

A Deployable Sampling Strategy for Data Race Detection

Yan Cai1, Jian Zhang1, Lingwei Cao1, and Jian Liu2
1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

ycai.mail@gmail.com, zj@ios.ac.cn, lingweicao@gmail.com, liujian6@iie.ac.cn

ABSTRACT

Dynamic data race detection incurs heavy runtime overheads.

Recently, many sampling techniques have been proposed to detect

data races. However, some sampling techniques (e.g., Pacer) are

based on traditional happens-before relation and incur a large

basic overhead. Others utilize hardware to reduce their sampling

overhead (e.g., DataCollider) and they, however, detect a race

only when the race really occurs by delaying program executions.

In this paper, we study the limitations of existing techniques and

propose a new data race definition, named as Clock Races, for low

overhead sampling purpose. The innovation of clock races is that

the detection of them does not rely on concrete locks and also

avoids heavy basic overhead from tracking happens-before rela-

tion. We further propose CRSampler (Clock Race Sampler) to

detect clock races via hardware based sampling without directly

delaying program executions, to further reduce runtime overhead.

We evaluated CRSampler on Dacapo benchmarks. The results

show that CRSampler incurred less than 5% overhead on average

at 1% sampling rate. Whereas, Pacer and DataCollider incurred

larger than 25% and 96% overhead, respectively. Besides, at the

same sampling rate, CRSampler detected significantly more data

races than that by Pacer and DataCollider.

CCS Concepts

• Software and its engineering ➝ Software testing and debug-

ging • Theory of computation➝Program verification.

Keywords

Data race, sampling, concurrency bugs, data breakpoints.

1. INTRODUCTION
A data race (or race for short) occurs when two or more threads

access the same memory location at the same time and, at least

one of these accesses is a write [19][45]. Race occurrences may

lead to occurrences of other concurrency bugs [39] and may result

in real-world disasters [4][31][43].

On race detection, static techniques could scale up to a whole

program but may report many false positives [26][37][41][51].

Dynamic techniques report fewer false positives. They are mainly

based on either the lockset discipline [45] or the happens-before

relation [19][29]. The lockset discipline requires that all accesses

to a shared memory location should be protected by a common set

of locks. However, even violating such a discipline, no data race

may occur [8][12][19]. The Happens-before relation [29] is usual-

ly implemented via vector clocks [19]. Each vector clock contains

n clock elements, where n is the number of threads. They are used

to track statuses of threads, locks, and memory locations. Race

detectors implementing vector clocks incur higher overhead than

the lockset based ones. FastTrack [19] further improves the over-

head of the happens-before based race detectors to be the same

level as that of lockset based ones by avoiding most of O(n) oper-

ations on memory accesses. However, FastTrack still incurs from

400% to 800% overhead [12][19][54].

To reduce runtime overhead, sampling techniques [8][35][59]

were introduced to only monitor a small set of memory accesses.

They could be deployed at the program user sites if they incur an

enough low overhead (e.g., less than 5%) [8]. LiteRace [35] targets

to sample memory accesses from cold (i.e., not frequently called)

functions. However, it fully monitors synchronization operations,

even those in non-sampled functions, and maintains data struc-

tures for threads, locks, and memory locations (needed by hap-

pens-before based race detectors). As a result, the overhead of

LiteRace varies from several percentages to ~140% [35]. Besides,

LiteRace needs to log various events for offline race detection,

which may further prevent it from being deployed at user sites.

Pacer [8] introduces periodical sampling strategy. It only tracks

memory accesses and synchronization operations in full during its

sampling periods. In non-sampling periods, it only checks race

occurrences. However, Pacer is based on dynamic sampling (i.e.,

making sampling decision online) and has to maintain basic data

structures like LiteRace, incurring certain basic overhead. For

example, with 0% and 3% sampling rates, Pacer incurs 33% and

86% overhead, respectively [8]. Such overhead makes Pacer im-

practical to be deployed at user sites, as an acceptable overhead at

user sites is usually 5% [6][27][33][60].

The latest sampling strategy DataCollider [17] completely dis-

cards both the monitoring on synchronization operations and the

maintenance on data structures. It utilizes code and data break-

points of hardware architectures to support its sampling for race

detection. (A code breakpoint is set to a program instruction and is

fired if the instruction is executed. A data breakpoint is set to a

memory address and is fired if a memory access to the address is

executed.) DataCollider firstly sets a code breakpoint on a random

instruction. If this code breakpoint fires, it further sets a data

breakpoint on the target address of this instruction and delays the

execution of the instruction until the data breakpoint fires or a

certain time limit is reached. If a data breakpoint fires, there must

exist another access to the same address. Then, a data race is re-

ported if at least one of the two accesses is a write.

DataCollider could incur a low runtime overhead by only focusing

on memory accesses via hardware supports. However, by discard-

This is the author's version of the work. It is posted here for your personal use. Not

for redistribution. The definitive version was published in the following publication:

FSE’16, November 13–18, 2016, Seattle, WA, USA

ACM. 978-1-4503-4218-6/16/11...

http://dx.doi.org/10.1145/2950290.2950310

ing the data structures of memory locations, it can only detect data

races actually occurring in a run but may miss those races that do

not occur but could be detected by happens-before based detectors

like Pacer and LiteRace. Besides, with a slight increase in sam-

pling rate, its overhead increases quickly as it directly delays pro-

gram execution. This increase is significantly larger than the in-

crease by Pacer. As a result, DataCollider also becomes ineffec-

tive, and could only work at user sites at an extremely low sam-

pling rate, which further makes it ineffective.

In this paper, we firstly analyze the limitations of existing sam-

pling approaches on race detection. We then propose a light but

novel definition of data races, called Clock Races, based on

thread-local clocks without the need of vector clocks and concrete

locks. Clock races are provable to be also happens-before races

(i.e., those detectable by happens-before based detectors, HB race

for short). The benefit of clock races is that the detection of them

does not require heavy tracking on concrete locks. This results in

O(1) rather than O(n) operations on synchronization events and

hence further avoids memory maintenance overhead on the in-

volved locks. We then propose CRSampler, a novel sampling ap-

proach for detection of clock races based on hardware support.

Compared to Pacer, CRSampler does not rely on heavy tracking of

happens-before relation, avoiding basic tracking overhead. Com-

pared to DataCollider, CRSampler does not directly delay program

execution to trap a second access, which not only reduces runtime

overhead but also achieves a bigger capability on race detection.

Following Pacer, we have implemented DataCollider and

CRSampler within Jikes RVM [3] and compared CRSampler with

both DataCollider and Pacer on six benchmarks from Dacapo [9],

including a large-scale eclipse. The experimental results show

that, at 1% sampling rate, CRSampler only incurred less than 5%

overhead on average; but Pacer incurred more than 25% overhead

on average and DataCollider incurred more than 96% overhead on

average. CRSampler also detected significantly more races (i.e.,

404 races in total) than that by Pacer and DataCollider (31 and 20

races, respectively). Besides, with the increase in sampling rate

from 0.1% to 1.0% (with step 0.1%), CRSampler not only incurred

the least overhead increase but also detected an obviously increas-

ing number of races. However, with the same increase on sam-

pling rate, both DataCollider and Pacer incurred a larger overhead

increase than that by CRSampler; they almost detected a constant

number of races on most of the benchmarks.

In summary, the main contributions of this paper are:

 It presents a novel definition of data races, named as clock
races. Clock races are proved to be also happens-before rac-
es. Detection of clock races only requires O(1) operations in
time on synchronization events, without the need of concrete
synchronization objects.

 It presents CRSampler framework to sample clock races
based on hardware supports. Unlike existing techniques,
CRSampler does not directly delay program execution and
hence incurs much lower overhead than existing ones.

 We have implemented CRSampler as a prototype tool (see
http://lcs.ios.ac.cn/~yancai/cr/cr.html). The experiments con-
firm that, compared to state-of-the-art happens-before based
Pacer and the hardware based DataCollider, CRSampler is
significantly much more effective and efficient.

In the rest of this paper, Section 2 gives the background, followed

by motivations in Section 3. Section 4 presents our clock races

definition and CRSampler. The evaluation is in Section 5. Section

6 discusses related works and Section 7 concludes this paper.

2. BACKGROUND
A multithreaded program p consists of a set of threads 𝑡 T, a

set of locks (or lock/synchronization objects) 𝑙 L, and a set of

memory locations 𝑚 M. Each thread 𝑡 T has a unique thread

identifier 𝑡𝑖𝑑, denoted as 𝑡. 𝑡𝑖𝑑.

During an execution of a multithreaded program p, each thread 𝑡

performs a sequence of events, including:

(1) Memory access events: read or write to a memory location

𝑚, and

(2) Synchronization events: acquire or release a lock 𝑙. (Other

synchronization events can be similarly defined [19].)

We define a Non-Sync Block (NSB for short), during an execu-

tion, as a sequence of consecutive memory accesses between two

synchronization events such that no other synchronization event

exists between the two synchronization events.

The Happens-before relation (denoted as ↣, HBR for short) is

defined by the following three rules [29]:

(1) If two events and are performed by the same thread,

and appears before , then ↣ .

(2) If is a lock release event and is a lock acquire event on

the same lock, and appears before , then ↣ .

(3) If ↣ and ↣ , then ↣ .

HBR is typically represented by vector clocks [19]. A vector

clock 𝐶 is an array of thread-local clocks. A clock is an integer,

one for each thread 𝑡 (denoted as 𝑡. 𝑐𝑙𝑜𝑐𝑘). During program exe-

cution, one vector clock is allocated for each thread 𝑡, for each

lock 𝑙, and for each memory location 𝑚, denoted as 𝐶𝑡, 𝐶𝑙 , and

𝐶𝑚 , respectively. The i-th element in any vector clock 𝐶 (i.e.,

𝐶[𝑖]) represents the last known clock of the thread 𝑡 with 𝑡. 𝑡𝑖𝑑 =
𝑖. Specially, for a thread 𝑡, 𝐶𝑡[𝑡. 𝑡𝑖𝑑] is equal to 𝑡. 𝑐𝑙𝑜𝑐𝑘. For a

thread 𝑡, 𝑡. 𝑐𝑙𝑜𝑐𝑘 is only incremented right after its value is dis-

tributed to others (e.g., locks) on synchronization events [19].

Therefore, during an execution, we always have [19] :

 𝑡. 𝑐𝑙𝑜𝑐𝑘 = 𝐶𝑡[𝑡. 𝑡𝑖𝑑], for any thread.

 𝐶𝑡[𝑡. 𝑡𝑖𝑑] > 𝐶𝑎𝑛𝑦[𝑡. 𝑡𝑖𝑑], where 𝐶𝑎𝑛𝑦 is a vector clock of any

thread (but not thread 𝑡) or any lock, and

 𝐶𝑡[𝑡. 𝑡𝑖𝑑] ≥ 𝐶𝑚[𝑡. 𝑡𝑖𝑑] , where 𝐶𝑚 is a vector clock of any

memory location 𝑚.

3. MOTIVATIONS

3.1 How to define and detect data races?
A data race occurrence involves two accesses from different

threads including at least one write access [19]. However, there is

no "gold standard" to define data races [17]. Existing techniques

usually rely on either the locking discipline [45] or the happens-

before relation [29]. The locking discipline defines a data race on

a memory location, if all accesses to the memory location is not

protected by a common set of locks. Approaches based on locking

discipline may report false positives as discussed in Section 1.

3.1.1 Happens-before based approaches
The happens-before relation (HBR) defines [19] a race on two

memory accesses 𝑒1 and 𝑒2 , with a write on the same memory

location, if neither 𝑒1 ↣ 𝑒2 nor 𝑒2 ↣ 𝑒1 . Such kind of races is

known as HB Races [48].

HBR requires full tracking of synchronizations from all threads.

Algorithm 1 shows a simplified basic HB race detector. The func-

tions onAcquire() and onRelease() (lines 1–11) track synchroniza-

tion events acquire() and release(), respectively, to maintain vec-

tor clocks for threads and locks. During tracking, the vector clocks

of the involved threads and locks are firstly fetched (i.e., 𝐶𝑡 and 𝐶𝑙

lines 3 and 9, respectively). Then an O(n) operation (as noted) is

performed to update the vector clock of the thread (i.e., 𝐶𝑡 ≔ 𝐶𝑙 ⊔
𝐶𝑡 at line 4) or the vector clock of the lock (i.e., 𝐶𝑡 ≔ 𝐶𝑙 ⊔ 𝐶𝑡 at

line 10). After that, the updated vector clock holds the latest

thread-local clocks from the two vector clocks. The functions

onRead() and onWrite() check whether a data race occurs when a

read or a write occurs. Still, the vector clocks of the thread and the

memory location are firstly fetched (line 16). Then, the algorithm

checks whether the last access to m (by thread lastThd) happens-

before the current access (line 18). If no happens-before relation

exists from the last access to the current one, a data race is report-

ed (if one of two accesses is a write, omitted in Algorithm 1). The

check is also O(n) as noted.

In Figure 1, we also show an example to illustrate the heavy track-

ing of HB based approaches. Figure 1(a) shows a Java program p.

The program p contains a data race on x: accesses to x from two

threads 𝑡1 and 𝑡2 (i.e., "x =…" and "x +=…") could occur concur-

rently. Figure 1(b) shows how each synchronization is instru-

mented to track HBR in Algorithm 1: for each synchronization, a

call onAcquire(…) or onRelease(…) is inserted and the lock object

(i.e., lock l or lock k) is taken as an argument. And on each read or

write, an onRead() or an onWrite() is also invoked.

As a result, the tracking of HBR itself (i.e., without race detec-

tion) incurs high overhead. For example, Pacer reports 15% over-

head [8], which already includes various optimizations. In our

practice, we also experienced about 15% overhead on tracking

HBR. According to our experience, there are two factors contrib-

uting to the overhead: (1) the fetching of vector clocks of locks

and threads (lines 3 and 9 in Algorithm 1), accounting for more

than 5% overhead on average, and (2) operations on vector clocks

of locks and threads (lines 4 and 10 in Algorithm 1), contributing

more than 8% overhead on average.

Therefore, HBR via vector clocks is unlikely suitable for data race

sampling as its tracking overhead (without race detection) is al-

ready larger than 5%, even with various optimizations [8]. Alt-

hough other existing works target to track a subset of HBR [6][27]

to reduce the tracking overhead to be low enough (i.e., less than

5%), their tracking is only designed to check two known memory

accesses in a production run [6].

3.1.2 Hardware based approaches
Recently, DataCollider defines a race on two accesses (with a

write on the same memory location), if they are executed at the

same physical time. In this paper, we call such races Collision

Races, which are also HB races [17].

Algorithm 2 shows the DataCollider algorithm. Given a sampling

rate r (and a time limit timeLimit discussed in Section 4.2),

DataCollider randomly chooses a set of instructions to sample

(lines 5–9). For each sampled instruction ins, it delays the execu-

tion of ins and, at the same time, waits for a second access (line

18). The trapping of a second access is done by setting up a hard-

ware data breakpoint on the target address of ins (line 15–16). If

the data breakpoint fires (lines 25–26), a data race occurs (lines

21–22). The map ℳ at line 6 is used to check whether any data

breakpoint fires on the address from the instruction of the delayed

thread (lines 22 and 26).

For example, Figure 1(c) shows how DataCollider detects the race

on x. Suppose that the write to x by thread 𝑡1 is sampled, then

DataCollider sets a data breakpoint on the address of x and then

delays the write to x for a certain time. During the delayed period,

if thread 𝑡2 reads or writes to x, the data breakpoint fires. Then the

Algorithm 1: Simplified Basic HB Race Detector

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

onAcquire(Lock l L) {
 Let 𝑡 be the current thread;
 Fetch vector clocks of 𝑙 and 𝑡 as 𝐶𝑙 and 𝐶𝑡, respectively.
 𝐶𝑡 ≔ 𝐶𝑙 ⊔ 𝐶𝑡; //i.e., for each i, 𝐶𝑡[𝑖] ≔ 𝑚𝑎𝑥 {𝐶𝑙[𝑖], 𝐶𝑡[𝑖]} //O(n)
}

onRelease (Lock l L) {
 Let 𝑡 be the current thread;
 Fetch vector clocks of 𝑙 and 𝑡 as 𝐶𝑙 and 𝐶𝑡, respectively.
 𝐶𝑙 ≔ 𝐶𝑙 ⊔ 𝐶𝑡; 𝐶𝑡[𝑡. 𝑡𝑖𝑑] ∶= 𝐶𝑡[𝑡. 𝑡𝑖𝑑] + 1; //O(n)
}

//simplified, do not distinguish read or write clock of m.
onRead/onWrite(Memory location m M) {

 Let 𝑡 be the current thread;
 Fetch vector clock of 𝑡 and 𝑚 as 𝐶𝑡 and 𝐶𝑚, respectively.
 𝑙𝑎𝑠𝑡𝑇ℎ𝑑 ≔ m.lastAccessedThread();
 if(not 𝐶𝑚[𝑙𝑎𝑠𝑡𝑇ℎ𝑑. 𝑡𝑖𝑑] ↣ 𝐶𝑡[𝑙𝑎𝑠𝑡𝑇ℎ𝑑. 𝑡𝑖𝑑]) //O(n)

 //Note that some O(n) operations could be eliminated [19]
 Report a race on m.
}

Algorithm 2: DataCollider
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

Input: r – a static sampling rate.
Input: p – a multithreaded program.
Input: timeLimit – the max time on a data breakpoint.

Let Σ be a set of sampled instructions in p w.r.t r.
Let ℳ be an empty set.

for each ins Σ //static sampling
 insertCall (sample(ins)) ;

sample (ins) //event e1
{
 addr, size, isWrite ∶= PARSE (ins) ;

 if (isWrite) setDataBreakpointRW (addr, size) ;
 else setDataBreakpointW (addr, size) ;

 delay (timeLimit); //wait for an event e2
 clearDataBreakpoint (addr) ;

 if (𝑎𝑑𝑑𝑟 ∈ ℳ) reportDataRace (ins) ;
 ℳ ≔ ℳ\{addr};
}

onDataBreakpointFired (addr) //event e2
{ ℳ ≔ ℳ ∪{addr}; }

thread 𝑡1

acquire(l)
x = …
…

release(l)

thread 𝑡2

acquire(k)
…
release(k)

x += …

thread 𝑡1

acquire(l)

onAcquire(l);

x = …
onWrite(x);

…

onRelease(l);

release(l)

thread 𝑡2

acquire(k)

onAcquire(k);

…
onRelease(k);

release(k)

tmp = x …
onRead(x);

x = tmp;
onWrite(x);

(a)

(b)

thread 𝑡1

acquire(l)
delay();
x = …

…

release(l)

thread 𝑡2

acquire(k)
…
release(k)

x += …

(c)
Figure 1. (a): A program p with a race on x; (b): an instrumen-

tation on p (in bold) by HB race detectors (e.g., Pacer); (c): a

delay inserted by DataCollider.

race on x is detected and DataCollider resumes the execution of

thread 𝑡1.

As the hardware breakpoint mechanism (supported as debug utili-

zations on modern CPUs [17]) incurs almost no overhead,

DataCollider is able to limit almost all its overhead to be that

caused by its delay. As the delay of DataCollider directly contrib-

utes to its overhead, the overhead of DataCollider could also be

large. And with increasing sampling rate, its overhead increases

quickly (see our experiments in Section 5.3). Of course, DataCol-

lider could be configured to incur much lower overhead (e.g., 5%)

by limiting its sampling rate to be much lower; but this also

results in an extremely lower race detection rate and makes

DataCollider much more ineffective.

Besides, the detection of collision races suffers the following limi-

tations. First, if a collision race is detected, the race has actually

occurred. Therefore, once deployed at user sites, the occurrences

of harmful collision races may cause unexpected results to users.

Second, not all races could be easily detected in such a way

[6][12], especially on large-scale programs (e.g., the eclipse pro-

gram in our experiment). As a result, DataCollider loses certain

race detection ability compared to HBR based race detectors.

Therefore, our first two insights are, for a lightweight sampling

technique:

In Section 4, we present our definition of data races with respect

to the above two requirements.

3.2 Dynamic Sampling vs. Static Sampling
Dynamic sampling (as well as dynamic full race detection [19])

requires fully instrumenting program instructions, even many

instructions may not be sampled during executions. For example,

in Figure 1(b), every access to x incurs onRead(x) or onWrite(x)

calls (of course, these calls could be inlined); but the sampling

decision is made within these two functions. In other words, for

dynamic sampling, to sample or not to sample an instruction is

unknown until the instruction is about to be executed. And at that

time, the instrumented function calls have been executed. As a

result, additional overhead is incurred due to these per-instruction

instrumentations prior to the sampling decision making. That is

part of reasons contributing to large overhead of Pacer (i.e., 33%

[8]) at 0% sampling rate.

However, static sampling only requires to instrument exact in-

structions that are to be sampled, as adopted by DataCollider. That

is, the sampling decision could be made offline or during program

loading time; and no additional overhead is introduced on those

instructions not to be sampled.

Dynamic sampling incurs some basic overhead for all instructions

(related to memory accesses as well as potential HBR mainte-

nance) while static sampling only incurs overhead for those to-be-

sampled instructions. From this point, static sampling is more

suitable for lightweight sampling techniques. Therefore, our third

insight is that:

4. CRSAMPLER

4.1 Clock Races
As discussed in Section 3, the detection of HB races requires in-

strumentation on synchronization operations. Such operations

involve fetching vector clocks of locks and threads as well as O(n)

operations on them. The resultant overhead is already more than

5% in previous experiment [8]. However, the definition of HB

races is able to predict races that did not really occur in the moni-

tored executions but may occur in other executions, which is more

powerful than DataCollider that detects a race only when it really

occurs.

Therefore, we only consider a subset of HBR to define data races.

Our definition of data races only relies on thread-local clocks.

Formally, we define our Clock Races as follows:

Definition 1. Two memory accesses 𝑒1 by thread 𝑡1 and 𝑒2 by

thread 𝑡2 form a Clock Race if:

1) The two accesses 𝑒1 and 𝑒2 operate on the same memory lo-

cation and at least one of them is a write access, and

2) At time that 𝑒2 occurs, 𝑡1. 𝑐𝑙𝑜𝑐𝑘 remains the same as that

when 𝑡1 performs 𝑒1.

The first condition is the basic requirement of a race definition.

The second one is depicted in Figure 2. It requires that, between

the occurrences of two accesses 𝑒1 and 𝑒2 in physical time (i.e.,

the period from time1 to time2 in Figure 2), the thread-local clock

of 𝑡1 remains unchanged. That is, during the period, thread 𝑡1

either (Case 1) does not execute any event (including

sleep()/wait() events that involve two increments on a thread's

local clock, resulting three non-sync blocks [19]) or (Case 2) only

executes memory accesses in the same non-sync block. Therefore,

DataCollider only defines a subset of our clock races correspond-

ing to Case 1 where a thread 𝑡1 does not execute any event due to

delaying by DataCollider (see Theorem 2 below).

We present two theorems to show that (1) clock races are also HB

races as the second condition is a subset of HBR (i.e., the correct-

ness of clock races), and (2) all races detected by DataCollider are

also clock races (corresponding to the above Case 1).

Theorem 1. If two events 𝑒1 and 𝑒2 form a clock race, they also

form an HB race.

Proof Sketch. (1) Firstly, it is impossible that 𝑒2 ↣ 𝑒1 as 𝑒2 ap-

pears after 𝑒1 occurs, which is implied by the second point of

Definition 1.

(2) Suppose that 𝑒1 ↣ 𝑒2 is true. Let 𝐶𝑚
𝑒1 be the vector clock of

m when 𝑒1 occurs. When 𝑒2 occurs, from 𝑒1 ↣ 𝑒2, we have:

𝐶𝑡2
[𝑡1. 𝑡𝑖𝑑] > 𝐶𝑚

𝑒1[𝑡1. 𝑡𝑖𝑑] EQ1

(Otherwise, an HB race already occurs [8][19] and hence 𝑒1 ↣

𝑒2 does not hold). However, as 𝑡1. 𝑐𝑙𝑜𝑐𝑘 is not changed since

𝑒1 occurs, by definition of clock races (in Section 2), we then

have:

𝐶𝑚
𝑒1[𝑡1. 𝑡𝑖𝑑] = 𝐶𝑡1

[𝑡1. 𝑡𝑖𝑑] = 𝑡1. 𝑐𝑙𝑜𝑐𝑘 EQ2

(1) It should not define a race according to the full HBR in-

volving vector clock operations;

(2) It should not directly delay executing an instruction.

(3) A lightweight sampling technique should adopt static

sampling strategy to reduce its overhead per execution.

Thread 𝑡1

𝑒1

Thread 𝑡2

𝑒2
𝑡1. 𝑐𝑙𝑜𝑐𝑘 is not changed between time1 and time2.

time1

time2

T
im

e
el

a
p

se

Figure 2. Illustration of clock races.

From EQ1 and EQ2, we know that thread 𝑡1 does not own a

largest clock of itself as 𝐶𝑡2
[𝑡1. 𝑡𝑖𝑑] > 𝑡1. 𝑐𝑙𝑜𝑐𝑘, which con-

tradicts the fact that a thread always has the largest clock of it-

self than any other thread. Therefore, the assumption 𝑒1 ↣ 𝑒2

is not true.

From (1) and (2), neither 𝑒1 ↣ 𝑒2 nor 𝑒2 ↣ 𝑒1 holds. As 𝑒1

and 𝑒2 operate on the same memory location and one of them

is a write, by definition of the HB race, 𝑒1 and 𝑒2 form an HB

race. Hence, a clock race is also an HB race.

Theorem 2. If two events 𝑒1 and 𝑒2 are detected by DataCollider

as a collision race, they also form a clock race.

Proof Sketch. Firstly, by definition of collision race, both events

𝑒1 and 𝑒2 operate on the same memory location and one of

them is a write access. Secondly, suppose that the event 𝑒1 is

the event delayed by DataCollider (the other case can be

proved similarly). When the event 𝑒2 occurs, the thread (say

𝑡1) performing 𝑒1 does not execute any other event as it is de-

layed; therefore, the thread-local clock of thread 𝑡1 is not

changed. According to the definition of clock race, the two

events 𝑒1 and 𝑒2 also form a clock race.

Detection of clock races requires only thread-local clocks to iden-

tify NSB (non-sync blocks). Therefore, it is enough to perform a

light instrumentation. Figure 3 shows how the example program is

instrumented (i.e., "onSync()"). Compared to instrumentation for

HB races as shown in Figure 1(b), on synchronization event, (1)

no concrete lock is required (i.e., "onSync()" but not "onAc-

quire(l)" or "onRelease(l)"), and (2) hence no vector clock of

locks or threads is operated, avoiding O(n) operations. Therefore,

a call "onSync()" is enough for each synchronization event, which

only increments thread-local clocks of the involved threads (see

lines 41–45 in Algorithm 3 for details).

Figure 3 also shows how a clock race on x is detected. Let the

initial clocks of two threads 𝑡1 and 𝑡2 be 10 and 8 (or any two

other integers), respectively. For both threads, on their acquisi-

tions of lock l and lock k, their clocks are incremented by 1 via

calls onSync(). Then, their clocks become 11 and 9, respectively.

Suppose that the write to x by thread 𝑡1 is sampled (i.e., "sam-

ple(x)"). Next, suppose that before thread 𝑡1 releases lock l, thread

𝑡2 releases lock k, followed by its read and write to x. At this time,

the clock of thread 𝑡1 is still 11 which is the same as that when its

write to x is sampled. Therefore, a clock race on x is detected.

Note that, if thread 𝑡1 first releases lock l before thread 𝑡2 reads

from and writes to x, no clock race is then detected. It is because

the clock of thread 𝑡1 is changed to 12 which is different from that

when the write to x by thread 𝑡1 is sampled. Although in both

cases, full HBR based race detectors (e.g., FastTrack) are able to

detect the race on x, HBR based sampling detectors also suffer

from the similar limitations. For example, Pacer is able to detect

the race on x only if (1) the two accesses by two threads occur in

the same sampling period or (2) one occurs in a sampling period

and the second occurs in the right followed non-sampling period.

For other cases, Pacer is unable to detect this race (e.g., both ac-

cesses occur in a non-sampling period or one access occurs in a

non-sampling period and the second one occurs in a sampling

period). For DataCollider, it is able to detect the race by delaying

the write to x by thread 𝑡1 until thread 𝑡2 reads from and writes to

x (as shown in Figure 1(c)). However, as discussed in Section 3,

such delays directly increase its overhead. With increasing num-

ber of delays, its overhead increases significantly fast (see Section

5.3.1).

Discussion on Definition of Clock Races. In Definition 1, a clock

race requires no change on 𝑡1. 𝑐𝑙𝑜𝑐𝑘 . Symmetrically, we could

also define a clock race by extending Definition 1 (i.e., the second

bullet): if at time when 𝑒2 occurs, 𝑡2. 𝑐𝑙𝑜𝑐𝑘 is not changed since

the event 𝑒1 occurs. This extension could increase the detection

rate of clock races. However, it requires tracking of all clocks of

any other threads by thread 𝑡1 when 𝑒1 occurs. This tracking is

O(n) in time and increases sampling overhead. In our preliminary

experiment, this extension slightly increased race detection rates;

however, it doubled sampling overhead, making detection of

clock races inefficient. Therefore, we only follow Definition 1 to

detect races by sampling, avoiding incurring any O(n) operations.

4.2 Static and Hardware Based Sampling
CRSampler adopts static sampling strategy to sample each static

instruction based on our third insight discussed in Section 3.2.

When a sampled instruction is being executed, the access to the

memory location (i.e., address) in this instruction is taken as a first

event 𝑒1 . CRSampler further sets a data breakpoint on this

memory location to trap an event 𝑒2. If such an event 𝑒2 occurs

and the clock of the thread performing 𝑒1 remains unchanged, a

clock race is detected. Note that, unlike DataCollider, during the

trap of an event 𝑒2, no thread is delayed.

However, CRSampler has to consider how much time is allowed

to trap an event 𝑒2. This is similar to DataCollider that has to de-

termine how long it should delay the execution of a thread. It is

because, a short time may not be enough for a race to occur. But a

long time may make the usage of the data breakpoints ineffective,

as the number of data breakpoints is limited. For example, popular

X86 CPU supports only four data breakpoints and others may

only support one [28].

One strategy is, like DataCollider, to set a constant time limit.

Once such a time limit is reached, event 𝑒1 is discarded. This

strategy is simple and does not incur additional overhead. The

second one is to monitor the clock changes of all threads, once the

thread performing 𝑒1 increments its clock, event 𝑒1 is then dis-

carded and the taken data breakpoint is cleared. The second strat-

egy seems more effective than the first one. However, it requires

additional overhead on synchronization events (e.g., a check on

whether an event 𝑒1 is sampled from the execution of the current

thread). Therefore, CRSampler adopts the first strategy and sets a

time limit (which is the same as that by DataCollider).

4.3 CRSampler Algorithm
Algorithm 3 shows the CRSampler algorithm. Given a sampling

rate r and a program p, CRSampler first selects a set of instruc-

tions Σ randomly according to the given sampling rate r, and in-

struments these instructions (lines 8 and 9) to sample memory

accesses at runtime. The input timeLimit is the max time for a data

breakpoint to be valid for a given address. CRSampler maintains a

thread-local clock for each thread 𝑡 as 𝑡. 𝑐𝑙𝑜𝑐𝑘 and a data structure

ℳ. (Note that, to simplify our presentation, we use the notation

Thread 𝑡1

acquire(l) onSync();

x = … sample(x);

…

onSync();

release(l)

Thread 𝑡2

acquire(k) onSync();

… onSync();

release(k)

x += …

𝑡1. 𝑐𝑙𝑜𝑐𝑘
10

11

11

11

11

12

𝑡2. 𝑐𝑙𝑜𝑐𝑘
8

9

9

10

10

Figure 3. Instrumentation of CRSampler (highlighted) and

detection of a clock race on x with thread-local clocks.

ℳ𝑥 to denote the mapping from 𝑥 to ℳ(𝑥).) The structure ℳ

maps from one address to a pair of a thread and a clock, corre-

sponding to the thread 𝑡 performing event 𝑒1 in definition of clock

race and the clock of 𝑡 at that time. Note that, (1) the map ℳ of

Algorithm 3 is different from that in Algorithm 2; (2) as the

number of data breakpoints is limited, operations over ℳ are

actually O(1) operations in time (implemented via a global unique

index for each data breakpoint).

At runtime, once an instrumented instruction ins is being execut-

ed, the instrumented call sample(ins) fires. CRSampler then sets a

data breakpoint (lines 11–20) to the memory address (i.e., addr)

that the instruction ins is about to access. (We use a function

PARSE() to denote the extraction of the address addr and the size

size in byte associated with the instruction ins, as well as isWrite

indicating whether this instruction is a write one.) There are two

types of data breakpoints: read-write data breakpoint and write

data breakpoint. The former fires if either a read or a write to the

target address occurs; the latter fires only if a write to the target

address occurs. CRSampler chooses either type of breakpoint ac-

cording to whether the sampled access is a write or a read (lines

13–15). That is, a read access only forms a data race with a write

access while a write access forms a data race with either a read or

a write access. After setting the breakpoint, the thread id and the

clock of the current thread is mapped in ℳ from the address addr

(lines 17 and 18); and a time limit for this addr is set (line 19).

Once a data breakpoint on an address addr fires (corresponding to

event 𝑒2 of the clock race definition), a clock race on addr occurs

if the current thread 𝑡 is different from the last thread lastThd and

the current clock of thread lastThd remains the same as that

mapped in ℳ (lines 27–29). A data breakpoint is cleared if either

a second event 𝑒2 occurs (as stated in the last paragraph) (lines

30–31) or a time limit is reached (lines 35–39, i.e., the function

onTimer(addr)).

The function onSync () is called whenever a synchronization event

occurs to increment the thread-local clock of the corresponding

thread (lines 41–45).

Algorithm comparison. Compared to Pacer that is based on HBR,

CRSampler does not maintain full HBR tracking but only a thread-

local clock on synchronization events (i.e., 𝑡. 𝑐𝑙𝑜𝑐𝑘 ∶= 𝑡. 𝑐𝑙𝑜𝑐𝑘 +
1 instead of 𝐶𝑡 ∶= 𝐶𝑙 ⊔ 𝐶𝑡 in Algorithm 1). Therefore, CRSampler
invokes onSync() instrumentation call but not onAcquire(l) or

onRelease(l). Thus, CRSampler is able to avoid heavy tracking

incurred by fetching lock objects and their vector clocks as well as

the corresponding O(n) operations.

Compared to DataCollider, CRSampler does not rely on direct

delays to actually trigger race occurrences. Instead, it checks races

according to thread-local clocks if any data breakpoint fires. Such

race detection avoids direct delay-caused overhead. Besides, with

a longer time limit, CRSampler does not incur a larger overhead;

however, for DataCollider, its overhead is increased by the same

fold of the increase in its time limit. This is also verified by our

experiments (see Section 5.3.1). Of course, given the same sched-

uling and the same set of sampled memory accesses, CRSampler

guarantees to detect all races detected by DataCollider, as each

collision race is a clock race (see Theorem 2). In practice,

CRSampler is able to detect more races as it does not delay any

execution, resulting in more memory accesses sampled (see our

experiment in Section 5).

4.4 Limitations
Like existing sampling based techniques, CRSampler also misses

data races as expected. CRSampler utilizes thread-local clocks to

detect HB races. It then suffers limitations suffered by HB race

detectors. One of such limitations is the report of false positives:

two accessed are reported as an HB race but they cannot occur at

the same time. And data dependency is one factor. That is, two

accesses form an HB race; but the second access may depend on

the value of the memory location of the first access. However,

DataCollider does not suffer from such a limitation as it only de-

tects those data races occurring at the same time.

5. EXPERIMENTS
This section presents the evaluation on CRSampler (CR for short).

We compared it with Pacer and DataCollider (DC for short), and

indirectly compared it with LiteRace [35] via Pacer [8].

5.1 Implementation and Benchmarks
Implementation. We have implemented DC and CR in Jikes

RVM [3][5], a widely used research JVM [8][12]. Pacer has also

been implemented in Jikes RVM and is available online [2], we

used its downloaded implementation. The static sampling of DC

and CR is performed at Java class loading time.

Algorithm 3: CRSampler
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

Input: r – a static sampling rate.
Input: p – a multithreaded program.
Input: timeLimit – the max time on a data breakpoint.

Let Σ be a set of sampled instructions in p w.r.t r.
Let ℳ be a map from an address to a pair 𝑡, 𝑐𝑙𝑜𝑐𝑘.

for each ins Σ //static sampling
 insertCall (sample(ins)) ;

sample (ins) //event e1
{
 addr, size, isWrite ∶= PARSE (ins) ;
 if (isWrite) setDataBreakpointRW (addr, size) ;
 else setDataBreakpointW (addr, size) ;

 Let 𝑡 be the current thread;
 ℳ ≔ ℳ ∪ {𝑎𝑑𝑑𝑟, 𝑡, 𝑡. 𝑐𝑙𝑜𝑐𝑘};
 setTimer (addr, timeLimit); //unlike DataCollider, no delay
}

onDataBreakpointFired (addr) //event e2
{
 Let 𝑡 be the current thread;
 𝑙𝑎𝑠𝑡𝑇ℎ𝑑, 𝑙𝑎𝑠𝑡𝐶𝑙𝑜𝑐𝑘 ∶= ℳ𝑎𝑑𝑑𝑟 ;
 //check clock races
 if (𝑡 ≠ 𝑙𝑎𝑠𝑡𝑇ℎ𝑑 ⋀ 𝑙𝑎𝑠𝑡𝐶𝑙𝑜𝑐𝑘 = 𝑙𝑎𝑠𝑡𝑇ℎ𝑑. 𝑐𝑙𝑜𝑐𝑘)
 {
 reportDataRace (ins) ;
 clearDataBreakpoint (addr) ;
 ℳ𝑎𝑑𝑑𝑟 ∶= ∅;
 }
}

onTimer(addr)
{
 clearDataBreakpoint (addr) ;
 ℳ𝑎𝑑𝑑𝑟 ∶= ∅;
}

onSync () //synchronization events
{
 Let 𝑡 be the current thread;
 𝑡. 𝑐𝑙𝑜𝑐𝑘 ∶= 𝑡. 𝑐𝑙𝑜𝑐𝑘 + 1; //unlike HBR, no O(n) operations
}

For DC and CR, the use of data breakpoints is only allowed at

Linux kernel. We implemented them for Java programs as depict-

ed in Figure 4: for each sampled access, the target address of the

access is extracted within Jikes RVM (i.e., Core of DC/CR). It is

passed to a User-site Agent (implemented in the interface exten-

sion of the Jikes RVM) and is then sent to Linux kernel-site via

Netlink communication ("Netlink Com.") [1]. At Linux kernel-

site, a data breakpoint is set on the given address. Once a data

breakpoint fires, a message is sent from the kernel-site to the user-

site agent, and is then sent to DC/CR. Both DC and CR set at

most four breakpoints at a time as our experiment environment

supports four data breakpoints.

Another challenge is that, unlike C/C++, Java offers reference

types (and primitive types) with automatic garbage collection but

not direct pointer types. Therefore, an address is not only accessed

by application threads (i.e., those created by Java applications),

but also accessed by Java VM threads (e.g., on objects moving

and garbage collection). The latter kind of accesses does not incur

data races with accesses from application threads. However, it is

impossible to identify and skip such accesses from VM threads at

hardware level. Therefore, once a data breakpoint fires, DC/CR

extracts the native thread id (i.e., Pthread on Linux) and checks

whether such a thread is a Java application thread or a Java VM

thread. It discards any access from Java VM threads.

Benchmarks. We selected a set of six multithreaded benchmarks

from Dacapo [9] benchmark suite that could be run correctly by

Jikes RVM. These benchmarks include avrora09, xalan06, xa-

lan09, sunflow09, pmd09, and eclipse06, where the subscripts

"06" and "09" indicate their version number (i.e., "2006" or the

"2009" version, respectively). Table 1 shows the statistics of these

benchmarks, including the binary size, the number of threads, and

the number of dynamically collected synchronizations for each

benchmark. The last five columns show the number of data races

detected by each technique. The last row also shows the total

number of data races detected by each technique.

5.2 Experimental Setup
Our experiment was performed on a workstation with an i7-

4710MQ CPU (four cores), 16G memory, and 250G SSD. The

workstation was installed with Ubuntu 14.04 x86 system.

To evaluate CR, we run six benchmarks under Pacer, DC, and CR

100 times for each sampling rate from 0.1% to 1.0% with step

0.1%. Note that, unlike DC and CR, Pacer adopts dynamic sam-

pling strategy. We set three techniques to work at relatively low

sampling rates. This is because the three sampling techniques

target to detect races at user sites and their overhead should be

low enough to be accepted by users. For Pacer, its overhead at 0%

sampling rate is already much higher (i.e., 33% in [8]) than 5%.

For DC, it incurred nearly 100% overhead at 1% sampling rates in

our experiment to be presented below.

As DC and CR adopt time limit mechanism, we selected two time

limit options: 15 ms (millisecond) and 30 ms. Note that the first

one is the default option of DC [17]. We refer to the two options

of DC and CR as DC15, DC30, and CR15, CR30, respectively.

5.3 Experimental Results
We compare three techniques at their runtime overheads, total

numbers of races detected, and per-race detection abilities.

5.3.1 Overhead
Figure 51 shows the average overhead (y-axis) of three techniques

on all six benchmarks with increasing sampling rate from 0.1% to

1.0% (x-axis). Figure 6 (a) and (b) shows the overhead of three

techniques on six benchmarks in detail.

1 Note, in both Figure 5 and Figure 6, we do not count and show the over-

head of Pacer on sunflow09 as on which, Pacer incurred an overhead from

600% to nearly 2,000% with sampling rate from 0.1% to 1.0%. No evalua-

tion of Pacer on sunflow09 was reported in [8].

JikesRVM

User-site

Agent

Kernel

Site
CPU

Set breakpoints

On firing

User space Kernel space

Netlink

Com.

Core of

DC/CR

E
x
e
c
u

ti
o

n

Figure 4. Architecture of CRSampler and DataCollider.

(a) Average overhead of three techniques (b) Average overhead of Pacer and CRSampler

Figure 5. Average runtime overhead.

y = 9.0749x + 0.1474

R² = 0.9397

y = 92.529x + 0.0588

R² = 0.9851

y = 173.46x + 0.0997

R² = 0.9796

0%

40%

80%

120%

160%

200%

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

A
v
er

ea
g
e

O
v
er

h
ea

d

Sampling rate

Avg. Overhead of Three + Trendlines
Pacer

DC15

DC30

CR15

CR30

y = 9.0749x + 0.1474

R² = 0.9397

y = 2.6312x + 0.0252

R² = 0.9624

y = 2.0859x + 0.0269

R² = 0.98990%

5%

10%

15%

20%

25%

30%

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

A
v
er

ea
g
e

O
v
er

h
ea

d

Sampling rate

Avg. Overhead of Pacer and CRSampler + Trendlines
Pacer

CR15

CR30

Table 1. The statistics of each benchmark and the number of

total races detected by each technique.

Bench-

marks
Binary

Size (KB)
of

threads

of

sync.
Pacer*

D
C

15

D
C

30

C
R

15

C
R

30

avrora09 2,086 7 3,312,801 3 3 3 5 3

xalan06 1,027 9 35,859,489 5 5 5 87 81

xalan09 4,827 9 12,599,144 0 2 2 84 91

sunflow09 1,017 17 1,590 0 0 2 46 45

pmd09 2,996 9 20,550 4 2 2 110 121

eclipse06 41,822 16 51,131,093 19 2 6 58 63

Sum: 31 14 20 390 404

*for Pacer with 100% sampling rate, it was reported to have detected more

races [8][18]. For example, on eclipse06, Pacer detected 39 races (out

of 51 known races) [18] and 77 races [8]; and on xalan06, Pacer detected

36 races (out of 41 known races) [18] and 73 races [8].

Average overhead. Figure 5(a) shows the average overhead of

each technique. Figure 5(b) further shows the overhead compari-

son on CR and Pacer. The two figures also show the linear trend-

lines (with both equations 𝑦 = 𝑘𝑥 + 𝑏 and goodness of fit R2) to

indicate their trends of overhead increase. Figure 5(b) also shows

a dotted line indicating the 5% overhead.

The trendline equations in Figure 5 (a) and (b) show that, statisti-

cally, DC has the largest overhead increasing factors (i.e., 173.46

of DC30 and 92.529 of DC15). Particularly, the increasing factors

of DC30 is about two times of that of DC15. This further validates

the fact that, for DC, an increase in its delay time also incurs the

same fold increase in its overhead. Although the increasing factor

of Pacer (i.e., 9.0749) is less than one tenth of DC15, it is still sig-

nificantly more than 3 times larger than that of CR (i.e., 2.0859

and 2.6312 for CR15 and CR30, respectively). From the two fac-

tors of CR, we observe that, even with a longer time limit (but at

the same sampling rate), the overhead of CR does not increase but

slightly decreases (see the second point of Section 5.4).

Another insight from Figure 5 (a) and (b) is that, statistically,

hardware based sampling has a smaller basic overhead (i.e.,

0.0588, 0.0997, 0.0252, and 0.0269 of DC15, DC30, CR15, and

CR30) than that (i.e., 0.1474 of Pacer) by tracking HBR. And the

basic overheads of CR15 and CR30 are also the two least ones.

Overhead on each benchmark. Figure 6(a) shows the detailed

overhead of three techniques on each benchmark, where the leg-

end of the subfigure "avrora09" applies to all other subfigures.

From Figure 6(a), we observe that at 0.1% sampling rate, all three

techniques incurred relatively small overhead. And most of their

overheads are below 20%, where one exception is that DC15 and

DC30 incurred more than 46.6% and 89.3% overhead on xalan06.

However, with increasing sampling rate from 0.1% to 1.0%, both

DC15 and DC30 incurred significantly larger overhead. This is

expected as the delayed time of DC is directly added into its

overhead (as discussed in Section 3). Whereas, Pacer, CR15, and

CR30 incurred a slight overhead increase with increasing sampling

rate except on eclipse06 by Pacer. This slower increase shows

the advantage of Pacer and CR by defining data race based on

synchronization tracking (i.e., HBR tracking by Pacer and thread-

local clock tracking by CR) instead of direct delaying.

Although Pacer has a linear increase on its overhead with increas-

ing sampling rate, its basic overhead is much larger than that of

CR. Figure 6(b) (where the legend of "CR15" applies to all other

subfigures) further shows the comparison of Pacer, CR15, and

CR30 on their overhead with increasing sampling rate. From Fig-

ure 6(b), we observe that Pacer usually incurred from 15.5% to

22.3% overhead with 0.1% sampling rate except on avrora09

where the overhead was about 6.8%. However, the 15.5% to

(a) Runtime overhead of three techniques

(b) Runtime overhead of Pacer and CRSampler

Figure 6. Runtime overhead of three techniques on each benchmark.

0%

10%

20%

30%

40%

50%

60%

70%

80%

O
v
er

h
ea

d

Sampling rate

avrora 09

Pacer
DC15
DC30
CR15
CR30

0%

50%

100%

150%

200%

250%

300%

O
v
er

h
ea

d

Sampling rate

xalan 06

0%

50%

100%

150%

200%

250%

300%

O
v
er

h
ea

d

Sampling rate

xalan 09

0%

50%

100%

150%

200%

250%

O
v
er

h
ea

d

Sampling rate

sunflow 09

0%

50%

100%

150%

200%

250%

300%

O
v
er

h
ea

d

Sampling rate

pmd 09

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

O
v
er

h
ea

d

Sampling rate

eclipse 06

0%

5%

10%

O
v
er

h
ea

d

Sampling rate

CR15

avrora 09 xalan 06

xalan 09 sunflow 09

pmd 09 eclipse 06

0%

5%

10%

O
v
er

h
ea

d
Sampling rate

CR30

0%

10%

20%

30%

40%

50%

O
v
er

h
ea

d

Sampling rate

Pacer

22.3% overhead of Pacer is much larger than 5%. With sampling

rate increased from 0.1% to 1.0%, the overhead of Pacer increased

to more than 25% or even up to 41.4% (i.e., on eclipse06 at

1.0% sampling rate). Compared to Pacer, with 0.1% sampling

rate, both CR15 and CR30 incurred less than 5% overhead (i.e.,

1.6%, 1.3%, 3.0%, 1.4%, and 4.4% of CR15, 0.98%, 1.4%, 3.3%,

2.5%, 4.7% and 4.9% by CR30) or slightly above 5% (i.e., 5.12%

on avrora09 by CR15). With sampling rate increased from 0.1%

to 0.9%, the largest overhead by CR15 and CR30 is 4.20% except

on xalan06 and avrora09. On these two benchmarks, the largest

overhead is 7.4%. At 1.0% sampling rate, the largest overhead is

7.9% (i.e., on avrora09 by CR15).

In summary, from Figure 5 and Figure 6, we can see that CR in-

curred a much lower overhead than that by Pacer and DC. At

1.0% sampling rate, CR incurred less than or slightly over 5%

overhead on average, which makes CR practical to be deployed at

user sites.

5.3.2 Total Races Detected
Total races detected in 1,000 runs. The last five columns of Table

1 show the total number of data races detected by Pacer, DC15,

DC30, CR15, and CR30 in all their 1,000 runs (100 runs × 10 sam-

pling rates). As shown in Table 1, CR detected significantly more

races than that detected by both Pacer and DC. And, DC detected

more races on some benchmarks but fewer races on others than

that by Pacer. Note that, on eclipse06 and xalan06, Pacer with

100% sampling rate was reported to have detected more races [8]

(see the note of Table 1). However, we focus on their race detec-

tion abilities and runtime overhead at low sampling rate in this

paper.

Among all races detected by three techniques, both Pacer and DC

missed a larger number of races detected by CR as shown in Table

1. However, CR only missed four races detected by Pacer and

three races detected by DC. All these races were from eclipse06.

This is not a surprise as eclipse06 is a large-scale program (e.g.,

Table 1 shows that its binary size is nearly ten times larger than

that of others). Hence, it requires more runs to detect more races

from eclipse06.

Distinct races per-100 runs with different sampling rates. In our

experiment, we run each technique 100 times under 10 sampling

rates. Figure 7 shows the number of distinct races detected in

every 100 runs under each of 10 sampling rates. The x-axis firstly

shows the six benchmarks and then shows 10 sampling rates from

0.1% to 1.0% for each benchmark. The y-axis shows the number

of distinct races detected. The legend of "Pacer" in Figure 7 also

applies to other subfigures.

From Figure 7, we observe that CR detected significantly more

races than Pacer and DC among most of 100 runs. This indicates

that CR has a stronger ability to detect races in each run on aver-

age than Pacer and DC.

On eclipse06 and xalan06, Pacer detected an increasing number

of races with increasing sampling rate (indicated by our manually

added trend-like arrows for reference); and on avrora09, xalan06,

and pmd09, one or both of DC15 and DC30 also detected an in-

creasing number of races. However, on other benchmarks, both

Pacer and DC detected almost the same number of races with

increasing sampling rates. Whereas, CR detected an increasing

number of races among all benchmarks except on avrora09. On

avrora09, there are totally 5 races detected by CR, Pacer, and DC.

On this benchmark, only CR15 detected an increasing number of

races.

5.4 More Discussion on DC and CR
Both DC and CR adopt time limit mechanism, although their

usages are different. It is interesting that whether a longer time

limit is better. In our experiment, we set two time limits: 15 ms

and 30 ms. In this subsection, we analyze how different time lim-

its affect (1) their race detection abilities and (2) their runtime

overheads.

Race detection under different time limit. In theory, with a longer

time limit, there are two effects on both DC and CR: (1) the total

sampled accesses were reduced due to limited number of data

breakpoints, which may result in fewer races to be detected; (2) on

the other hand, with a longer time limit, DC and CR could detect

those races needing a longer time to expose.

As shown in Table 1, when the time limit was 30 ms, DC detected

more races on sunflow09 and eclipse06 by 2 and 4, respectively.

On other benchmarks, DC detected the same number of races.

However, for CR, there is no consistent result. On avrora09, xa-

lan06, sunflow09, CR with 30 ms detected less races by 2, 6, and

1, respectively; on xalan09, pmd09, and eclipse06, CR with 30

ms detected more races by 7, 11, and 5, respectively. Therefore, it

is difficult to say that a longer time limit may result in a better

race detection, even for DC. Actually, previous work has pointed

Figure 7. Comparisons on the number of distinct races detected in every 100 runs under different sampling rates.

0

5

10

15

20

avrora09 xalan06 xalan09 sunflow09 pmd09 eclipse06

#
 o

f
ra

ce
s

Pacer

0.1% 0.2% 0.3% 0.4% 0.5%

0.6% 0.7% 0.8% 0.9% 1.0%

0
1
2
3
4
5

avrora09 xalan06 xalan09 sunflow09 pmd09 eclipse06

#
 o

f
ra

ce
s DC15

0

1

2

3

4

5

avrora09 xalan06 xalan09 sunflow09 pmd09 eclipse06

#
 o

f
ra

ce
s

DC30

0

10

20

30

40

50

60

avrora09 xalan06 xalan09 sunflow09 pmd09 eclipse06

#
 o

f
ra

ce
s

CR15

0

10

20

30

40

50

60

avrora09 xalan06 xalan09 sunflow09 pmd09 eclipse06

#
 o

f
ra

ce
s

CR30

out that it is impossible to predict the time limit of DC [17]; and,

timing operations (e.g., instrumentation calls) may increase the

probability of a race occurrence but may also decrease it [8].

Overhead under different time limit. Although there is no conclu-

sion on whether a longer time limit may produce better race detec-

tion, its effect on overhead is much clearer. From Figure 5, it is

obvious that, DC with a longer time limit incurred a larger over-

head. In our experiment, the first time limit is 15 ms and the sec-

ond one is 30 ms (which is twofold of the first one). From the

equations of trendlines in Figure 5, we could observe that, for DC,

the overhead increasing factor (i.e., 173.46) at time limit of 30 ms

is nearly two times of the former (i.e., 92.529).

However, from Figure 5 for CR, there is no obvious difference

between the two time limits as the two trendlines almost overlap

with increasing sampling rate. In detail, CR30 incurred a slightly

less overhead. This is reasonable as with a longer time limit, (1)

the increased time is not added into the overhead of CR; (2) how-

ever, the total number of sampled accesses could be reduced, re-

sulting in less maintenance overhead. That is, an increasing time

limit has no bad effect on the overhead of CR. This further pro-

vides flexibility for developers to set a time limit according to

their programs without any worry on overhead increase.

5.5 Threats to Validity
Our benchmarks are Java programs. The JVM contains other

threads accessing application memory locations. Although we

have carefully compared whether two accesses were both from

application threads, some scenarios might be ignored in our im-

plementation. A more careful implementation may produce more

precise results. Besides, hardware breakpoints can only be ac-

cessed within (Linux) kernel space. So we adopted the Netlink

communication approach between user space and kernel space.

Other communication approaches may produce different perfor-

mance results that may also affect the effectiveness of CRSampler

and DataCollider in the evaluation.

6. RELATED WORK
Concurrency bugs widely exist in multithreaded programs, includ-

ing data races [12][19], atomicity violations [32][49], and dead-

locks [15]. Both static techniques [26][37][41][51] and dynamic

techniques [19][40][45][48][54] aim to detect data races. Static

ones [51][41] are able to analyze a whole program but are impre-

cise due to lack of runtime information. Dynamic ones detect data

races from execution traces. They either rely on the strict locking

discipline (i.e., lockset) [45][47][57] or the relatively precise hap-

pens-before relation [19][40] (including its improvement [7][44]

[50][52]). However, dynamic detection usually incurs heavy

overhead [13][14][19]. Existing sampling techniques aim to detect

races at user sites by incurring much lower overhead, which is the

focus of this paper.

Systematic scheduling techniques such as model checking [53]

[36], are in theory able to exhaustively execute every schedule to

achieve certain coverage [30]. However, due to the state explosion

problem, enumerating each schedule is not practical for real-world

programs, even with reduction techniques [20]. Chess [36] sets a

heuristic bound on the number of pre-emptions to explore the

schedules. Also, although systematic approaches avoid executing

previously explored schedules, they usually incur large overheads

and fail to scale up to handle long running programs. For exam-

ple, Maple [55] is a coverage-driven [10][21] tool to mine thread

interleaving so as to expose unknown concurrency bugs. PCT

[11][38] randomly schedules a program to expose concurrency

bugs, which also requires large number of executions. However, it

is difficult to apply these techniques to large-scale programs (e.g.,

eclipse in our experiment).

RVPredict [24] achieves a strictly higher coverage than HBR

based detectors. It firstly predicts a set of potential races and then

relies on a number of production executions to check against each

predicted race. Racageddon [18] aims to solve races that could be

predicted in one execution but require different inputs. It still

needs a larger number of executions to check against each pre-

dicted race [42][46]. Both RVPredict and Racageddon have to

solve scheduling constraints for each predicted race, which may

fail. A recent work DrFinder [12] tries to expose races hidden by

the happens-before relation. It dynamically predicts and tries to

reverse happens-before relations from observed executions. How-

ever, its active scheduling is also heavy (e.g., about 400% [12]).

RaceMob [27] statically detects data race warnings and distributes

them to a large number of users to validate real races. In such a

run, the schedules are guided by the set of data race warnings to

trigger real data races. This kind of approach is able to confirm

real races but cannot eliminate false positives. Besides, it may

miss real races if such races are not predicted in the (static)

prediction phase. CCI [25] proposes cross-thread sampling

strategies to find causes of concurrency bugs based on

randomized sampling. Unlike race sampling techniques (e.g.,

CRSampler, DataCollider, Pacer, and LiteRace), CCI focuses on

failure diagnosis. However, CCI may cause heavy overhead (e.g.,

up to 900% [25]) although it targets on lightweight sampling.

Carisma [59] improves Pacer by further sampling memory

locations allocated at the same program location for Java program.

Carisma could be integrated into CRSampler to improve its

effectiveness.

ReCBuLC [58] also adopts thread-local clocks (time stamps) to

reproduce concurrency bugs. Unlike CRSampler, ReCBuLC

requires concrete objects and may still incur large overhead if

applied to race sampling.

Recently, race detection has been extended to even-driven

applications [34][23][22], concurrent library invocations [16], and

modified program codes [56]. CRSampler could also be adapted to

detect these races. We leave it as future work.

7. CONCLUSION
Existing sampling techniques for race detection still incur high

overhead, even with 0% sampling rates, and/or detect races only

when they occur by delaying program executions. We have pro-

posed a new data race definition (i.e., clock races) for race sam-

pling purpose. Detection of clock races avoids O(n) operations

and concrete synchronization objects, which hence incurs a much

lower overhead. We also proposed CRSampler to sample clock

races via hardware support. The experiment on six benchmarks

confirms that CRSampler is both efficient and effective on race

detection via sampling. At 1% sampling rate, it only incurs nearly

5% overhead, indicating that CRSampler is suitable to be deployed

at user site for race detections.

8. ACKNOWLEDGEMENT
We thank anonymous reviewers for their invaluable comments

and suggestions on improving this work. This work is supported

in part by National 973 program of China (2014CB340702), and

National Natural Science Foundation of China (NSFC) (grant No.

61502465, 91418206, and 61572481).

9. REFERENCE
[1] Netlink communication between Linux user space and kernel

space. http://man7.org/linux/man-pages/man7/netlink.7.html

[2] Jikes Research Archive.
http://www.jikesrvm.org/Resources/ResearchArchive

[3] Jikes RVM 3.1.3. http://jikesrvm.org

[4] J. Jackson. Nasdaq's Facebook glitch came from 'race condi-

tions', May 21 2012.
http://www.computerworld.com/article/2504676/financial-it/nasdaq-s-

facebook-glitch-came-from--race-conditions-.html, last visited on March

2016.

[5] B. Alpern, C.R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T.

Ngo, J.J. Barton, S.F. Hummel, J.C. Sheperd, and M. Mer-

gen. Implementing jalapeño in Java. In Proc. OOPSLA, 314–

324, 1999.

[6] S. Biswas, M. Zhang, and M.D. Bond. Lightweight data race

detection for production runs. Ohio State CSE Technical Re-

port #OSU-CISRC-1/15-TR01, January 2015. 23 pages,

available at: http://web.cse.ohio-state.edu/~mikebond/litecollider-tr.pdf

[7] E. Bodden and K. Havelund. Racer: effective race detection

using AspectJ. In Proc. ISSTA, 155–166, 2008.

[8] M.D. Bond, K. E. Coons and K. S. Mckinley. PACER: Pro-

portional detection of data races. In Proc. PLDI, 255–268,

2010.

[9] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,

S.Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. Eliot

B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D.

von Dincklage, and B. Wiedermann. The Dacapo bench-

marks: Java benchmarking development and analysis. In

Proc. OOPSLA, 169–190, 2006.

[10] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applica-

tions of synchronization coverage. In Proc. PPoPP, 206–

212, 2005.

[11] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.

A randomized scheduler with probabilistic guarantees of

finding bugs. In Proc. ASPLOS, 167–178, 2010.

[12] Y. Cai and L. Cao. Effective and precise dynamic detection

of hidden races for Java programs. In Proc. ESEC/FSE, 450–

461, 2015.

[13] Y. Cai and W.K. Chan. LOFT: Redundant synchronization

event removal for data race Detection. In Proc. ISSRE, 160–

169, 2011.

[14] Y. Cai and W.K. Chan. Lock trace reduction for multithread-

ed programs. IEEE Transactions on Parallel and Distributed

Systems (TPDS), 24(12): 2407−2417, 2013.

[15] Y. Cai and W.K. Chan. Magiclock: scalable detection of

potential deadlocks in large-scale multithreaded programs.

IEEE Transactions on Software Engineering (TSE), 40(3),

266–281, 2014.

[16] D. Dimitro, V. Raychev, M. Vechev, and E. Koskinen.

Commutativity race detection. In Proc. PLDI, 305–315,

2014.

[17] J. Erickson, M. Musuvathi, S. Burckhardt and K. Olynyk.

Effective data-race detection for the kernel. In Proc. OSDI,

1–6, 2010.

[18] M. Eslamimehr and J. Palsberg. Race directed scheduling of

concurrent programs. In Proc. PPoPP, 301–314, 2014.

[19] C. Flanagan and S. N. Freund. FastTrack: efficient and pre-

cise dynamic race detection. In Proc. PLDI, 121–133, 2009.

[20] C. Flanagan and P. Godefroid. Dynamic partial-order reduc-

tion for model checking software. In Proc. POPL, 110–121,

2005.

[21] S. Hong, J. Ahn, S. Park, M. Kim, and M.J. Harrold. Testing

concurrent programs to achieve high synchronization cover-

age. In Proc. ISSTA, 210–220, 2012.

[22] S. Hong, Y. Park, and M. Kim. Detecting concurrency errors

in client-side java script web applications. In Proc. ICST, 61–

70, 2014.

[23] C. Hsiao, Y. Yu, S. Narayanasamy, Z. Kong, C.L. Pereira,

G.A. Pokam, P.M. Chen, and J. Flinn. Race detection for

event-driven mobile applications. In Proc. PLDI, 326–336,

2014.

[24] J. Huang, P.O. Meredith, and G. Rosu. Maximal sound pre-

dictive race detection with control flow abstraction. In Proc.

PLDI, 337–348, 2014.

[25] G. Jin, A. Thakur, B. Liblit and S. Lu. Instrumentation and

sampling strategies for cooperative concurrency bug isola-

tion. In Proc. OOPSLA, 241–225, 2010.

[26] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta.

Fast and accurate static data-race detection for concurrent

programs. In Proc. CAV, 226–239, 2007.

[27] B. Kasikci, C. Zamfir, and G. Candea. RaceMob:

Crowdsourced data race detection. In Proc. SOSP, 406–422,

2013.

[28] P. Krishnan. Hardware Breakpoint (or watchpoint) usage in

Linux Kernel. IBM Linux Technology Center, Canada, July

2009.

[29] L. Lamport. Time, clocks, and the ordering of events. Com-

munications of the ACM, 21(7):558–565, 1978.

[30] Z. Letko, T. Vojnar, and B. Kˇrena. Coverage metrics for

saturation-based and search-based testing of concurrent soft-

ware. In Proc. RV, 177–192, 2011.

[31] N.G. Leveson and C. S. Turner. An investigation of the

Therac-25 accidents. Computer, 26(7), 18–41, 1993.

[32] S. Lu, S. Park, E. Seo, and Y.Y. Zhou, Learning from mis-

takes: A comprehensive study on real world concurrency bug

characteristics. In Proc. ASPLOS, 329–339, 2008.

[33] B. Lucia and L. Ceze. Cooperative empirical failure avoid-

ance for multithreaded programs. In Proc. ASPLOS, 39–50.

2013.

[34] P. Maiya, a. Kanade, and R. Majumdar. Race detection for

Android applications. In Proc. PLDI, 316–325, 2014.

[35] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:

effective sampling for lightweight data-race detection. In

Proc. PLDI, 134–143, 2009.

[36] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,

and I. Neamtiu. Finding and reproducing heisenbugs in con-

current programs. In Proc. OSDI, 267–280 2008.

[37] M. Naik, A. Aiken, and J. Whaley. Effective static race de-

tection for Java. In Proc. PLDI, 308–319, 2006.

[38] S. Nagarakatte, S. Burckhardt, M. M.K. Martin, and M.

Musuvathi. Multicore acceleration of priority-based sched-

ulers for concurrency bug detection. In Proc. PLDI, 2012,

543–554, 2012.

[39] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B.

Calder. Automatically classifying benign and harmful data

races using replay analysis. In Proc. PLDI, 22–31, 2007.

[40] E. Pozniansky and A. Schuster. Efficient on-the-fly data race

detection in multithreaded C++ programs. In Proc. PPoPP,

179–190, 2003.

[41] P. Pratikakis, J.S. Foster, and M. Hicks. LOCKSMITH: con-

text-sensitive correlation analysis for race detection. In Proc.

PLDI, 320–331, 2006.

[42] C.S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient data

race detection for distributed memory parallel programs. In

Proc. SC, 2011.

[43] K. Poulsen. Software bug contributed to blackout.

http://www.securityfocus.com/news/8016, Feb. 2004.

[44] A.K. Rajagopalan and J. Huang. RDIT: race detection from

incomplete traces. In Proc. ESEC/FSE, 914 - 917, 2015.

[45] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T.

Anderson. Eraser: a dynamic data race detector for multi-

threaded programs. ACM TOCS, 15(4), 391–411, 1997.

[46] K. Sen. Race Directed Random Testing of Concurrent Pro-

grams. In Proc. PLDI, 11–21, 2008.

[47] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: data

race detection in practice. In Proc. WBIA, 62–71, 2009.

[48] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flana-

gan. Sound predictive race detection in polynomial time. In

Proc. POPL, 387–400, 2012.

[49] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE:

weaving threads to expose atomicity violations. In Proc.

FSE, 37–46, 2010.

[50] K. Vineet and C. Wang. Universal causality graphs: a precise

happens-before model for detecting bugs in concurrent pro-

grams. In Proc. CAV, 434–449, 2010.

[51] J.W. Voung, R. Jhala, and S. Lerner. RELAY: static race

detection on millions of lines of code. In Proc. FSE, 205–

214, 2007.

[52] C. Wang, K. Hoang. Precisely deciding control state reacha-

bility in concurrent traces with limited observability. In Proc.

VMCAI, 376–394, 2014.

[53] C. Wang, M. Said, and A. Gupta. Coverage guided systemat-

ic concurrency testing. In Proc. ICSE, 221–230, 2011.

[54] X.W. Xie and J.L. Xue. Acculock: Accurate and Efficient

detection of data races. In Proc. CGO, 201–212, 2011.

[55] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: a

coverage-driven testing tool for multithreaded programs. In

Proc. OOPSLA, 485–502, 2012.

[56] T. Yu, W. Srisa-an, and G. Rothermel. SimRT: An automat-

ed framework to support regression testing for data races. In

Proc. ICSE, 48–59, 2014.

[57] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient

detection of data race conditions via adaptive tracking. In

Proc. SOSP, 221–234, 2005.

[58] X. Yuan, C. Wu, Z. Wang, J. Li, P.C. Yew, J. Huang, X.

Feng, Y. Lan, Y. Chen, and Y. Guan. ReCBuLC: reproduc-

ing concurrency bugs using local clocks. In Proc. ICSE, 824–

834, 2015.

[59] K. Zhai, B.N. Xu, W.K. Chan, and T.H. Tse. CARISMA: a

context-sensitive approach to race-condition sample-instance

selection for multithreaded applications. In Proc. ISSTA,

221–231, 2012.

[60] W. Zhang, M. d. Kruijf, A. Li, S. Lu and K. Sankaralingam.

ConAir: featherweight concurrency bug recovery via single-

threaded idempotent execution. In Proc. ASPLOS, 113–126.

2013.

