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Reach-avoid Analysis for Sampled-data Systems with Measurement

Uncertainties

Taoran Wu1,2, Dejin Ren1,2, Shuyuan Zhang3, Lei Wang3, and Bai Xue1,2

Abstract— Digital control has become increasingly prevalent
in modern systems, making continuous-time plants controlled
by discrete-time (digital) controllers ubiquitous and crucial
across industries, including aerospace, automotive, and man-
ufacturing. This paper focuses on investigating the reach-avoid
problem in such systems, where the objective is to reach a
goal set while avoiding unsafe states, especially in the presence
of state measurement uncertainties. We propose an approach
that builds upon the concept of exponential control guidance-
barrier functions, originally used for synthesizing continuous-
time feedback controllers. We introduce a sufficient condition
that, if met by a given continuous-time feedback controller,
ensures the safe guidance of the system into the goal set in
its sampled-data implementation, despite state measurement
uncertainties. The event of reaching the goal set is determined
based on state measurements obtained at the sampling time
instants. Numerical examples are provided to demonstrate the
validity of our theoretical developments, showcasing successful
implementation in solving the reach-avoid problem in sampled-
data systems with state measurement uncertainties.

I. INTRODUCTION

The problem of guiding a dynamical system towards a de-

sired set while avoiding unsafe states is known as reach-avoid

analysis. This problem is crucial in domains such as robot

motion planning as well as safety and performance critical

control. To address this problem, various approaches have

been proposed to synthesize reliable continuous-time feed-

back controllers [14], [13], [9], [19]. However, despite the

theoretical soundness of continuous-time controller designs,

implementing them on real systems can be challenging due to

the continuous updates required. As a result, in practical ap-

plications, the continuous-time controller is often discretized

and implemented using discrete-time sampling techniques

[1], leading to the creation of sampled-data control systems.

The analysis of these control systems is complicated by

the presence of both continuous and discontinuous (discrete)

components in the control loop.

Sampled-data control systems involve the periodic or

aperiodic measurement of the state evolution of a continuous-

time plant, with a constant control signal applied until the

next sample time [7]. These systems offer various advantages

over continuous-time control systems [6], such as improved

precision and fault tolerance, making them widely adopted

in industries ranging from robotics and process control to

automotive systems and industrial automation. However, they
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have a limitation in that they do not consider the states

that the plant transitions through between sample times, as

the system state is only observable at each sampling time.

This limitation becomes particularly significant for systems

with fast dynamics or unstable behavior. Additionally, state

measurements in sampled-data control systems are prone to

imperfections, which can lead to inaccurate state estimation.

Such inaccuracies have the potential to degrade system

performance and even violate reach-avoid properties if not

adequately addressed in the design of the continuous-time

controller. Thus, it is crucial to account for the impact of

state estimation errors and the system behavior between sam-

pling times when developing the continuous-time controller,

especially for safety and performance critical systems.

This paper explores the reach-avoid problem associated

with sampled-data control systems, considering the pres-

ence of uncertainties in state measurements. The analysis

focuses specifically on periodic measurements. Leveraging

exponential control guidance-barrier functions [18], our aim

is to establish a sufficient condition that ensures the safety

of a given Lipschitz feedback control in its sampled-data

implementation, with the objective of driving the system to-

wards a desired goal set. The attainment of goal reachability

relies on state measurements taken at sampling instants. To

achieve this, we scrutinize the dynamic disparities between

the closed-loop system operating with the feedback controller

and its corresponding sampled-data control system, while

accounting for uncertainties in state measurements. Lastly,

we present illustrative examples to showcase the theoretical

advancements of our proposed method.

This paper makes two main contributions. Firstly, it

investigates the dynamics discrepancy between a control

system with a Lipschitz feedback controller and its corre-

sponding sampled-data control system which incorporates

state measurement uncertainties. Secondly, building upon

this investigation and utilizing exponential control guidance-

barrier functions, it proposes a sufficient condition to ensure

the satisfaction of reach-avoid specifications for the sampled-

data control system. By addressing these contributions, the

paper sheds light on the controller design of sampled-data

control systems using the emulation-based approach (i.e.,

approximating an available continuous-time controllers) [7]

and presents practical solutions for fulfilling reach-avoid

specifications.

A. Related Work

This subsection reviews works which are closely related

to the present one.
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In the past two decades, extensive research has been

conducted on sampled-data systems [12], [17]. However,

the synthesis of safety and performance critical controllers

for these systems is still relatively new and thus offers an

open area for further investigation. In recent years, control

barrier functions (CBFs) have emerged as a popular tool for

constructing safety-critical controllers that provide rigorous

safety guarantees for nonlinear systems. Initially developed

for continuous-time systems, CBFs have also been adapted

for sampled-data systems [8], [11], [16], [5], [15]. These

adaptations incorporate a margin term into the standard CBF

derivative condition to account for potential changes in the

dynamics and CBF during the inter-sample period.

In addition to safety, the ability to reach desired goal

sets is also crucial in many practical applications [10], [9].

Therefore, controllers for such systems should not only

prioritize safety, but also be aware of reachability. This

is especially crucial for safety-critical and performance-

critical systems. These controllers need to adhere to control

input constraints and safety requirements while also facili-

tating the system’s achievement of specific states. Existing

literature has explored the combination of control barrier

functions and control Lyapunov functions to achieve both

safety and stability [4]. Recently, a novel approach called

control guidance-barrier functions has been introduced to

synthesize continuous-time feedback controllers that enable

safe reaching of goal sets [19], [18]. Expanding upon the

concept of exponential control guidance-barrier functions

introduced in [18], this research aims to extend the analysis

to encompass reach-avoid scenarios in sampled-data control

systems.

Some basic notions are used throughout this paper: R≥0,

R>0 and R stand for the set of nonnegative reals, positive

reals and real numbers, respectively. N≥0 denotes the set of

non-negative integers. For a set A, Ac, A and ∂A denote

the complement, the closure and the boundary of the set A,

respectively. ∧ denotes the logical operation of conjunction.

II. PRELIMINARIES

In this section we review exponential control guidance-

barrier functions, initially proposed for synthesizing

continuous-time feedback controllers to enforce reach-avoid

objectives in [18].

Consider a control affine system

ẋ = F (x,u) := f(x) + g(x)u, (1)

where x ∈ R
n, u ∈ U ⊆ R

m with U = {u ∈ R
m | ‖u‖ ≤

u}, and f : Rn → R
n and g : Rn → R

n×m are locally

Lipschitz continuous. Given a locally Lispchitz feedback

control law k : Rn → U and an initial state x0 ∈ R
n, let

x(·;x0) : I → R
n be the resulting solution of the closed-

loop system (1) under the control signal u(t) := k(x(t))
defined on some maximal interval of existence I ⊆ R≥0.

Let hC(x) : D → R be a continuously differentiable and

bounded function, which defines a safe set C that system (1)

should satisfy in the following way:

C = {x ∈ D | hC(x) > 0}, (2)

where C ⊆ D ⊆ R
n and ∂C = {x ∈ D | hC(x) = 0}. In

addition, let a goal set G ⊆ C be defined by:

G = {x ∈ C | hG(x) > 0}, (3)

where hG(x) : D → R is a Lispchitz continuous function.

Given a locally Lipschitz continuous control law k(x) :
D → U , the reach-avoid property with respect to the safe

set C and goal set G is a property that system (1) starting

from any state in C can hit the goal set G eventually while

staying inside the set C before the first goal hitting time. It

is formally stated in Definition 1.

Definition 1: Consider system (1) with x(0) = x0 under

a given locally Lipschitz continuous control policy k(x) :
D → R

m and the maximal interval of existence I ⊆ R≥0

of the solution x(t;x0). The system (1) satisfies the reach-

avoid property with respect to the safe set C and goal set G if

there exists τ ∈ I such that x(τ ;x0) ∈ G and x(t;x0) ∈ C
for all t ∈ [0, τ ], i.e.,

∃τ ∈ R≥0.x(τ ;x0) ∈ G ∧ ∀t ∈ [0, τ ].x(τ ;x0) ∈ C.
If hC(x) : D → R is an exponential control guidance-

barrier function for system (1) with the controller k(x), then

the closed-loop system (1) satisfies the reach-avoid property

with respect to the safe set C and goal set G [18].

Definition 2: Consider system (1) with a locally Lipschitz

control law k(x) : D → R
m, hC(x) : D → R is called an

exponential control guidance-barrier function if there exists

a positive value λ ∈ R>0 satisfying

LfhC(x) + LghC(x)k(x)− λhC(x) ≥ 0, ∀x ∈ C \ G, (4)

where LfhC(x) = ∂hC(x)
∂x

f(x) and LghC(x) =
∂hC(x)

∂x
g(x).

Theorem 1: If hC(x) : D → R is an exponential control

guidance-barrier function with respect to the locally Lips-

chitz control law k(x), then system (1) with the control law

k(x) satisfies the reach-avoid property with respect to the

safe set C and goal set G.

III. PROBLEM FORMULATION

In this section we formulate the reach-avoid problem of

interest for sampled-data systems subject to state measure-

ment errors.

For a sampled-data system, the sampling instants are

described by a sequence of strictly increasing positive real

numbers {ti}, i ∈ N≥0, where t0 = 0, ti+1 − ti > 0 and

limi→∞ ti = ∞. The system’s states are observable only at

these sampling instants. Define the sampling interval between

ti and ti+1 as

∆i = ti+1 − ti.

The sampling mechanism is called a periodic if ∆i are the

same for all i, and an aperiodic sampling otherwise. In this

work we consider the former with ∆i = ∆ for i ∈ N, i.e.,

the sampling mechanism is periodic. The control input for

a sampled-data system is a piecewise constant signal with

respect to ti, i.e.,

u(t) = ui, ∀t ∈ [ti, ti+1).



Consequently, when the state of system (1) is xi at t = ti,
the dynamics of system (1) in the sampled-data form over

[ti, ti+1) are governed by

ẋ = f(x) + g(x)ui,x(ti) = xi, ∀t ∈ [ti, ti+1). (5)

We denote the solution to (5) as xs(τ − ti;xi) for τ ∈
[ti, ti+1), where xs(0;xi) = xi.

Given system (1) with a locally Lipschitz continuous

controller k(x) : D → U , we in this paper consider its

corresponding sampled-data system taking the control input

u(t) in a zero-order hold (ZOH) manner,

u(t) = k(xi), ∀t ∈ [ti, ti+1). (6)

where xi = x(ti) is the system’s state at time t = ti. Also,

due to the measurement error, the evolution of the resulting

sampled-data system is actually governed by

ẋ = f(x) + g(x)k(x̂i),x(ti) = xi, ∀t ∈ [ti, ti+1), (7)

where x̂i is the measured state at time t = ti, ‖x̂i−xi‖ ≤ ǫ
with xi being the exact state at time t = ti which is unknown

in practice, and ǫ is the bound of the measurement error.

We denote the solution to (7) as xs,k(τ − ti;xi) for τ ∈
[ti, ti+1), where xs,k(0;xi) = xi.

According to Theorem 1, a Lipschitz continuous-time

controller k(·) : D → U that satisfies constraint (4) can

safely guide the system (1) from any state in C to the

goal set G. However, this reach-avoid property may not

hold for the sampled-data system (7) due to the discrepancy

between this continuous-time controller and its sampled-

time implementation. Therefore, it is crucial to improve the

performance of the controller k(·) : D → U to ensure that the

sampled-data system (7) satisfies this reach-avoid property.

Furthermore, since the states of the sampled-data system

(7) are only observable at sampling time instants, it is only

possible to determine successful entry into the goal set G at

these specific time points. Therefore, it is crucial to improve

the controller’s performance in a manner that enables the

determination of goal reach for the sampled-data system (7)

based on measured states at sampling instants.

Based on the considerations outlined above, we finalize

our reach-avoid problem of interest as Problem 1.

Problem 1 (Reach-avoid Satisfaction of System (7)): We

propose a modified condition, derived from the one (4).

If a locally Lipschitz continuous controller k(·) : D → U
satisfies this condition, the sampled-data system (7) will,

starting from any state in C, reach the goal set G at a

sampling time instant t = ti. Additionally, it will remain

within the safe set C before ti, and the confirmation of goal

reach will be based on the measured state x̂i.

In order to solve Problem 1, we need the following

assumptions.

Assumption 1: 1) supx∈D,u∈U ‖f(x) + g(x)u‖ ≤ α;

2) ‖k(x)− k(y)‖ ≤ β‖x− y‖, ∀x,y ∈ D;

3) supx∈D ‖∂hC(x)
∂x

g(x)‖ ≤ γ;

4) C⊕Bǫ ⊆ D, where Bǫ = {y ∈ R
n | ‖y‖ ≤ ǫ},

⊕

denotes the Minkowski sum and ǫ is the upper bound

of the state measurement error.

5) ‖hG(x)− hG(y)‖ ≤ ξ‖x− y‖, ∀x,y ∈ D.

IV. REACH-AVOID ANALYSIS

In this section, we will address Problem 1. We aim to

establish a sufficient condition for system (7) to satisfy the

reach-avoid property with respect to the safe set C and

goal set G. To achieve this, we first analyze the dynamic

discrepancies between systems (1) and (7), which arise due

to the sampled-data implementation of the locally Lipschitz

controller k(·) : D → U . By conducting this analysis, we can

assess the reach-avoid property of system (7) by examining

system (1) under certain perturbation inputs.

This section is structured as follows: In Subsection IV-A,

we introduce robust exponential control guidance-barrier

functions, which are relevant to the reach-avoid analysis for

a perturbed system. The perturbed system is obtained by

adding perturbation inputs into system (1) subject to the

locally Lipschitz controller k(·) : D → U . In Subsection

IV-B, we analyze the dynamic discrepancies between system

(1) with the locally Lipschitz controller k(·) : D → U and

(7). In Subsection IV-C, we establish the sufficient condition

for system (7) to satisfy the reach-avoid property, solving

Problem 1.

A. Robust Exponential Control Guidance-barrier Functions

In this subsection, we introduce robust exponential control

guidance-barrier functions.

The perturbed system, which is obtained by adding per-

turbation inputs into system (1) with the locally Lipshcitz

controller k(·) : D → U , is of the following form

ẋ(t) = f(x(t)) + g(x(t))d(t),x(0) = x0, (8)

where f(x) = f(x) + g(x)k(x) and d(·) : R → R
m is the

perturbation input satisfying ‖d‖ ≤ d.

Robust exponential control guidance-barrier functions are

an exponential control guidance-barrier function that takes

perturbation inputs into account.

Definition 3: Consider system (8) with a locally Lipschitz

control law k(x) : D → R
m, hC(x) : D → R is called a

robust exponential guidance-barrier function if there exists a

positive value λ ∈ R>0 satisfying

LfhC(x)+LghC(x)k(x)−λhC(x) ≥ γd, ∀x ∈ C \G. (9)

Robust exponential control guidance-barrier functions

function guarantee the fulfillment of the reach-avoid property

for system (8) with respect to the safe set C and goal set G,

regardless of any perturbation inputs.

Theorem 2: If hC(x) : D → R is a robust exponential

control guidance-barrier function with respect to the locally

Lipschitz control law k(x) : D → U , then system (8)

with the control law k(x) satisfies the reach-avoid property

with respect to the safe set C and goal set G, regardless of

perturbation inputs.

Proof: Since LfhC(x) + LghC(x)k(x) − λhC(x) ≥
γd, ∀x ∈ C\G, we have that for all d(x) satisfying ‖d‖ ≤ d,

LfhC(x) + LghC(x)k(x) + LghC(x)d(x)

− λhC(x) ≥ γd+ LghC(x)d, ∀x ∈ C \ G.



Consequently,

LfhC(x) + LghC(x)k(x)

+ LghC(x)d(x)− λhC(x) ≥ 0, ∀x ∈ C \ G

holds for all d satisfying ‖d‖ ≤ d. According to Theorem

1, we have the conclusion.

B. Dynamic Discrepancy Characterization

In this subsection, we characterize the dynamic discrep-

ancy between system (1) with the controller k(xs,k(t −
ti;xi)) : [ti, ti+1) → U and (7) over the time interval

[ti, ti+1).
We first estimate the discrepancy between the controller

k(xs,k(t− ti;xi)) : [ti, ti+1) → U and k(x̂i) over the time

interval [ti, ti+1), where xs,k(t − ti;xi) : [ti, ti+1) is the

solution to system (7) with x(0;xi) = xi.

Lemma 1: Let xs,k(t − ti;xi) ∈ C for t ∈ [ti, t
′
i] with

t′i < ti+1, then

‖k(xs,k(t− ti;xi))− k(x̂i)‖ ≤ min{βǫ+ βα∆, 2u}

for t ∈ [ti, t
′
i], where x̂i is the measured value of the exact

state xi at time t = ti and ‖x̂i − xi‖ ≤ ǫ.
Proof: According to Assumption 1, we have that x̂i ∈

D. Therefore, for t ∈ [ti, t
′
i],

‖k(xs,k(t− ti;xi))− k(x̂i)‖
≤ ‖k(xs,k(t− ti;xi))− k(xi)‖+ ‖k(xi)− k(x̂i)‖
≤ β‖xs,k(t− ti;xi)− xi‖+ β‖xi − x̂i‖

≤ β

∫ t−ti

0

‖f(xs,k(τ ;xi)) + g(xs,k(τ ;xi))k(x̂i)‖dτ + βǫ

≤ βα∆+ βǫ.

In addition, since k(x) : D → U , ‖k(xs,k(t;xi))−k(x̂i)‖ ≤
2u holds. Thus, we have the conclusion.

Over the time interval [ti, ti+1), system (7) is equivalent

to system (8) subject to the perturbation input d(t) =
−k(xs,k(t− ti;xj)) + k(x̂i). Therefore, according to The-

orem 2 and Lemma 1, if d in system (8) is equal to

min{βα∆ + βǫ, 2u} and the feedback controller k(x) :
R

n → U satisfies (12), i.e.,

LfhC(x) + LghC(x)k(x)

− λhC(x) ≥ γmin{βα∆+ βǫ, 2u}, ∀x ∈ C \ G, (10)

then the sampled-data system (7) satisfies the reach-avoid

property with respect to the safe set C and goal set G.

Lemma 2: If the controller k(x) : Rn → U satisfies (10),

then the sampled-data system (7) satisfies the reach-avoid

property with respect to the safe set C and goal set G.

Proof: Consider system (8) with d = max{βα∆ +
βǫ, 2u}. Theorem 2 ensures that system (8) satisfies the

reach-avoid property with respect to the safe set C and goal

set G, regardless of any perturbation input ‖d‖ ≤ d.

Given x0 ∈ C, let τ be the maximal time instant such that

system (7) stay inside the set C \ G over the time interval

[0, τ). In the following we first show that τ < ∞.

Since k(x̂j) = k(x̂j)− k(xs,k(t− tj ;xj)) + k(xs,k(t−
tj ;xj)) for t ∈ [tj , tj+1) with j ∈ N≥0, and

‖k(x̂j)− k(xs,k(t− tj ;xj))‖ ≤ max{βǫ+ βα∆, 2u}

for j ∈ N≥0, where x̂j is the measured state of system (7)

at time tj , according to Lemma 1 we conclude that system

(7) is equivalent to system (8) with

d(t) = k(x̂j)− k(xs,k(t− tj ;xj)) (11)

for t ∈ [tj , tj+1] with j ∈ N≥0. Thus, we have that system

(8) with the perturbation input (11) will leave the set C \ G
and enter the goal set G in finite time. Therefore, τ < ∞.

Thus, the sampled-data system (7) with x0 ∈ C will reach

the goal set G at t = τ while staying inside the safe set C
before τ .

The observability of the state of system (7) is limited

to sampling time instants, meaning that the confirmation

of entering the goal set X can only be obtained through

measured states at these specific time points in practice.

In the subsequent subsection, we aim to improve constraint

(10) by refining the goal set, thus ensuring goal attainment

through the use of measured states.

C. Sufficient Conditions of Reach-avoid Satisfaction for Sys-

tem (7)

In this subsection we will present our sufficient condition

for solving Problem 1.

A Lipschitz controller, denoted as k(x), satisfying con-

dition (10), ensures that system (7) will eventually enter

the goal set G. However, it is possible for the system to

enter and leave the goal set between sampling time instances,

potentially causing the event of reaching the goal set to be

missed. To address this practical concern, we will define a

subset Ĝ of the goal set G. If the measured state at a sampling

instance (i.e., ti = i∆) of the sampled-data system (7) falls

within Ĝ, system (7) will definitely enter the goal set G.

To better understand the determination of the set Ĝ, we can

break it down into three steps:

1) Find a subset G1 of the goal set G. If the measured

state falls within G1, then the exact state is in the goal

set G.

2) Determine a subset G2 of the set G. If the exact state

is in G2, then the measured state belongs to G1.

3) Determine a subset Ĝ of the goal set G. If there exists

a time τ in the interval [ti, ti+1) such that xs,k(τ −
ti;xi) ∈ Ĝ, xi ∈ G2 holds.

The subsets G1, G2 and Ĝ are respectively formulated in

Lemma 3, 4 and 5.

Lemma 3: Let x̂ be the measured state of the state x with

‖x̂− x‖ ≤ ǫ. Then if x̂ falls within

G1 = {y ∈ G | hG(ŷ) > ξǫ},

x ∈ G holds.

Proof: Since

|hG(x̂)− hG(x)| ≤ ξ‖x̂− x‖ ≤ ξǫ,



h(x) > 0 holds if hG(x̂) > ξǫ. Thus, we have the

conclusion.

Lemma 4: Let x̂ be the measured value of the state x

with ‖x̂− x‖ ≤ ǫ. Then if x falls within

G2 = {y ∈ G | hG(ŷ) > 2ξǫ},
x̂ ∈ G1 holds.

Proof: Since |hG(x̂) − hG(x)| ≤ ξ‖x̂ − x‖ ≤ ξǫ,
we have that h(x̂) > ξǫ holds if hG(x) > 2ξǫ. Thus, the

conclusion holds.

Lemma 5: If τ ∈ [ti, ti+1] with i ∈ N is a time instant

satisfying

xs,k(τ − ti;xi) ∈ Ĝ = {y ∈ G | h(y) > ξα∆+ 2ξǫ},
then xi ∈ G2 holds.

Proof: Since |hG(xs,k(τ − ti;xi)) − hG(xi)| ≤
ξ‖xs,k(τ − ti;xi) − xi‖ and ‖xs,k(τ − ti;xi) − xi‖ ≤
α(τ − ti) ≤ α∆, we have

|hG(xs,k(τ − ti;xi))− hG(xi)| ≤ ξα∆.

Also, since hG(xs,k(τ − ti;xi)) > ξα∆+ 2ξǫ, we have the

conclusion.

Now, we have our solution to Problem 1, which is formally

stated in Theorem 3 .

Theorem 3: If the controller k(x) : Rn → U to system

(1) satisfies

LfhC(x) + LghC(x)k(x)

− λhC(x) ≥ γmin{βα∆+ βǫ, 2u}, ∀x ∈ C \ Ĝ,
(12)

where

Ĝ = {x ∈ C | hG(x)− ξα∆− 2ξǫ > 0} 6= ∅,
then the sampled-data system (7) satisfies the reach-avoid

property with respect to the safe set C and goal set G.

Specially, there exists a sampling time instant ti such that

the sampled-data system (7) is confirmed to enter the goal

set G via its measured state x̂i at t = ti, and it does not

leave the safe set C before ti.
Proof: Since Ĝ ⊆ G, the conclusion that system (7)

with x(0) = x0 ∈ C satisfies the reach-avoid property with

respect to the safe set C and goal set G can be confirmed by

Lemma 2.

In addition, assume that τ ∈ [ti, ti+1) is the first target

hitting time of the set Ĝ. According to Lemma 5, we conclude

that the sampled-data system (7) with x0 ∈ Ĉ will reach the

set G2 at t = ti while staying inside the constraint set C
before ti. Therefore, its measured state x̂i at t = ti falls

within G1 from Lemma 4. This measurement assures that

the sampled-data system (7) enters the goal set G according

to Lemma 3.

Remark 1: Although we can ensure safety of the system

(7) with x(0) = x0 ∈ C before entering the goal set G, we

cannot ensure that the measured state will always stay inside

the safe set C before hitting the goal set.

It is worth to note that in the sampled-data system (7),

a high sampling frequency (small sampling period ∆) and

small state measurement error result in minimal modifi-

cations to constraint (4) to ensure that the sampled-data

implementation of a Lipschitz controller safely drives the

system towards the goal set. Specifically, by setting ∆ = 0
and ǫ = 0, constraint (12) essentially becomes equivalent

to (4). To explain this effect from a set perspective, let

Ĉ = {x ∈ R
n | hC(x) > − γmin{βα∆+βǫ,2u}

λ
} ⊆ D, and

suppose the Lipschitz controller k(x) satisfies

LfhC(x) + LghC(x)k(x)− λhC(x) ≥ 0, ∀x ∈ D \ G.

In this case, we can ensure that system (1) with the controller

f(x) satisfies the reach-avoid property with respect to the

safe set C and goal set G. However, if the Lipschitz controller

k(x) satisfies

LfhC(x) + LghC(x)k(x)

− λhC(x) ≥ γmin{βα∆+ βǫ, 2u}, ∀x ∈ D \ Ĝ,
(13)

then we can ensure that system (1) with the controller k(x)
will satisfy the reach-avoid property with respect to the

expanded safe set Ĉ and the shrunk goal set Ĝ.

V. EXAMPLES

In this section, we demonstrate our theoretical develop-

ments on two systems, i.e., an inverted pendulum system

and a cruise control system.

Example 1: In this example, we have an inverted pendu-

lum system with the state x = [θ, θ̇]⊤, where θ represents

the pendulum angle and θ̇ represents the angular velocity.

The dynamics of the system are described by the following

differential equation [2]:

d

dt

[
θ

θ̇

]
=

[
θ̇

g
l
sin θ

]
+

[
0
1

ml2

]
u,

where m, l and g represent the pendulum mass, length of the

rod, and gravitational acceleration, respectively. The values

for m, l and g are respectively m = 0.04 [kg], l = 5 [m] and

g = 10 [m/s2]. In addition, the associated sets are D = {x ∈
R

2 | 1.1−4θ2−2θ̇2 > 0}, C = {x ∈ D | 1−4θ2−2θ̇2 > 0},

and G = {x ∈ C | 0.05− θ̇2 > 0} and U = [−2.6, 2.6].

These configurations ∆ = 0.003, ǫ = 0.001, λ = 0.001
are used in condition (3). We can ensure that the following

controller (14) satisfies constraint (12).

Lemma 6: The controller

k([θ, θ̇]⊤) = −2θ− 2 sin θ − 2θ̇ (14)

satisfies condition (12).

Proof: Upon calculations, we can obtain α = 3.6014,

β = 4.4721, γ = 2.9665, ξ = 1.4832,

γmin{βα∆+ βǫ, 2u} < 0.1566,

{x ∈ C | 0.0311−θ̇2 > 0} ⊆ Ĝ ⊆ {x ∈ C | 0.0310−θ̇2 > 0}



and λhc(x) < λ. Therefore, we have

LfhC(x) + LghC(x)k(x)− λhC(x)

=− 8θθ̇ − 8θ̇ sin θ + 8θθ̇ + 8θ̇ sin θ + 8θ̇2 − λhC(x)

=8θ̇2 − λhC(x)

>0.2481− 0.001

>γmin{βα∆+ βǫ, 2u}, ∀x ∈ C \ Ĝ.
Consequently, controller (14) satisfies constraint (12).

The trajectory of system (7) with the controller (14),

subject to a sampling time interval of ∆ = 0.003 and a

measurement perturbation of ǫ = 0.001, is plotted in Figure

1 in blue. The initial condition of the system is set to

x0 = [−0.4, 0.3]⊤. To compute the trajectory between the

sampling instants, Runge-Kutta methods are used. The states

at the sampling time instants are obtained by perturbing the

computed states with a random perturbation of magnitude

ǫ = 0.001. Some measured states can be seen in the

embedded plot located on the left side of Figure 1, which

shows a zoomed version of the trajectory close to the set G1

(according to Lemma 3, if the measured state falls within

G1, system (7) enters the target set G). From the plot, it can

be observed that system (7) is able to enter the target set

G safely, and the goal reach can be ensured by using the

measured state. The measured state falling with the set G1 is

represented by the magenta asterisk, and the corresponding

actual exact state is denoted by the blue asterisk which lies

within the goal set G.

Figure 1 also shows another scenario of system (7) with

the controller (14). This scenario is generated with a sam-

pling time interval of ∆ = 0.0003 and a measurement

perturbation of ǫ = 0.001, which also satisfies condition (12).

The resulting trajectory (yellow curve in Fig. 1) aligns with

the previous scenario and is indistinguishable from it. The

embedded plot on the right side of Figure 1 zooms in on

a portion of the trajectory and the measured states near the

set G1. By comparing these two scenarios, corresponding to

(∆, ǫ) = (0.003, 0.001) and (∆, ǫ) = (0.0003, 0.001), we

can conclude that a smaller ∆ results in a smaller deviation

of the trajectory from the one induced by the continuous-

time controller (14), although the associated measured states

may appear more messy. This is because the sampled-data

controller resulting from the smaller ∆ better matches the

continuous-time controller (14), as visualized in Figure 2.

Example 2: Consider a cruise control system describing

automatic car-following, in which the primary objective is to

decrease the speed of the following vehicle while simultane-

ously maintaining a certain distance from the leading vehicle.

The dynamics of the system are described as follows [3]

Ḋ = v2 − v1, v̇1 = u, v̇2 = −v2,

with D = {x ∈ R
3 | 26 − (D − 7)2 − v21 − v22 > 0}, the

constraint set C = {x ∈ D | 25− (D − 7)2 − v21 − v22 > 0},

the goal set G = {x ∈ C | 4 − v21 > 0} and u ∈ [−10, 15],
where D, v1, and v2 represent the relative distance between

the two vehicles, the speed of the following vehicle and the

speed of the leading vehicle, respectively.
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Fig. 1. Red and green curve denotes a part of the boundary ∂C and
∂G, respectively; dashed black curve denotes a part of the boundary ∂G1;
blue and yellow curve denote the trajectory of system (7) with (∆, ǫ) =
(0.003, 0.001) and (∆, ǫ) = (0.0003, 0.001) starting from the initial
state [−0.4, 0.3]⊤, respectively; black curve represents the trajectory of
the system without measurement uncertainties under the continuous-time
controller (14); magenta points denote measured states.
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Fig. 2. The two figures illustrate the controller (14) and its sampled-data
implementation for the system starting from the initial state [−0.4; 0.3] over
the time horizon [0, 0.04]. The top figure corresponds to the case where
(∆, ǫ) = (0.003, 0.001), while the bottom figure corresponds to the case
where (∆, ǫ) = (0.0003, 0.001). Magenta curve represents sampled-data
control and blue curve represents the continuous-time controller.

These configurations ∆ = 0.002, ǫ = 0.01 and λ = 0.01
are used in condition (3). A controller satisfying constraint

(12) is shown below.

Lemma 7: The controller

k(x) =

{
7v2−Dv2+v2

2

v1
+D − v1 − 7, if v21 ≥ 3

7v2−Dv2+v2

2√
3

+D −
√
3− 7, if v21 < 3

(15)

satisfies condition (12).

Proof: Upon calculation, we obtain α = 17.1193, β =



12.0717, γ = 10.1980, ξ = 10.1980. Thus, we can conclude

that

γmin{βα∆+ βǫ, 2u} < 5.4461

and

{x ∈ C | 3.45− v21 > 0} ⊆ Ĝ ⊆ {x ∈ C | 3.44− v21 > 0}
and λhc(x) ≤ 0.25. Therefore, we have

LfhC(x) + LghC(x)k(x)− λhC(x)

=− 2(D − 7)(v2 − v1)− 2v1u+ 2v22 − λhC(x)

=2v21 − λhC(x)

>6.8937− 0.25

>γmin{βα∆+ βǫ, 2u}, ∀x ∈ C \ Ĝ.
According to Theorem 3, we have that the controller (15)

satisfies constraint (12).

Figure 3 showcases four trajectories of system (7), along

with their corresponding initial states presented in the top

left corner. The top right corner of Figure 3 shows a zoomed

version of one trajectory, together with the measured states

at sampling time instants. This zoomed plot focuses on the

trajectory close to the set G1. It can be observed that a mea-

sured state, represented by the magenta asterisk, successfully

falls within the set G1, of which the boundary is represented

by the green region. According to Lemma 3, this ensures

that system (7) enters the goal set G, of which the boundary

is represented by the blue region. In fact, the corresponding

actual exact state, denoted by the blue asterisk, indeed falls

within the goal set G. The sampled-data controller for this

trajectory is visualized in Fig. 4. A zoomed portion is shown

in the right top corner.

Fig. 3. The sphere, blue plane, and green plane represent the boundaries of
∂C, ∂G, and ∂G1, respectively. In the zoomed plot in the right top corner,
blue and magenta dots represent exact and measured states, respectively.
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Fig. 4. The blue curve represents k(x) and magenta curve represents
k(x̂i), which is the sampled-data controller in system (7)

VI. CONCLUSION

This paper explored the reach-avoid problem for sampled-

data control systems. Specifically, we aim to determine

a sufficient condition for the safe guidance of a system

into a goal set and the confirmation of goal reach based

on measured states at sampling time instants. By analyz-

ing the dynamic discrepancies between a locally Lipschitz

continuous-time controller and its sampled-data implementa-

tion, we established a sufficient condition using exponential

control guidance-barrier functions. The proposed method

was demonstrated through two examples, showcasing the

practical application of the theoretical developments.

REFERENCES

[1] J. Ackermann. Sampled-data control systems: analysis and synthesis,

robust system design. Springer Science & Business Media, 2012.

[2] A. Alan, A. J. Taylor, C. R. He, A. D. Ames, and G. Orosz. Control
barrier functions and input-to-state safety with application to auto-
mated vehicles. IEEE Transactions on Control Systems Technology,
2023.

[3] A. Alan, A. J. Taylor, C. R. He, G. Orosz, and A. D. Ames. Safe
controller synthesis with tunable input-to-state safe control barrier
functions. IEEE Control Systems Letters, 6:908–913, 2021.

[4] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier
function based quadratic programs for safety critical systems. IEEE

Transactions on Automatic Control, 62(8):3861–3876, 2016.

[5] J. Breeden, K. Garg, and D. Panagou. Control barrier functions in
sampled-data systems. IEEE Control Systems Letters, 6:367–372,
2021.

[6] S. Buso and P. Mattavelli. Digital control in power electronics. Morgan
& Claypool Publishers, 2015.

[7] T. Chen and B. A. Francis. Optimal sampled-data control systems.
Springer Science & Business Media, 2012.

[8] W. S. Cortez, D. Oetomo, C. Manzie, and P. Choong. Control
barrier functions for mechanical systems: Theory and application to
robotic grasping. IEEE Transactions on Control Systems Technology,
29(2):530–545, 2019.

[9] C. Fan, U. Mathur, S. Mitra, and M. Viswanathan. Controller
synthesis made real: Reach-avoid specifications and linear dynamics.
In International Conference on Computer Aided Verification, pages
347–366. Springer, 2018.

[10] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. Reach-avoid
problems with time-varying dynamics, targets and constraints. In
Proceedings of the 18th international conference on hybrid systems:

computation and control, pages 11–20, 2015.

[11] T. Gurriet, P. Nilsson, A. Singletary, and A. D. Ames. Realizable set
invariance conditions for cyber-physical systems. In 2019 American

Control Conference (ACC), pages 3642–3649. IEEE, 2019.



[12] L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.-P. Richard, and
S. I. Niculescu. Recent developments on the stability of systems with
aperiodic sampling: An overview. Automatica, 76:309–335, 2017.

[13] A. Majumdar, R. Vasudevan, M. M. Tobenkin, and R. Tedrake. Convex
optimization of nonlinear feedback controllers via occupation mea-
sures. The International Journal of Robotics Research, 33(9):1209–
1230, 2014.

[14] K. Margellos and J. Lygeros. Hamilton–jacobi formulation for reach–
avoid differential games. IEEE Transactions on automatic control,
56(8):1849–1861, 2011.

[15] L. Niu, H. Zhang, and A. Clark. Safety-critical control synthesis for
unknown sampled-data systems via control barrier functions. In 2021

60th IEEE Conference on Decision and Control (CDC), pages 6806–
6813. IEEE, 2021.

[16] A. Singletary, Y. Chen, and A. D. Ames. Control barrier functions
for sampled-data systems with input delays. In 2020 59th IEEE

Conference on Decision and Control (CDC), pages 804–809. IEEE,
2020.

[17] C. F. Verdier, N. Kochdumper, M. Althoff, and M. Mazo Jr. For-
mal synthesis of closed-form sampled-data controllers for nonlin-
ear continuous-time systems under stl specifications. Automatica,
139:110184, 2022.

[18] B. Xue. Reach-avoid controllers synthesis for safety critical systems.
arXiv preprint arXiv:2302.14565, 2023.

[19] B. Xue, N. Zhan, M. Fränzle, J. Wang, and W. Liu. Reach-avoid
verification based on convex optimization. IEEE Transactions on

Automatic Control, 2023.


	Introduction
	Related Work

	Preliminaries
	Problem Formulation
	Reach-avoid Analysis
	Robust Exponential Control Guidance-barrier Functions
	Dynamic Discrepancy Characterization
	Sufficient Conditions of Reach-avoid Satisfaction for System (7)

	Examples
	Conclusion
	References

