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Abstract—Many large-scale multithreaded programs incur deadlock bugs. Existing deadlock warning detection techniques 

only report warning scenarios, which may or may not be real deadlocks. Each warning should be further verified on whether it 

may manifest into a real deadlock. For this purpose, a number of active randomized testing schedulers have been developed 

to trigger them, and yet pervious experiments show that their deadlock confirmation probability can be low. This paper 

presents ASN, a novel barrier-based randomized scheduler that triggers real deadlocks with high probabilities. We exploit the 

insights that in a confirmation run, the threads involved in a real deadlock should properly acquire one or more sets of locks 

prior to deadlocking. ASN automatically identifies three interesting sets of such positions. It guides the threads participating in 

a given warning to stay at these position sets in turn. When all the threads are staying at the last position set, ASN checks 

whether any deadlock that matches with the given warning has been triggered. We have evaluated ASN on 15 deadlock 

bugs in a suite of real-world multithreaded programs. The results show that ASN either confirms more deadlocks from the 

benchmark suite or triggers the same deadlocks with significantly higher probabilities than existing schedulers. 

Index Terms—Debugging, deadlock triggering, randomized testing, large-scale multithreaded programs 
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1 INTRODUCTION

Many real-world multithreaded programs incur concur-
rency bugs [18], [32], [36]. These bugs (e.g., data races 
[11], [18], atomicity violations [29], [35], and deadlocks 
[6], [9], [13]) should be detected and rectified. Deadlocks 
are severe concurrency bugs. They prevent program ex-
ecutions from terminating correctly. Generic techniques 
can expose different kinds of concurrency bugs but only 
with a very low bug triggering ability [10]. On the other 
hand, techniques that precisely detect specific kinds of 
deadlocks are still unable to handle large-scale programs 
[25]. In this paper, we study the confirmation problem of 
resource deadlock, where locks are resources [13], [23]. 

A deadlock is triggered if all threads involving in a 
deadlock circularly wait for one another to release cer-
tain locks. Many static techniques [6], [16], [37], [38] and 
dynamic techniques [9], [15], [21], [23] infer such circular 
wait conditions in one way or another. They identify 
cycles in lock order graphs [21] or from sets of lock de-
pendencies [13], [23]. But, such cycles may merely be 
deadlock warnings instead of real deadlocks [13], [38].  

A promising approach to isolating deadlocks from the 
pool of such warnings is randomized active testing tech-
niques [13], [23], which we refer to as deadlock confirma-
tion techniques. Suppose that a dynamic deadlock warn-
ing detection technique has ran a program and generat-
ed a pool of deadlock warnings from it. A typical, exist-
ing deadlock confirmation technique [13], [38] re-runs 
the same program attempting to reveal real deadlocks 
hidden in the pool. To ease our presentation, we refer to 
such a re-run of the program as a confirmation run.   

Such a technique [13], [23] only suspends each thread 
involving in a deadlock warning whenever the thread is 
locating at a deadlocking site [14] without allowing the 
thread to acquire the lock associated with the site. How-
ever, we are going to show in Section 3 that this strategy 
may systematically miss to confirm a real deadlock. 
Moreover, our experiment to be presented in Section 5 
shows that in some scenarios, this strategy works effec-
tively, but in some other scenarios, it often causes the 
confirmation runs deadlocking with the testing tool, 
even though the corresponding native runs can proceed 
naturally (where the problem is referred to as thrashing 
[23]). These phenomena are counter-intuitive if this class 
of strategy is adequate to confirm deadlocks.  

We observe that all the threads involving in a dead-
lock should synchronize their execution steps not only at 
their deadlocking sites, where the deadlock occurs, but 
also at some other sites prior to these deadlocking sites. 
Suspending all threads at their deadlocking sites is only 
a necessary condition to trigger the deadlock. A good 
scheduler should create at least one sufficient condition of 
deadlock triggering, which, to our best knowledge, is 
never mentioned in related work (e.g., [13], [23]).  
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This paper proposes ASN, a barrier based dynamic 
deadlock triggering scheduler, where each barrier is a 
set of sites, one for each thread involved in a given cycle. 
ASN formulates with a sequence of three barriers in 
mind: Admission Barrier (the sites that these threads start 
using the locks associated with the deadlock), Sufficiency 
Barrier (the sites related to the sufficient condition dis-
cussed above), and Necessary Barrier (deadlocking sites). 
In the course of a confirmation run, ASN schedules a 
program to traverse each barrier in cohort and one after 
another. The intuition behind this design is to reduce 
thrashing potentials across different segments of the 
same execution trace separated by consecutive barriers. 

We also prove that there exists a set of sites such that, 
if a scheduler can suspend all the threads in the given 
cycle (which is a real deadlock) at this set of sites, it is 
sufficient to trigger an occurrence of the deadlock. 

We have evaluated ASN on a suite of widely-used 
large-scale Java/C/C++ programs that contains 15 real-
world deadlock bugs. The experimental results show 
that, compared to existing techniques (DeadlockFuzzer 

[23], MagicScheduler [13], and PCT [10]), ASN can either 
confirm more real deadlocks on the same benchmark or 
trigger the same deadlock bugs with significantly higher 
probability and incur significantly less thrashing. In the 
experiment, ASN incurs high performance overheads. 

The contribution of this paper is threefold: (1) this 
paper presents ASN, a new class of active randomized 
testing scheduler to confirm real deadlocks from warn-
ings. (2) The paper presents a theoretical guarantee of 
ASN, which shows that if a given warning is a real dead-
lock, ASN guarantees to manifest the warning into a real 
deadlock under certain conditions. (3) We show the fea-
sibility of ASN by implementing it as two tool proto-
types and reported a validation experiment on a suite of 
large-scale multithreaded programs. The experimental 
results show that ASN can be significantly more effective 
than peer techniques in confirming real deadlocks.  

The rest of this paper is organized as follows: Section 
2 gives the preliminaries. We motivate our work by an 
example in Section 3. Section 4 presents ASN followed 
by its evaluation in Section 5. Section 6 reviews the close-
ly related work. Section 7 concludes the paper. 

2 PRELIMINARIES 

2.1 Lock Trace and Dependency 

There are two types of event related to deadlock confir-
mation: acquire(t, m) and release(t, m), meaning that a 
thread t acquires a lock m and releases a lock m, respec-
tively. Other events can be similarly handled [11], [18]. 

A site is an abstraction of an execution context [13], 
[14], [23], [26]. We denote by e@s the event e occurring at 
the site s, and denote the site s of the event e by site(e). 

To ease readers to follow, each example in this paper 
only uses a program line number to illustrate a site. For 
instance, in Fig. 1(a), the lock acquisition event e1 = ac-
quire(t1, k) occurred at site s01 is referred to as e1@s01. 
Similarly, we refer to e@s as m@s if e = acquire(t, m).  

A lock dependency [13], [23]  = t, m@s, L is a triple 
consisting of a thread t, a lock m acquired at site s, and a 

lockset L. It represents that the thread t acquires a lock m 
at a site s while holding all locks in the lockset L.  

 For presentation clarify, we may hide the site associ-
ated with an event. Also, if a thread is involving in a 
cycle, we may refer to it without mentioning the cycle. 

2.2 Cycle, Direct locks and Indirect Locks 

A deadlock or a deadlock warning is a cycle [13] c = t1, 
m1, L1, t2, m2, L2, …, tk, mk, Lk such that m1  L2, m2  
L3, …, mk  L1, and ti ≠ tj, mi ≠ mj, {mi} ∩ Li = ∅ and Li ∩ Lj 

=∅, for 1 ≤ i, j ≤ k (i ≠ j).  
For instance, the cycle c0 = t1, n, {s, p, m}, t2, p, {n} 

can be used to represent the deadlock shown in Fig. 1(a).  
Each lock dependency m = tm, m@sm, Lm in a cycle c 

can be reorganized into the following format: m' = tm, 
m@sm, n@sn, Lm' such that Lm' = Lm \ {n@sn} and n = tn, 
n@sn, Ln is another lock dependency in c. We refer to 
this format as a cyclic lock dependency. As such, an al-
ternative form of the above cycle c is t1, m1, m0, L1', t2, 
m2, m1, L2'… tk, mk, mk-1, Lk', where Li'= Li \ {m(i-1)}, for 1 
≤ i ≤ k, and m0 = mk. In the running example, the cycle c0 
can be rewritten as c1 = t1, n, p, {s, m},  t2, p, n, .  

Given a cyclic lock dependency t, m, n, L', both m 
and n are called the direct locks, and every lock in L' is 
called an indirect lock. We denote the set of all direct 
locks in a cycle c by directLocks(c), and the set of all 
indirect locks by indirectLocks(c).  

For instance, with respect to the cycle c1 in Fig. 1(a), 
directLocks(c1) is {n, p}, and indirectLocks(c1) is {s, m}. 

We also denote the set of all threads in the cycle c by 
Threads(c). In the running example, Threads(c1) = {t1, t2}.  

3 MOTIVATING EXAMPLE  

Fig. 1(a) shows an example program with two threads (t1 
and t2) and five locks (k, n, s, p, and m). There is a dead-
lock as highlighted on the lock acquisitions of p and n.  

The thread t1 firstly acquires the lock k at site s01, and 
then releases it at site s02. Then, t1 acquires the lock s at 
site s03. Before releasing s, t1 holds the lock n for a brief 
period (at sites s04 and s05) followed by acquiring three 
more locks p, m, and n at sites s06, s07, and s08, respective-
ly. Finally, t1 releases all its locks from site s09 to site s12. 

The thread t2 acquires the lock s at site s13 and then re-
leases it at site s14. Then, t2 acquires the locks n and p at 
sites s15 and s16 and releases them at sites s17 and s18.  

Fig. 1(b) and Fig. 1(c) show two possible threads 
schedules of the program: Schedule 1 and Schedule 2. 

Schedule 1 triggers the deadlock: Suppose that thread 
t2 is locating at site s15 before acquiring the lock n, and t1 
executes all the operations from site s01 to site s07. Thus, t1 
is holding the lockset {s, p, m}. Now, t2 acquires the lock 
n at site s15. However, t2 cannot further acquire the lock p 
at site s16 because t1 is holding p. Schedule 1 then switches 
to guide t1 to acquire n at site s08, but it fails as t2 is hold-
ing the lock n. As such, a real deadlock occurs.  

The deadlock in Fig. 1(a) is not easy to trigger. As 
shown in Fig. 1(c), in Schedule 2, right after t2 has released 
the lock s at site s14, t1 acquires the lock k and then releas-
es it. Before t1 proceeds further, t2 completes its execu-
tion. Following Schedule 2 does not trigger the deadlock.  



By analyzing Schedule 2, existing deadlock warning 
detection techniques [13], [21], [23] can report a deadlock 
warning on the four sites s06, s08, s15, and s16, where the 
warning is denoted by the cycle c0 = t1, n, {s, p, m},  t2, 
p, {n}. To ease our discussion, we refer to these four 
sites as deadlocking sites.  

Existing approaches schedule confirmation runs to 
trigger the reported deadlock warning c0 as follows: 

Randomized Scheduler (RS, see Algorithm 3 in [23]): 
Based on the given warning c0, RS (e.g., DeadlockFuzzer 
[23], MagicScheduler [13]) targets to suspend the thread t1 
at site s08 and suspend the thread t2 at site s16.  

If the confirmation run is scheduled as Schedule 1, 
then RS successfully triggers the deadlock.  

Otherwise, RS may miss to trigger the deadlock. For 
instance, with the attempt to follow Schedule 2, RS firstly 
suspends t2 once t2 is locating at site s16 (i.e., after t2 has 
acquired the lock n at site s15). However, when t1 is locat-
ing at s04, the thread t1 has to wait for t2 to release the 
lock n. Now, RS is suspending t2, and t2 is blocking t1:  
thrashing [23] occurs. To resolve thrashing, RS has to re-
sume t2. After t2 has acquired the lock p, there is no way 
to trigger the deadlock indicated by c0 anymore.  

Systematic Scheduler (including PCT [10]). These 
schedulers aim to detect concurrency bugs in general, 
and are unaware of specific bug information provided to 
them. Their ability to expose deadlocks is very low [10]. 

Given a multithreaded program, PCT firstly chooses a 
set of priority change points [10] (e.g., right before site s15 
for t2 and right after site s07 for t1), and lowers the priori-
ty of a thread when the thread is about to execute any 
statement that is a change point [10]. If PCT happens to 
work like Schedule 1, it can trigger the deadlock. PCT has 
a probabilistic guarantee to trigger the deadlock. To ex-
pose the deadlock in the running example in Fig. 1(a), 
according to the formula in Section 2.4 in [10], the guar-
anteed probability is 1 / (2  183-1)  0.0015 (for 2 threads, 
18 statements, and 3 change points), which is quite low. 

To trigger the deadlock in Fig. 1(a), t2 must have pre-
cisely acquired the lock s at site s13 before t1 acquires the 
same lock s at site s03: We have illustrated via Fig. 1(c) 
that if a thread acquires one more lock (e.g., acquiring 
the lock n at site s15 by t2) before another thread acquires 
a specific lock (e.g., acquiring the lock n at site s04 by t1), 
then the latter thread may miss to locate at the deadlock-
ing site s08 before the former thread has passed through 
its deadlocking site s16. Contrarily, if a thread acquires 

one less lock (e.g., not acquiring the lock s at site s13 by 
t2), another thread may have already passed through its 
deadlocking site (s08 for t1) before the former thread ac-
quires its next lock (e.g., the lock s at site s13 by t2). 

The above analysis indicates that setting random time 
delays [17] or user-chosen time delays [36] for individual 
threads, selecting a set of change points randomly [10], 
or suspending individual threads permanently by ignor-
ing other threads [23], [13] are all inadequate to precisely 
control the execution sequence among the threads need-
ed to trigger a real deadlock from a deadlock warning.  

Consider Schedule 2 again. Suppose that a deadlock 
warning detection technique uses Schedule 2 to generate 
c0. Deterministically replying [7] Schedule 2 up to the first 
deadlocking site (i.e., s16) does not help to trigger the 
deadlock because t2 is blocking t1 to acquire the lock n at 
site s04. On the other hand, if a testing tool deterministi-
cally replays Schedule 2 up to site s15, then the tool should 
decide which particular thread to be executed next.   

In the next section, we present ASN and illustrate 
how ASN addresses the illustrated challenges.  

4 OUR PROPOSAL: ASN 
4.1 Overview 

For each thread involving in a given cycle c, ASN infers 
one site per barrier: Admission Barrier (ABr), Sufficiency 
Barrier (SBr), and Necessity Barrier (NBr). In the course of 
a confirmation run, ASN schedules these threads to pass 
through the first two barriers in cohort and one by one, 
and checks for deadlock occurrences at the third barrier. 

Fig. 1(c) depicts the three barriers for two threads t1 
and t2 where the cycle is c0. ASN firstly targets to sus-
pend t1 and t2 right before the first barrier (ABr): the site 
s03 for t1 and the site s13 for t2, which is feasible according 
to Schedule 2. Then, ASN targets to suspend the two 
threads at the second barrier (SBr): the site s06 for t1 and 
the site s15 for t2. Suppose that t2 has acquired the lock s 
at site s13 prior to t1 acquiring the lock s at site s03. In this 
case, the two threads can locate at the second barrier. 
Finally, ASN targets to suspend the two threads at the 
third barrier (NBr): the site s08 for t1 and the site s16 for t2.  
Now, the cycle c0 is confirmed by ASN as a real deadlock. 

ASN uses an interesting approach to inferring the 
three barriers, which will be presented in Section 4.2. In 
Section 4.3, we present the algorithm of ASN. Finally, we 
present a theorem that shows the theoretical guarantee, 
optimization and variants of ASN in the rest of Section 4.  
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(a) Program code (b) Schedule 1 (c) Schedule 2








ABr(c0,t1)→

SBr(c0,t1)→

NBr(c0,t1)→

←ABr(c0,t2)

←SBr(c0,t2)

←NBr(c0,t2)

 

Fig. 1. A deadlock example adapted from MySQL JDBC Connector, where acq and rel mean acquire and release, 
respectively. 

 



4.2 Barriers of ASN 

In this section, we present the definitions of the three 
barriers and their design rationales.  

When a deadlock occurs, each thread involving in the 
deadlock must wait to acquire a specific lock at a specific 
site, which we refer to as the deadlock triggering site. 
The Necessary Barrier for each thread involving in the 
cycle intends to specify that the thread should wait at its 
corresponding deadlock triggering site. 

Definition 1 (Necessity Barrier): The necessity barrier 
NBr(c) with respect to a given deadlock warning c is the 
set { site(e) | e = acquire(t, m) and  t', n, m, L', t, m@s2, 
l, L  c such that site(e) = s2}. 

The NBr site of each thread can be directly extracted 
from the given warning c. For instance, in Fig. 1(c), the 
site s08 is the NBr site for the thread t1. It is the site where 
t1 wants to acquire the lock n, but should be held by the 
thread t2 so that these two threads sets up a circular wait 
condition necessary to trigger a deadlock.  

However, suspending threads involving in a cycle at 
this barrier only represents a necessary condition after 
the confirmation run has manifested into a real deadlock 
at the corresponding sites. The goal of an active dead-
lock triggering scheduler should be to create certain suf-
ficient conditions that manifest deadlocks and guide 
confirmation runs to satisfy such sufficient conditions so 
that the scheduler can effectively confirm real deadlocks. 

The Sufficiency Barrier (SBr) models such a sufficient 
condition. The SBr site of a thread t involving in a cycle c 
is where t acquires a direct lock of another thread in c.  

Definition 2 (Sufficiency Barrier): The sufficiency barri-
er SBr(c) with respect to a given deadlock warning c is 
the set {site(e) | e = acquire(t, m) and  t, n, m@s1, L and 
t', m, l, L'  c such that site(e) = s1 }.  

As shown in Fig. 1(c), the SBr sites for the two threads 
t1 and t2 are sites s06 and s15, respectively. If t1 and t2 are 
concurrently suspended at sites s06 and s15 followed by 
resuming their executions, the deadlock indicated by the 
cycle c0 will be triggered at the necessity barrier NBr(c0).  

Before a thread reaches its SBr site, thrashing may 
have occurred. It blocks this thread from acquiring an 
indirect lock being held by a suspending thread. For in-
stance, in Fig. 1(c), if t1 has suspended at its SBr site (s06) 
before t2 acquires the lock s at site s13, then t2 cannot 
reach its SBr site (s15) until t1 releases the lock s at site s12.  

ASN aims to divide the traces of the threads involved 
in the given cycle c into segments separated by barriers. 
As such, thrashing will be contained within each seg-
ment instead of across multiple segments, thereby re-
ducing the potential of thrashing occurrences.  

Definition 3 (Admission Barrier): The admission barrier 
ABr(c) with respect to a given deadlock warning c is the 
set {site(e)| t  Threads(c) and e = acquire(t, m) such that 
(1) m  directLocks(c)  indirectLocks(c), and (2)  e' = 
acquire (t, n) such that (i) e' ≠ e, (ii) n  directLocks(c)  
indirectLocks(c) and (iii) e↣ e'}, where ↣ is the hap-
pened-before relation [30]. 

Intuitively, the admission barrier ABr for a thread 
represents a site where the thread acquires its very first 
direct lock or its very first indirect lock along the run.  
As such, there are 1 segment before the admission barrier 
and 1 segment between any two consecutive barriers. 

In Fig. 1(c), as depicted, the admission barrier for the 
thread t1 is site s03 and for the thread t2 is site s13. In the 
course of execution, if the two threads are suspended at 
these two sites, the probability for two threads reaching 
their sufficiency barriers will be at least 50%. Otherwise, 
it depends on whether the thread t2 acquire the lock s at 
site s13 before the thread t1 acquires the lock s at site s03. 

4.3 Algorithm 

In this section, we present the ASN algorithm. The algo-
rithm firstly monitors the confirmation run against the 
admission barrier ABr(c) followed by the sufficiency bar-
rier SBr(c) and finally the necessity barrier NBr(c). To 
ease our presentation, we refer to the site corresponding 
to a thread t in three barriers ABr(c), SBr(c), and NBr(c) 
as ABr(c, t), SBr(c, t), and NBr(c, t), respectively. 

Algorithm 1 summarizes the main ASN algorithm. It 
takes a program p and a deadlock warning c as inputs. 
At lines 1–3, it initializes the execution state of the con-
firmation run. For each thread t in the warning c, it as-
signs ABr(c, t) to the variable CurBr, and initializes two 
maps Request and Lockset as empty sets. The set Ena-
ble (lines 4 and 22) models the set of active threads in 
the confirmation run. If Enable is non-empty (line 5), the 
algorithm fetches the next statement (denoted by stmt). 
It handles stmt by distinguishing three cases:  

Case 1: If stmt is never a lock acquisition/release 
event nor a statement executed by any thread involv-
ing in c, Algorithm 1 simply executes stmt (lines 78). 
For instance, all memory accesses fall into this case.  

Case 2: If stmt is an acquire(t, m) event, where t is a 
thread involving in c, the algorithm updates its execu-
tion state by associating t with m, and keeps the asso-
ciation relation in Request (lines 9–10). It then checks 
whether stmt is at the barrier under monitoring for 
the thread t via the function checkBarrier (line 11). If 
this is the case, Algorithm 1 pushes stmt back to the 
statement execution queue, and suspends t by remov-
ing it from the set Enable (lines 12–13). For instance, 
in the running example, if stmt is acquire(t1, s) occur-
ring at site s03 which is the ABr site of t1, ASN sets Re-
quest(t1) to s@s03 and invokes checkBarrier(acquire(t1, 
s)@s03), which returns true. Thus, ASN removes t1 from 
Enable because the function checkBarrier has sus-
pended t1 without executing acquire(t1, s). Otherwise, 
Algorithm 1 executes stmt and updates the execution 
state accordingly (lines 15–16). For instance, if stmt is 
acquire(t1, k) at site s01, the statement is directly execut-
ed and Lockset(t1) is updated to include the lock k.  

Case 3: If stmt is a release(t, m) event, the algorithm 
removes the lock m from the set Lockset for the 
thread t, and executes stmt (lines 18–20). For instance, 
if stmt is release(t1, k) occurring at site s02, ASN exe-
cutes it and removes the lock k from Lockset(t1).  

Next, if the set Enable becomes empty (line 22), the 



algorithm either resolves thrashing (line 24) or reports 
an unexpected but real deadlock (line 26). Otherwise, it 
iterates the above procedure to process next statement.  

The function checkBarrier is a core part of Algorithm 1. 
It takes a lock acquisition event (i.e., e = acquire(t, m)@s) 
as an input. It checks whether the given site s is the site 
for the thread t at the barrier under monitoring (line 32). 
If so, the algorithm suspends t. Next, it checks whether 
all the threads involving in c have been suspended at 
their corresponding sites indicated by the same barrier 
(line 35). If this is also the case and the barrier is the ne-
cessity barrier, the algorithm checks whether the warn-
ing c has been manifested into a real deadlock via the 
function checkforDeadlocks (line 36).  

At line 39, the algorithm advances to monitor the bar-
rier following the current barrier via the function 

Next(CurBr(c, t)). That is, for each thread t in c, the varia-
ble CurBr(t) is updated from ABr(c, t) to SBr(c, t) or from 
SBr(c, t) to NBr(c, t). Finally, checkBarrier returns a Bool-
ean value, indicating whether site(e) is a site in the barri-
er under monitoring (lines 47−49).  

For instance, when checkBarrier is called from the ex-
ample in Case 2 (i.e., checkBarrier(acquire(t1, s)@s03)), ASN 
finds that the site s03 equals to CurBar(t1) whose value is 
ABr(c0, t1). It then suspends t1 (line 33). Suppose that the 
thread t2 is also locating at site s13 (i.e., ABr(c0, t2)). Hence, 
both threads are locating at their ABr sites, which are not 
their NBr sites. ASN does not invoke checkforDeadlock(c) 
(lines 35–37). Next, ASN updates CurBr(t1) to SBr(c0, t1) 
and CurBr(t2) to SBr(c0, t2) (line 39). As the site ABr(c0, t1) 
is not the site SBr(c0, t1) and the site ABr(c0, t2) is not the 
site SBr(c0, t2), ASN resumes both threads at line 41. 
 Note that ABr(c, t) and SBr(c, t) for the same thread t 
may sometimes refer to the same site. If so, ASN skips 
resuming t (lines 40–43) after the admission barrier. For 
instance, the following execution trace contains a dead-
lock on locks m and n. Both the ABr and SBr sites for the 
thread t3 refer to the first lock acquisition acq(m) at line 
01 and its NBr site is acq(n) at line 02. 

 Thread t3  Thread t4 

01 
02 
03 
04 

acq(m)  
  acq(n) 
  rel(n) 
rel(m) 

05 
06 
07 
08 
09 
10 

acq(k) 
  acq(n) 
    acq(m) 
    rel(m) 
  rel(n) 
rel(k) 

The function checkforDeadlocks (lines 51-59) checks real 
deadlock occurrence and, if any, reports the deadlock, 
which may be different from the given warning c (lines 
53−57), and halts the execution. 

Compared to existing work, ASN only checks for 
deadlock occurrences once instead of checking right be-
fore each lock acquisition event. It consumes less time on 
deadlock checking. At the same time, it consumes more 
time to handle two more barriers.  

4.4 Theoretical Guarantee of ASN 

We firstly recall that a cycle c is defined as a sequence of 
cyclic lock dependencies c = {t1, l2, l1, L1, …, ti, li+1, li, Li, 
…, tn, l1, ln, Ln}. 

Theorem 1. If a cycle c is a real deadlock of a multi-
threaded program, ASN guarantees to trigger this dead-
lock c if the following three conditions are satisfied: 

(a) Each thread ti in Threads(c) is locating at the SBr(c, 
ti) site, and is going to acquire the lock li. 

(b) There is no deadlock or livelock ever occurred be-
fore the deadlock c is triggered in the execution. 

(c) For each thread ti, SBr(c, ti) dominates NBr(c, ti) 
by the program order. 

Proof. We prove Theorem 1 by mathematical induc-
tion. The basic idea is: we firstly prove the base case (i.e., 
|Threads(c)| = 2) and then suppose that, for |Threads(c)| 
= n, the theorem is true. Next, for a program p with a 
cycle cn+1 such that |Threads(cn+1)| = n+1, we create a 
new program p' containing a deadlock cn with n threads 
by mapping the execution of (n+1) threads to n threads, 
where the theorem is true as supposed. Finally, we show 

Algorithm 1: ASN Scheduler (Program p, Cycle c) 
 
01 
02 
03 
04 
05 
06 
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08 
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11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
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27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
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39 
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41 
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43 
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53 
54 
55 
56 
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58 
59 

// e.g., c = {t1, m2@s1, m1, L1'…tn, m1@sn, mn, Ln'} 
for each thread t in Threads(c) do 
│ CurBr(t) := ABr(c, t), Request(t) :=, Lockset(t) :=,  
end for 
Enable := Threads(p)    // all threads in the program p 
while Enable ≠  do 
│ (t, stmt) := the next statement stmt from a random thread t 
│ if t  Threads(c)  (stmt ≠ acquire  stmt ≠ release) then 
│ │  execute(stmt) 
│ else if stmt = acquire(t, m)@s then 
│ │ Request(t) := m@s 
│ │ if checkBarrier(stmt) = true then 
│ │ │  push back stmt  
│ │ │  Enable := Enable \ {t} 
│ │ else    //execute the statement and update the execution state 
│ │ │  execute(stmt) 
│ │ │  Lockset(t) := Lockset(t)  {m@s } 
│ │ end if 
│ else if stmt = release(t, m)@s then 
│ │ Lockset(t) := Lockset(t) \ {m@s' } 
│ │ execute(stmt) 
│ end if 
│ if Enable =  then 
│ │  if some threads are suspended then  //thrashing is detected 
│ │ │ resume a suspending thread randomly  
│ │ else 
│ │ │ Print "A real deadlock is triggered!" 
│ │ end if 
│ end if 
end while 
Function checkBarrier(Event e)  // where  e = acquire (t, m) @s 
│ bar := CurBr(t) 
│ if site(e) = bar then  //the thread t is at its forthcoming barrier 
│ │ suspend(t) 
│ │ if each thread x in Threads(c) at site CurBr(x) then  
│ │ │ if the monitoring barrier is the necessity barrier then  
│ │ │ │  call checkforDeadlock(c) 
│ │ │ end if 
│ │ │ for each t'  Threads(c) do 
│ │ │ │ CurBr(t') := Next(CurBr(t'))//advance to the next barrier  
│ │ │ │ if site(e) ≠ CurBr(t) then  
│ │ │ │ │  resume(t)      //may still be the barrier under monitoring  
│ │ │ │ │  Enable := Enable  {t'} 
│ │ │ │ end if 
│ │ │ end for 
│ │ │ return false 
│ │ end if 
│ │ return true 
│ end if 
│ return false 
end Function 
Function checkforDeadlock (Cycle c) 
│ if  c' =d1, d2, … dk where di = ti, Request (ti), Lockset (ti), 
│ such that c' is a cycle then  
│ │ if c’ = c then 
│ │ │ Print "The given warning is confirmed as a real deadlock!" halt! 
│ │ else  
│ │ │ Print "A real deadlock is triggered!" halt! 
│ │ end if  
│ end if 
end Function 

 



that the program p can be schedules by ASN in the same 
way as ASN schedules the program p'.  

Base case: |Threads(c)| = 2 as depicted as Fig. 2(a):  
Subcase (1): Suppose both t1 and t2 cannot locate at 

NBr(c, t1) and NBr(c, t2), respectively. Then, a deadlock 
or a livelock must have occurred (as no thread is sus-
pended by ASN), which contradicts to the condition (b).  

Subcase (2): Suppose that in a run, only one thread, 
say the thread t1, is unable to locate at NBr(c, t1) but the 
thread t2 is locating at NBr(c, t2), as shown in Fig. 2(b). In 
this case, t1 must wait for a different thread tx to release a 
lock lx. A scenario is depicted as Fig. 2(c). If the thread tx 
= t2, then we have lx  l1 as the lock l1 has not been ac-
quired by t2 at NBr(c, t2). Then, a real deadlock cx = {t1, 
lx, l1, L1', t2, l1, lx, L2'} must have occurred, which also 
contradicts to the condition (b). Next, let us consider the 
case where tx  t2. Because only the thread t2 is suspend-
ed by ASN, the thread tx must be waiting for some other 
thread to release a lock. Since the total number of 
threads in the program p is limited, the run must have 
encountered a deadlock (which is different from the cy-
cle c) or a livelock. It contradicts to the condition (b).  

Based on subcases (1) and (2), threads t1 and t2 should 
be able to locate at NBr(c, t1) and NBr(c, t2), respectively, 
and trigger the deadlock c. We prove the base case.   

Induction step: Suppose that the theorem is true when 
|Threads(c)| = n.  

Now consider the case where |Threads(c)| = n + 1. As 
depicted in Fig. 2(d), by the condition (a), each thread ti 
of these (n +1) threads is able to locate at SBr(c, ti). Be-
cause the cycle c is a real deadlock and there is no dead-
lock occurs prior to the occurrence of c, by condition (c), 
the executions of two threads tn and tn+1 (or any two 
threads in c that form a wait-for relation) from SBr(c, tn) 
and SBr(c, tn+1) must reach NBr(c, tn) and NBr(c, tn+1), re-
spectively, and encounter no any other deadlock. Thus, 
we can merge the executions of these two threads tn and 
tn+1 into single execution and denote the combined 
thread as tn' (depicted in Fig. 2(e)). The merging rule is: 
(1) the events from two threads happened-before the 
events at SBr(c, tn) and SBr(c, tn+1) are merged into the 
new execution (denoted by ) by following their execu-
tion order in the original execution trace. (2) The events 
from SBr(c, tn) to NBr(c, tn) of tn and from SBr(c, tn+1) to 
NBr(c, tn+1) of tn+1 (including the events at SBr(c, tn), 
SBr(c, tn+1), and NBr(c, tn+1) but excluding the events at 
NBr(c, tn)) will be appended to the execution  of the 
thread tn'. (Note we need not to consider the events after 
NBr(c, t1) and NBr(c, t2), which can be merged in any 
feasible order.) We denote the new program that consists 
of the threads t1, …, tn-1, tn' as the program p'. Now, on 
the program p', we have a deadlock c' = {t1, l2, l1, L1, …, 
tn-1, ln, ln-1, Ln-1, tn', l1, ln, Ln+1  Ln  {ln+1}}. Because 
|Threads(c')| = n, ASN can schedule the execution of the 
program p' to trigger the deadlock c' as supposed. Next, 
we map back the execution of the thread tn' to the execu-
tions of tn and tn+1 according to the order that they have 
been merged into the execution  of the thread tn'. Note 
that when the deadlock c' occurs, ASN has suspended 
the thread tn' at NBr(c', tn') in p', which is the same site as 

NBr(c, tn+1) in p. Now, we consider the execution of the 
program p. After mapping back the events from , each 
thread ti in Threads(c) except the thread tn should have 
been suspended at the corresponding NBr(c, ti) and 
should be about to acquire the lock li. For the thread tn, 
all its statements right before NBr(c, tn) have been exe-
cuted. But, the thread tn cannot further be scheduled to 
acquire the lock ln+1 at NBr(c, tn) because ln+1 is being held 
by the thread tn+1. As a result, the deadlock c is triggered.  

By mathematical induction, Theorem 1 is proved. 

4.5 Optimization  

Algorithm 1 suspends each thread at a barrier right be-
fore acquiring the corresponding lock so that other 
threads may utilize the lock (if necessary) before locating 
at the same barrier. However, if other threads do not 
utilize this lock before locating at their deadlocking sites, 
there is no need to continue to suspend the former 
thread at the barrier in question. In this way, the total 
number of thread suspensions in a run can be reduced, 
which further reduces the scheduling overhead of ASN.  

For instance, suppose that, in Fig. 1(c), the thread t1 is 
locating at site s06 and is about to acquire the lock p and 
the thread t2 is locating in between the sites s14 and s15. 
According to Algorithm 1, ASN suspends t1 at site s06 
until t2 locates at site s15. However, t2 does not acquire 
the lock p before reaching its NBr site (s16). In this case, 
even if ASN does not suspend thread t1 at its SBr site 
(s06), the thread t2 is still able to locate at its SBr and NBr 
sites, and the deadlock can still be successfully triggered. 
On the other hand, suppose that the thread t1 is locating 
at site s03 (its ABr site) before the thread t2 locates at site 
s13, ASN must suspend the thread t1. Otherwise, thrash-
ing would occur if thread t2 is locating at site s13 to ac-
quire the lock s. This is because there is a lock acquisition 
(on the lock s associated with ABr(c0, t1)) by the thread t2 
prior to the same thread t2 locating at its NBr site. 

General speaking, if a lock m is associated with a bar-
rier site XBr(c, t) (where XBr is either ABr or SBr) and all 
other threads involving in the same cycle c do not ac-
quire the lock m before locating at their necessity barrier 
sites (which is determined based on the predictive run), 
ASN does not suspend this thread t at this site XBr(c, t) 
but just marks that t has located at this site XBr(c, t). 
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acq(l1)
acq(l2)

… thread tn-1 
acq(ln-1)
acq(ln)

thread tn thread tn+1
acq(ln)
acq(ln+1) 
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thread t1
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Fig. 2. A two-thread deadlock scenario in (a)-(c), and a 
generalized deadlock sceanrio in (d)-(e). 



4.6 Variants of ASN 

In the algorithmic design, ASN is built on three barriers 
ABr(c), SBr(c), NBr(c). Among these three barriers, the 
necessity barrier NBr(c) is precisely the set of sites where 
the given deadlock occurs, hence, cannot be removed.  

To help us to validate ASN, we make two variants of 
ASN, and each variant uses one less barrier than ASN:  

AN is a technique that uses the admission barrier fol-
lowed by the necessity barrier, that is ABr(c), NBr(c).  

SN is a technique that uses the sufficiency barrier fol-
lowed by the necessity barrier, that is SBr(c), NBr(c).  

Both AN and SN can be straightforwardly imple-
mented by modifying Algorithm 1.  

5 EXPERIMENT 

5.1 Benchmarks and Implementation  

We selected a suite of real-world, large-scale Java and 
C/C++ programs, including JDBC connector [1], SQLite 

[4], HawkNL [5], and MySQL [1]. They contained in total 15 
real deadlocks. All these benchmarks were available 
online [1], [26], and had been used in deadlock related 
experiments (e.g., [13], [26]). We have implemented ASN 
for Java and C/C++ using ASM 3.2 [2] and Pin 2.10 
(probe mode) [31] with Pthreads, respectively.  

We compared ASN to PCT [10], MagicScheduler (MS) 
[13], and DeadlockFuzzer (DF) [23], AN, and SN on the 
same framework. Although DF for Java is available from 
the current release of Calfuzzer [24], yet Calfuzzer only 
instrumented the test harness but did not instrument the 
JDBC Connector library that contains the deadlocks. Be-

sides, the released DF is different the algorithm reported 
[23]. Finally, we faithfully implemented DF based on 
both [23] and Calfuzzer [24] (including the optimization 
[23]). The original tool of PCT was not publicly available. 
We faithfully implemented PCT according to [10].  

5.2 Experimental Setup 

We performed our experiment on a 3.16GHz Duo 2 pro-
cessor with Ubuntu 10.04. We used the object abstraction 
algorithm in [14] to identify sites for each event and used 
Magiclock [12], [13] to generate all cycles. Because no 
technique in the experiment was able to confirm false 
positives, therefore, we only applied each cycle that is a 
real deadlock to each technique for 100 runs [13], [23].  

TABLE 1 shows the descriptive statistics of bench-
marks, including the benchmark name, the cycles (num-
bered from c1 to c15) in each benchmark, the bug ID if 
available, and the size of each benchmark (SLOC [3]). The 
fifth column shows a brief deadlock description for each 
benchmark. The last two columns show the number of 
threads/locks in each benchmark and the numbers of 
(direct and indirect) locks in each cycle, respectively.  

5.3 Effectiveness   

Fig. 3 summarizes the probability of each technique on 
each cycle listed in TABLE 1. We note that PCT does not 
use any information on the provided cycles to trigger 
real deadlocks. Hence, it is not totally fair to compare 
PCT to the other three techniques. Interpreting the data 
in the rest of Section 5 must consider this difference.  

From Fig. 3, we observe that ASN can confirm each 

TABLE 1 
 DESCRIPTIVE STATISTICS OF THE BENCHMARKS WITH 15 REAL-WORLD DEADLOCK BUGS 

Benchmark (Cycle IDs) Bug ID SLOC (K) Deadlock Description 
# of threads 

/ locks 
# of locks 

(direct / indirect) 

JDBC  

Connector  

5.0 

c1 - c5 2147 

36.3K 

PreparedStatement.getWarnings() and Connection.close() 3 / 131 2/0, 2/0, 2/2, 2/2, 2/1 

c6 31136 PreparedStatement.executeQuery() and Connection.close() 3 / 134 2/3 

c7 - c8 17709 Statement.executeQuery() and Conenction.prepareStatement() 3 / 134 2/2, 2/2 

SQLite 3.3.3 c9 1672 74.0K sqlite3UnixEnterMutex() and sqlite3UnixLeaveMutex() 3 / 3 2/0 

HawkNL 1.6b3 c10 - 9.3K nlShutdown() and nlClose() 3 / 2 2/1 

MySQL  

Server 6.0.4 

c11 - c14 34567 
1,093.6K 

Alter on a temporary table and a non-temporary table 17 / 292 2/1,2/1,2/1,2/1 

c15 37080 Insert and Truncate on a same table using falcon engine 17 / 211 2/6 

 

 
Fig. 3. Comparisons on the triggering probability of real deadlocks among PCT, MS, DF, AN, SN, and ASN. In each 
subfigure, y-axis means the probability.  
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cycle in a higher probability (≥75%), which is consistent 
across all cycles, than other techniques.  

The confirmation probabilities of the other techniques 
are not consistent. For instance, they may not be able to 
confirm some cycles in any confirmation run (e.g., c9, 
c11, c13, and c14 for MS and DF) or may only confirm a 
cycle with a significantly lower probability than ASN 
(e.g., on c1-c8, and c12 for MS and DF) by 4463%. 

On the largest benchmark MySQL used in the evalua-
tion, ASN triggers all cycles as real deadlocks that were 
missed by both DF and MS in all 100 confirmation runs.  

TABLE 2 shows the number of thrashing by each 
technique. Both DF and MS frequently lead the confir-
mation runs into thrashing, which aligns with our intui-
tion that uncoordinated suspension among threads may 
produce conflicts with the synchronization orders re-
quired to trigger deadlocks. In the experiment, the num-
ber of thrashing produced by ASN is significantly small-
er than these of DF and MS. PCT does not produce any 
thrashing attributed to its strategy, but its confirmation 
probability is significantly lower [10] than that of ASN.  

5.4 Comparison among ASN Variants 

Fig. 3 also shows the confirmation probabilities of SN 
and AN on each cycle.  

AN is basically incapable of confirming cycles c1-c6, 
c9, c13-c14 as real deadlocks. On the remaining six cy-
cles, AN, MS and DF perform similarly. Except on c10 
and c15, ASN is significantly more effective than AN.  

SN can confirm all 15 cycles. Compared to MS and 
DF, SN was more effective on cycles c6, c7, c9, and c11-
c14. Both ASN and SN achieved similar effectiveness on 
cycles c6, c7, c9, c10, and c15, but ASN is significantly 
more effective than SN on the remaining 10 cycles. 

The result from AN and SN shows that using one less 
barrier in ASN (i.e., simply enhancing MS and DF with 
the admission barrier or sufficiency barrier only), the 
probability of confirming deadlocks are likely reduced.  

5.5 Performance 

TABLE 3 shows the time cost that each technique spent, 
providing that it can successfully trigger the deadlock 
indicated by each cycle in a run. The MySQL benchmark 
is a server program and the time cost is not compute-
bound. On this benchmark, if a technique cannot make 
any successful confirmations, we denote the correspond-

ing cell by a dash ("-"). Note that the time included all 
from the very beginning to the time when the deadlock 
occurs, and include the instrumentation time.  

From TABLE 3, on the Java benchmarks, we observe 
that PCT, MS, and DF incur similar time overheads. On 
C/C++ programs, ASN incurs more time. We find that 
this is mainly attributed to our tool implementation. In 
the Java-based tool, we directly implement the three bar-
riers using Java library utilities. However, Pin [31] disa-
bles the C++ multithreading utilities. So we use the 
sleep() function in Pin to implement our barriers, which 
caused more delays than using the wait() calls, because 
in the latter case, a thread can be woken up by a noti-
fy() call at any time. Still, using the current prototype, 
the time cost is in a matter of a few seconds. We believe 
that the time cost of ASN in the experiment is practical.  

5.6 Scalability   

Following [10], we configured all benchmarks (c1-c10) 
except MySQL to be run with 2 to 64 threads. In each con-
figuration, we repeat the experiment described in Sec-
tion 5.2.  For MySQL, the number of threads in a run is 
self-governed by MySQL, which cannot be changed by us. 

Fig. 4 shows the deadlock confirmation probability 
on cycles c1-c10. With increasing number of threads, 
the confirmation probability of ASN keeps at 100% on 
six cycles (c1, c6, c7, c9, and c10). On c2 and c8, the 
probability is close to 100%. On the remaining cycles 
(c3-c5), the probabilities are all above 80%. Fig. 4 shows 
that ASN is able to scale up to confirm deadlocks in pro-
grams with many threads. 

5.7 Case Study 

The program MySQL Server is the largest among our 
benchmarks. In this section, we analyze the deadlock in 

  

Fig. 4. Scalability of ASN with increasing number of 
threads on cycles c1 – c10.  
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TABLE 2 
 COMPARISONS ON NUMBER OF THRASHING OCCURRENCES 

Benchmark Cycle ID PCT MS DF ASN 

JDBC  
Connector 5.0 

c1 0 49 58 0 

c2 0 57 55 1 

c3 0 48 52 1 

c4 0 45 48 1 

c5 0 52 47 1 

c6 0 57 57 0 

c7 0 44 45 0 

c8 0 49 51 0 
SQLite 3.3.3 c9 0 100 100 0 
HawkNL 1.6b3 c10 0 0 0 0 

MySQL Server  
6.0.4 

c11 0 95 100 0 

c12 0 78 67 2 

c13 0 91 80 1 

c14 0 92 78 0 

c15 0 0 0 0 

 

TABLE 3 
COMPARISONS ON PERFORMANCE (IN SECONDS) 

Benchmark Cycle ID Native PCT MS DF ASN 

JDBC  
Connector 5.0 

c1 

0.98 2.03 

2.18 1.82 1.83 
c2 1.85 1.89 1.95 
c3 1.80 1.87 2.00 
c4 1.68 1.90 2.09 
c5 1.49 1.90 2.07 
c6 0.97 1.35 1.55 1.51 1.66 
c7 

0.92 1.43 
1.70 1.49 1.73 

c8 1.44 1.57 1.61 
SQLite 3.3.3 c9 2.00 2.56 - - 3.07 
HawkNL 1.6b3 c10 2.01 3.56 2.06 2.05 3.07 

MySQL  
Server 6.0.4 

c11 

- - 

- - 4.52 

c12 2.65 2.15 5.02 
c13 - - 4.13 
c14 - - 2.42 
c15 - - 1.34 1.31 1.33 

 



MySQL Server. We report our finding on cycle c11, on 
which ASN is least effective among all 15 deadlock bugs. 

The deadlock (c11) involves two threads (t1 and t2) on 
two operations dropTable (by t1) and renameTable (by t2), 
and two direct locks syncTables (Tab for short) and 
syncSysConnection (Con for short). A simplified code is 
shown in Fig. 5 1. The deadlock occurs as follows: the 
thread t1 acquires and releases two lock Tab and Con once 
(E1 to E4) followed by acquiring and releasing the lock 
Tab once more (E5 and E6). It then acquires the lock Con 

(E7) and, before releasing Con, it wants to further acquire 
the lock Tab (E8). The thread t2 acquires the lock Con and, 
before releasing Con, it wants to further acquire the lock 
Tab (E1' and E2'). At this moment, a deadlock occurs as 
the lock Con is held by t1 and the lock Tab is held by t2. In 
a run, the thread t2 tends to reach the two lock acquisi-
tion sites (lines 30 and 31) before the thread t1 reaches 
the line 9 because t1 needs to execute far more statements 
than t2 beforehand. Hence, the deadlock rarely occurs. In 
the following, we use the above code fragment to ana-
lyze different techniques. 

To confirm this deadlock, MS or DF firstly suspends 
the thread t2 at line 31, which, however, prevents the 
thread t1 from acquiring the lock Tab (E1 or E5). As a 
result, both MS and DF are likely unable to confirm this 
deadlock (i.e., with a confirmation probability close to 0).  

AN can postpone the execution of the thread t2 at its 
admission barrier site (E1') until t1 reaches its corre-
sponding admission barrier site (E1). It then targets to 
suspend t1 at its necessity barrier site (E8) and suspend t2 
at its necessity barrier site (E2'). But, the probability of 
encountering this lock ordering case seems low because 
the thread t2 is likely to acquire the lock Tab right after 
the thread t1 releases this lock (E2).  

Both SN and ASN should trigger the deadlock with a 
 

1 In Fig. 5, we do not show other lock operations that are not related 
to this deadlock as there are too many lock operations in MySQL includ-
ing a direct lock (see lines 17 and 19) operated by the thread t1 only.  

high probability. It is because the two threads are likely 
able to reach their sufficiency barrier sites (E7 and E1', 
respectively), and the algorithms should then make each 
thread to acquire the corresponding direct lock. This 
leads the two thread to be later suspended at their neces-
sity barrier sites at E8 and E2', triggering the deadlock. 
Note that for ASN, the admission barrier and the suffi-
ciency barrier for the thread t2 are the same (E1').  

For PCT, its guaranteed probability on MySQL Server 
is roughly 1/ (17 * 150002-1) ≈ 7.8 10-6 (for 17 threads, 
more than 15,000 lock acquisition and release events, 
and 2 changing points), which is close to 0%. 

TABLE 4 summarizes our above qualitative analysis 
on confirming c11 by MS, DF, AN, SN, and ASN, and 
the probabilities observed from the experiment (taken 
from Fig. 3). From TABLE 4, we observe the effective-
ness of these techniques in the experiment is in line with 
the above qualitative analysis.  

On c15, there is an interesting thread (Gopher thread) 
from a group of threads where each thread acquires a 
lock at beginning and does not release it until the thread 
dies. Suppose that this Gopher thread is suspended on 
its acquisition of such a lock (which is the site for the 
admission barrier of the Gopher thread), MySQL selects 
another thread from the same group to complete the 
intended task. Hence, after its resumption, the Gopher 
thread has nothing to do. However, as such a lock is on-
ly acquired by the Gopher thread itself, ASN does not 
suspend the Gopher thread on its acquisition of above 
lock at its ABr site. Thus, ASN can confirm c15 with al-
most a probability of 100%. Note that other techniques 
except PCT can also confirm this deadlock. 

6 RELATED WORK 

Predictive deadlock detection. Static techniques analyze 
the code list to infer potential deadlocks [6], [37], [38]. 
Naik et al. [33] propose a combination approach to re-
ducing the false positive rate. And yet, real deadlocks 
could not be isolated. Deshmukh et al. [16] design sym-
bol execution technique to alleviate this problem. Dy-
namic techniques [13], [15], [23] analyze execution traces 
to infer potential deadlocks. Joshi et al. [25] propose a 
model checking approach, which requires manual anno-
tations, to detect generalized deadlocks. JPF [8] is a pos-
sible approach to detect general concurrency bugs, 
which however suffers from severe scalability problems. 

The scheduling approach of BTrigger [36] is similar to 
that of DeadlockFuzzer, except that BTrigger postpones a 
thread at each concurrent breakpoint "for a while" to 
eliminate thrashing. Besides, BTrigger requires develop-
ers to manually insert concurrent breakpoints. 

Dimmunix [26] aims to prevent the second occurrence 
of any previously occurred deadlocks. It records the pat-
terns of occurred deadlocks and postpones lock acquisi-

Thread t1: dropTable
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.
29.
30.
31.

Database::dropTable(…){
checkDrop();
lock (&syncTables);
unlock(&syncTables);
drop(…);

}
Table::checkDrop(){ prepareStatement(…);}
Table::drop(…){

Lock (&syncSysConnection);
prepareStatement(…);

}
Database::prepareStatement(…){

//five nested method calls with no lock operation are omitted

getCompiledStatement (…);
}
Database::getCompiledStatement(…){

lock (&syncStatements);
validate ();
unlock(&syncStatements);

}
CompiledStatement::validate(){ findTable (…); }
Database::findTable (…){

lock (&syncTables);
unlock(&syncTables);
Lock (&syncSysConnection);
unlock(&syncSysConnection);

}
Thread t2: renameTable
StorageDatabase::renameTable(…){

lock(&syncTables);
lock(&syncSysConnection);

}

E1 acq(Tab)
E2 rel(Tab)
E3 acq(Con)
E4 rel(Con)

E5 acq(Tab)
E6 rel(Tab)

E7 acq(Con)

E8 acq(Tab)

E1' acq(Tab)
E2' acq(Con)

 
Fig. 5. Case Study on MySQL Server (cycle c11) 

TABLE 4 
ESTIMATED AND EXPERIMENTAL RESULTS ON C11 

Probability  PCT MS/DF AN SN ASN 
By Analysis  Very Low Very Low Low High High 
By Experiment  0% 0% 11% 59% 75% 

 



tion at runtime if the locking scenario matches the rec-
orded deadlock patterns. Gadara [39] inserts gate lock 
acquisition code at each deadlock site detected statically 
and, at runtime, serializes executions whenever a stati-
cally detected deadlock is likely to occur. Grechanik et 
al. [20] also use static analysis and runtime monitoring 
approach to prevent deadlock in database applications. 
Nir-Buchbinder et al. [34] use an execution serialization 
strategy for deadlock healing. Compared to ASN, these 
techniques develop and utilize no admission or suffi-
ciency barriers. Sammati [27], [28] is a deadlock recovery 
technique that selects a victim thread and rolls back the 
execution to resolve deadlock occurrence.  

ESD [40] synthesizes the execution that goes into a 
deadlock state by analyzing the core dump of a previous 
failed execution. ASN can take a potential deadlock or a 
real deadlock (specified as a cycle) as an input. Both 
ConTest [17] and CTrigger [35] inject random noises to the 
execution being manipulated with the aim of improving 
its probability of triggering concurrency bugs. ASN can 
be viewed as an approach to injecting systematic noises 
to a program execution via each barrier. Huang et al. [22] 
propose to avoid deadlocks through automatic genera-
tion of synchronization logics in design programs.  

Replay techniques [7], [19] for concurrency bugs can 
help developers to locate and understand how these 
concurrency bugs can happen. Compared to them, ASN 
does not rely on any execution with real deadlocks.  

7 CONCLUSION 

Many real-world large-scale multithreaded programs 
incur deadlock bugs. This paper has proposed ASN, a 
novel multi-barriers deadlock triggering scheduler. ASN 
is currently designed with a sequence of three barriers. 
We have proven that the second barrier is a sufficient 
condition to trigger real deadlocks at its last barrier un-
der certain conditions. We have evaluated that ASN can 
be promising to confirm deadlock bugs in real-world 
multithreaded programs. Future work includes the 
deadlock removal confirmation after program changes. 
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