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ABSTRACT 
Recent technological advances have demonstrated the 
feasibility of measuring people’s heart rates through 
commodity cameras by capturing users’ skin transparency 
changes, color changes, or involuntary motion. However, 
such raw image data collected during everyday interactions 
(e.g. gaming, learning, and fitness training) is often noisy 
and intermittent, especially in mobile contexts. Such 
interference causes increased error rates, latency, and even 
detection failures for most existing algorithms. In this 
paper, we present BayesHeart, a probabilistic algorithm that 
extracts both heart rates and distinct phases of the cardiac 
cycle directly from raw fingertip transparency signals 
captured by camera phones. BayesHeart is based on an 
adaptive hidden Markov model, requires minimal training 
data and is user-independent. Through a comparative study 
of twelve state-of-the-art algorithms covering the design 
space of noise reduction and pulse counting, we found that 
BayesHeart outperforms existing algorithms in both 
accuracy and speed for noisy, intermittent signals.  
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INTRODUCTION 
Recent technological advances have demonstrated the 
feasibility of extracting people’s heart rates through 
commodity cameras by capturing users’ skin transparency 
changes [4, 25, 31], thermal changes [11], facial color 

changes [27], or involuntary motion [3]. As one crucial 
physiological signal, resting heart rate (RHR) is a key 
indicator of health condition [8, 10], fitness [9, 17], and 
expected life span [18, 32]. Heart rate and variations of 
heart rate have also been used to predict human emotion 
[26], cognitive workload [30], stress [6, 21], and attention. 
As a result, low cost, ubiquitous heart rate monitoring has 
enormous opportunities in healthcare, human-computer 
interaction [30], balancing physical exertion [23], and 
computer assisted tutoring [20, 36]. 

 

Figure 1: BayesHeart can detect heart rate implicitly 
from intermittent mobile interactions. (a) LensGesture 

[37] enhanced UI navigation; (b) mobile intelligent 
tutoring system; (c) LivePulse Games (LPG) [14]. 

Despite compelling advantages in cost, availability, 
portability, and ease-of-use [14, 28], commodity camera 
based heart rate monitoring techniques, when running on 
smartphones, also face three major challenges when 
compared with traditional approaches such as 
Electrocardiogram (ECG) and pulse oximetry. First, the 
indirectly captured Blood Volume Pulse (BVP) signals by 
cameras are noisier due to interference in background 
illumination, motion, and contact pressure. Second, the 
region of interests (ROI), be it human face, head, fingertip, 
or body, may not be always in the viewport of the camera. 
Brief but intermittent appearance of ROI (e.g. 2 – 20 
seconds) will be the norm in many interaction scenarios. 
Such interference causes increased error rates, latency, and 
even detection failures when using certain existing 
algorithms. Last, the sampling rate of commodity camera 
based heart rate monitoring is bounded by the camera’s 
frame rate (30 Hz), which is much lower when compared 
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with dedicated ECG (125-1500 Hz) devices and pulse 
oximeters (125-250 Hz). Such low sample rate prevents the 
adoption of state-of-the-art noise cancelation techniques in 
heart rate monitoring.  

To address these challenges, we present BayesHeart, a 
probabilistic algorithm that extracts both heart rates and 
distinct phases of the cardiac cycle directly from noisy, 
intermittent ROI signals (e.g. fingertip transparency 
changes, facial color images) captured by camera phones. 
BayesHeart can extract heart rate from everyday mobile 
interactions implicitly. We use the term “implicit” to 
differentiate our envisioned scenarios with those that 
require users to mount sensing equipment, “explicitly” 
launch monitoring apps, and spend an uninterrupted amount 
of time in data collection. For example, Figure 1.a 
illustrates LensGesture [37] enhanced UI navigation. A 
user’s heart rate can be inferred when scrolling menu item 
via back-of-device finger gestures on the camera lens; 
Figure 1.b shows a mobile intelligent tutoring system which 
adapts question difficulty based on both learners’ stress 
inferred from heart rates and answer history; Figure 1.c are 
examples of LivePulse Games (LPG) [14]. LPG integrate 
users’ camera lens covering actions as a control channel for 
game play and derive users’ heart rates from lens-covering 
actions. In these scenarios, BayesHeart can infer users’ 
heart rates as a side effect during everyday tasks.  

BayesHeart uses an adaptive hidden Markov model, 
requiring no user-specific training. BayesHeart has four 
major advantages when compared with approaches in the 
existing literature: 1) lower latency and bootstrap time; 2) 
higher accuracy under noisy and incomplete data; 3) Easier 
integration with application scenarios that only capture ROI 
implicitly or intermittently [14, 37]; 4) Joint extraction of 
both heart rate and distinct phases of the cardiac cycles. 

RELATED WORK 

 

Figure 2. The design space of commodity camera based 
heart rate detection techniques. 

Electrocardiography (ECG or EKG) and pulse oximetry 
(i.e. blood oxygen saturation or blood oxygenation) are the 
most widely adopted approaches for heart rate detection. 
ECG and pulse oximetry devices usually come in the form 

of chest bands, wrist bands, finger clips, or watches. 
Although the recent release of wearable computing devices 
such as Android Wear [1] and Apple Watch [2] opens new 
opportunities for continual heart rate sensing integrated 
with smartphones, the price and battery life may prevent 
their wide adoption in the near future.  

Several commodity camera based heart rate detection 
techniques [3, 4, 5, 11. 14, 16, 19, 25, 27, 31] have arisen in 
recent years. These approaches are capable of extracting 
heart rate from consumer-grade webcams or smartphones, 
hence enabling enormous opportunities in health care, 
fitness training, and affective computing [26].  

Along this line, researchers have shown the feasibility of 
extracting heart rate from finger transparency changes, i.e. 
photoplethysmography (PPG), captured by a smartphone 
camera [4, 19, 25]. Jonathan et al. [19] proposed to analyze 
fingertip video via Fast Fourier transform (FFT), however, 
the authors didn’t conduct a formal evaluation of the 
accuracy. Poh et al. [27] successfully inferred heart rates by 
analyzing facial color changes captured by a webcam. 
Poh’s algorithm first used Independent Component 
Analysis (ICA) to construct a less noisy signal channel 
from three R/B/G channels, then used FFT and thresholding 
in the frequency domain for pulse counting. Similarly, 
Balakrishnan [3] used PCA for noise reduction, frequency 
domain power analysis for channel selection, and a moving 
window in temporal domain for peak detection when 
analyzing involuntary head motions in video. It’s also 
possible to measure heart rate by analyzing facial thermal 
changes [11]. With the popularization of camera phones, 
such camera based approaches have already become wildly 
popular when compared with solutions that rely on 
dedicated hardware. For example, Instant Heart Rate [16], a 
commercial camera based PPG app, attracted over 25 
million users within two years. 

Despite variations in underlying sensing mechanisms, most 
of today’s algorithms adopt a two-step workflow, i.e. 1) 
noise reduction and 2) heart beat counting. The noise 
reduction step intends to diminish noise from digitizers, 
ambient light, body tissue, and motion. Commonly used 
noise reduction techniques include independent component 
analysis (ICA) [27], principle component analysis (PCA) 
[3], smoothing filters [4, 33], and heuristics [14]. The heart 
beat counting step leverages either temporal domain 
techniques (peak thresholding [3, 4, 33], heuristic based 
peak counting [14]) or frequency domain techniques (e.g., 
Fast Fourier Transform [3, 27]).  Figure 2 shows the design 
space of commodity camera based cardiac pulse detection 
and the relationship of BayesHeart with existing techniques.  

Unfortunately, although the two-step workflow works well 
on continual and relatively clean signals, it may break when 
dealing with implicit and intermittent mobile interaction 
scenarios (Figure 1).  Figure 3 illustrates representative 
signals (i.e. (a) high quality signals, (b) noisy signals, and (c) 
intermittent signals) captured from such scenarios.  
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Figure 3. Sample PPG signals captured from a mobile 
camera (a: high quality signals; b: noisy signals; c: 

intermittent signals). 

In the noise reduction step, component analysis techniques 
(ICA and PCA) require constructing and updating a linear 
transformation matrix from historical data. A 30-second 
window [27] will cause at least the same amount of 
bootstrap time and increased latency. The calculation of 
PCA or ICA transformation matrix becomes more 
challenging when dealing with intermittent signals that only 
last 5 - 20 seconds in each session.  

In the heart beat counting step, an FFT based approach [27] 
requires continual signals meaning that it will break when 
handling intermittent signals. Meanwhile, temporal domain 
counting techniques only leverage the amplitude properties 
of pulse peaks and ignore the temporal regularity of pulse 
wave forms. As a result, both peak thresholding and peak 
counting techniques are sensitive to motion-induced noises, 
which are hard to eliminate during the noise reduction step. 

BayesHeart uses probabilistic modeling to address 
challenges of existing algorithms in contexts of noisy, 
implicit and intermittent PPG signals captured by 
commodity cameras in everyday settings. Unique 
contributions of BayesHeart include: 1) The usage of an 
Adaptive Hidden Markov Model to extract both heart rates 
and distinct phases of the cardiac cycle directly from raw 
signals; 2) The usage of discrete local trend features to 
achieve both simplified model training and improved 
robustness; 3) Designing an effective 2/4-state model 
selection paradigm to exploit both the temporal regularity 
and the intra-person diversity in signals. We also advance 
the state-of-the-art by identifying the design space of 
commodity-camera based heart rate detection and 
presenting a comparative study of BayesHeart, existing 
algorithms, and their variants. 

Hidden Markov models have been used in analyzing 
cardiac pulse signals (e.g., ECG and PPG) before, either for 
analyzing signal properties [7, 15], or for diagnosing 
disease [24]. BayesHeart is unique in that existing 
techniques focused on continual clinical signals captured 

from medical-grade devices collected by researchers or 
health-care providers. Thanks to the sampling rate (150–
1500 Hz), form factors (wrist bands, chest bands, or finger 
clips), and usage scenarios (in-door, continual 
measurements in stationary postures), extrinsic noise and 
interruptions were not a major concerns in existing research. 
By comparison, BayesHeart explores the opportunities of 
implicit and intermittent heart rate monitoring for normal 
people in everyday environments. Existing techniques for 
analyzing medical grade ECG/PPG signals do not 
generalize directly to low frequency (below 30 Hz) and 
noisy signals captured by commodity cameras. We invented 
two novel techniques in BayesHeart to overcome new 
challenges encountered: 1) We defined four novel “local 
trend” features as the input to our learning algorithm.  The 
absolute signal magnitude feature used by HMM models in 
ECG and PPG research do not work well on noisy and 
intermittent signals from commodity cameras; 2) We 
designed a simple but effective 2/4-state adaptive model to 
capture signal variances in the unique context of 
commodity camera based mobile interactions. 

THE BAYESHEART ALGORITHM 

Background 
The underlying theory behind photoplethysmographic (PPG) 
imaging is as follows: the heart pumps fresh blood to the 
capillary vessels of a human body during systole in each 
cardiac cycle. Such blood volume changes lead to changes 
in fingertip transparency, which can be detected by the 
built-in camera of the mobile phone when the user covers 
the lens of the camera with her fingertip [12, 13, 19]. 
Therefore the changes of finger transparency can be viewed 
as a generative process, in which there are natural 
correlations between different regions of the PPG 
waveform and dedicated cardiac phase.  

 

Figure 4. One-cycle waveform associated with the 
physical activities in one cardiac cycle. 

Pulse Modeling 
BayesHeart relies on a hidden Markov model to capture the 
temporal regularity of the different stages in cardiac cycles 
(hidden) and the finger transparency changes (observable). 
After training the model, given new observations, we can 
segment the observations into states by calculating an 
optimal alignment via Viterbi decoding [29]. Then heart 
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rate can be estimated by extracting the duration of each 
cardiac cycle from the derived cardiac alignment.   

Hidden States 
 

 

Figure 5. States selection based on the waveform shapes. 

According to PPG imaging [22, 33], a typical cardiac cycle 
includes four distinct stages (Figure 4):  1) rapid ejection 
(i.e. systolic upstroke); 2) reduced ejection (i.e. systolic 
downstroke), 3) isovolumetric relaxation (i.e. a small 
upstroke caused by dicrotic notch); and 4) rapid/reduced 
filling (i.e. diastolic downstroke). Therefore it is a natural 
choice to use a 4-state hidden Markov model with each 
state corresponding to one cardiac stage (Figure 5.a). 
However, due to extrinsic noise and variations in tissue/skin 
reflections, the third cardiac stage (isovalumetric relaxation) 
can be hard to identify in the waveforms captured by 
commodity cameras. In such situations, the waveform of 
one cardiac cycle only shows two distinct phases (Figure 
5.b): rapid ejection (i.e., systolic upstroke) and reduced 
ejection plus the whole diastole phase (i.e., a long 
downstroke). Hence we propose an adaptive 2/4 state model 
to capture both the subtlety and diversity of waveforms.  

We do not consider models with more than 4 states for two 
reasons. 1) Although the model likelihood on training data 
improves as the number of states increases, it usually comes 
at the cost of data overfitting (i.e., more parameters) and 
more training samples. 2) Our main purpose is to estimate 
the duration of cardiac cycles rather than to analyze subtle 
changes within one cycle. For this purpose, fine grained 
segmentations, at the cost of more training data and 
increased algorithm complexity, won’t bring us additional 
insight.   

Observations 
Unlike existing research on clinical ECG/PPG analysis [7, 
15], we choose not to use the absolute observations (i.e. 
brightness of finger transparency) in our model because 
such absolute scales are sensitive to both the environmental 
illumination changes and motion-induced noise. Instead, we 
choose the “local trend” of each sample point as a more 
robust feature as our model observations. Interestingly, this 
feature is more expressive than the absolute scale in our 
context. For instance, the wave-form generates much more 
increasing observations in the rapid ejection stage than the 
filling stage. Such regularities encoded in the “local trend” 
feature are easier to capture by BayesHeart. We further 

define four types of discrete observations (o1 – o4) from the 
“local trend” feature (Figure 6, o1 represents increasing 
observations, o2 represents local minimum observations, o3 
represents maximum observations, and o4 represents 
decreasing observations). 

 

Figure 6. Four types of observations. 

Mathematical formulation 
BayesHeart is a discrete left-right HMM [29] defined as 
follows: 

 

Figure 7. 4-state model (a) and 2-state model (b) 

1) N, the number of states in the model 

We denote the individual states as ܵ ൌ ଵܵ, . . . , ܵே	and the 
state at time ݐ	as	ݏ௧ . As mentioned above, there are two 
models (i.e., 4-state model and 2-state model, Figure 7) in 
our approach.  

2) M, the number of distinct observation symbols per state, 

In our case, M=4. We denote the individual symbols 
as	ܱ ൌ ሼ ଵܱ, ܱଶ, ܱଷ, ସܱሽ.  

3) The initial state distribution π = {ߨ௜ሽ	where 

௜ߨ ൌ 	ܲሼݏଵ ൌ ௜ܵሽ, 1 ൑ ݅ ൑ ܰ 
4) The state transition probability distribution	A = {ܽ௜௝ሽ	 

where  

ܽ௜௝ ൌ ܲ൛ݏ௧ାଵ ൌ ௝ܵหݏ௧ ൌ ௜ܵሽ, 1 ൑ ݅, ݆ ൑ ܰ 
In BayesHeart, we add order constraints within each cardiac 
cycle by setting ܽ௜௝ ൌ 0 for the ሺ݅, ݆ሻ pairs in which	݅ ൐ ݆. 
The only exception is ܽேଵ ൐ 0 which enables the model to 
start new cycles. 

5) The observation symbol probability distribution in 
state		݆, 	ܤ ൌ ሼ ௝ܾሺ݇ሻሽ, where  

b୨ሺ݇ሻ ൌ 	ܲሼ݋௞	ܽݐ	ݐ	|	ݏ௧ ൌ ܵ௞ሽ, 1 ൑ ݆ ൑ ܰ, 

1 ൑ ݇ ൑  ܯ
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The hidden Markov model in BayesHeart can be 
characterized in terms of three probability measures, ܣ,  ܤ
and π. For convenience, we denote the 4-state model as 
ଵߣ ൌ ሺܣଵ, ,ଵܤ πଵ) and the 2-state model as ߣଶ ൌ ሺܣଶ, ,ଶܤ πଶ) 
in a compact way.  

Parameter estimation (model training) 
To use the Baum-Welch method to estimate model 
parameters ߣ ൌ ሺܣ, (π,ܤ , we estimate initial distribution 
of	π as the temporal duration of each cardiac state in the 
training data. For the state transition probability 
distribution A, we assign a high probability (i.e., 0.8) of 
remaining in the same state and low probabilities (i.e., 0.2) 
to transitioning between states. We set ܽ௜௝ ൌ 0  (except 
for 	ܽேଵ ) when 	݅ ൐ ݆  because the cardiac stages appear 
sequentially and cannot be reversed.  

We train the 4-state model ଵߣ	  and the 2-state model  ଶߣ	
separately and use a model selection process detailed in the 
next section at runtime. 

Heart Rate Estimation 
After deriving the underlying model via offline training, the 
BayesHeart runtime includes four phases: 1) model 
selection; 2) state sequence generation; 3) cardiac pulse 
interval calculation; and 4) post-processing. 

Model selection 
BayesHeart uses the first 5 seconds1 of observations for 
model selection. We leverage the Bayesian information 
criterion (BIC) [35] to find the better model ߣ∗ 
from	ሼߣଵ,  ଶሽ at the same time to prevent the 4-state modelߣ
from overfitting the observations.  

ఒܥܫܤ ൌ െ2 ∙ ln Prሺߣ|∗݋ሻ ൅ k ∙ ሺlnሺ݊ሻ െ lnሺ2ߨሻሻ 

∗ߣ ൌ argmin
ఒ∈ሼఒభ,ఒమሽ

 ఒܥܫܤ

The model selection step does not introduce extra latency 
because it can be run in parallel with the state sequences 
generation step discussed later.  

State sequences generation 
In this step, we leverage the Viterbi algorithm to infer the 
optimal state sequence that is most likely to generate the 
observations by maximizing		ܲݎ	ሺ݋,  .ሻߣ|ݏ

Cardiac cycle/distinct phases extraction 
We define the transition from the last state to the first state 
(i.e.	ܵே → ଵܵ) as the start of a new cardiac cycle and mark 
all of such transitions in the derived state sequence. 
Therefore, the duration d between two adjacent marks is the 

                                                           
1 We assume that owner change is rare for mobile devices 
and context (location, environment, etc.) change happens at 
the scale of minutes or hours rather than seconds. The 
model selection process can run more frequently when 
necessary. 

duration of one cycle (Figure 8). The instant heart rate 
estimate is: 

ሻ݉݌ሺܾ	݁ݐܴܽ	ݐݎܽ݁ܪ	ݐ݊ܽݐݏ݊ܫ ൌ 	
60000ሺ݉ݏሻ
݀	ሺ݉ݏሻ

	 

Here bpm means beats per minutes. It is worth noticing that 
BayesHeart extracts distinct phases in each cardiac cycle in 
parallel with the heart rate estimation processing (Figure 8). 

 

Figure 8. Cardiac cycle/ distinct phase extraction from 
the underlying state sequence. 

Post-processing 
Despite the robustness of our BayesHeart algorithm, we 
still impose two simple heuristics to reduce outliers in 
extreme situations. If either of the heuristics is violated, 
BayesHeart rejects the current estimation and outputs the 
first valid estimation in history.  

Heuristic 1: Valid heart rates are within the range of [30, 
300] bpm.  

Heuristic 2: The maximal change between two adjacent 
bpm estimates should not be more than (k=5) bpm. 

Intermittent signals 
As highlighted in the introduction section, the intermittent 
appearance of ROI (e.g. 2 – 30 seconds) is the norm in 
many interaction scenarios (e.g., mobile gaming, mobile 
tutoring, etc.). Therefore we investigate how to extract heart 
rate via intermittent covering actions. There are three 
problems when dealing with intermittent covering: 1) how 
to detect users’ covering actions (i.e., when users are 
covering the lens); 2) how to deal with the noise introduced 
by intermittent covering actions; 3) once users’ covering 
actions can be detected, how to estimate heart rate based on 
several separate pieces of signals. 

For the first problem, we leverage a fast and reliable linear 
classification model proposed in [37] to detect the lens 
covering gesture. The model uses the global mean and 
standard deviation of all the pixels in an image frame to 
infer whether the user is covering the lens or not with high 
accuracy (i.e., 97.9%). After this step, we get a set of data 
sequences (i.e., observation sequences), with each sequence 
corresponding to one covering action.  

For the second problem, we find that most of the noise is 
generated by finger movements and pressure changes (e.g., 
at the beginning of each covering action). Therefore we 
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apply two techniques to reduce the extreme noise that 
appears in intermittent signals: 1) Discard the observation 
sequences corresponding to the covering actions which last 
less than 2 seconds; 2) For the data sequences that are 
longer than 2 seconds, discard the first 1 second of data for 
each covering action (Figure 9, a).  

 

Figure 9. Additional steps with intermittent covering. a) 
Remove noise at the beginning of each covering action. b) 

Find two valid peaks. c) Connect the two valid peaks. 

For the third problem, we have two strategies to extract 
heart rate through separate segments of signals: 1) Treat 
each sequence independently and apply HMM on each of 
them; 2) Concatenate the sequences to one whole sequence 
and then apply HMM on it. The first one may lead to lower 
utilization of the signal because we cannot make use of the 
front/back ends of each separate piece if the ends do not 
appear in a complete cycle in that piece. Therefore we try to 
concatenate them together to get a continuous and complete 
waveform. 

One question emerges regarding how to concatenate 
separate pieces of signals. One brute force method is to 
directly connect the last sample of the previous piece with 
the first sample of the next piece. However, this cannot 
ensure that the concatenation of the two pieces can form 
one cycle and may introduce inaccurate estimations. 
Therefore we use a heuristic to concatenate two pieces 
trying to make use of the data at the very end/beginning of 
the signal pieces. The heuristic attempts to find the last 
valid peak of the previous piece and the first valid peak of 
the next piece and link them by joining the two peaks 
together. Since the normal resting heart rate for adults 
ranges from 60-100 bpm, valid peaks are close to 600ms-
1000ms apart; therefore we assume that a valid peak can be 

found within a window with the size of 1000ms. So we 
apply a window at the end of the previous piece as well as 
the beginning of the next piece and localize the valid peak 
by choosing the local-maximum point (i.e., o3) with the 
largest amplitude within the windows (1000ms). (Figure 9, 
b). Then these two valid peaks are connected together to 
concatenate the two signals (Figure 9, c). 

EVALUATION 
We carried out two studies to evaluate the efficacy of 
BayesHeart. In the first study we investigated the impact of 
different design choices on BayesHeart, such as the 
inclusion of an adaptive model and the inclusion of the post 
processing step on both accuracy and latency. The second 
study was a comparison of the state-of-the-art algorithms in 
the design space (Figure 2) with BayesHeart. We report 
results on both accuracy and latency for both normal signals 
and intermittent signals. 

Data Collection  
We collected data from 20 subjects (7 female) from 
department mailing lists of a local university. The 
participants were between 23 and 45 years old (mean = 27.8, 
σ = 4.9). We collected two types of PPG data via the built-
in camera of a smartphone: 1) 10 minutes static covering 
and 2) 10 minutes intermittent covering. For intermittent 
covering, participants were asked to cover the lens for 5-10 
seconds and then move their finger away for 1-3 seconds, 
and to repeat this process for a total of 10 minutes. 
Participants used one hand to operate the mobile phone and 
we attached a pulse oximeter on their other hand to collect 
the ground truth heart rate data. Each participant was paid 
$5 for their time. 

We used a Google Nexus smartphone running Android 4.1 
for data collection. The Google Nexus has a 4.65 inch, 
720*1280 pixels display, 1.2 GHz dual core ARM Cortex-
A9 processor. It has a 5 mega-pixel back camera and an 
LED flash light. We set the built-in camera in preview 
mode, capturing color images of 144x176 pixel at 30 fps 
(frames per second). We sample 800 pixels evenly 
distributed in each frame and use the RGB/YUV sum of 
these 800 pixels to estimate the brightness of the frame. In 
this way we derive a set of time-stamped ROI signal vectors. 
We resample the data by linear interpolation to 30Hz to 
compensate for the jitter effect of the video stream. 

The pulse oximeter in the experiment was a CMS 50D with 
USB port. CMS 50D is an FDA-approved, medical grade 
device. The accuracy of CMS 50D for pulse ratio was +/- 2 
bpm. 

Benchmarking Metrics  
In the first part of the evaluation, we use 50% of the data 
(i.e., for each subject, we use 5-minute static covering data 
and 5-minute intermittent covering data) for training and 
the other 50% of the data for testing. For the second part, 
we use leave-one-out cross-validation (LOOCV) to test 
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user-independent performance of BayesHeart compared 
with previous work. 

We use mean error rate (MER) to measure algorithm 
accuracy. To derive the MER of a given 
algorithm/configuration, we compare the estimated heart 
rate with the gold standard every second and report the 
average. Estimation latency is defined as the time an 
algorithm needed to generate the first accurate heart rate 
estimation (+/- 5% when compared with the gold standard). 
We also define utilization rate to model the robustness of 
an algorithm. It is defined as the ratio between the quantity 
of samples from which BayesHeart derived valid cardiac 
cycles (i.e., cycles that are not eliminated in the post-
processing step and are used in heart rate calculation) and 
the total quantity of samples in use.  

 

Figure 10. Plots of BIC values of 20 subjects. 
BayesHeart chooses a 4-state model for subjects above 

the decision boundary and a 2-state model for all others. 

Understanding BayesHeart  

Model Selection 
Figure 10 shows the scatter plot of the Bayesian 
information criterion (BIC) for the two models. BayesHeart 
chose 6 subjects for the 2-state model and 14 subjects for 
the 4-state model. 

 

Figure 11. Mean error rates of BayesHeart with 
different types of models.  

Figure 11 illustrates the impact of model selection on the 
accuracy for both the normal covering condition and 
intermittent covering condition. The three conditions shown 
are BayesHeart with 2-state model only, with 4-state model 
only and with adaptive HMMs.  

Two-way within-subjects ANOVA shows that both signal 
types (F1,19=75.36, p<0.01) and  the model selection 
techniques (F2,18=16.25, p<0.01) have a significant  main 
effect on MER. Pairwise comparisons also show significant 
differences in MER between adaptive HMMs and 2-state 
model only. In summary, the model selection technique in 
BayesHeart leads to the lowest mean error rates in both 
normal (3.66% vs. 4.08% vs. 4.84%) and intermittent 
covering conditions (5.39% vs. 5.84% vs. 6.90%).  

Post-Processing Heuristics 

 

Figure 12: (left) Mean error rate (right) and utilization 
rate of BayesHeart with/without post-processing and 

with normal/intermittent covering data. 

Figure 12 shows the impact of BayesHeart post-processing 
on MER and utilization rates. The post-processing step 
eliminates outliers of cardiac intervals. By eliminating 
unreasonable estimates, it leads to the reduction of 
utilization rate (Figure 12.b, 11.2% and 5.96% reductions in 
intermittent covering condition and normal covering 
condition, respectively). Accordingly, it improves the 
accuracy (Figure 12.a), especially for intermittent signals 
(5.39% vs. 10.86%). Two-way within-subject ANOVA 
shows that the MER can be significantly affected by the 
inclusion of post-processing (F1,19=98.96, p<0.01).  

 

Figure 13. Heart rate estimates generated by the pulse 
oximeter and our algorithm during 30 seconds. 

Figure 13 is a 30-second sample sequence, illustrating heart 
rate estimates from BayesHeart (both with and without 
post-processing) against the gold standard. 
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Design Space Exploration 
We conducted a comparative study of twelve state-of-the-
art algorithms (Figure 2) in the design space of extracting 
cardiac pulses from commodity cameras. Such a study is 
important because existing literature [3, 4, 14, 19, 27] 
focused primarily on the feasibility and non-comparative 
evaluation of proposed scenarios. With the popularization 
of wearable devices and affect/emotion-aware intelligent 
mobile apps, it is imperative for researchers to gain a 
deeper understanding of the state of the art. To the best of 
our knowledge, this is the first systematic study and 
exploration in commodity camera based heart rate 
monitoring.  

We explore a space of 4 noise reduction techniques by 3 
pulse counting techniques for a total of 12 algorithms.  

Noise reduction methods we investigated include: 1) Using 
the Red channel only (baseline condition [33]); 2) Using the 
Y (brightness) channel (static-weighted sum of the R, G, B 
channels); 3) Using the ICA technique (dynamic-weighted 
sum of the R, G, B channels by maximizing channel 
independence); 4) Using the PCA technique 2  (dynamic-
weighted sum of the R, G, B channels by maximizing 
channel variance). 

                                                           
2  We chose the most periodic channel by a method 
discussed in [3]. The periodicity of a signal is defined as the 
percentage of total spectral power accounted for by the 
frequency with maximal power. 

Pulse counting techniques include: A) LivePulse (temporal 
domain, heuristic based counting)3 [14]; B) FFT (frequency 
domain counting, window size = 6 sec4); C) BayesHeart 
(temporal domain, probabilistic model based alignment). 

Ignoring subtle variations in signal preprocessing and post-
processing, existing algorithms can be represented as 
combining one noise reduction technique and one pulse 
counting technique. For example, the facial color based 
method by Poh et al [27, 28] can be represented as 3B (their 
baseline condition was 1B). The facial motion based 
method by Balakrishnan et al [3] is 4A5. LivePulse Games 
[14] used 2A and the default BayesHeart algorithm is 2C. 
Such a comparison will answer questions such as: Will the 
PCA/ICA based noise reduction technique be effective for 
detecting pulse amidst motion induced noise?  Will adding 
a PCA/ICA based noise reduction technique improve the 
performance of BayesHeart even more? Quantitatively, 

                                                           
3 The LivePulse algorithm [14] is a heuristic based outlier 
removal and local peaks/valleys counting algorithm. 
LivePulse can be treated as a manually optimized, temporal 
domain adaptive thresholding algorithm.   
4  The choice of window size involves tradeoffs between 
frequency resolution, time accuracy, and latency. 
5 The original signal in [3] was head motion, but the same 
algorithm can be used to process PPG signals and vice-
versa.  

 
Figure 14. Bland-Altman plots demonstrating the agreement between heart rate measurements obtained from the nine state-of-

the-art algorithms (with intermittent covering data) and the pulse oximeter. The lines represent the mean and 95% limits of 
agreement. 
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what’s the impact of an algorithm chosen in each step on 
the overall performance? 

We tested the 12 combinations of algorithms with both 
normal and intermittent covering signals and analyzed both 
the accuracy and latency for each method. Considering the 
importance of post-processing heuristics shown in previous 
sections, in order to minimize confounding factors in the 
study, we applied the same post-processing heuristics used 
in the default BayesHeart algorithm in all 12 algorithms.  

 

Figure 15. Mean error rates (MER) of algorithms. 

Accuracy 
Figure 14 shows the Bland-Altman plots demonstrating the 
agreement between heart rate estimates generated by the 12 
algorithms and gold standard with intermittent covering 
data. The lines represent the mean and 95% limits of 
agreement. By comparing between different columns (i.e., 
different noise reduction techniques) we can see that using 
Y(2)/ICA(3)/PCA(4) could reduce the error compared to 
using R(1) directly. For example, when using BayesHeart 
on R channel, the mean bias was 1.91 bpm with 95% limits 
of agreement -9.12 to 12.93 bpm. The mean bias was 
reduced to 1.53 bpm with 95% limits of agreement -7.66 to 
10.73 bpm when using Y(2). At the same time, by 
comparing different rows (i.e., different pulse counting 
methods) we can find that BayesHeart(C) can lower the 
errors compared to LivePulse(A)/FFT(B). For example, 
when applied on Y(2), LivePulse(A)’s mean bias was 3.34 
bpm with 95% limits of agreement -11.55 to 18.23 bpm and 
FFT(B)’s mean bias was 1.61 bpm with 95% limits of 
agreement -14.61 to 17.91 bpm. In comparison, 
BayesHeart(C) reduced the mean bias to 1.53 bpm with 95% 
agreement -7.66 to 10.73 bpm. 

Figure 15 shows the corresponding MERs. For intermittent 
covering, Y+BayesHeart(2C) has the lowest MER (5.23%),  
followed by PCA+BayesHeart(4C) (5.30%) and 
ICA+BayesHeart(3C) (5.31%). R+FFT(1B) has the highest 
MER (12.14%). For normal covering, ICA+BayesHeart(3C) 
has the lowest MER (3.44%), followed by 
PCA+BayesHeart(4C) (3.63%) and Y+BayesHeart(2C) 
(3.66%). A three-way (signal type vs. noise reduction 
method vs. pulse counting method) ANOVA shows that 
signal type has a significant main effect on MERs 

(F1,19=620.94, p<0.01).  Noise reduction techniques 
(F3,17=38.29, p=0.02) and pulse counting methods 
(F2,18=257.55, p<0.01) also have a significant main effect 
on MERs. Not surprisingly, all the 12 algorithms are 
significantly more accurate when dealing with normal 
signals. 

Among noise reduction techniques, the mean error rates 
corresponding to Y(2), ICA(3), PCA(4) and R(1) (averaged 
in both signal types) are 5.87%, 5.86%, 6.23% and 7.06%, 
respectively. Pairwise comparisons show that both the static 
weighted  sum approach in Y(2) and the dynamic weight 
sum approach in ICA(3)/PCA(4) are significantly better 
than R(1) despite signal quality (p<0.01). Such 
improvements may be caused by the increased equivalent 
pixel area in Y(2)/ ICA(3)/PCA(4). Although ICA(3) has a 
lower MER than Y(2), the difference is not significant 
(p=0.92). We attribute that to the non-linear nature of 
skin/tissue reflection and the latency involved in calculating 
the transformation matrix, which was in turn used to 
capture the dynamic nature of extrinsic noises.  

 

Figure 16. Average latency of algorithms.  

Among pulse counting techniques, the mean error rates 
corresponding to LivePulse(A), FFT(B), and BayesHeart(C) 
(averaged in both signal types) are 6.50%, 7.65% and 
4.62%, respectively. Pairwise comparisons show that 
BayesHeart can lower MERs significantly compared with 
LivePulse (p=0.01). And LivePulse can also significantly 
lower MERs compared with FFT (p<0.01). The reasons 
include: 1) the heuristic based method (e.g., LivePulse), 
although simple, could not capture both the diversity and 
regularity of signal with dealing with increased amount of 
signals; 2) FFT is the most sensitive technology to noise; 
the low-sampling rate (30HZ) could be one reason that led 
to the bad performance of FFT. Besides, the fixed-size 
window in FFT may also introduce increased noise when 
dealing with brief, highly intermittent signals; 3) 
BayesHeart exploits additional information in trellis 
structure, the state transition cost, and temporal regularity in 
signals through a simple yet robust probabilistic model; 
such increased “signal/noise ratio” becomes critical when 
dealing with increased extrinsic noise.  
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Estimation Latency 
Figure 16 shows the average estimation latency of the 12 
methods. For intermittent covering, Y+BayesHeart(2C) 
leads to the lowest latency (7.59s), followed by 
R+BayesHeart(1C) (8.02s) and Y+LivePulse(2A) (8.23s). 
ICA+FFT(3B) has the highest latency (12.21s). For normal 
covering, Y+LivePulse(2A) has the lowest latency (5.72s), 
followed by Y+BayesHeart(2C) (5.79s) and 
R+LivePulse(1A) (6.04s). PCA+FFT(4B) has the highest 
latency (9.88s). 

.

 

Figure 17. The components generated from ICA based 
noise reduction algorithm on 5-second R/G/B signal. 

Three-way ANOVA shows that signal quality (F1,19=411.44, 
p<0.01), noise reduction techniques (F3,17=73.43, p<0.01) 
and pulse counting methods (F2,18=55.51, p<0.01) all have a 
significant main effect on estimation latency. Pair-wise 
comparisons show that R(1) (8.42s) and Y(2) (7.84s) are 
significantly faster than ICA(3) (10.51s) and PCA(4) 
(10.12s) (p < 0.01). And there is no significant difference in 
latency between R(1) and Y(2), between ICA(3) and 
PCA(4). This is because ICA(3)/PCA(4) require additional 
time to construct and update the transformation matrix in 
use. In our experiments, ICA(3)/PCA(4) lead to 3-10 
seconds of additional latency for normal signals or 5-12 
seconds of additional latency for intermittent signals. Figure 
17 shows an example of the components generated from 
ICA based on a 5-second normal covering R/G/B signal. 
We can see that when the transformation matrix in ICA(3) 
is outdated or out-of-sync,  ICA could lead to increased 
noise 

For pulse-counting methods, pairwise comparisons show 
that LivePulse and BayesHeart can significantly lower 
latencies when compared with FFT (p<0.01). This is 
because the relatively small number of signal samples and 
low sampling rate have a negative impact on the frequency 
domain resolution of FFT. Such low frequency domain 
resolution leads to less accurate estimates. Therefore the 
corresponding algorithms require more samples in order to 
derive accurate estimates.  

CONCLUSION AND FUTURE WORK 
We present BayesHeart, an accurate, low-latency 
probabilistic approach for heart rate monitoring via 

commodity cameras. Major contributions of the paper 
include: 1) we demonstrated both the feasibility and the 
quantitative performance of BayesHeart to measure heart 
rate via camera phone. 2) We reported and discussed the 
tradeoffs of BayesHeart in detail, especially how and why 
BayesHeart is robust to noisy and intermittent signals. 3) 
By decoupling existing camera based heart rate monitoring 
techniques into two steps, i.e. noisy reduction and cardiac 
pulse counting, we compared existing technologies side-by-
side highlighting both their relationships and new 
opportunities. 4) In a 20-subject experiment, we 
systematically evaluated the state-of-the-art algorithms 
covering the design space regarding accuracy and latency 
performance.  

BayesHeart is an initial step towards capturing, analyzing, 
and using physiological signals implicitly from everyday 
interactions. We believe there are tremendous opportunities 
if computer user interfaces could be aware of our   
physiological conditions [34], affect, and emotions. For 
example, when integrated with a Massive Open Online 
Courses (MOOC) mobile client, BayesHeart can be used 
infer the stress levels and cognitive workload of learners. 
Taking advantage of such information will be beneficial to 
both learners and instructors. Error correction algorithms in 
today’s software touch keyboards (STK) can adapt to users’ 
stress levels and cognitive workload in addition to holding 
postures [38] for better accuracy and less frustration. We 
hope the algorithmic design space we identified could 
inspire new ideas for the research community in the future. 

In addition to accurately quantifying the average duration of 
each cardiac cycle, BayesHeart also provides opportunities 
to analyze different sub-phases within each cycle. The static 
prosperities, relative distributions, and temporal variations 
of sub-phases may be used as physiological makers of users’ 
emotional states, health conditions, and even personal 
identities.    

To encourage follow-up research and more creative usage 
of physiological signals in everyday interactions, we have 
released both the source code (written in Matlab and Java) 
of BayesHeart and data used in our comparative study to 
the public under a BSD license at URL 
http://mips.lrdc.pitt.edu/BayesHeart .  
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