal 
due to bradykinesia. Among the features, significant differ-
ences exist except for the RG feature and the RMS feature of 
ACC signals ( F1,23 = 1.446, p = 0.241;F1,23 = 2.847, p =

0.104;F1,23 = 1.716, p = 0.203;F1,23 = 2.847, p = 0.105).

4.3.2  Classification results

Our preference for that approach was guided by its good 
performance relative to a total of five machine learning algo-
rithms tested, and whose performance in terms of AUC, sen-
sitivity (Sens), specificity (Spec), and accuracy (Acc) are 
shown in Table 3. The algorithms were tested with leave-
one-out cross validation. Results showed that SVM was 
better than any of other classifiers, as it classified correctly 
91.67% of the PD participants and 92.31% of the healthy 
participants, with AUC of 0.98 and accuracy of 92.0%. By 
comparing the two sensors, we found it was reasonable that 
the classification result of two sensors was better than that 
of single sensor. However, we also fount the classification 
result of only using gyroscope sensor was better than accel-
eration sensor, which meant that the symptoms of Parkin-
son’s patients were more pronounced in angular deflection.

(1)x� =
x − min(x)

max(x) − min(x)
.
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4.3.3  Regression results

The regression results are shown in Fig. 5, including the 
actual Hoehn–Yahr scales and predicted scores for 72 sam-
ples. The mean absolute error is 0.166 and the Pearson 
correlation coefficient between them is 0.97. Thus a fine-
grained distinction can be made between diseases by using 
a random forest regression, which is the basis for our long-
term monitoring of diseases.

5  Understanding the role of PD monitoring

In order to find out whether our device can really help the 
physicians and the elderly in practice, we conducted a semi-
structured interview with several clinicians at the local hos-
pital. As our motivation was to explicate the talk that come 
together with the self-tracking data, which is not achieved 
with one quote, but rather a series of talk. Thus we presented 
our findings as vignettes from the conversations, focusing 
on three main themes: clinical demands, the interpreta-
tion of the visual data, and the help for the patients. In the 

following sessions, RS refers to our researchers, CN refers 
to the clinicians.

5.1  Vignette 1: clinical demands

At the beginning, we are concerned about the problems in 
the treatment and long-term monitoring of the PD among 
clinicians. Although a lot of related work has been investi-
gated, we still want to know the real thoughts of the clini-
cians and the current situation, including the clinical diag-
nosis, how the patient adjusts the drug and what kind of help 
can our device provide for them.

RS: How to ask the PD patient’s condition in the clinic?
CN: For example, “Is the hand shaken so bad?”, “Is 

it okay to walk?”. The complaints of Parkinson’s patients 
will generally be “I am shaking hands” and “I am walking 
slowly.” Clinical examinations will also allow patients to 
write, draw spirals, and do some paper and pen movements. 
All of them depend on our subjective judgement.

Therefore, in the clinical diagnosis of PD, the motor char-
acteristics are a very important basis for judgement. The 
clinician will check the patient’s athletic ability and make 

Fig. 3  Boxplot of tremor features. Statistically significant differences are noted as: p < 0.001(**) and p < 0.05(*)
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subjective evaluations based on their experience. We also 
noticed that most patients usually wait until the symptoms 
are serious before they come to the hospital for examina-
tion. Some early illnesses are very insidious and have a low 
incidence, so identifying such mildly ill people in advance 
is very meaningful for the diagnosis of existing PD.

RS: After the diagnosis of Parkinson’s patients, how often 
do they review and do you want to know the daily status of 
the patient at home during the period before the review?

CN: They will be given medication after diagnosis and 
wait for one to three months before reviewing. When they 

come to review, we especially want to know the reaction of 
PD at home, which is related to how we adjust the dose of 
the drug for them. We lack an objective measure because 

Fig. 4  Boxplot of bradykinesia features. Statistically significant differences are noted as: p < 0.001(**) and p < 0.05(*)

Table 3  Classification performances of different algorithm

The best performing algorithm is bold

Algorithms AUC [5% 95%] Spec (%) Sens (%) Acc (%)

KNN 0.95 [0.78 0.99] 81.81 78.57 80.0
Adaboost 0.95 [0.76 0.99] 90.0 80.0 84.0
Random foreast 0.95 [0.81 0.99] 83.3 84.6 88.0
SVM 0.98 [0.92 0.99] 91.67 92.31 92.0
GYRO+ + SVM 0.95 [0.78 0.99] 90.0 80.0 84.0
GYRO + SVM 0.95 [0.79 0.99] 90.9 85.71 88.0

Fig. 5  Regression results of Hoehn–Yahr scale
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some patients may not express symptoms due to their age 
or unclearness and some patients don’t even want to tell the 
truth. And the control effect of drug on mid-to-late Parkin-
son’s patients is irregular, daily monitoring is necessary.

RS: So how to adjust the drug dose? Are the patients 
adjusting the dose themselves? Is there a subjective factor?

CN: Adding slowly from the initial dose can control the 
symptoms, and it cannot be excessive, which can cause side 
effects. We will guide the patient how to adjust the medi-
cine and avoid the patient’s own adjusting. The dosage itself 
depends on the patient’s subjective feelings.

It can be seen that there is currently a great deal of uncer-
tainty about the dose adjustment in the treatment of Parkin-
son’s patients. Although in the early stage of PD, the clini-
cians can give guidance on the dose of Parkinson’s patients 
based on experience and current symptoms, the efficacy of 
the drug will gradually weaken in the middle and late stages 
of the disease, and the patient will also have dyskinesia, 
which is very troublesome for the clinician’s drug adjust-
ment. Through our device, we can provide an objective eval-
uation value after each meal as a reference for clinicians and 
patients to adjust the dose.

RS: What do you think our equipment can help you in 
other ways?

CN: When we look at the clinic, we only know the 
patient’s performance at the current time point, which may 
be the time when the patients has taken the medicine. We 
may think that the current state is good but can’t see the state 
of whole day. On the other hand, the Parkinson’s patients 
need long-term management and the course of PD is about 
5–10 years. Therefore, if you have a patient’s electronic data 
database, it will facilitate future management and follow-up. 
And at present, we don’t know when the course of PD will 
suddenly deteriorate and the natural course of the disease. 
If the disease course can be detected in the future, it will 
help to describe the course of the disease and Analysis the 
sudden influence factors.

We found that a detailed report on the patient’s condi-
tion is very necessary. Compared to the current diagnostic 
process, we store the detail motor fluctuations information 
of the users for each meal per day in the database, and pro-
vide an objective reference for clinician’s judgments when 
patients review at the hospital. We can also contribute to 
long-term management of the disease. For example, when a 
patient with advanced PD comes back to the clinic, we can 
check the record of his illness ten years ago, which will help 
clinicians to fully understand the condition and adopt the 
best treatment plan.

5.2  Vignette 2: visual data interpretation

Visualization chart is the most intuitive way to present a 
patient’s condition to a clinician. Here we presented a simple 

visualization method based on the histogram. The abscissa 
indicates 7 days of a week, the ordinate indicates the median 
frequency features of the patient, and the three columns cor-
respond to three meals a day. Before collecting data from 
real home environments, we simulated several possible situ-
ations of patients according to the description of clinicians. 
We want to know what kind of interpretations will be made 
when clinicians see these forms, and how this will help them 
better diagnose the condition of Parkinson’s patients.

RS: If the patient’s self-tracking tremor frequency data 
within one week is shown below, what does it mean and 
what will you do ?

CN: From Fig. 6a, the patient’s fluctuations are relatively 
stable, so it is enough to maintain the dose of the original drug.

CN: From Fig. 6b, the patient’s condition is deteriorating, 
and the drug control is not good. We will consider increas-
ing the dose of the drug. We will also check if he has other 
symptoms.

CN: Fig. 6c reflects the difference between the motor fluc-
tuation of the patient between morning and other times, so 
we will consider increasing the dose of the morning drug.

CN: From Fig. 6d, in the middle two days, the patient’s 
fluctuations were abnormal, but then returned to normal. This 
may be because the patient has forgotten to take the medicine 
for two days or has been affected by the external environment.

Through the above analysis, we found that various situ-
ations occur in the daily life of the patient. However, the 
clinicians are not well aware of these situations at present, 
and it is difficult to make a comprehensive judgment through 
the patient’s subjective appeals, especially for the control of 
doses. However, according to the information provided by 
our results, this missing information can be compensated.

5.3  Vignette 3: help for patients

It is also a problem we want to know that how can our device 
help the patients after they use is. Not only is it limited to 
adjusting the dose based on objective data every day, we 
also explored whether positive feedback on the mental level 
would help to improve the condition, and finally there are 
some interesting findings.

RS: From the patient’s point of view, can our data help?
CN: In the clinic, patients will have more severe symptoms 

due to psychological stress, but using our equipment can pro-
vide real data that they usually measure at home and partici-
pate in the treatment process. Besides, if the patients observes 
their data is normal every day, there will be a placebo effect. 
Positive psychological implications for the patients are like 
watching the sphygmomanometer measuring normal blood 
pressure or the pedometer walking a lot of steps every day.

RS: If the information the patient sees is negative and 
finds that his condition is worsening, will it increase 
negative feedback?
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CN: The patients themselves can feel their own situation. 
Even without our data, the condition will worsen if it worsens.

RS: Is there a bias in the self-perception of Parkin-
son’s patients, such as feeling aggravated but not actually 
aggravating?

CN: Some Parkinson’s patients also have some mental 
emotional problems such as depression, so their subjec-
tive feelings will be different from healthy people.

At the first time of consultation, it is necessary to 
record the initial state of the patient as a baseline, so that 
the bias between the subjective feelings and real situa-
tions can be found. In addition, if the patient’s subjec-
tive description is inconsistent with the clinician’s view 
(symptoms and complaints are inconsistent), it may indi-
cate that the patient has mental problems, and they may 
be recommended to refer to the psychology department 
for early diagnosis of mental illness. After they have 
improved their emotional problems, they can come back 
to do our checks and see if they are getting better.

6  Discussion

Our motivation of the study is to monitor the motor symp-
tom of PD through the daily artifacts. Following the three 
design principles of availability, necessity and universality, 

we designed a handle with inertial sensors and it can 
be attached to the daily cutlery. To ensure the validity 
of our device for daily monitoring, we first conducted an 
evaluation study and found that our device can not only 
distinguish the patients and normal people well, but also 
identify the disease levels in a fine-grained manner. In our 
research, we are also interested in how the self-tracking 
data is interpreted by clinicians and patients, and what 
kind of help can these data provide to them. Therefore, we 
conducted a semi-structured interview with several clini-
cians at a local hospital. In Vignette 1 and 2, we see that 
information about the patient’s daily motor symptoms is 
really important to the clinicians. The weekly or even daily 
motor fluctuations of the patients are unstable, thus contin-
uously control of drugs is necessary. One of the main aids 
of our device is to instruct patients to tailor medication to 
the fluctuations of their condition. And it also contributes 
to assist clinicians to master the trend of the disease. We 
see that patient’s engagement can be improved through 
self-tracking results and a positive feedback will increase 
their confidence in Vignette 3. Another finding is that 
patients may have mental problem if the results are incon-
sistent with their feelings. Thus more information can be 
mined through clinical interpretation of the patient’s self-
tracking data. A more interesting thing is that during our 

Fig. 6  Visualization of simulated patient data
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study, many patients reported that using the spoon with 
our handle is more comfortable than a normal spoon.

We hope that the interpretation given by the clinicians 
in our study can inspire the researchers who work in the 
related fields. However, there are some limitations in our 
research that should be considered. The number of patients 
explored in our study is not large enough and we just did an 
initial deployment. In the future, we want to make a com-
plete system and look for large-scale Parkinson’s patients for 
long-term follow-up experiments. And we believe that there 
will be more interesting discoveries in such an environment.

7  Conclusions

In this work, we explored to combine the IMU sensors with 
the daily artifacts to monitor the motor fluctuations of PD. 
After the iterative development, we finally designed a handle 
with inertia sensor that can be attached to the cutlery and 
unobtrusively collect motion data while eating. Through 
25 subjects study for classification and regression, we can 
distinguish between patients and normal people with AUC 
of 0.98 and Pearson correlation coefficient of 0.97. A semi-
structured interview validated that the self-tracking data can 
help clinicians better understand disease progression and can 
encourage patients’ engagement for treatment.
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