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Deadlock Testing

• Random testing

– OS scheduling + random manipulation 

– Stress testing

– Heuristic directed random testing

– Systematic scheduling 
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No Guarantee to find a 

concurrency bug (e.g., Deadlock)



• PCT Algorithm

– Mathematical randomness with Probabilistic Guarantees
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PCT – Probabilistic Concurrency Testing



PCT – Probabilistic Concurrency Testing

• PCT :

– Intuition of guaranteed probability: 

1. satisfy the 1st order by assigning the thread a largest priority (1/𝑛)

2. select d – 1 priority change points at the remaining d – 1 order 

position (1/𝑘 × 1/k ×…× 1/𝑘 = 
1

𝑘𝑑−1) ⇒
1

𝑛×𝑘𝑑−1

6

Thread t1 Thread t2

s01 acq(m)

s02 acq(n)

s03 rel(n)

s04 rel(m)

s05 acq(n)

s06 acq(m)

s07 rel(m)

s08 rel(n)



k =8, n =2, d =2
1

2 × 82−1
= 1/16



PCT – Probabilistic Concurrency Testing

• Provide a guarantee (a probability ):

But …

• Theoretical model, not consider 

thread interaction: 

real executions do not follow designed 

executions 

• Guaranteed probability decreases 

exponentially with increase of bug 

depth: due to factor 
1

𝑘𝑑−1.
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Execution of events

Coordination among threads 

Ranges of events to be selected by PCT or RPro

Threads t1, t2, … tn

… …

1

𝑛 × 𝑘𝑑−1
n: #threads, k: #events, d: bug depth



RPro- Radius aware

• Our approach: RPro – Radius aware Probabilistic testing
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Execution of events

Coordination among threads 

Ranges of events to be selected by PCT or RPro

Threads t1, t2, … tn

… …

• Consider thread interaction

• Guaranteed probability 

decreases:
1

𝑟
(not 

1

𝑘
, r≪ k)

1

𝑛 × 𝑘𝑑−1

1
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RPro- Radius aware

• RPro: Theoretical guarantee 
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PCT: Guaranteed probability
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RPro: Probability in practice

r = k

How to find rbug?



Experiment

• Results 
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Table 1. The best radiuses (rbest) of each benchmarks. 
 

Benchmark 
# 

events 

# 

threads 

bug 

depth 
𝒓𝒃𝒆𝒔𝒕* 

𝒓𝒃𝒆𝒔𝒕

#𝒆𝒗𝒆𝒏𝒕𝒔
 Probability 

Hawknl 28 3 3 2 - 0.4530 

SQLite 16 3 3 2 - 0.6863 

JDBC-2 5,050 3 3 3 0.059% 0.0632 

JDBC-4 5,090 3 3 5 0.098% 0.1123 

JDBC-3 5,080 3 3 11 0.217% 0.0229 

JDBC-1 5,088 3 3 17 0.334% 0.0439 

MySQL-4 444,621 19 3 20 0.005% 0.0062 

MySQL-2 15,066 17 3 27 0.179% 0.0256 

MySQL-1 19,300 16 3 47 0.244% 0.0022 

MySQL-3 406,117 22 6 114 0.028% 0.0039 

(* All rows are sorted on the data in this column.) 
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Data Race Sampling
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Concurrency bugs

• Difficult to detect

– Non-determinism (space explosion) 

– Inadequate test inputs

– …

• Even after software release, 

concurrency bugs may still occur
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Concurrency bugs

• It is necessary to detect concurrency 

bugs in deployed products

• Challenges:

not to disturb normal executions

– light-weighted

– …

Sample user executions

Detector

<5% overhead
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Existing works

• Data Race

• Happens-before (HB Race)
• Access pairs not ordered by happens-before relation (HBR)

Two threads concurrently access the same memory 

location and at least one access is a write.

Thread t1

x++;
sync(m){}

Thread t2

sync(m)
{x++;}

Thread t1

x++;

sync(m){}

Thread t2

sync(m)
{x++;}

Value of x: +2. Value of x: +1 or +2? 14



Existing works

• Happens-before Races 

– Track full Happens-before relation

• Incurring many O(n) operations

Insight 1: 

Not to track Full Happens-before Relation

0% sampling rate => ~30% 

overhead 
(Pacer, PLDI’10) 

~15% in our experiment
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Existing works

• Hardware based (e.g., DataCollider, OSDI’10)

– Code Breakpoints and Data Breakpoints

(or Watchpoints)

– Collision Races

• A data race: two accesses

– Select a memory address =>

Set a data breakpoint => 

Wait for the breakpoint to be fired

– The waiting time directly increases the sampling overhead 

Insight 2: Not to directly delay executions
16



Existing works

• …

• See our paper for more insights
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Our Proposal 

• Clock Race

– For data race sampling purpose 

• CRSampler

– To detect clock races
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Clock Race

• Clock Race

– Thread-local clock: an integer for each thread, increased on 

synchronization operation.

– Two accesses (with at least a write) form a Clock Race if: 

at least one thread-local clock is not changed 

in between the two accesses

sync

No clock races

sync
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Clock Race

• A Quick Demonstration

Thread  1

acquire(l) onSync( );
x = 0; sample(x);
…

release(l) onSync( );

Thread  2

acquire(k) onSync( );
…

release(k) onSync( );
x ++;

 1     𝑘  2     𝑘
10          8

11          9

11          9

11          9

11         10

11         10

12

On this read, t1.clock remains 11, 

a clock race on x is reported

Maintain thread-local clocks

Sampled access

20



Clock Race 

• Clock Race

– Race checking does not need to delay any thread.

– But: after e1 appears, how much time is required to check two 

accesses? 
• Given a short time, it is not enough to trap the second access.

• Given a long time, all threads’ lock clocks are changed.

Thread  1
 1

Thread  2

 2

 1     𝑘 is not changed between time1 and time2. 

time1

time2

T
im

e 
el

a
p

se

One second, 

or …
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Setup 

• Implementation

– Jikes RVM

– Sampling: Java class load time

– Memory accesses  Linux Kernel

• Benchmarks

– Dacapo benchmark suite

 

JikesRVM

User-site 

Agent

Kernel

Site
CPU

Set breakpoints

On firing 

User space Kernel space

Netlink

Com. 

Core of 

DC/CR

E
x
e
c
u

ti
o

n

22



Setup

• Comparisons

– Sampling rate: 0.1% to 1.0%

– Pacer (PLDI’10)

– Data Collider (OSDI’10)

– CRSampler

• ThinkPad Workstation

– I7-4710MQ CPU, four cores, 16G memory, 250G SSD

23

15ms, 30ms
DC15, DC30

CR15, CR30



Experiments

• Overall Results

– Effectiveness

• CR: more data races at

low sampling rates

– Overhead

Bench- 

marks 

Binary 

Size (KB) 
# of  

threads 

# of  

sync. 
Pacer* 

D
C

15
 

D
C

30
 

C
R

15
 

C
R

30
 

avrora09 2,086 7 3,312,801 3 3 3 5 3 

xalan06 1,027 9 35,859,489 5 5 5 87 81 

xalan09 4,827 9 12,599,144 0 2 2 84 91 

sunflow09 1,017 17 1,590 0 0 2 46 45 

pmd09 2,996 9 20,550 4 2 2 110 121 

eclipse06 41,822 16 51,131,093 19 2 6 58 63 

Sum: 31 14 20 390 404 

 

y = 9.0749x + 0.1474

R² = 0.9397

y = 92.529x + 0.0588

R² = 0.9851

y = 173.46x + 0.0997

R² = 0.9796

0%

40%

80%

120%

160%

200%

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

A
v
e
re

a
g
e
 O

v
e
rh

e
a
d

Sampling rate

Avg. Overhead of Three + Trendlines
Pacer

DC15

DC30

CR15

CR30

y = 9.0749x + 0.1474

R² = 0.9397

y = 2.6312x + 0.0252

R² = 0.9624

y = 2.0859x + 0.0269

R² = 0.98990%

5%

10%

15%

20%

25%

30%

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

A
v
e
re

a
g
e
 O

v
e
rh

e
a
d

Sampling rate

Avg. Overhead of Pacer and CRSampler + Trendlines
Pacer

CR15

CR30

y = 9.0749x + 0.1474

R² = 0.9397

y = 92.529x + 0.0588

R² = 0.9851

y = 173.46x + 0.0997

R² = 0.9796

0%

40%

80%

120%

160%

200%

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

A
v
e
re

a
g
e
 O

v
e
rh

e
a
d

Sampling rate

Avg. Overhead of Three + Trendlines
Pacer

DC15

DC30

CR15

CR30

y = 9.0749x + 0.1474

R² = 0.9397

y = 2.6312x + 0.0252

R² = 0.9624

y = 2.0859x + 0.0269

R² = 0.98990%

5%

10%

15%

20%

25%

30%

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

A
v
e
re

a
g
e
 O

v
e
rh

e
a
d

Sampling rate

Avg. Overhead of Pacer and CRSampler + Trendlines
Pacer

CR15

CR30

DC30

DC15

CR30 , CR15
Pacer

5%

24



Experiments

• Discussions

– DataCollider: overhead from its delays.
• DC30 has almost 2 times overhead than DC15.

– Pacer: basic overhead ~15%

– CRSampler: ~5% overhead at 1.0% sampling rate.
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