
 

 

This work is an unpublished copy and the content of it has been informally presented at the 

Doctoral Symposium of the 26th European Conference on Object-Oriented Programming 

(ECOOP'12, DS). 

A Dynamic Deadlock Prediction, Confirmation and 

Fixing Framework for Multithreaded Programs 

Yan Cai 
Department of Computer Science 

City University of Hong Kong 

Tat Chee Avenue, Hong Kong 
yancai2@student.cityu.edu.hk  

Abstract. Deadlocks widely exist in real-world multithreaded programs. Ex-

isting predictive strategies are not consistently scalable; existing confirmation 

strategies may miss to trigger deadlocks, and existing fixing strategies may in-

cur false positives or high runtime overheads. This paper presents an overview 

of my approach to automatic deadlock prediction, confirmation, and fixing. 

1 Introduction 

Deadlock [4] widely exists in real-world multithreaded programs such as Chromi-

um, MySQL, Apache httpd, and OpenOffice. Its occurrence in a program run pre-

vents the run to proceed further. Communication deadlocks and resource deadlocks 

are two board categories [1, 5, 8]. An instance of the former kind occurs when a 

thread waits for a message that has been sent before the thread starts to wait or every 

sender is blocked from sending such a message. An instance of the latter kind occurs 

when each thread in a set T cyclically waits for a resource held by another thread in T.  

As we are going to present, existing deadlock prediction, confirmation, and fixing 

strategies are still inadequate to handle the complex nature of real-world programs 

reliably. This paper presents our framework to be built that addresses the challenges 

in these areas in the context of object-oriented programs. 

Table 1. Memory and Time Comparisons among iGoodlock, MulticoreSDK, and Magiclock  

Benchmark 
Memory (MB) Time in second (s) 

iGoodlock MulticoreSDK Magiclock iGoodlock MulticoreSDK Magiclock 

SQLite 1.05MB 1.05MB 1.05MB 0.002s 0.003s 0.002s 

MySQL >2800MB 1.15MB 1.05MB >125s 398s 1.73s 

Chromium >2800MB >48.2MB  8.01MB >6420s >3600s 1m42s 

Firefox >2800MB 122.41MB 4.14MB >640s 7.43s 3.06s 

OpenOffice 245.20MB >48.4MB  8.01MB 6360s >3600s 0.67s 

Thunderbird 298.83MB 40.09MB 4.15MB 973s 4.75s 1.18s 

2 Dynamic Deadlock Prediction and Confirmation 

We [3] have shown that MulticoreSDK [10] and iGoodLock [8] could not consist-

ently scale up to analyze the execution traces of large-scale programs to detect dead-

lock potentials. Table 1, taken from [3], shows that they may exhaust all available 

memory (2.8GB) for a process or run over an excessive period.  

The general idea of MulticoreSDK [10] and iGoodLock [8] are, implicitly or ex-

plicitly, search over the lock-order graph (see the rightmost graph in Fig. 1) formed 

by the execution trace to locate every (minimal) circular chain of edges, and reports 

every such chain as a deadlock potential (and we also refer to it as a cycle).  

mailto:yancai2@student.cityu.edu.hk


 

 

Our Idea: In an execution trace of a real-world program, only a small fraction of 

all lock dependencies between threads may involve in such a cycle; otherwise, the 

program may have numerous amounts of deadlock potentials. Magiclock exploits this 

insight. It iteratively infers and removes edges that each cannot involve in such a 

cycle from the graph. It eliminates false positives by enforcing the sets of locks hold-

ing by the threads of a cycle to be mutually disjoint, and avoids the generation of 

duplicated cycles by searching the graph starting with all unique combinations of any 

two threads. The algorithm can be found in [3] and the column in Table 1 entitled 

Magiclock shows the result of this technique. We will generalize our approach to 

handle conditional variables and communication deadlocks. We will evaluate the 

generalized Magiclock by systematically reproducing the deadlock bugs reported over 

a period in the bug repository of the set of benchmarks shown in Table 1.  
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Fig. 1 Lock-order graph (ti is a thread; li is a lock; and an arrow refers to lock acquisition order) 

Isolating the real deadlocks from the predictive ones is the next target.  Our exper-

iment [3] shows that triggering deadlocks from these large-scale programs was diffi-

cult, and the probability was significantly lower than that reported in [8], which used 

a suite of small- and medium-scale benchmarks. We observe that DeadlockFuzzer [8], 

in our experiment [3], often suspended some threads that caused the run ceased to 

proceed further naturally (i.e., thrashing), and resumed one holding thread from sus-

pension, making the deadlock unable to be confirmed. The experiment reported in [2] 

shows that PCT can be of very low probability in detecting deadlocks for large-scale 

programs, even though it suffered from no thrashing. BTrigger [12] required manual 

efforts to determine the variable matching conditions to suspend a thread and judge a 

good timeout period to resume a thread from suspension. ConTest [6] simply injected 

arbitrary timeouts to alter the thread schedule with the intent to trigger deadlocks. 

Our Idea: We are developing strategies to address these challenges. Our plan is to 

firstly conduct an empirical investigation to find clues on why thrashing builds up, 

why injecting timeouts is an effective strategy, and why the deadlock code has been 

passed through in an execution trace without triggering any deadlock. Then, we will 

either enhance the predictive phase of deadlock detection to collect data about such 

clues if the clues require whole trace analysis or extract partial information from such 

an execution trace for on-the-fly condition determination in the confirmation run. We 

target to develop a technique that can result in a consistently high probability (e.g., 

80%) in confirming real deadlocks. We plan to evaluate our technique against the 

above-mentioned existing techniques on the benchmarks used to evaluate Magiclock 

in terms of detection probability, rate of thrashing, slowdown factors, and memory 

footprint. 



 

 

3 Dynamic Deadlock Fixing 

Once a deadlock is revealed, it can be fixed. Recent deadlock fixing approaches [9, 

11, 13] aim to serialize the execution of the program portion involved in deadlocks. 

Nir-Buchbinder et al. [11] proposed inserting a gate lock right before each thread 

involved in a deadlock acquires its problematic lock, which nonetheless, cannot han-

dle communication deadlocks and non-trivial resource deadlocks, and may introduce 

new deadlocks due to gate lock insertions. Dimmunix [9] prevented the second occur-

rence of a deadlock by recording the pattern of the first occurrence of the deadlock 

and matching the pattern in later execution traces. Such a pattern matching strategy is 

imprecise, failing to avoid deadlocks from re-occurrence. Its slowdown factor is good 

(e.g., 15% [9]). Gadara [13] detected all cycles offline. At runtime, any matched cy-

cle along the run triggers a serialization of the corresponding deadlock potential code, 

and many such occurrences in the same run may prolong the run significantly.  

To ease our presentation, we refer to a lock involved in a deadlock as a wait-lock, 

and a thread involved in the same deadlock as a wait-thread. 

Our Idea: With respect to a deadlock, we plan to actively assign the corresponding 

wait-lock of a wait-thread to the wait-thread when the wait-thread acquires any wait-

lock of the deadlock.  We aim to develop a technique that introduces no deadlock.  

We expect that this active lock assignment strategy breaks the circular waiting 

condition [4] for deadlock formation. Moreover, many programming languages sup-

port reentrant locks. This feature allows the same thread successfully acquires the 

same lock that it is holding. Hence, a pre-acquisition of a wait-lock by a wait-thread 

does not block the thread to acquire the wait-lock at the deadlocking position.  

Thread t1: synchronized(A) { synchronized (B) {…}} 
Thread t2: synchronized(B) { synchronized (A) {…}} 

(a) Example deadlock code 

Thread t1: synchronized(B) { synchronized(A) { synchronized (B) {…}}} 
Thread t2: synchronized(B) { synchronized (A) {}} 

(b) Pre-acquisition of the lock B by  thread t1 
Thread t1: synchronized(A) { synchronized (B) {…}} 
Thread t2: synchronized(A) { synchronized(B) { synchronized (A) {…}}} 

(c) Pre-acquisition of the lock A by the thread t2  
Fig. 2 Two pre-acquisition solutions illustrated in (b) and (c) for the deadlocking scenario illustrated in (a). 

The dynamically inserted codes are shown in the form of inserted code. 

Fig. 2(a) illustrates a deadlock scenario. Our fixing strategy leads to two possible 

fixes for the scenario. They are the pre-acquisition of the locks B and A by the threads 

t1 and t2, respectively, which are depicted as Fig. 2(b) and Fig. 2(c).  (The gate-lock 

fixing strategy of Nir-Buchbinder et al. [11] does not work if there is a pair of 

wait()-notidfy() statements between t1 and t2 within the inserted gate-lock block.) 

Several technical challenges still exist: A pre-acquisition of a lock by a thread may 

alter the original lock acquisition order of the program, introducing new deadlocks. 

We will analyze the lock-order graphs to determine whether some potential fixes are 

undesirable and avoid generating them. Because the involved static or dynamic analy-

sis on lock-order graphs could be imprecise, we will study new dynamic lock retreat 

strategy to release the actively pre-acquired wait-lock from a wait-thread to resolve 

“thrashing”. Besides, it may not be generally feasible to pre-acquire a wait-lock at the 

positions as illustrated by Fig 2. Multiple deadlocks may interfere with one another.   



 

 

We plan to evaluate to what extent our technique (1) introduces no new deadlocks 

and (2) handles general scenarios (e.g., communication deadlocks) that Dimmunix and 

Gadara could not handle well. We plan to use several large real-world applications 

that we have presented in Table 1 as benchmarks. 

4 Conclusion 

In this paper, we have reviewed existing work on deadlock prediction, confirma-

tion, and fixing. We have sketched our framework that addresses some selected tech-

nical challenges. We believe that having a highly effective strategy in each phase is 

essential to address the challenges posted by deadlocks in real-world programs.  
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