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Abstract— Reach-avoid analysis combines the construction of
safety and specific progress guarantees, and is able to formalize
many important engineering problems. In this paper we study
the reach-avoid verification problem of systems modelled by or-
dinary differential equations using Lyapunov densities. Firstly,
the weak reach-avoid verification is considered. Given an initial
set, a safe set and a target set, the weak reach-avoid verification
is to verify whether the reach-avoid property (i.e., the system
will enter the target set eventually while staying inside the safe
set before the first target hitting time) holds for almost all states
in the initial set. We propose two novel sufficient conditions
using Lyapunov densities for the weak reach-avoid verification.
These two sufficient conditions are shown to be weaker than
existing ones, providing more possibilities of verifying weak
reach-avoid properties successfully. Then, we generalize these
conditions to the verification of reach-avoid properties for all
states in the initial set. Finally, two examples demonstrate
theoretical developments of proposed conditions.

I. INTRODUCTION

Reach-avoid analysis combines the construction of safety
and specific progress guarantees for dynamical systems, as it
addresses guarantees for both the eventual reach of desirable
states and avoidance of unsafe states. It is employed in
diverse engineering applications such as motion planning
[6]. Reach-avoid analysis in this paper mainly attempts to
verify reach-avoid properties, i.e., verify whether a system
starting from a legally initial set will enter a desirable target
set eventually while reliably avoiding a set of unsafe states
before hitting the target set.

Various methods have been applied to certify the reach-
avoid properties of engineering systems, e.g., [15], [13], [25].
One method is the set-propagation method [1], which in-
volves the explicit computation of reachable states. However,
due to the wrapping effect, overly pessimistic over/under-
approximations render many properties unverifiable in prac-
tice, especially for large initial sets and/or large time hori-
zons. Another well-known methods is the barrier certificate
method, which was originally proposed for safety verifica-
tion of dynamical systems in [20] and then extended to
reach-avoid verification in [22]. Recently, guidance-barrier
functions were proposed in [28] for reach-avoid verification.
These methods investigate reach-avoid properties of non-
linear dynamical systems without explicitly computing the
solutions of these systems, as done in the stability analysis
with Lyapunov functions. However, one may not be able to
find a function to certify the reach-avoid property due to the
fact that the solution trajectory for some initial state, which
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is in a negligible set (i.e., a set with measure zero), may
not reach a desired set. Therefore, Lyapunov densities have
been used to verify weak reach-avoid properties of nonlinear
systems in [22]. The notion ‘weak’ is used to emphasize
that the system satisfies a property for almost all points in
the domain. Specially, Lyapunov densities evaluate how the
measure of a set is evolving along the solutions. Thus, they
provide certifications for not all points but almost every point
in the domain.

In this paper we investigate the problem of reach-avoid
verification for systems modeled by ordinary differential
equations. The main results presented in this paper for
reach-avoid verification rely on Lyapunov densities. Firstly,
the weak reach-avoid verification is considered. Given an
initial set, a safe set and a target set, the weak reach-avoid
verification is to verify the satisfaction of the weak reach-
avoid property, which formulates that the system starting
from almost all states in the initial set will enter the target
set eventually while staying inside the safe set before the
first target hitting time. Inspired by the conditions proposed
in [28] for the strong reach-avoid verification (i.e., verify
the satisfaction of the reach-avoid property for all states in
the initial set), we propose two sufficient conditions in the
density space for verifying the weak reach-avoid property.
Then, via analyzing the divergence of the vector field of
the system, we establish the relationship between these two
conditions and the ones in [28], and further generalize these
two conditions to the strong reach-avoid verification. Finally,
we demonstrate the theoretical developments of proposed
methods on two examples.

The contributions of this work are summarized below.
1) Two novel conditions in the density space are pro-

posed for the weak reach-avoid verification of systems
modelled by ordinary differential equations. These two
conditions are shown to be weaker than the one in [22],
providing more possibilities of verifying weak reach-
avoid properties successfully.

2) We generalize the conditions for the weak reach-avoid
verification to the strong one, lifting their capabilities
in reach-avoid verification.

Related Work

There are a large amount of works on reach-avoid analysis,
e.g., [24], [4], [25], [2], [12], [3], [26], [15]. Thus, we do
not intend to provide a comprehensive and thorough literature
review, but rather present some closely related works here.

Lyapunov density has been first introduced in [23] as
a tool to certify almost global stability of nonlinear sys-
tems. Almost global stability of origins means that the



solutions converge to the origin for almost every initial
state. In [7], the result on nonlinear systems obtained in
[23] has been generalized to nonlinear systems with time
dependent switching. Sufficient conditions to ensure almost
global stability of nonlinear systems with time dependent
switching have been provided with the help of common
Lyapunov density and multiple Lyapunov densities. More-
over, Lyapunov densities were used to certify almost global
stability of nonautonomous systems [18], [16] and switched
systems with state-dependent switching [17]. Recently, they
have been extended to the verification of temporal properties
of nonlinear systems such as safety and reach-avoidance
for nonlinear systems. Some sufficient conditions has been
developed for nonlinear (disturbed) systems. Leaning upon
the results in [22], certificates for weak safety and weak
reach-avoid verification of nonlinear (switched) systems with
time dependent switching have been given based on Lya-
punov densities in [10] and [9]. Afterwards, the result in
[9] was extended to the weak reach-avoid verification of
nonlinear systems with state-dependent switching in [11]. In
this paper we proposed two new sufficient conditions based
on Lyapunov densities to the weak reach-avoid verification
of nonlinear systems. They are shown to be weaker than
the one in [22]. Furthermore, we extend them to the strong
reach-avoid verification.

II. PRELIMINARIES

We denote the space of m-times continuously differen-
tiable functions mapping X ⊆ Rn to Rp by Cm(X ,Rp).
When p = 1, we simply write Cm(X ), and further for
continuous functions (m = 0), we omit the superscript.
For a function f(·) : Rn → Rn with f = (f1, . . . , fn)

⊤,
▽·f =

∑n
i=1

∂fi
∂xi

denotes the divergence of f ; for a function
g(·) : Rn → R, ▽g = ( ∂g

∂x1
, . . . , ∂g

∂xn
) denotes the gradient

of g; given a set X , ∂X and X denote its boundary and
closure, respectively; given two sets X and Y , X \ Y is the
set which is comprised of elements in X that are not in Y .

A. Problem Statement

In this subsection we formulate the system and its associ-
ated strong/weak reach-avoid properties of interest.

The system of interest is a system whose dynamics are
described by an ODE of the following form:

ẋ(t) = f(x(t)),x(0) = x0 ∈ Rn, (1)

where ẋ(t) = dx(t)
dt and f(x) = (f1(x), . . . , fn(x))

⊤ with
fi(x) being locally Lipschitz continuous.

We denote the trajectory of system (1) that originates from
x0 ∈ Rn and is defined over the maximal time interval
[0, Tx0) by ϕx0

(·) : [0, Tx0) → Rn. Consequently,

ϕx0
(t) := x(t),∀t ∈ [0, Tx0), and ϕx0

(0) = x0,

where Tx0
is either a positive value or ∞.

Given a bounded and open safe set X , an initial set X0

and a compact target set Xr, where

X = {x ∈ Rn | h(x) < 0} with ∂X = {x ∈ Rn | h(x) = 0},
X0 = {x ∈ Rn | l(x) < 0}, and
Xr = {x ∈ Rn | g(x) ≤ 0}

with l(x), h(x), g(x) : Rn → R, and X0,Xr ⊆ X , both
strong and weak reach-avoid properties are defined below.

Definition 1 (Strong Reach-avoid Property): Given sys-
tem (1) with the safe set X , initial set X0 and target set
Xr, we say that the strong reach-avoid property holds if for
any initial condition x0 ∈ X0, its trajectory ϕx0(t) satisfies

ϕx0
(T ) ∈ Xr

∧
∀t ∈ [0, T ].ϕx0

(t) ∈ X

for some T > 0.
Definition 2 (Weak Reach-avoid Property): Given system

(1) with the safe set X , initial set X0 and target set Xr, we
say that the weak reach-avoid property holds if for almost
all initial conditions x0 ∈ X0, its trajectory ϕx0

(t) satisfies

ϕx0(T ) ∈ Xr

∧
∀t ∈ [0, T ].ϕx0(t) ∈ X

for some T > 0.

B. Conditions for Reach-avoid Verification

In this subsection we recall existing sufficient conditions
for assuring the satisfaction of strong and weak reach-avoid
properties.

Proposition 1 (Proposition 4, [28]): Given system (1)
with sets X0, Xr and X , if there exists a continuously
differentiable function v(x) ∈ C1(X ) such that

v(x) > 0,∀x ∈ X0

▽v(x) · f(x) ≥ λv(x),∀x ∈ X \ Xr

v(x) ≤ 0,∀x ∈ ∂X
(2)

where λ > 0 is a user-defined value, then the strong reach-
avoid property in Definition 1 holds.

Proposition 2 (Proposition 5, [28]): Given system (1)
with sets X0, Xr and X , if there exist a continuously
differentiable function v(x) ∈ C1(X ) and a continuously
differentiable function w(x) ∈ C1(X ) satisfying

v(x) > 0,∀x ∈ X0

▽v(x) · f(x) ≥ 0,∀x ∈ X \ Xr

v(x)−▽w(x) · f(x) ≤ 0,∀x ∈ X \ Xr

v(x) ≤ 0,∀x ∈ ∂X

(3)

then the strong reach-avoid property in Definition 1 holds.
Recently, the condition (3) has been extended to facilitate

the computation of reach-avoid sets for systems governed by
stochastic differential equations [27].

The condition for the weak reach-avoid verification is
presented in [22].



Proposition 3 (Corollary 3.8, [22]): Given system (1)
with sets X0, Xr and X , and an open set X̂ containing X0, if
there exists a density function ρ(x) ∈ C1(X ) which satisfies

ρ(x) > 0,∀x ∈ X̂ ,
ρ(x) ≤ 0,∀x ∈ ∂X ,
▽ · (ρf)(x) > 0,∀x ∈ X \ Xr,

(4)

where ▽·(ρf)(x) = ▽
(
ρ(x)·f(x)

)
= ▽ρ(x)f(x)+ρ(x)▽·

f(x), then the weak reach-avoid property in Definition 2
holds.

In [22], the constraint ρ(x) ≤ 0,∀x ∈ ∂X \ ∂Xr rather
than ρ(x) ≤ 0,∀x ∈ ∂X is used, since ∂X \ ∂Xr = ∂X in
this paper (it can be justified according to the fact that X is
open, Xr is compact and Xr ⊆ X ).

An obvious deficiency of the condition in Proposition 3 is
that it is not applicable to system (1) with

∃x0 ∈ X \ Xr.f(x0) = 0 ∧
n∑

i=1

∂fi(x0)

∂xi
= 0, (5)

which results in ▽ · (ρf)(x0) = 0 for any ρ(x) ∈ C1(X ).
However, the sufficient conditions proposed in the present
work will apply to this system. Moreover, they are more
expressive than condition (4).

III. REACH-AVOID VERIFICATION

In this section we present our sufficient conditions for ver-
ifying the weak reach-avoid property in Definition 2. These
sufficient conditions are inspired by those in Proposition 1
and 2 as well as density functions in [22]. Afterwards, we
exploit the relationship between the derived conditions and
those in Proposition 1 and 2, and formulate the situation
under which the derived conditions can also be used to
verifying the strong reach-avoid property in Definition 1.

A. Weak Reach-avoid Verification

In this subsection we present our sufficient conditions for
verifying the weak reach-avoid property in Definition 2. The
derivation of these conditions partly relies on Liouville’s
theorem [23], which is formulated in Lemma 1.

Lemma 1: Let f = (f1, . . . , fn)
⊤ ∈ C1(D,Rn), where

D ⊆ Rn is open, and ρ ∈ C1(D) be integrable. For x0 ∈ Rn,
let ϕx0

(t) be the solution to system (1) with x(0) = x0. For
a measurable set Z, assume that ϕZ(τ) = {ϕx0

(τ) | x0 ∈
Z} is a subset of D for all τ ∈ [0, t]. Then∫
ϕZ(t)

ρ(x)dx−
∫
Z

ρ(x)dx =

∫ t

0

∫
ϕZ(τ)

▽ · (ρf)(x)dxdτ,

where ▽·(ρf)(x) = ▽
(
ρ(x)·f(x)

)
= ▽ρ(x)f(x)+ρ(x)▽·

f(x).
Our first sufficient condition, which is adapted from the

one in Proposition 1, for verifying the weak reach-avoid
property in Definition 2 is formulated in Theorem 1.

Theorem 1: Consider system (1) with the safe set X ,
target set Xr and initial set X0. Given a continuous function

λ(x) > 0 over X \ Xr, if there exists a density function
ρ(x) ∈ C1(X ) satisfying

ρ(x) > 0,∀x ∈ X0,

▽ · (ρf)(x) ≥ λ(x)ρ(x),∀x ∈ X \ Xr,

ρ(x) ≤ 0,∀x ∈ ∂X ,
(6)

then the weak reach-avoid property in Definition 2 holds.
Proof: Since X is bounded, X \ Xr is compact. There-

fore, there exists δ > 0 such that

λ(x) ≥ δ, ∀x ∈ X \ Xr.

We first show that given x0 ∈ R = {x ∈ X | ρ(x) >
0}, if system (1) leaves R, it must enter Xr before leaving
R. Suppose to the contrary that the flow ϕx0(t) leaves R
without entering Xr first. Let T > 0 be the first time instant
that ϕx0

(t) leaves R. By this we mean that ϕx0
(t) ∈ R\Xr

for all t ∈ [0, T ) and ϕx0
(T ) ∈ ∂R (i.e., ρ(ϕx0

(T )) = 0
and ρ(ϕx0(t)) > 0 for t ∈ [0, T )). Also, since

▽ · (ρf)(x) ≥ λ(x)ρ(x),∀x ∈ X \ Xr,

we have that

▽ · (ρf)(x) |x=ϕx0
(t)≥ λ(ϕx0

(t))ρ(ϕx0
(t)),∀t ∈ [0, T ].

That is,

dρ(ϕx0
(t))

dt
= ▽ρ(x) · f(x) |x=ϕx0 (t)

≥ (λ(ϕx0
(t))− ▽ · f(ϕx0

(t)))ρ(ϕx0
(t))

≥ (λ(ϕx0
(t))− λ0)ρ(ϕx0

(t))

≥ (δ − λ0)ρ(ϕx0
(t)),∀t ∈ [0, T ].

where λ0 = max
x∈X\Xr

▽ · f(x). Thus,
d
(
−ρ(ϕx0

(t))
)

dt ≤
(δ − λ0)(−ρ(ϕx0(t))),∀t ∈ [0, T ]. According to the
Grönwall’s inequality, we have that ρ(ϕx0(T )) ≥
eδ−λ0ρ(x0). This implies that ρ(ϕx0

(T )) > 0, which con-
tradicts ρ(ϕx0

(T )) = 0. Therefore, there does not exist a
trajectory which, starting from R, will leave the set R before
entering the target set Xr.

Next, we show that the set of all initial conditions x0’s in
R whose flows ϕx0

(t)’s do not leave R\Xr in finite time is
a set of measure zero. For these trajectories, ρ(ϕx0(t)) > 0
for t ≥ 0. Now define

Z =
⋂

i=1,2,...

{x0 ∈ R | ϕx0
(t) ∈ R \ Xr,∀t ∈ [0, i]}. (7)

The set Z is an intersection of countable open sets
(
The

conclusion that {x0 ∈ R | ϕx0
(t) ∈ R \ Xr,∀t ∈ [0, i]} is

an open set can inferred according to the fact that R \ Xr

is an open set, the continuity of ϕx0
(t) over [0, i], and the

Lipschitz continuity of ϕx0(t) over x0. Details can be found
in Appendix.

)
and hence is measurable. It contains all initial

states in R for which the trajectories stay in R \ Xr for all



t ≥ 0. That Z is a set of measure zero can be shown using
Lemma 1 as follows. We have that∫

ϕZ(t)

ρ(x)dx−
∫
Z

ρ(x)dx =

∫ t

0

∫
ϕZ(τ)

▽ · (ρf)(x)dxdτ

≥
∫ t

0

∫
ϕZ(τ)

λ(x)ρ(x)dxdτ

≥ δ

∫ t

0

∫
ϕZ(τ)

ρ(x)dxdτ,∀t ≥ 0.

where ϕZ(t) = {x | x = ϕx0(t),x0 ∈ Z}.
Let ψ(t) =

∫
ϕZ(t)

ρ(x)dx. Thus, −ψ(t) ≤ −ψ(0) +

δ
∫ t

0
(−ψ(τ))dτ,∀t ≥ 0, according to the Grönwall’s inequal-

ity (integral form), we have −ψ(t) ≤ −eδtψ(0) for t ≥ 0
and thus ψ(t) ≥ eδtψ(0) for t ≥ 0. If the measure of Z
is larger than zero, due to the fact that a measurable set of
positive measure includes a closed set K of positive measure
(Please refer to Theorem 1.12 in [5]) and Z is bounded, then
K ⊂ Z is a compact set of positive measure and thus there
exists ϵ > 0 such that ρ(x) ≥ ϵ over K. Thus ψ(t) will
be unbounded when t approaches infinity, contradicting that
ρ(x) is bounded over X . Thus, the measure of Z is zero.

Since ρ(x) > 0 for x ∈ X0, X0 ⊆ R holds. Consequently,
the conclusion holds.

From the proof of Theorem 1, we observe that if there
exists a density function ρ(x) ∈ C1(X ) satisfying condition
(6), system (1) starting from an initial state x0 ∈ R will
either stay inside R \ Xr for all the time or enter the target
set Xr in finite time while staying inside the safe set R\Xr

before the first target hitting time. Moreover, the measure of
initial states in R such that system (1) starting from them
will stay inside R \ Xr for all the time is zero.

Comparing condition (6) with condition (4), we observe
that the term ▽ · (ρf)(x) in condition (6) is required to
be larger than zero only in the subset R \ Xr rather than
X \ Xr. It can be non-positive in X \ (R \ Xr). This renders
condition (6) applicable to the weak reach-avoid verification
of system (1) subject to (5). Besides, we can also conclude
that if ρ(x) ∈ C1(X ) satisfies ▽·(ρf)(x) > 0,∀x ∈ X \ Xr,
there exists λ > 0 such that it satisfies ▽ · (ρf)(x) ≥
λρ(x),∀x ∈ X \ Xr. This conclusion can be certified in
the following way: That

▽ · (ρf)(x) > 0,∀x ∈ X \ Xr

implies that

∃ϵ0 > 0.▽ · (ρf)(x) ≥ ϵ0,∀x ∈ X \ Xr.

Let Mϵ0 ≥ ρ(x) for x ∈ X \ Xr, where M > 0. Therefore,
we have

▽ · (ρf)(x) ≥ λρ(x),∀x ∈ X \ Xr,

where λ = 1
M . Thus, condition (6) is more expressive than

(4).
It is worth noting that λ(x) in condition (6) should be

strictly larger than zero over X \ Xr. If λ(x0) = 0 for some
x0 ∈ X \ Xr, inspired by condition (3), we will present
another condition for the weak reach-avoid verification.

Theorem 2: Consider system (1) with the safe set X ,
target set Xr and initial set X0. Given a continuous function
λ(x) ≥ 0 over X \ Xr, if there exist density functions
ρ1(x), ρ2(x) ∈ C1(X ) satisfying

ρ1(x) > 0,∀x ∈ X0,

▽ · (ρ1f)(x) ≥ λ(x)ρ1(x),∀x ∈ X \ Xr,

ρ1(x) ≤ ▽ · (ρ2f)(x),∀x ∈ X \ Xr,

ρ1(x) ≤ 0,∀x ∈ ∂X ,

(8)

then the weak reach-avoid property in Definition 2 holds.
Proof: We first prove that the set of all initial states

x0’s in R = {x ∈ X | ρ1(x) > 0} whose flows ϕx0(t)’s do
not leave the open set R\Xr in finite time is a set of measure
zero. We show that the measure of the set Z in (7) is zero.
Since ϕZ(t) ⊆ R\Xr for t ≥ 0, R\Xr is bounded, and ρ(x)
is continuous, where ϕZ(t) = {x | x = ϕx0

(t),x0 ∈ Z},
we have that∫

ϕZ(t)

ρ1(x)dx−
∫
Z

ρ1(x)dx

=

∫ t

0

∫
ϕZ(τ)

▽ · (ρ1f)(x)dxdτ ≥ 0,∀t ≥ 0,

according to ▽ · (ρ1f)(x) ≥ 0,∀x ∈ R \ Xr. Thus,∫
ϕZ(t)

ρ1(x)dx ≥
∫
Z

ρ1(x)dx,∀t ≥ 0. (9)

Further, since ρ1(x) ≤ ▽ · (ρ2f)(x),∀x ∈ X \ Xr, we
have that∫ t

0

∫
ϕZ(τ)

ρ1(x)dx ≤
∫ t

0

∫
ϕZ(τ)

▽ ·(ρ2f)(x)dxdτ,∀t ≥ 0.

Combining (9), we have that∫
Z

ρ1(x)dx ≤

∫
ϕZ(t)

ρ2(x)dx−
∫
Z
ρ2(x)dx

t
,∀t ≥ 0.

Also, since ρ2(x) is bounded over X and ϕZ(t) ⊂ R\Xr ⊆
X for t ≥ 0, we further have that∫

Z

ρ1(x)dx ≤ 0 = lim
t→∞

∫
ϕZ(t)

ρ2(x)dx−
∫
Z
ρ2(x)dx

t
.

Since ρ1(x) > 0 over Z, we have the conclusion that Z is a
set of measure zero. Therefore, the set of all initial conditions
in R whose flows stay in R\Xr for all the time is a set of
measure zero.

Now take any x0 ∈ R whose flow leaves R\Xr in finite
time. We will show that such a flow must enter Xr before
leaving R. Suppose to the contrary that the flow ϕx0(t)
leaves R without entering Xr first. Let T > 0 be the first
time instant that ϕx0

(T ) ∈ ∂R, i.e., ρ1(ϕx0
(T )) = 0.

Since ▽ ·(ρ1f)(x) ≥ 0,∀x ∈ R \ Xr and ρ1(ϕx0
(t)) ≥ 0

for t ∈ [0, T ], we have that

dρ1(ϕx0
(t))

dt
= ▽ρ1(x) · f(x) |x=ϕx0

(t)

≥ −ρ1(x)▽ · f(x) |x=ϕx0
(t)

≥ −λ0ρ1(ϕx0
(t)),∀t ∈ [0, T ],

(10)



where λ0 = max
x∈X\Xr

▽ · f(x). Consequently, we have
that

ρ1(ϕx0(T )) > 0,

contradicting ρ1(ϕx0(T )) = 0. Thus, we conclude that there
must exist t ≥ 0 such that ϕx0

(t) ∈ Xr and ϕx0
(τ) ∈ R

for all τ ∈ [0, t].
Since ρ1(x) > 0 for x ∈ X0, X0 ⊆ R holds. Conse-

quently, the conclusion holds.
Comparing conditions (6) and (8), one difference lies in

that condition (8) allows λ(x) to be equal to zero over some
x ∈ X \ Xr. Since the ‘equal’ sign is taken into account,
constraint

▽ · (ρ1f)(x) ≥ λ(x)ρ1(x),∀x ∈ X \ Xr

can only ensure that all trajectories starting from R cannot
leave the set R if they do not reach the target set Xr. This
conclusion can be derived from (10). In order to ensure the
reach of the target set Xr, a new constraint, i.e.,

ρ1(x) ≤ ▽ · (ρ2f)(x),∀x ∈ X \ Xr,

is introduced. This constraint ensures that the set of initial
states in R such that system (1) stays inside R\Xr for all the
time is a set of measure zero. That is, it ensures that system
(1) starting from almost all initial states in R will reach the
target set Xr eventually while staying inside R before the
first target hitting time. If λ(x) > 0 over X \ Xr, constraint
ρ1(x) ≤ ▽ · (ρ2f)(x),∀x ∈ X \ Xr in condition (8) can be
removed and thus condition (8) will equal condition (6).

Also, we can show that if there exists ρ(x) ∈ C1(X )
satisfying

▽ · (ρf)(x) > 0,∀x ∈ X \ Xr,

there exist ρ1(x), ρ2(x) ∈ C1(X ) such that

▽ · (ρ1f)(x) ≥ λ(x)ρ1(x),∀x ∈ X \ Xr

and
ρ1(x) ≤ ▽ · (ρ2f)(x),∀x ∈ X \ Xr

hold, where λ(x) ≡ 0 for x ∈ X . This conclusion can be
certified in the following way: That

▽ · (ρf)(x) > 0,∀x ∈ X \ Xr

implies that

∃ϵ0 > 0.▽ · (ρf)(x) ≥ ϵ0,∀x ∈ X \ Xr.

Let Mϵ0 ≥ ρ(x) for x ∈ X \ Xr, where M > 0. Therefore,
we can take

ρ1(x) := ρ(x), λ(x) := 0, ρ2(x) :=Mρ(x)

over X \ Xr, which satisfy

▽ · (ρ1f)(x) ≥ 0,∀x ∈ X \ Xr

and ρ1(x) ≤Mϵ0 ≤ ▽ · (ρ2f)(x),∀x ∈ X \ Xr. Therefore,
condition (8) is also more expressive than (4).

Remark 1: If λ(x) is allowed to take negative values over
X \ Xr in Theorem 2, then for ensuring satisfaction of the

weak reach-avoid property in Definition 2, the constraint
ρ1(x) ≤ ▽ · (ρ2f)(x),∀x ∈ X \ Xr in condition (4) should
be ρ1(x) < ▽ · (ρ2f)(x),∀x ∈ X \ Xr, and the others
remain the same. Due to space limitations we omit the proof
here.

Below we use an example to illustrate the verification of
the weak reach-avoid property using constraints (6) and (8).

Example 1: Consider the Van der Pol oscillator given by{
ẋ = 2y

ẏ = −0.8x− 10(x2 − 0.21)y

with X = {(x, y)⊤ | x2 + y2 − 1 < 0}, X0 = {(x, y)⊤ |
x2 + y2 − 0.01 < 0} and Xr = {(x, y)⊤ ∈ X | x2 − xy +
y2 − 0.25 > 0}.

This system has an unstable equilibrium (0, 0)⊤, which is
inside the initial set. Since this equilibrium cannot enter the
target set Xr, the strong reach-avoid property is not satisfied.
However, we can verify that the system satisfies the weak-
reach-avoid property using constraint (6) with λ(x) = 10−3

or (8) with λ(x) = 0, which can be solved by encoding
them into semi-definite constraints with the sum-of-squares
decomposition for multivariate polynomials. These semi-
definite constraints are shown in Appendix and they are
solved with all of unknown polynomials of degree 8. The
computed R’s are visualized in Fig. 1.
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Fig. 1. Black and green curves - ∂X and ∂X0; blue region - Xr ; red
curve - ∂{x ∈ X | ρ1(x) > 0} via solving SDP (15); cyan curve -
∂{x ∈ X | ρ(x) > 0} via solving SDP (16),

B. Generalization to Strong Reach-avoid Verification

In this subsection we exploit the differences between
conditions (2)/(3) and (6)/(8), and explore the situations,
under which the sufficient conditions in Theorem 1 and 2
can also be used to verify the strong reach-avoid property in
the sense of Definition 1.

The main difference between conditions (2)/(3) and (6)/(8)
lies in that condition (2)/(3) uses ▽ · (ρf)(x) rather than
▽ρ(x) · f(x). Comparing to ▽ρ(x) · f(x), the term ▽ ·
(ρf)(x) has an additional term ρ(x)▽ · f(x). Therefore,
when

▽ · f(x) ≡ 0,∀x ∈ X \ Xr, (11)

we have that conditions (6) and (8) are respectively a special
form of ones (2) and (3). In this case, if condition (6) or
(8) holds, we can also conclude that the strong reach-avoid
property in the sense of Definition 1 holds. We do not give
the proofs here since this conclusion is just a special case of



Corollary 1 and 2 shown below. However, condition (11) may
be quite restrictive in practice, limiting the use of conditions
(6) and (8) in verifying the strong reach-avoid property. In
order to overcome this issue, we in the following formulate
two less conservative constraints such that the satisfaction of
condition (6) or (8) also implies the satisfaction of the strong
reach-avoid property. They are respectively formulated in
Corollary 1 and 2.

Corollary 1: If there exist a density function ρ(x) ∈
C1(X ) and a continuous function

λ(x) > ▽ · f(x),∀x ∈ X \ Xr, (12)

which satisfy (6), then the strong reach-avoid property holds.
Proof: We firstly show that there does not exist an

initial state x0 ∈ X0 such that ϕx0
(t) ∈ R\Xr,∀t ∈ [0,∞),

where R = {x ∈ X | ρ(x) > 0}.
Assume that ϕx0

(t) ∈ R \ Xr,∀t ∈ [0,∞) holds. From
constraints λ(x)ρ(x) ≤ ▽ · (ρf)(x),∀x ∈ R \ Xr and
λ(x) > ▽ · f(x),∀x ∈ X , we have that for t ≥ 0,

▽ρ(x) · f(x) |x=ϕx0
(t)≥

(λ(x)− ▽ · f(x))ρ(x) |x=ϕx0
(t) .

(13)

Further, since X \ Xr is compact, there exists ϵ0 > 0 such
that λ(x) − ▽ · f(x) ≥ ϵ0,∀x ∈ X \ Xr. Thus, we have
ρ(ϕx0

(t)) ≥ eϵ0tρ(x0),∀t ∈ [0,∞), which contradicts that
ρ(x) is bounded over X . Therefore, these exists τ ′ ≥ 0 such
that ϕx0(τ

′) /∈ R \ Xr.
Besides, constraint (13) implies that

ρ(ϕx0
(t)) ≥ eϵ0tρ(x0) > 0,∀t ∈ [0, T ],

where T = max{t | ∀τ ∈ [0, t].ϕx0(τ) ∈ R \ Xr}. Since
ρ(x) = 0 for x ∈ ∂R, we have that ϕx0(T ) ∈ Xr. Since
R ⊆ X , we have that the strong reach-avoid property in the
sense of Definition 1 holds.

Corollary 1 indicates that when λ(x) > ▽ · f(x) over
X \ Xr, condition (6) can also be used for the strong reach-
avoid verification and behaves like condition (2). However,
it is observed that condition (6) is more expressive than
condition (2), since condition (2) is just a special instance
of condition (6) with λ(x) = ▽ · f(x) + λ. Furthermore, it
is interesting to find that when max

x∈X\Xr
▽ · f(x) < 0,

the continuous function λ(x) in condition (6) can be further
relaxed and is not necessary to be positive over X \ Xr for
both the weak and strong reach-avoid verification. In case
that max

x∈X\Xr
▽ · f(x) > 0, a continuous function λ(x)

satisfying

∀x ∈ X \ Xr.λ(x) > 0 ∧ ∃x ∈ X \ Xr.λ(x) ≤ ▽ · f(x)

will render condition (6) only applicable to the weak reach-
avoid verification of system (1).

Corollary 2: If there exist density functions
ρ1(x), ρ2(x) ∈ C1(X ) and λ(x) ∈ C(X ) satisfying
condition (8), then the strong reach-avoid property in the
sense of Definition 1 holds when

ρ2(x)▽ · f(x) ≤ 0 and λ(x) ≥ ▽ · f(x)

for x ∈ X \ Xr.
Proof: From constraints ρ1(x) ≤ ▽ · (ρ2f)(x),∀x ∈

R \ Xr and ▽ · f(x)ρ2(x) ≤ 0,∀x ∈ R \ Xr, where R =
{x ∈ X | ρ1, (x) > 0}, we have that

▽ρ2(x) · f(x) ≥ ρ1(x),∀x ∈ R \ Xr.

Further, since λ(x) ≥ ▽ · f(x) over X \ Xr, we have that
▽ρ1(x) · f(x) ≥ 0 over R \ Xr. Following the proof of
Proposition 5 in [28], we have the conclusion.

If λ(x) > ▽ · f(x) over X \ Xr, the constraint ρ2(x)▽ ·
f(x) ≤ 0,∀x ∈ X \ Xr in Corollary 2 is redundant since the
constraint ρ1(x) ≤ ▽ · (ρ2f)(x),∀x ∈ X \ Xr in condition
(8) can be removed, according to Corollary 1.

It is worth noting here that if λ(x) ∈ C(X ) in condition
(6) (or, (8)) does not satisfy the aforementioned conditions,
and it is just a continuous function over C(X ), the condition
(6) (or, (8)) can deal with the case that the safety and
performance objectives are in conflict, but the safety is
prioritized. In this case system (1) starting from R = {x ∈
X | ρ(x) > 0} (or, R = {x ∈ X | ρ1(x) > 0}) will stay
inside the set R \ Xr, which is a subset of the safe set X ,
if it cannot reach the target set Xr. However, a qualitative
characterization of initial states in R such that system (1)
enters Xr cannot be given.

IV. EXAMPLES

In this section we demonstrate our theoretical develop-
ments on two examples. The condition used for computations
are relaxed into semi-definite constraints based on the sum-
of-squares decomposition for multivariate polynomials. The
formulated semi-definite programs are presented in Ap-
pendix. The sum-of-squares module of YALMIP [14] was
used to transform the sum-of-squares optimization problem
into a semi-definite program and the solver Mosek [19] was
used to solve the resulting semi-definite program. Due to the
presence of multiple unknown polynomials in solving semi-
definite programs (15), (16), (17), (18) and (19), we use the
following procedure for automatically assigning parametric
templates to these polynomials. Given degree d, the used
polynomial templates are ones including all monomials of
degree less than or equal to d. In the following procedure,
dρ and ds respectively denote the degree of the poly-
nomials {ρ1(x), ρ2(x), ρ(x), v(x), w(x)} and {si(x), i =
0, 1, 2, 3, 4, p(x)}.

for dρ = 6 : 1 : 12 do
for ds = 2⌈dρ

2 ⌉ : 2 : 2dρ do
solve (15) \ (16) \ (17) \ (18) \ (19)
if Solved Successfully then

return dρ, ds and ρ(x)
end if

end for
end for

Example 2: Consider an academic example from [28],{
ẋ = −0.5x− 0.5y + 0.5xy

ẏ = −0.5y + 0.5
(14)



SDP λ dρ ds

(15) 0.001 6 12

(15) -0.499 6 6

(16) 0 6 6

(17) - 6 12

(18) - 10 10

(19) 0.001 10 10

TABLE I
PARAMETERS OF SOLVING SDP (15)-(19) TO VERIFY THE

STRONG/WEAK REACH-AVOID PROPERTIES SUCCESSFULLY (’-’ MEANS

THAT λ IS NOT USED).

with X = {(x, y)⊤ | x2 + y2 − 1 < 0}, Xr = {(x, y)⊤ |
(x + 0.2)2 + (y − 0.7)2 − 0.02 ≤ 0} and X0 = {(x, y)⊤ |
(x− 0.3)2 + (y + 0.6)2 − 0.01 < 0}.

In this experiment we take λ(x) ≡ Constant over X in
conditions (6) and (8). The degrees of polynomials used
for verifying strong/weak properties successfully via solving
these SDPs are presented in Table I. Some of computed R’s
are visualized in Fig. 2. Since max

x∈X\Xr
▽·f(x) ≤ −0.50,

λ < 0 is also allowed in conditions (6) and (8) for performing
verification, and that condition (6) or (8) holds also implies
the satisfaction of the strong reach-avoid property according
to Corollary 1 and 2.

Besides, it is interesting to find from Table I that condi-
tions (6) and (8) are also able to facilitate the weak/strong
reach-avoid verification efficiently.
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Fig. 2. Blue, black and green curves - ∂Xr , ∂X and ∂X0; red region -
{x ∈ X | ρ1(x) > 0} via solving SDP (16); purple region - {x ∈ X |
ρ(x) > 0} via solving SDP (15) with λ = −0.499.

As analyzed theoretically, the difference between con-
straints (2)/(3) and (6)/(8) lies in that (6)/(8) takes into
account the divergence of the vector field (i.e., ▽ · f(x)).
Example 2 shows that taking into account the divergence
has a positive effect on the reach-avoid verification for some
systems. Below we present a case, which shows the negative
effect on the reach-avoid verification.

Example 3: Consider the reversed-time Van der Pol oscil-
lator given by{

ẋ = −2y

ẏ = 0.8x+ 10(x2 − 0.21)y

with X = {(x, y)⊤ | x2 + y2 − 1 < 0}, X0 = {(x, y)⊤ |

(x − 0.7)2 + (y − 0.1)2 − 0.01 < 0} and Xr = {(x, y)⊤ |
x2 + y2 − 0.01 < 0}.

The divergence of the vector field is ▽ · f(x) = 10(x2 −
0.21), which is sign-indefinite over the set X .

1) When λ(x) = x2+y2 in (6), we fail to verify the weak
and strong reach-avoid property via solving (15). However,
when λ(x) = x2 + y2 + ▽ · f(x) in (6), which also
corresponds to (2) with λ being x2 + y2, we can verify the
weak reach-avoid property via solving (15) when dρ = 6
and ds = 6, which also implies the satisfaction of the strong
reach-avoid property according to Corollary 1.

2) When λ(x) = 0 in (6) (in this case, ▽ ·f(x) appears in
ρ1(x) ≤ ▽ · (ρ2f)(x),∀x ∈ X \ Xr), the weak and strong
reach-avoid properties cannot be verified via solving (16). In
contrast, we can verify the strong reach-avoid property via
solving (16) when dρ = 8 and ds = 8.

The computed R’s are visualized in Fig. 3.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

Fig. 3. Blue, black and green curves - ∂Xr , ∂X and ∂X0; red curve -
∂{x ∈ X | ρ1(x) > 0} via solving SDP (15); purple curve - ∂{x ∈ X |
ρ(x) > 0} via solving SDP (16).

V. CONCLUSION

In this paper we investigated the reach-avoid verification
of continuous-time systems modeled by ordinary differential
equations using Lyapunov densities. Two new sufficient con-
ditions were proposed for the weak reach-avoid verification,
which are shown to be weaker than existing ones. Then, via
analyzing the divergence of the vector field and constraining
it, we generalized the proposed two conditions to the strong
reach-avoid verification. Finally, we demonstrated and dis-
cussed our theoretical developments on two examples.

An appealing point of Lyapunov densities lies in facilitat-
ing the control design using convex optimization, especially
for control-affine dynamics [21]. In the future we would
investigate the reach-avoid controller synthesis based on the
proposed conditions in the present work.
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[7] Ö. Karabacak, A. Kıvılcım, and R. Wisniewski. Almost global stability
of nonlinear switched systems with time-dependent switching. IEEE
Transactions on Automatic Control, 65(7):2969–2978, 2019.

[8] H. Khalil. Nonlinear Systems. Prentice Hall, 2002.
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APPENDIX

The semi-definite program for solving constraint (6):
▽(ρf)(x)− λ(x)ρ(x) + s0(x)h(x)− s1(x)g(x) ∈

∑
[x],

ρ(x)− ϵ0 + s2(x)l(x) ∈
∑

[x],

−ρ(x) + p(x)h(x) ∈
∑

[x],
(15)

where ϵ0 = 10−6, ρ(x), p(x),ψi(x) ∈ R[x], and sj(x) ∈∑
[x], i = 0, . . . , 2.
The semi-definite program for solving constraint (8):
▽(ρ1f)(x)− λ(x)ρ1(x) + s0(x)h(x)− s1(x)g(x) ∈

∑
[x],

▽(ρ2f)(x)− ρ1(x) + s2(x)h(x)− s3(x)g(x) ∈
∑

[x],

ρ1(x)− ϵ0 + s4(x)l(x) ∈
∑

[x],

−ρ1(x) + p(x)h(x) ∈
∑

[x],
(16)

where ϵ0 = 10−6, ρ(x), p(x),ψi(x) ∈ R[x], and sj(x) ∈∑
[x], i = 0, . . . , 4.
The semi-definite program for solving constraint (4):
▽(ρf)(x)− ϵ′0 + s0(x)h(x)− s1(x)g(x) ∈

∑
[x],

ρ(x)− ϵ0 + s2(x)l(x) ∈
∑

[x],

−ρ(x) + p(x)h(x) ∈
∑

[x],

(17)

where ϵ0 = 10−6, ρ(x), p(x),ψi(x) ∈ R[x], and sj(x) ∈∑
[x], i = 0, . . . , 2.
The semi-definite program for solving constraint (3):
▽v(x) · f(x) + s0(x)h(x)− s1(x)g(x) ∈

∑
[x],

▽w(x) · f(x)− v(x) + s2(x)h(x)− s3(x)g(x) ∈
∑

[x],

v(x)− ϵ0 + s4(x)l(x) ∈
∑

[x],

−v(x) + p(x)h(x) ∈
∑

[x],
(18)

where ϵ0 = 10−6, v(x), w(x), p(x) ∈ R[x], and sj(x) ∈∑
[x], i = 0, . . . , 4.
The semi-definite program for solving constraint (2):
▽v(x) · f(x)− λv(x) + s0(x)h(x)− s1(x)g(x) ∈

∑
[x],

v(x)− ϵ0 + s2(x)l(x) ∈
∑

[x],

−v(x) + p(x)h(x) ∈
∑

[x],
(19)

where ϵ0 = 10−6, v(x), p(x) ∈ R[x], and sj(x) ∈
∑

[x],
i = 0, . . . , 2.

Proposition 4: The set A = {x0 ∈ R | ϕx0(t) ∈ R \
Xr,∀t ∈ [0, i]} is an open set, where i > 0.

Proof: Assume x0 ∈ A. According to Theorem 3.5 in
[8], we have that given ϵ > 0, there is δ > 0 such that if
∥x0 − x∥ < δ, then

∥ϕx0
(t)− ϕx(t)∥ < ϵ,∀t ∈ [0, i].

Since R ⊆ X is open and bounded, and Xr is compact,
we have that R \ Xr is an open and bounded set. Thus, its
boundary, denoted as ∂(R \ Xr), is compact. Also, since
ϕx0

(t) is continuous over t ∈ [0, i], the function ∥ϕx0
(t)−

y∥ is continuous over t ∈ [0, i] and y ∈ Rn. Thus, we
can attain a value (t1, z) ∈ [0, i] × ∂(R \ Xr) such that
mint∈[0,i],y∈∂(R\Xr) ∥ϕx0

(t) − y∥ = ∥ϕx0
(t1) − z∥ = ∆.

Since ϕx0(t) ∈ R\Xr for ∀t ∈ [0, i], ∆ > 0 holds. Let ϵ :=



∆
2 . Consequently, there is δ > 0 such that if ∥x0 − x∥ < δ,
then

∥ϕx0(t)− ϕx(t)∥ < ϵ,∀t ∈ [0, i],

which implies that ϕx(t) ∈ R \ Xr for t ∈ [0, i] and x
satisfying ∥x0 − x∥ < δ. Therefore, {x | ∥x0 − x∥ < δ} ⊆
R \ Xr and thus A is an open set.
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