
ASN: A Dynamic Barrier-based Approach to
Confirmation of Deadlocks from Warnings for

Large-Scale Multithreaded Programs
Yan Cai, Changjiang Jia, Shangru Wu, Ke Zhai, and W.K. Chan

Abstract—Many large-scale multithreaded programs incur deadlock bugs. Existing deadlock warning detection techniques

only report warning scenarios, which may or may not be real deadlocks. Each warning should be further verified on whether it

may manifest into a real deadlock. For this purpose, a number of active randomized testing schedulers have been developed

to trigger them, and yet pervious experiments show that their deadlock confirmation probability can be low. This paper

presents ASN, a novel barrier-based randomized scheduler that triggers real deadlocks with high probabilities. We exploit the

insights that in a confirmation run, the threads involved in a real deadlock should properly acquire one or more sets of locks

prior to deadlocking. ASN automatically identifies three interesting sets of such positions. It guides the threads participating in

a given warning to stay at these position sets in turn. When all the threads are staying at the last position set, ASN checks

whether any deadlock that matches with the given warning has been triggered. We have evaluated ASN on 15 deadlock

bugs in a suite of real-world multithreaded programs. The results show that ASN either confirms more deadlocks from the

benchmark suite or triggers the same deadlocks with significantly higher probabilities than existing schedulers.

Index Terms—Debugging, deadlock triggering, randomized testing, large-scale multithreaded programs

——————————  ——————————

1 INTRODUCTION

Many real-world multithreaded programs incur concur-
rency bugs [18], [32], [36]. These bugs (e.g., data races
[11], [18], atomicity violations [29], [35], and deadlocks
[6], [9], [13]) should be detected and rectified. Deadlocks
are severe concurrency bugs. They prevent program ex-
ecutions from terminating correctly. Generic techniques
can expose different kinds of concurrency bugs but only
with a very low bug triggering ability [10]. On the other
hand, techniques that precisely detect specific kinds of
deadlocks are still unable to handle large-scale programs
[25]. In this paper, we study the confirmation problem of
resource deadlock, where locks are resources [13], [23].

A deadlock is triggered if all threads involving in a
deadlock circularly wait for one another to release cer-
tain locks. Many static techniques [6], [16], [37], [38] and
dynamic techniques [9], [15], [21], [23] infer such circular
wait conditions in one way or another. They identify
cycles in lock order graphs [21] or from sets of lock de-
pendencies [13], [23]. But, such cycles may merely be
deadlock warnings instead of real deadlocks [13], [38].

A promising approach to isolating deadlocks from the
pool of such warnings is randomized active testing tech-
niques [13], [23], which we refer to as deadlock confirma-
tion techniques. Suppose that a dynamic deadlock warn-
ing detection technique has ran a program and generat-
ed a pool of deadlock warnings from it. A typical, exist-
ing deadlock confirmation technique [13], [38] re-runs
the same program attempting to reveal real deadlocks
hidden in the pool. To ease our presentation, we refer to
such a re-run of the program as a confirmation run.

Such a technique [13], [23] only suspends each thread
involving in a deadlock warning whenever the thread is
locating at a deadlocking site [14] without allowing the
thread to acquire the lock associated with the site. How-
ever, we are going to show in Section 3 that this strategy
may systematically miss to confirm a real deadlock.
Moreover, our experiment to be presented in Section 5
shows that in some scenarios, this strategy works effec-
tively, but in some other scenarios, it often causes the
confirmation runs deadlocking with the testing tool,
even though the corresponding native runs can proceed
naturally (where the problem is referred to as thrashing
[23]). These phenomena are counter-intuitive if this class
of strategy is adequate to confirm deadlocks.

We observe that all the threads involving in a dead-
lock should synchronize their execution steps not only at
their deadlocking sites, where the deadlock occurs, but
also at some other sites prior to these deadlocking sites.
Suspending all threads at their deadlocking sites is only
a necessary condition to trigger the deadlock. A good
scheduler should create at least one sufficient condition of
deadlock triggering, which, to our best knowledge, is
never mentioned in related work (e.g., [13], [23]).

————————————————

 Y. Cai is with the State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, Beijing, China, and with the De-
partment of Computer Science, City University of Hong Kong, Tat Chee
Avenue, Hong Kong. E-mail: ycai.mail@gmail.com.

 C. Jia, S. Wu, and W.K. Chan are with the Department of Computer Sci-
ence, City University of Hong Kong, Tat Chee Avenue, Hong Kong. E-
mail: cjjia.cs@gmail.com, shangru.wu@my.cityu.edu.hk,
wkchan@cityu.edu.hk.

 K. Zhai is with the Department of Computer Science, The University of
Hong Kong, Pokfulam Road, Hong Kong. E-mail: kzhai@cs.hku.hk.

This work is supported in part by the General Research Fund of the Research
Grants Council of Hong Kong (project nos. 111313 and 123512).

All correspondences should be addressed to W.K. Chan.

This paper proposes ASN, a barrier based dynamic
deadlock triggering scheduler, where each barrier is a
set of sites, one for each thread involved in a given cycle.
ASN formulates with a sequence of three barriers in
mind: Admission Barrier (the sites that these threads start
using the locks associated with the deadlock), Sufficiency
Barrier (the sites related to the sufficient condition dis-
cussed above), and Necessary Barrier (deadlocking sites).
In the course of a confirmation run, ASN schedules a
program to traverse each barrier in cohort and one after
another. The intuition behind this design is to reduce
thrashing potentials across different segments of the
same execution trace separated by consecutive barriers.

We also prove that there exists a set of sites such that,
if a scheduler can suspend all the threads in the given
cycle (which is a real deadlock) at this set of sites, it is
sufficient to trigger an occurrence of the deadlock.

We have evaluated ASN on a suite of widely-used
large-scale Java/C/C++ programs that contains 15 real-
world deadlock bugs. The experimental results show
that, compared to existing techniques (DeadlockFuzzer

[23], MagicScheduler [13], and PCT [10]), ASN can either
confirm more real deadlocks on the same benchmark or
trigger the same deadlock bugs with significantly higher
probability and incur significantly less thrashing. In the
experiment, ASN incurs high performance overheads.

The contribution of this paper is threefold: (1) this
paper presents ASN, a new class of active randomized
testing scheduler to confirm real deadlocks from warn-
ings. (2) The paper presents a theoretical guarantee of
ASN, which shows that if a given warning is a real dead-
lock, ASN guarantees to manifest the warning into a real
deadlock under certain conditions. (3) We show the fea-
sibility of ASN by implementing it as two tool proto-
types and reported a validation experiment on a suite of
large-scale multithreaded programs. The experimental
results show that ASN can be significantly more effective
than peer techniques in confirming real deadlocks.

The rest of this paper is organized as follows: Section
2 gives the preliminaries. We motivate our work by an
example in Section 3. Section 4 presents ASN followed
by its evaluation in Section 5. Section 6 reviews the close-
ly related work. Section 7 concludes the paper.

2 PRELIMINARIES

2.1 Lock Trace and Dependency

There are two types of event related to deadlock confir-
mation: acquire(t, m) and release(t, m), meaning that a
thread t acquires a lock m and releases a lock m, respec-
tively. Other events can be similarly handled [11], [18].

A site is an abstraction of an execution context [13],
[14], [23], [26]. We denote by e@s the event e occurring at
the site s, and denote the site s of the event e by site(e).

To ease readers to follow, each example in this paper
only uses a program line number to illustrate a site. For
instance, in Fig. 1(a), the lock acquisition event e1 = ac-
quire(t1, k) occurred at site s01 is referred to as e1@s01.
Similarly, we refer to e@s as m@s if e = acquire(t, m).

A lock dependency [13], [23]  = t, m@s, L is a triple
consisting of a thread t, a lock m acquired at site s, and a

lockset L. It represents that the thread t acquires a lock m
at a site s while holding all locks in the lockset L.

 For presentation clarify, we may hide the site associ-
ated with an event. Also, if a thread is involving in a
cycle, we may refer to it without mentioning the cycle.

2.2 Cycle, Direct locks and Indirect Locks

A deadlock or a deadlock warning is a cycle [13] c = t1,
m1, L1, t2, m2, L2, …, tk, mk, Lk such that m1  L2, m2 
L3, …, mk  L1, and ti ≠ tj, mi ≠ mj, {mi} ∩ Li = ∅ and Li ∩ Lj

=∅, for 1 ≤ i, j ≤ k (i ≠ j).
For instance, the cycle c0 = t1, n, {s, p, m}, t2, p, {n}

can be used to represent the deadlock shown in Fig. 1(a).
Each lock dependency m = tm, m@sm, Lm in a cycle c

can be reorganized into the following format: m' = tm,
m@sm, n@sn, Lm' such that Lm' = Lm \ {n@sn} and n = tn,
n@sn, Ln is another lock dependency in c. We refer to
this format as a cyclic lock dependency. As such, an al-
ternative form of the above cycle c is t1, m1, m0, L1', t2,
m2, m1, L2'… tk, mk, mk-1, Lk', where Li'= Li \ {m(i-1)}, for 1
≤ i ≤ k, and m0 = mk. In the running example, the cycle c0
can be rewritten as c1 = t1, n, p, {s, m},  t2, p, n, .

Given a cyclic lock dependency t, m, n, L', both m
and n are called the direct locks, and every lock in L' is
called an indirect lock. We denote the set of all direct
locks in a cycle c by directLocks(c), and the set of all
indirect locks by indirectLocks(c).

For instance, with respect to the cycle c1 in Fig. 1(a),
directLocks(c1) is {n, p}, and indirectLocks(c1) is {s, m}.

We also denote the set of all threads in the cycle c by
Threads(c). In the running example, Threads(c1) = {t1, t2}.

3 MOTIVATING EXAMPLE

Fig. 1(a) shows an example program with two threads (t1
and t2) and five locks (k, n, s, p, and m). There is a dead-
lock as highlighted on the lock acquisitions of p and n.

The thread t1 firstly acquires the lock k at site s01, and
then releases it at site s02. Then, t1 acquires the lock s at
site s03. Before releasing s, t1 holds the lock n for a brief
period (at sites s04 and s05) followed by acquiring three
more locks p, m, and n at sites s06, s07, and s08, respective-
ly. Finally, t1 releases all its locks from site s09 to site s12.

The thread t2 acquires the lock s at site s13 and then re-
leases it at site s14. Then, t2 acquires the locks n and p at
sites s15 and s16 and releases them at sites s17 and s18.

Fig. 1(b) and Fig. 1(c) show two possible threads
schedules of the program: Schedule 1 and Schedule 2.

Schedule 1 triggers the deadlock: Suppose that thread
t2 is locating at site s15 before acquiring the lock n, and t1
executes all the operations from site s01 to site s07. Thus, t1
is holding the lockset {s, p, m}. Now, t2 acquires the lock
n at site s15. However, t2 cannot further acquire the lock p
at site s16 because t1 is holding p. Schedule 1 then switches
to guide t1 to acquire n at site s08, but it fails as t2 is hold-
ing the lock n. As such, a real deadlock occurs.

The deadlock in Fig. 1(a) is not easy to trigger. As
shown in Fig. 1(c), in Schedule 2, right after t2 has released
the lock s at site s14, t1 acquires the lock k and then releas-
es it. Before t1 proceeds further, t2 completes its execu-
tion. Following Schedule 2 does not trigger the deadlock.

By analyzing Schedule 2, existing deadlock warning
detection techniques [13], [21], [23] can report a deadlock
warning on the four sites s06, s08, s15, and s16, where the
warning is denoted by the cycle c0 = t1, n, {s, p, m},  t2,
p, {n}. To ease our discussion, we refer to these four
sites as deadlocking sites.

Existing approaches schedule confirmation runs to
trigger the reported deadlock warning c0 as follows:

Randomized Scheduler (RS, see Algorithm 3 in [23]):
Based on the given warning c0, RS (e.g., DeadlockFuzzer
[23], MagicScheduler [13]) targets to suspend the thread t1
at site s08 and suspend the thread t2 at site s16.

If the confirmation run is scheduled as Schedule 1,
then RS successfully triggers the deadlock.

Otherwise, RS may miss to trigger the deadlock. For
instance, with the attempt to follow Schedule 2, RS firstly
suspends t2 once t2 is locating at site s16 (i.e., after t2 has
acquired the lock n at site s15). However, when t1 is locat-
ing at s04, the thread t1 has to wait for t2 to release the
lock n. Now, RS is suspending t2, and t2 is blocking t1:
thrashing [23] occurs. To resolve thrashing, RS has to re-
sume t2. After t2 has acquired the lock p, there is no way
to trigger the deadlock indicated by c0 anymore.

Systematic Scheduler (including PCT [10]). These
schedulers aim to detect concurrency bugs in general,
and are unaware of specific bug information provided to
them. Their ability to expose deadlocks is very low [10].

Given a multithreaded program, PCT firstly chooses a
set of priority change points [10] (e.g., right before site s15
for t2 and right after site s07 for t1), and lowers the priori-
ty of a thread when the thread is about to execute any
statement that is a change point [10]. If PCT happens to
work like Schedule 1, it can trigger the deadlock. PCT has
a probabilistic guarantee to trigger the deadlock. To ex-
pose the deadlock in the running example in Fig. 1(a),
according to the formula in Section 2.4 in [10], the guar-
anteed probability is 1 / (2  183-1)  0.0015 (for 2 threads,
18 statements, and 3 change points), which is quite low.

To trigger the deadlock in Fig. 1(a), t2 must have pre-
cisely acquired the lock s at site s13 before t1 acquires the
same lock s at site s03: We have illustrated via Fig. 1(c)
that if a thread acquires one more lock (e.g., acquiring
the lock n at site s15 by t2) before another thread acquires
a specific lock (e.g., acquiring the lock n at site s04 by t1),
then the latter thread may miss to locate at the deadlock-
ing site s08 before the former thread has passed through
its deadlocking site s16. Contrarily, if a thread acquires

one less lock (e.g., not acquiring the lock s at site s13 by
t2), another thread may have already passed through its
deadlocking site (s08 for t1) before the former thread ac-
quires its next lock (e.g., the lock s at site s13 by t2).

The above analysis indicates that setting random time
delays [17] or user-chosen time delays [36] for individual
threads, selecting a set of change points randomly [10],
or suspending individual threads permanently by ignor-
ing other threads [23], [13] are all inadequate to precisely
control the execution sequence among the threads need-
ed to trigger a real deadlock from a deadlock warning.

Consider Schedule 2 again. Suppose that a deadlock
warning detection technique uses Schedule 2 to generate
c0. Deterministically replying [7] Schedule 2 up to the first
deadlocking site (i.e., s16) does not help to trigger the
deadlock because t2 is blocking t1 to acquire the lock n at
site s04. On the other hand, if a testing tool deterministi-
cally replays Schedule 2 up to site s15, then the tool should
decide which particular thread to be executed next.

In the next section, we present ASN and illustrate
how ASN addresses the illustrated challenges.

4 OUR PROPOSAL: ASN
4.1 Overview

For each thread involving in a given cycle c, ASN infers
one site per barrier: Admission Barrier (ABr), Sufficiency
Barrier (SBr), and Necessity Barrier (NBr). In the course of
a confirmation run, ASN schedules these threads to pass
through the first two barriers in cohort and one by one,
and checks for deadlock occurrences at the third barrier.

Fig. 1(c) depicts the three barriers for two threads t1
and t2 where the cycle is c0. ASN firstly targets to sus-
pend t1 and t2 right before the first barrier (ABr): the site
s03 for t1 and the site s13 for t2, which is feasible according
to Schedule 2. Then, ASN targets to suspend the two
threads at the second barrier (SBr): the site s06 for t1 and
the site s15 for t2. Suppose that t2 has acquired the lock s
at site s13 prior to t1 acquiring the lock s at site s03. In this
case, the two threads can locate at the second barrier.
Finally, ASN targets to suspend the two threads at the
third barrier (NBr): the site s08 for t1 and the site s16 for t2.
Now, the cycle c0 is confirmed by ASN as a real deadlock.

ASN uses an interesting approach to inferring the
three barriers, which will be presented in Section 4.2. In
Section 4.3, we present the algorithm of ASN. Finally, we
present a theorem that shows the theoretical guarantee,
optimization and variants of ASN in the rest of Section 4.

thread t1 thread t2
s01
s02
s03
s04
s05
s06
s07
s08
s09
s10
s11
s12

acq(k)
rel(k)
acq(s)
acq(n)
rel(n)
acq(p)
acq(m)
acq(n)
rel(n)

rel(m)
rel(p)

rel(s)

s13
s14
s15
s16
s17
s18

acq(s)
rel(s)
acq(n)
acq(p)
rel(p)
rel(n)

thread t1 thread t2
s01
s02
s03
s04
s05
s06
s07
s08
s09
s10
s11
s12

acq(k)
rel(k)
acq(s)
acq(n)
rel(n)
acq(p)
acq(m)
acq(n)
rel(n)

rel(m)
rel(p)

rel(s)

s13
s14
s15
s16
s17
s18

acq(s)
rel(s)
acq(n)
acq(p)
rel(p)
rel(n)

thread t1 thread t2
s01
s02
s03
s04
s05
s06
s07
s08
s09
s10
s11
s12

acq(k)
rel(k)
acq(s)
acq(n)
rel(n)
acq(p)
acq(m)
acq(n)
rel(n)

rel(m)
rel(p)

rel(s)

s13
s14
s15
s16
s17
s18

acq(s)
rel(s)
acq(n)
acq(p)
rel(p)
rel(n)

(a) Program code (b) Schedule 1 (c) Schedule 2








ABr(c0,t1)→

SBr(c0,t1)→

NBr(c0,t1)→

←ABr(c0,t2)

←SBr(c0,t2)

←NBr(c0,t2)

Fig. 1. A deadlock example adapted from MySQL JDBC Connector, where acq and rel mean acquire and release,
respectively.

4.2 Barriers of ASN

In this section, we present the definitions of the three
barriers and their design rationales.

When a deadlock occurs, each thread involving in the
deadlock must wait to acquire a specific lock at a specific
site, which we refer to as the deadlock triggering site.
The Necessary Barrier for each thread involving in the
cycle intends to specify that the thread should wait at its
corresponding deadlock triggering site.

Definition 1 (Necessity Barrier): The necessity barrier
NBr(c) with respect to a given deadlock warning c is the
set { site(e) | e = acquire(t, m) and  t', n, m, L', t, m@s2,
l, L  c such that site(e) = s2}.

The NBr site of each thread can be directly extracted
from the given warning c. For instance, in Fig. 1(c), the
site s08 is the NBr site for the thread t1. It is the site where
t1 wants to acquire the lock n, but should be held by the
thread t2 so that these two threads sets up a circular wait
condition necessary to trigger a deadlock.

However, suspending threads involving in a cycle at
this barrier only represents a necessary condition after
the confirmation run has manifested into a real deadlock
at the corresponding sites. The goal of an active dead-
lock triggering scheduler should be to create certain suf-
ficient conditions that manifest deadlocks and guide
confirmation runs to satisfy such sufficient conditions so
that the scheduler can effectively confirm real deadlocks.

The Sufficiency Barrier (SBr) models such a sufficient
condition. The SBr site of a thread t involving in a cycle c
is where t acquires a direct lock of another thread in c.

Definition 2 (Sufficiency Barrier): The sufficiency barri-
er SBr(c) with respect to a given deadlock warning c is
the set {site(e) | e = acquire(t, m) and  t, n, m@s1, L and
t', m, l, L'  c such that site(e) = s1 }.

As shown in Fig. 1(c), the SBr sites for the two threads
t1 and t2 are sites s06 and s15, respectively. If t1 and t2 are
concurrently suspended at sites s06 and s15 followed by
resuming their executions, the deadlock indicated by the
cycle c0 will be triggered at the necessity barrier NBr(c0).

Before a thread reaches its SBr site, thrashing may
have occurred. It blocks this thread from acquiring an
indirect lock being held by a suspending thread. For in-
stance, in Fig. 1(c), if t1 has suspended at its SBr site (s06)
before t2 acquires the lock s at site s13, then t2 cannot
reach its SBr site (s15) until t1 releases the lock s at site s12.

ASN aims to divide the traces of the threads involved
in the given cycle c into segments separated by barriers.
As such, thrashing will be contained within each seg-
ment instead of across multiple segments, thereby re-
ducing the potential of thrashing occurrences.

Definition 3 (Admission Barrier): The admission barrier
ABr(c) with respect to a given deadlock warning c is the
set {site(e)| t  Threads(c) and e = acquire(t, m) such that
(1) m  directLocks(c)  indirectLocks(c), and (2)  e' =
acquire (t, n) such that (i) e' ≠ e, (ii) n  directLocks(c) 
indirectLocks(c) and (iii) e↣ e'}, where ↣ is the hap-
pened-before relation [30].

Intuitively, the admission barrier ABr for a thread
represents a site where the thread acquires its very first
direct lock or its very first indirect lock along the run.
As such, there are 1 segment before the admission barrier
and 1 segment between any two consecutive barriers.

In Fig. 1(c), as depicted, the admission barrier for the
thread t1 is site s03 and for the thread t2 is site s13. In the
course of execution, if the two threads are suspended at
these two sites, the probability for two threads reaching
their sufficiency barriers will be at least 50%. Otherwise,
it depends on whether the thread t2 acquire the lock s at
site s13 before the thread t1 acquires the lock s at site s03.

4.3 Algorithm

In this section, we present the ASN algorithm. The algo-
rithm firstly monitors the confirmation run against the
admission barrier ABr(c) followed by the sufficiency bar-
rier SBr(c) and finally the necessity barrier NBr(c). To
ease our presentation, we refer to the site corresponding
to a thread t in three barriers ABr(c), SBr(c), and NBr(c)
as ABr(c, t), SBr(c, t), and NBr(c, t), respectively.

Algorithm 1 summarizes the main ASN algorithm. It
takes a program p and a deadlock warning c as inputs.
At lines 1–3, it initializes the execution state of the con-
firmation run. For each thread t in the warning c, it as-
signs ABr(c, t) to the variable CurBr, and initializes two
maps Request and Lockset as empty sets. The set Ena-
ble (lines 4 and 22) models the set of active threads in
the confirmation run. If Enable is non-empty (line 5), the
algorithm fetches the next statement (denoted by stmt).
It handles stmt by distinguishing three cases:

Case 1: If stmt is never a lock acquisition/release
event nor a statement executed by any thread involv-
ing in c, Algorithm 1 simply executes stmt (lines 78).
For instance, all memory accesses fall into this case.

Case 2: If stmt is an acquire(t, m) event, where t is a
thread involving in c, the algorithm updates its execu-
tion state by associating t with m, and keeps the asso-
ciation relation in Request (lines 9–10). It then checks
whether stmt is at the barrier under monitoring for
the thread t via the function checkBarrier (line 11). If
this is the case, Algorithm 1 pushes stmt back to the
statement execution queue, and suspends t by remov-
ing it from the set Enable (lines 12–13). For instance,
in the running example, if stmt is acquire(t1, s) occur-
ring at site s03 which is the ABr site of t1, ASN sets Re-
quest(t1) to s@s03 and invokes checkBarrier(acquire(t1,
s)@s03), which returns true. Thus, ASN removes t1 from
Enable because the function checkBarrier has sus-
pended t1 without executing acquire(t1, s). Otherwise,
Algorithm 1 executes stmt and updates the execution
state accordingly (lines 15–16). For instance, if stmt is
acquire(t1, k) at site s01, the statement is directly execut-
ed and Lockset(t1) is updated to include the lock k.

Case 3: If stmt is a release(t, m) event, the algorithm
removes the lock m from the set Lockset for the
thread t, and executes stmt (lines 18–20). For instance,
if stmt is release(t1, k) occurring at site s02, ASN exe-
cutes it and removes the lock k from Lockset(t1).

Next, if the set Enable becomes empty (line 22), the

algorithm either resolves thrashing (line 24) or reports
an unexpected but real deadlock (line 26). Otherwise, it
iterates the above procedure to process next statement.

The function checkBarrier is a core part of Algorithm 1.
It takes a lock acquisition event (i.e., e = acquire(t, m)@s)
as an input. It checks whether the given site s is the site
for the thread t at the barrier under monitoring (line 32).
If so, the algorithm suspends t. Next, it checks whether
all the threads involving in c have been suspended at
their corresponding sites indicated by the same barrier
(line 35). If this is also the case and the barrier is the ne-
cessity barrier, the algorithm checks whether the warn-
ing c has been manifested into a real deadlock via the
function checkforDeadlocks (line 36).

At line 39, the algorithm advances to monitor the bar-
rier following the current barrier via the function

Next(CurBr(c, t)). That is, for each thread t in c, the varia-
ble CurBr(t) is updated from ABr(c, t) to SBr(c, t) or from
SBr(c, t) to NBr(c, t). Finally, checkBarrier returns a Bool-
ean value, indicating whether site(e) is a site in the barri-
er under monitoring (lines 47−49).

For instance, when checkBarrier is called from the ex-
ample in Case 2 (i.e., checkBarrier(acquire(t1, s)@s03)), ASN
finds that the site s03 equals to CurBar(t1) whose value is
ABr(c0, t1). It then suspends t1 (line 33). Suppose that the
thread t2 is also locating at site s13 (i.e., ABr(c0, t2)). Hence,
both threads are locating at their ABr sites, which are not
their NBr sites. ASN does not invoke checkforDeadlock(c)
(lines 35–37). Next, ASN updates CurBr(t1) to SBr(c0, t1)
and CurBr(t2) to SBr(c0, t2) (line 39). As the site ABr(c0, t1)
is not the site SBr(c0, t1) and the site ABr(c0, t2) is not the
site SBr(c0, t2), ASN resumes both threads at line 41.
 Note that ABr(c, t) and SBr(c, t) for the same thread t
may sometimes refer to the same site. If so, ASN skips
resuming t (lines 40–43) after the admission barrier. For
instance, the following execution trace contains a dead-
lock on locks m and n. Both the ABr and SBr sites for the
thread t3 refer to the first lock acquisition acq(m) at line
01 and its NBr site is acq(n) at line 02.

 Thread t3 Thread t4

01
02
03
04

acq(m)
 acq(n)
 rel(n)
rel(m)

05
06
07
08
09
10

acq(k)
 acq(n)
 acq(m)
 rel(m)
 rel(n)
rel(k)

The function checkforDeadlocks (lines 51-59) checks real
deadlock occurrence and, if any, reports the deadlock,
which may be different from the given warning c (lines
53−57), and halts the execution.

Compared to existing work, ASN only checks for
deadlock occurrences once instead of checking right be-
fore each lock acquisition event. It consumes less time on
deadlock checking. At the same time, it consumes more
time to handle two more barriers.

4.4 Theoretical Guarantee of ASN

We firstly recall that a cycle c is defined as a sequence of
cyclic lock dependencies c = {t1, l2, l1, L1, …, ti, li+1, li, Li,
…, tn, l1, ln, Ln}.

Theorem 1. If a cycle c is a real deadlock of a multi-
threaded program, ASN guarantees to trigger this dead-
lock c if the following three conditions are satisfied:

(a) Each thread ti in Threads(c) is locating at the SBr(c,
ti) site, and is going to acquire the lock li.

(b) There is no deadlock or livelock ever occurred be-
fore the deadlock c is triggered in the execution.

(c) For each thread ti, SBr(c, ti) dominates NBr(c, ti)
by the program order.

Proof. We prove Theorem 1 by mathematical induc-
tion. The basic idea is: we firstly prove the base case (i.e.,
|Threads(c)| = 2) and then suppose that, for |Threads(c)|
= n, the theorem is true. Next, for a program p with a
cycle cn+1 such that |Threads(cn+1)| = n+1, we create a
new program p' containing a deadlock cn with n threads
by mapping the execution of (n+1) threads to n threads,
where the theorem is true as supposed. Finally, we show

Algorithm 1: ASN Scheduler (Program p, Cycle c)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59

// e.g., c = {t1, m2@s1, m1, L1'…tn, m1@sn, mn, Ln'}
for each thread t in Threads(c) do
│ CurBr(t) := ABr(c, t), Request(t) :=, Lockset(t) :=,
end for
Enable := Threads(p) // all threads in the program p
while Enable ≠  do
│ (t, stmt) := the next statement stmt from a random thread t
│ if t  Threads(c)  (stmt ≠ acquire  stmt ≠ release) then
│ │ execute(stmt)
│ else if stmt = acquire(t, m)@s then
│ │ Request(t) := m@s
│ │ if checkBarrier(stmt) = true then
│ │ │ push back stmt
│ │ │ Enable := Enable \ {t}
│ │ else //execute the statement and update the execution state
│ │ │ execute(stmt)
│ │ │ Lockset(t) := Lockset(t)  {m@s }
│ │ end if
│ else if stmt = release(t, m)@s then
│ │ Lockset(t) := Lockset(t) \ {m@s' }
│ │ execute(stmt)
│ end if
│ if Enable =  then
│ │ if some threads are suspended then //thrashing is detected
│ │ │ resume a suspending thread randomly
│ │ else
│ │ │ Print "A real deadlock is triggered!"
│ │ end if
│ end if
end while
Function checkBarrier(Event e) // where e = acquire (t, m) @s
│ bar := CurBr(t)
│ if site(e) = bar then //the thread t is at its forthcoming barrier
│ │ suspend(t)
│ │ if each thread x in Threads(c) at site CurBr(x) then
│ │ │ if the monitoring barrier is the necessity barrier then
│ │ │ │ call checkforDeadlock(c)
│ │ │ end if
│ │ │ for each t'  Threads(c) do
│ │ │ │ CurBr(t') := Next(CurBr(t'))//advance to the next barrier
│ │ │ │ if site(e) ≠ CurBr(t) then
│ │ │ │ │ resume(t) //may still be the barrier under monitoring
│ │ │ │ │ Enable := Enable  {t'}
│ │ │ │ end if
│ │ │ end for
│ │ │ return false
│ │ end if
│ │ return true
│ end if
│ return false
end Function
Function checkforDeadlock (Cycle c)
│ if  c' =d1, d2, … dk where di = ti, Request (ti), Lockset (ti),
│ such that c' is a cycle then
│ │ if c’ = c then
│ │ │ Print "The given warning is confirmed as a real deadlock!" halt!
│ │ else
│ │ │ Print "A real deadlock is triggered!" halt!
│ │ end if
│ end if
end Function

that the program p can be schedules by ASN in the same
way as ASN schedules the program p'.

Base case: |Threads(c)| = 2 as depicted as Fig. 2(a):
Subcase (1): Suppose both t1 and t2 cannot locate at

NBr(c, t1) and NBr(c, t2), respectively. Then, a deadlock
or a livelock must have occurred (as no thread is sus-
pended by ASN), which contradicts to the condition (b).

Subcase (2): Suppose that in a run, only one thread,
say the thread t1, is unable to locate at NBr(c, t1) but the
thread t2 is locating at NBr(c, t2), as shown in Fig. 2(b). In
this case, t1 must wait for a different thread tx to release a
lock lx. A scenario is depicted as Fig. 2(c). If the thread tx
= t2, then we have lx  l1 as the lock l1 has not been ac-
quired by t2 at NBr(c, t2). Then, a real deadlock cx = {t1,
lx, l1, L1', t2, l1, lx, L2'} must have occurred, which also
contradicts to the condition (b). Next, let us consider the
case where tx  t2. Because only the thread t2 is suspend-
ed by ASN, the thread tx must be waiting for some other
thread to release a lock. Since the total number of
threads in the program p is limited, the run must have
encountered a deadlock (which is different from the cy-
cle c) or a livelock. It contradicts to the condition (b).

Based on subcases (1) and (2), threads t1 and t2 should
be able to locate at NBr(c, t1) and NBr(c, t2), respectively,
and trigger the deadlock c. We prove the base case.

Induction step: Suppose that the theorem is true when
|Threads(c)| = n.

Now consider the case where |Threads(c)| = n + 1. As
depicted in Fig. 2(d), by the condition (a), each thread ti
of these (n +1) threads is able to locate at SBr(c, ti). Be-
cause the cycle c is a real deadlock and there is no dead-
lock occurs prior to the occurrence of c, by condition (c),
the executions of two threads tn and tn+1 (or any two
threads in c that form a wait-for relation) from SBr(c, tn)
and SBr(c, tn+1) must reach NBr(c, tn) and NBr(c, tn+1), re-
spectively, and encounter no any other deadlock. Thus,
we can merge the executions of these two threads tn and
tn+1 into single execution and denote the combined
thread as tn' (depicted in Fig. 2(e)). The merging rule is:
(1) the events from two threads happened-before the
events at SBr(c, tn) and SBr(c, tn+1) are merged into the
new execution (denoted by ) by following their execu-
tion order in the original execution trace. (2) The events
from SBr(c, tn) to NBr(c, tn) of tn and from SBr(c, tn+1) to
NBr(c, tn+1) of tn+1 (including the events at SBr(c, tn),
SBr(c, tn+1), and NBr(c, tn+1) but excluding the events at
NBr(c, tn)) will be appended to the execution  of the
thread tn'. (Note we need not to consider the events after
NBr(c, t1) and NBr(c, t2), which can be merged in any
feasible order.) We denote the new program that consists
of the threads t1, …, tn-1, tn' as the program p'. Now, on
the program p', we have a deadlock c' = {t1, l2, l1, L1, …,
tn-1, ln, ln-1, Ln-1, tn', l1, ln, Ln+1  Ln  {ln+1}}. Because
|Threads(c')| = n, ASN can schedule the execution of the
program p' to trigger the deadlock c' as supposed. Next,
we map back the execution of the thread tn' to the execu-
tions of tn and tn+1 according to the order that they have
been merged into the execution  of the thread tn'. Note
that when the deadlock c' occurs, ASN has suspended
the thread tn' at NBr(c', tn') in p', which is the same site as

NBr(c, tn+1) in p. Now, we consider the execution of the
program p. After mapping back the events from , each
thread ti in Threads(c) except the thread tn should have
been suspended at the corresponding NBr(c, ti) and
should be about to acquire the lock li. For the thread tn,
all its statements right before NBr(c, tn) have been exe-
cuted. But, the thread tn cannot further be scheduled to
acquire the lock ln+1 at NBr(c, tn) because ln+1 is being held
by the thread tn+1. As a result, the deadlock c is triggered.

By mathematical induction, Theorem 1 is proved. 

4.5 Optimization

Algorithm 1 suspends each thread at a barrier right be-
fore acquiring the corresponding lock so that other
threads may utilize the lock (if necessary) before locating
at the same barrier. However, if other threads do not
utilize this lock before locating at their deadlocking sites,
there is no need to continue to suspend the former
thread at the barrier in question. In this way, the total
number of thread suspensions in a run can be reduced,
which further reduces the scheduling overhead of ASN.

For instance, suppose that, in Fig. 1(c), the thread t1 is
locating at site s06 and is about to acquire the lock p and
the thread t2 is locating in between the sites s14 and s15.
According to Algorithm 1, ASN suspends t1 at site s06
until t2 locates at site s15. However, t2 does not acquire
the lock p before reaching its NBr site (s16). In this case,
even if ASN does not suspend thread t1 at its SBr site
(s06), the thread t2 is still able to locate at its SBr and NBr
sites, and the deadlock can still be successfully triggered.
On the other hand, suppose that the thread t1 is locating
at site s03 (its ABr site) before the thread t2 locates at site
s13, ASN must suspend the thread t1. Otherwise, thrash-
ing would occur if thread t2 is locating at site s13 to ac-
quire the lock s. This is because there is a lock acquisition
(on the lock s associated with ABr(c0, t1)) by the thread t2
prior to the same thread t2 locating at its NBr site.

General speaking, if a lock m is associated with a bar-
rier site XBr(c, t) (where XBr is either ABr or SBr) and all
other threads involving in the same cycle c do not ac-
quire the lock m before locating at their necessity barrier
sites (which is determined based on the predictive run),
ASN does not suspend this thread t at this site XBr(c, t)
but just marks that t has located at this site XBr(c, t).

thread t1
acq(l1)
acq(l2)

… thread tn-1
acq(ln-1)
acq(ln)

thread tn thread tn+1
acq(ln)
acq(ln+1)

acq(ln+1)
acq(l1)

thread t1
acq(l1)
acq(l2)

… thread tn-1
acq(ln-1)
acq(ln)

thread tn'

acq(ln)
acq(ln+1)
acq(l1)

thread t1
acq(l1)
acq(l2)

thread t2
acq(l2)

acq(l1)

thread t1
acq(l1)
…

acq(l2)

thread t2
acq(l2)
acq(l1)

(a)

(b)

(d)

s: a thread is locating
at the statement s
without executing it.

(c)

(e)

t1 tx

txk

txi

tx1

txi-1

…

Fig. 2. A two-thread deadlock scenario in (a)-(c), and a
generalized deadlock sceanrio in (d)-(e).

4.6 Variants of ASN

In the algorithmic design, ASN is built on three barriers
ABr(c), SBr(c), NBr(c). Among these three barriers, the
necessity barrier NBr(c) is precisely the set of sites where
the given deadlock occurs, hence, cannot be removed.

To help us to validate ASN, we make two variants of
ASN, and each variant uses one less barrier than ASN:

AN is a technique that uses the admission barrier fol-
lowed by the necessity barrier, that is ABr(c), NBr(c).

SN is a technique that uses the sufficiency barrier fol-
lowed by the necessity barrier, that is SBr(c), NBr(c).

Both AN and SN can be straightforwardly imple-
mented by modifying Algorithm 1.

5 EXPERIMENT

5.1 Benchmarks and Implementation

We selected a suite of real-world, large-scale Java and
C/C++ programs, including JDBC connector [1], SQLite

[4], HawkNL [5], and MySQL [1]. They contained in total 15
real deadlocks. All these benchmarks were available
online [1], [26], and had been used in deadlock related
experiments (e.g., [13], [26]). We have implemented ASN
for Java and C/C++ using ASM 3.2 [2] and Pin 2.10
(probe mode) [31] with Pthreads, respectively.

We compared ASN to PCT [10], MagicScheduler (MS)
[13], and DeadlockFuzzer (DF) [23], AN, and SN on the
same framework. Although DF for Java is available from
the current release of Calfuzzer [24], yet Calfuzzer only
instrumented the test harness but did not instrument the
JDBC Connector library that contains the deadlocks. Be-

sides, the released DF is different the algorithm reported
[23]. Finally, we faithfully implemented DF based on
both [23] and Calfuzzer [24] (including the optimization
[23]). The original tool of PCT was not publicly available.
We faithfully implemented PCT according to [10].

5.2 Experimental Setup

We performed our experiment on a 3.16GHz Duo 2 pro-
cessor with Ubuntu 10.04. We used the object abstraction
algorithm in [14] to identify sites for each event and used
Magiclock [12], [13] to generate all cycles. Because no
technique in the experiment was able to confirm false
positives, therefore, we only applied each cycle that is a
real deadlock to each technique for 100 runs [13], [23].

TABLE 1 shows the descriptive statistics of bench-
marks, including the benchmark name, the cycles (num-
bered from c1 to c15) in each benchmark, the bug ID if
available, and the size of each benchmark (SLOC [3]). The
fifth column shows a brief deadlock description for each
benchmark. The last two columns show the number of
threads/locks in each benchmark and the numbers of
(direct and indirect) locks in each cycle, respectively.

5.3 Effectiveness

Fig. 3 summarizes the probability of each technique on
each cycle listed in TABLE 1. We note that PCT does not
use any information on the provided cycles to trigger
real deadlocks. Hence, it is not totally fair to compare
PCT to the other three techniques. Interpreting the data
in the rest of Section 5 must consider this difference.

From Fig. 3, we observe that ASN can confirm each

TABLE 1
 DESCRIPTIVE STATISTICS OF THE BENCHMARKS WITH 15 REAL-WORLD DEADLOCK BUGS

Benchmark (Cycle IDs) Bug ID SLOC (K) Deadlock Description
of threads

/ locks
of locks

(direct / indirect)

JDBC

Connector

5.0

c1 - c5 2147

36.3K

PreparedStatement.getWarnings() and Connection.close() 3 / 131 2/0, 2/0, 2/2, 2/2, 2/1

c6 31136 PreparedStatement.executeQuery() and Connection.close() 3 / 134 2/3

c7 - c8 17709 Statement.executeQuery() and Conenction.prepareStatement() 3 / 134 2/2, 2/2

SQLite 3.3.3 c9 1672 74.0K sqlite3UnixEnterMutex() and sqlite3UnixLeaveMutex() 3 / 3 2/0

HawkNL 1.6b3 c10 - 9.3K nlShutdown() and nlClose() 3 / 2 2/1

MySQL

Server 6.0.4

c11 - c14 34567
1,093.6K

Alter on a temporary table and a non-temporary table 17 / 292 2/1,2/1,2/1,2/1

c15 37080 Insert and Truncate on a same table using falcon engine 17 / 211 2/6

Fig. 3. Comparisons on the triggering probability of real deadlocks among PCT, MS, DF, AN, SN, and ASN. In each
subfigure, y-axis means the probability.

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c1

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c2

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c3

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c4

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c5

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c6

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c7

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c8

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c9

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c10

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c11

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c12

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c13

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c14

0.00

0.20

0.40

0.60

0.80

1.00

PCT MS DF AN SN ASN

c15

Our three techniques Existing techniques

cycle in a higher probability (≥75%), which is consistent
across all cycles, than other techniques.

The confirmation probabilities of the other techniques
are not consistent. For instance, they may not be able to
confirm some cycles in any confirmation run (e.g., c9,
c11, c13, and c14 for MS and DF) or may only confirm a
cycle with a significantly lower probability than ASN
(e.g., on c1-c8, and c12 for MS and DF) by 4463%.

On the largest benchmark MySQL used in the evalua-
tion, ASN triggers all cycles as real deadlocks that were
missed by both DF and MS in all 100 confirmation runs.

TABLE 2 shows the number of thrashing by each
technique. Both DF and MS frequently lead the confir-
mation runs into thrashing, which aligns with our intui-
tion that uncoordinated suspension among threads may
produce conflicts with the synchronization orders re-
quired to trigger deadlocks. In the experiment, the num-
ber of thrashing produced by ASN is significantly small-
er than these of DF and MS. PCT does not produce any
thrashing attributed to its strategy, but its confirmation
probability is significantly lower [10] than that of ASN.

5.4 Comparison among ASN Variants

Fig. 3 also shows the confirmation probabilities of SN
and AN on each cycle.

AN is basically incapable of confirming cycles c1-c6,
c9, c13-c14 as real deadlocks. On the remaining six cy-
cles, AN, MS and DF perform similarly. Except on c10
and c15, ASN is significantly more effective than AN.

SN can confirm all 15 cycles. Compared to MS and
DF, SN was more effective on cycles c6, c7, c9, and c11-
c14. Both ASN and SN achieved similar effectiveness on
cycles c6, c7, c9, c10, and c15, but ASN is significantly
more effective than SN on the remaining 10 cycles.

The result from AN and SN shows that using one less
barrier in ASN (i.e., simply enhancing MS and DF with
the admission barrier or sufficiency barrier only), the
probability of confirming deadlocks are likely reduced.

5.5 Performance

TABLE 3 shows the time cost that each technique spent,
providing that it can successfully trigger the deadlock
indicated by each cycle in a run. The MySQL benchmark
is a server program and the time cost is not compute-
bound. On this benchmark, if a technique cannot make
any successful confirmations, we denote the correspond-

ing cell by a dash ("-"). Note that the time included all
from the very beginning to the time when the deadlock
occurs, and include the instrumentation time.

From TABLE 3, on the Java benchmarks, we observe
that PCT, MS, and DF incur similar time overheads. On
C/C++ programs, ASN incurs more time. We find that
this is mainly attributed to our tool implementation. In
the Java-based tool, we directly implement the three bar-
riers using Java library utilities. However, Pin [31] disa-
bles the C++ multithreading utilities. So we use the
sleep() function in Pin to implement our barriers, which
caused more delays than using the wait() calls, because
in the latter case, a thread can be woken up by a noti-
fy() call at any time. Still, using the current prototype,
the time cost is in a matter of a few seconds. We believe
that the time cost of ASN in the experiment is practical.

5.6 Scalability

Following [10], we configured all benchmarks (c1-c10)
except MySQL to be run with 2 to 64 threads. In each con-
figuration, we repeat the experiment described in Sec-
tion 5.2. For MySQL, the number of threads in a run is
self-governed by MySQL, which cannot be changed by us.

Fig. 4 shows the deadlock confirmation probability
on cycles c1-c10. With increasing number of threads,
the confirmation probability of ASN keeps at 100% on
six cycles (c1, c6, c7, c9, and c10). On c2 and c8, the
probability is close to 100%. On the remaining cycles
(c3-c5), the probabilities are all above 80%. Fig. 4 shows
that ASN is able to scale up to confirm deadlocks in pro-
grams with many threads.

5.7 Case Study

The program MySQL Server is the largest among our
benchmarks. In this section, we analyze the deadlock in

Fig. 4. Scalability of ASN with increasing number of
threads on cycles c1 – c10.

0.70

0.80

0.90

1.00

2 4 8 16 32 64

P
ro

b
ab

il
it

y

Number of threads

c1 c2 c3 c4 c5

c6 c7 c8 c9 c10

c1,c6,

c7,c9,

c10

TABLE 2
 COMPARISONS ON NUMBER OF THRASHING OCCURRENCES

Benchmark Cycle ID PCT MS DF ASN

JDBC
Connector 5.0

c1 0 49 58 0

c2 0 57 55 1

c3 0 48 52 1

c4 0 45 48 1

c5 0 52 47 1

c6 0 57 57 0

c7 0 44 45 0

c8 0 49 51 0
SQLite 3.3.3 c9 0 100 100 0
HawkNL 1.6b3 c10 0 0 0 0

MySQL Server
6.0.4

c11 0 95 100 0

c12 0 78 67 2

c13 0 91 80 1

c14 0 92 78 0

c15 0 0 0 0

TABLE 3
COMPARISONS ON PERFORMANCE (IN SECONDS)

Benchmark Cycle ID Native PCT MS DF ASN

JDBC
Connector 5.0

c1

0.98 2.03

2.18 1.82 1.83
c2 1.85 1.89 1.95
c3 1.80 1.87 2.00
c4 1.68 1.90 2.09
c5 1.49 1.90 2.07
c6 0.97 1.35 1.55 1.51 1.66
c7

0.92 1.43
1.70 1.49 1.73

c8 1.44 1.57 1.61
SQLite 3.3.3 c9 2.00 2.56 - - 3.07
HawkNL 1.6b3 c10 2.01 3.56 2.06 2.05 3.07

MySQL
Server 6.0.4

c11

- -

- - 4.52

c12 2.65 2.15 5.02
c13 - - 4.13
c14 - - 2.42
c15 - - 1.34 1.31 1.33

MySQL Server. We report our finding on cycle c11, on
which ASN is least effective among all 15 deadlock bugs.

The deadlock (c11) involves two threads (t1 and t2) on
two operations dropTable (by t1) and renameTable (by t2),
and two direct locks syncTables (Tab for short) and
syncSysConnection (Con for short). A simplified code is
shown in Fig. 5 1. The deadlock occurs as follows: the
thread t1 acquires and releases two lock Tab and Con once
(E1 to E4) followed by acquiring and releasing the lock
Tab once more (E5 and E6). It then acquires the lock Con

(E7) and, before releasing Con, it wants to further acquire
the lock Tab (E8). The thread t2 acquires the lock Con and,
before releasing Con, it wants to further acquire the lock
Tab (E1' and E2'). At this moment, a deadlock occurs as
the lock Con is held by t1 and the lock Tab is held by t2. In
a run, the thread t2 tends to reach the two lock acquisi-
tion sites (lines 30 and 31) before the thread t1 reaches
the line 9 because t1 needs to execute far more statements
than t2 beforehand. Hence, the deadlock rarely occurs. In
the following, we use the above code fragment to ana-
lyze different techniques.

To confirm this deadlock, MS or DF firstly suspends
the thread t2 at line 31, which, however, prevents the
thread t1 from acquiring the lock Tab (E1 or E5). As a
result, both MS and DF are likely unable to confirm this
deadlock (i.e., with a confirmation probability close to 0).

AN can postpone the execution of the thread t2 at its
admission barrier site (E1') until t1 reaches its corre-
sponding admission barrier site (E1). It then targets to
suspend t1 at its necessity barrier site (E8) and suspend t2
at its necessity barrier site (E2'). But, the probability of
encountering this lock ordering case seems low because
the thread t2 is likely to acquire the lock Tab right after
the thread t1 releases this lock (E2).

Both SN and ASN should trigger the deadlock with a

1 In Fig. 5, we do not show other lock operations that are not related
to this deadlock as there are too many lock operations in MySQL includ-
ing a direct lock (see lines 17 and 19) operated by the thread t1 only.

high probability. It is because the two threads are likely
able to reach their sufficiency barrier sites (E7 and E1',
respectively), and the algorithms should then make each
thread to acquire the corresponding direct lock. This
leads the two thread to be later suspended at their neces-
sity barrier sites at E8 and E2', triggering the deadlock.
Note that for ASN, the admission barrier and the suffi-
ciency barrier for the thread t2 are the same (E1').

For PCT, its guaranteed probability on MySQL Server
is roughly 1/ (17 * 150002-1) ≈ 7.8 10-6 (for 17 threads,
more than 15,000 lock acquisition and release events,
and 2 changing points), which is close to 0%.

TABLE 4 summarizes our above qualitative analysis
on confirming c11 by MS, DF, AN, SN, and ASN, and
the probabilities observed from the experiment (taken
from Fig. 3). From TABLE 4, we observe the effective-
ness of these techniques in the experiment is in line with
the above qualitative analysis.

On c15, there is an interesting thread (Gopher thread)
from a group of threads where each thread acquires a
lock at beginning and does not release it until the thread
dies. Suppose that this Gopher thread is suspended on
its acquisition of such a lock (which is the site for the
admission barrier of the Gopher thread), MySQL selects
another thread from the same group to complete the
intended task. Hence, after its resumption, the Gopher
thread has nothing to do. However, as such a lock is on-
ly acquired by the Gopher thread itself, ASN does not
suspend the Gopher thread on its acquisition of above
lock at its ABr site. Thus, ASN can confirm c15 with al-
most a probability of 100%. Note that other techniques
except PCT can also confirm this deadlock.

6 RELATED WORK

Predictive deadlock detection. Static techniques analyze
the code list to infer potential deadlocks [6], [37], [38].
Naik et al. [33] propose a combination approach to re-
ducing the false positive rate. And yet, real deadlocks
could not be isolated. Deshmukh et al. [16] design sym-
bol execution technique to alleviate this problem. Dy-
namic techniques [13], [15], [23] analyze execution traces
to infer potential deadlocks. Joshi et al. [25] propose a
model checking approach, which requires manual anno-
tations, to detect generalized deadlocks. JPF [8] is a pos-
sible approach to detect general concurrency bugs,
which however suffers from severe scalability problems.

The scheduling approach of BTrigger [36] is similar to
that of DeadlockFuzzer, except that BTrigger postpones a
thread at each concurrent breakpoint "for a while" to
eliminate thrashing. Besides, BTrigger requires develop-
ers to manually insert concurrent breakpoints.

Dimmunix [26] aims to prevent the second occurrence
of any previously occurred deadlocks. It records the pat-
terns of occurred deadlocks and postpones lock acquisi-

Thread t1: dropTable
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.
29.
30.
31.

Database::dropTable(…){
checkDrop();
lock (&syncTables);
unlock(&syncTables);
drop(…);

}
Table::checkDrop(){ prepareStatement(…);}
Table::drop(…){

Lock (&syncSysConnection);
prepareStatement(…);

}
Database::prepareStatement(…){

//five nested method calls with no lock operation are omitted

getCompiledStatement (…);
}
Database::getCompiledStatement(…){

lock (&syncStatements);
validate ();
unlock(&syncStatements);

}
CompiledStatement::validate(){ findTable (…); }
Database::findTable (…){

lock (&syncTables);
unlock(&syncTables);
Lock (&syncSysConnection);
unlock(&syncSysConnection);

}
Thread t2: renameTable
StorageDatabase::renameTable(…){

lock(&syncTables);
lock(&syncSysConnection);

}

E1 acq(Tab)
E2 rel(Tab)
E3 acq(Con)
E4 rel(Con)

E5 acq(Tab)
E6 rel(Tab)

E7 acq(Con)

E8 acq(Tab)

E1' acq(Tab)
E2' acq(Con)

Fig. 5. Case Study on MySQL Server (cycle c11)

TABLE 4
ESTIMATED AND EXPERIMENTAL RESULTS ON C11

Probability PCT MS/DF AN SN ASN
By Analysis Very Low Very Low Low High High
By Experiment 0% 0% 11% 59% 75%

tion at runtime if the locking scenario matches the rec-
orded deadlock patterns. Gadara [39] inserts gate lock
acquisition code at each deadlock site detected statically
and, at runtime, serializes executions whenever a stati-
cally detected deadlock is likely to occur. Grechanik et
al. [20] also use static analysis and runtime monitoring
approach to prevent deadlock in database applications.
Nir-Buchbinder et al. [34] use an execution serialization
strategy for deadlock healing. Compared to ASN, these
techniques develop and utilize no admission or suffi-
ciency barriers. Sammati [27], [28] is a deadlock recovery
technique that selects a victim thread and rolls back the
execution to resolve deadlock occurrence.

ESD [40] synthesizes the execution that goes into a
deadlock state by analyzing the core dump of a previous
failed execution. ASN can take a potential deadlock or a
real deadlock (specified as a cycle) as an input. Both
ConTest [17] and CTrigger [35] inject random noises to the
execution being manipulated with the aim of improving
its probability of triggering concurrency bugs. ASN can
be viewed as an approach to injecting systematic noises
to a program execution via each barrier. Huang et al. [22]
propose to avoid deadlocks through automatic genera-
tion of synchronization logics in design programs.

Replay techniques [7], [19] for concurrency bugs can
help developers to locate and understand how these
concurrency bugs can happen. Compared to them, ASN
does not rely on any execution with real deadlocks.

7 CONCLUSION

Many real-world large-scale multithreaded programs
incur deadlock bugs. This paper has proposed ASN, a
novel multi-barriers deadlock triggering scheduler. ASN
is currently designed with a sequence of three barriers.
We have proven that the second barrier is a sufficient
condition to trigger real deadlocks at its last barrier un-
der certain conditions. We have evaluated that ASN can
be promising to confirm deadlock bugs in real-world
multithreaded programs. Future work includes the
deadlock removal confirmation after program changes.

REFERENCES

[1] MySQL Database Server 6.0.4 and MySQL JDBC Connector 5.0,

available at: http://www.mysql.com.

[2] ASM 3.2, available at http://asm.ow2.org.
[3] SLOCCount 2.26. http://www.dwheeler.com/sloccount.
[4] SQLite 3.3.3, available at: http://www.sqlite.org.

[5] HawkNL 1.6b3, available at: http://hawksoft.com/hawknl.

[6] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential dead-
locks with static analysis and run-time monitoring. In Proceedings of

the 2005 IBM Verification Conference, 2005.
[7] G. Altekar and I. Stoica. ODR: output-deterministic replay for multi-

core debugging, in Proc. SOSP, 193–206, 2009.
[8] S. Anand, C. S. Păsăreanu, and W. Visser. JPF-SE: a symbolic exe-

cution extension to Java PathFinder. In Proc. TACAS, 134–138,

2007.
[9] S. Bensalem and K. Havelund, Scalable dynamic deadlock analysis

of multi-threaded programs. In PADTAD'05, 2005.
[10] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A

randomized scheduler with probabilistic guarantees of finding bugs.

In Proc. ASPLOS, 167–178, 2010.
[11] Y. Cai and W.K. Chan. Lock trace reduction for multithreaded pro-

grams. IEEE Transactions on Parallel and Distributed Systems

(TPDS), 24(12), 2407–2417, 2013.

[12] Y. Cai and W.K. Chan. Magiclock: scalable detection of potential
deadlocks in large-scale multithreaded programs. IEEE Transactions

on Software Engineering (TSE), accepted, 2014.

[13] Y. Cai and W.K. Chan. MagicFuzzer: scalable deadlock detection
for large-scale applications. In Proc. ICSE'12, 606–616, 2012.

[14] Y. Cai, K. Zhai, S.R. Wu, and W.K. Chan. TeamWork: synchroniz-

ing threads globally to detect real deadlocks for multithreaded pro-
grams. In Proc. PPoPP'13, 311–312, 2013.

[15] Z.D. Luo, R. Das, and Y. Qi. MulticoreSDK: a practical and efficient

deadlock detector for real-world applications. In Proc. ICST, 309–
318, 2011.

[16] J. Deshmukh, E. A. Emerson, and S. Sankaranarayanan. Symbolic
deadlock analysis in concurrent libraries and their clients. In Proc.

ASE, 480–491, 2009.

[17] E. Farchi, Y. Nir-Buchbinder, and S. Ur. A cross-run lock discipline

checker for Java. In PADTAD'05, 2005.

[18] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dy-

namic race detection. In Proc. PLDI, 121–133, 2009.
[19] M. Grechanik, B.M. M. Hossain, and U. Buy. Testing database-

centric applications for causes of database deadlocks. In Proc. ICST,

174–183, 2013.
[20] M. Grechanik, B.M. M. Hossain, U. Buy, and H. Wang. Preventing

database deadlocks in applications. In Proc. FSE, 356–366, 2013.

[21] K. Havelund. Using runtime analysis to guide model checking of
Java programs. In Proc. SPIN, 245–264, 2000.

[22] Y. Huang, L. K. Dillon, and R. E. Stirewalt. On mechanisms for

deadlock avoidance in SIP servlet containers. In Proc. IPTComm,
196–216, 2008.

[23] P. Joshi, C.S. Park, K. Sen, amd M. Naik. A randomized dynamic

program analysis technique for detecting real deadlocks. In Proc.
PLDI, 110–120, 2009.

[24] P. Joshi, M. Naik, C.S. Park, and K.Sen. CalFuzzer: An extensible

active testing framework for concurrent programs. In Proc. CAV,
675–681, 2009.

[25] P. Joshi, M. Naik, K, Sen, and D. Gay. An effective dynamic analy-

sis for detecting generalized deadlocks. In Proc. FSE, 327–336,
2010.

[26] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock Im-

munity: enabling systems to defend against deadlocks. In Proc.
OSDI, 295–308, 2008.

[27] H. K. Pyla and S. Varadarajan. Avoiding deadlock avoidance. In

Proc. PACT, 75–86, 2010.
[28] H. K. Pyla and S. Varadarajan. Deterministic dynamic deadlock

detection and recovery. Submitted to The ACM Transactions on

Programming Languages and Systems (TOPLAS), 44 pages, 2012.
[29] Z. Lai, S.C. Cheung, and W.K. Chan. Detecting atomic-set serializa-

bility violations in multithreaded programs through active random-

ized testing. In Proc. ICSE, 235-244, 2010.
[30] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM 21(7):558–565, 1978.

[31] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized

program analysis tools with dynamic instrumentation. In Proc. PLDI,

191–200, 2005.
[32] S. Lu, S. Park, E. Seo, Y.Y. Zhou. Learning from Mistakes: A Com-

prehensive Study on Real World Concurrency Bug Characteristics.

In Proc. ASPLOS, 329–339, 2008.
[33] M. Naik, C.S. Park, K. Sen, and D. Gay. Effective static deadlock

detection. In Proc. ICSE, 386–396, 2009.

[34] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: from exhibiting
to healing. In Proc. RV, 104–118, 2008.

[35] S. Park, S. Lu, and Y.Y. Zhou. CTrigger: exposing atomicity viola-

tion bugs from their hiding places. In Proc. ASPLOS, 25–36, 2009.

[36] C.-S. Park and K. Sen. Concurrent breakpoints. In Proc. PPOPP,

331–332, 2012.
[37] V.K. Shanbhag. Deadlock detection in Java library using static anal-

ysis. In Proc. APSEC, 361–368, 2008.

[38] Williams, W. Thies, and M.D. Ernst. Static deadlock detection for
Java libraries. In Proc. ECOOP, 602–629, 2005.

[39] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara:

dynamic deadlock avoidance for multithreaded programs. In Proc.
OSDI, 281–294, 2008.

[40] C. Zamfir and G. Candea. Execution synthesis: a technique for au-

tomated software debugging. In Proc. EuroSys, 321–334, 2010.

